node.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "opto/cfgnode.hpp"
29#include "opto/connode.hpp"
30#include "opto/machnode.hpp"
31#include "opto/matcher.hpp"
32#include "opto/node.hpp"
33#include "opto/opcodes.hpp"
34#include "opto/regmask.hpp"
35#include "opto/type.hpp"
36#include "utilities/copy.hpp"
37
38class RegMask;
39// #include "phase.hpp"
40class PhaseTransform;
41class PhaseGVN;
42
43// Arena we are currently building Nodes in
44const uint Node::NotAMachineReg = 0xffff0000;
45
46#ifndef PRODUCT
47extern int nodes_created;
48#endif
49
50#ifdef ASSERT
51
52//-------------------------- construct_node------------------------------------
53// Set a breakpoint here to identify where a particular node index is built.
54void Node::verify_construction() {
55  _debug_orig = NULL;
56  int old_debug_idx = Compile::debug_idx();
57  int new_debug_idx = old_debug_idx+1;
58  if (new_debug_idx > 0) {
59    // Arrange that the lowest five decimal digits of _debug_idx
60    // will repeat thos of _idx.  In case this is somehow pathological,
61    // we continue to assign negative numbers (!) consecutively.
62    const int mod = 100000;
63    int bump = (int)(_idx - new_debug_idx) % mod;
64    if (bump < 0)  bump += mod;
65    assert(bump >= 0 && bump < mod, "");
66    new_debug_idx += bump;
67  }
68  Compile::set_debug_idx(new_debug_idx);
69  set_debug_idx( new_debug_idx );
70  assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
71  if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
72    tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
73    BREAKPOINT;
74  }
75#if OPTO_DU_ITERATOR_ASSERT
76  _last_del = NULL;
77  _del_tick = 0;
78#endif
79  _hash_lock = 0;
80}
81
82
83// #ifdef ASSERT ...
84
85#if OPTO_DU_ITERATOR_ASSERT
86void DUIterator_Common::sample(const Node* node) {
87  _vdui     = VerifyDUIterators;
88  _node     = node;
89  _outcnt   = node->_outcnt;
90  _del_tick = node->_del_tick;
91  _last     = NULL;
92}
93
94void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
95  assert(_node     == node, "consistent iterator source");
96  assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
97}
98
99void DUIterator_Common::verify_resync() {
100  // Ensure that the loop body has just deleted the last guy produced.
101  const Node* node = _node;
102  // Ensure that at least one copy of the last-seen edge was deleted.
103  // Note:  It is OK to delete multiple copies of the last-seen edge.
104  // Unfortunately, we have no way to verify that all the deletions delete
105  // that same edge.  On this point we must use the Honor System.
106  assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
107  assert(node->_last_del == _last, "must have deleted the edge just produced");
108  // We liked this deletion, so accept the resulting outcnt and tick.
109  _outcnt   = node->_outcnt;
110  _del_tick = node->_del_tick;
111}
112
113void DUIterator_Common::reset(const DUIterator_Common& that) {
114  if (this == &that)  return;  // ignore assignment to self
115  if (!_vdui) {
116    // We need to initialize everything, overwriting garbage values.
117    _last = that._last;
118    _vdui = that._vdui;
119  }
120  // Note:  It is legal (though odd) for an iterator over some node x
121  // to be reassigned to iterate over another node y.  Some doubly-nested
122  // progress loops depend on being able to do this.
123  const Node* node = that._node;
124  // Re-initialize everything, except _last.
125  _node     = node;
126  _outcnt   = node->_outcnt;
127  _del_tick = node->_del_tick;
128}
129
130void DUIterator::sample(const Node* node) {
131  DUIterator_Common::sample(node);      // Initialize the assertion data.
132  _refresh_tick = 0;                    // No refreshes have happened, as yet.
133}
134
135void DUIterator::verify(const Node* node, bool at_end_ok) {
136  DUIterator_Common::verify(node, at_end_ok);
137  assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
138}
139
140void DUIterator::verify_increment() {
141  if (_refresh_tick & 1) {
142    // We have refreshed the index during this loop.
143    // Fix up _idx to meet asserts.
144    if (_idx > _outcnt)  _idx = _outcnt;
145  }
146  verify(_node, true);
147}
148
149void DUIterator::verify_resync() {
150  // Note:  We do not assert on _outcnt, because insertions are OK here.
151  DUIterator_Common::verify_resync();
152  // Make sure we are still in sync, possibly with no more out-edges:
153  verify(_node, true);
154}
155
156void DUIterator::reset(const DUIterator& that) {
157  if (this == &that)  return;  // self assignment is always a no-op
158  assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
159  assert(that._idx          == 0, "assign only the result of Node::outs()");
160  assert(_idx               == that._idx, "already assigned _idx");
161  if (!_vdui) {
162    // We need to initialize everything, overwriting garbage values.
163    sample(that._node);
164  } else {
165    DUIterator_Common::reset(that);
166    if (_refresh_tick & 1) {
167      _refresh_tick++;                  // Clear the "was refreshed" flag.
168    }
169    assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
170  }
171}
172
173void DUIterator::refresh() {
174  DUIterator_Common::sample(_node);     // Re-fetch assertion data.
175  _refresh_tick |= 1;                   // Set the "was refreshed" flag.
176}
177
178void DUIterator::verify_finish() {
179  // If the loop has killed the node, do not require it to re-run.
180  if (_node->_outcnt == 0)  _refresh_tick &= ~1;
181  // If this assert triggers, it means that a loop used refresh_out_pos
182  // to re-synch an iteration index, but the loop did not correctly
183  // re-run itself, using a "while (progress)" construct.
184  // This iterator enforces the rule that you must keep trying the loop
185  // until it "runs clean" without any need for refreshing.
186  assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
187}
188
189
190void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
191  DUIterator_Common::verify(node, at_end_ok);
192  Node** out    = node->_out;
193  uint   cnt    = node->_outcnt;
194  assert(cnt == _outcnt, "no insertions allowed");
195  assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
196  // This last check is carefully designed to work for NO_OUT_ARRAY.
197}
198
199void DUIterator_Fast::verify_limit() {
200  const Node* node = _node;
201  verify(node, true);
202  assert(_outp == node->_out + node->_outcnt, "limit still correct");
203}
204
205void DUIterator_Fast::verify_resync() {
206  const Node* node = _node;
207  if (_outp == node->_out + _outcnt) {
208    // Note that the limit imax, not the pointer i, gets updated with the
209    // exact count of deletions.  (For the pointer it's always "--i".)
210    assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
211    // This is a limit pointer, with a name like "imax".
212    // Fudge the _last field so that the common assert will be happy.
213    _last = (Node*) node->_last_del;
214    DUIterator_Common::verify_resync();
215  } else {
216    assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
217    // A normal internal pointer.
218    DUIterator_Common::verify_resync();
219    // Make sure we are still in sync, possibly with no more out-edges:
220    verify(node, true);
221  }
222}
223
224void DUIterator_Fast::verify_relimit(uint n) {
225  const Node* node = _node;
226  assert((int)n > 0, "use imax -= n only with a positive count");
227  // This must be a limit pointer, with a name like "imax".
228  assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
229  // The reported number of deletions must match what the node saw.
230  assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
231  // Fudge the _last field so that the common assert will be happy.
232  _last = (Node*) node->_last_del;
233  DUIterator_Common::verify_resync();
234}
235
236void DUIterator_Fast::reset(const DUIterator_Fast& that) {
237  assert(_outp              == that._outp, "already assigned _outp");
238  DUIterator_Common::reset(that);
239}
240
241void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
242  // at_end_ok means the _outp is allowed to underflow by 1
243  _outp += at_end_ok;
244  DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
245  _outp -= at_end_ok;
246  assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
247}
248
249void DUIterator_Last::verify_limit() {
250  // Do not require the limit address to be resynched.
251  //verify(node, true);
252  assert(_outp == _node->_out, "limit still correct");
253}
254
255void DUIterator_Last::verify_step(uint num_edges) {
256  assert((int)num_edges > 0, "need non-zero edge count for loop progress");
257  _outcnt   -= num_edges;
258  _del_tick += num_edges;
259  // Make sure we are still in sync, possibly with no more out-edges:
260  const Node* node = _node;
261  verify(node, true);
262  assert(node->_last_del == _last, "must have deleted the edge just produced");
263}
264
265#endif //OPTO_DU_ITERATOR_ASSERT
266
267
268#endif //ASSERT
269
270
271// This constant used to initialize _out may be any non-null value.
272// The value NULL is reserved for the top node only.
273#define NO_OUT_ARRAY ((Node**)-1)
274
275// This funny expression handshakes with Node::operator new
276// to pull Compile::current out of the new node's _out field,
277// and then calls a subroutine which manages most field
278// initializations.  The only one which is tricky is the
279// _idx field, which is const, and so must be initialized
280// by a return value, not an assignment.
281//
282// (Aren't you thankful that Java finals don't require so many tricks?)
283#define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
284#ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
285#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
286#endif
287
288// Out-of-line code from node constructors.
289// Executed only when extra debug info. is being passed around.
290static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
291  C->set_node_notes_at(idx, nn);
292}
293
294// Shared initialization code.
295inline int Node::Init(int req, Compile* C) {
296  assert(Compile::current() == C, "must use operator new(Compile*)");
297  int idx = C->next_unique();
298
299  // If there are default notes floating around, capture them:
300  Node_Notes* nn = C->default_node_notes();
301  if (nn != NULL)  init_node_notes(C, idx, nn);
302
303  // Note:  At this point, C is dead,
304  // and we begin to initialize the new Node.
305
306  _cnt = _max = req;
307  _outcnt = _outmax = 0;
308  _class_id = Class_Node;
309  _flags = 0;
310  _out = NO_OUT_ARRAY;
311  return idx;
312}
313
314//------------------------------Node-------------------------------------------
315// Create a Node, with a given number of required edges.
316Node::Node(uint req)
317  : _idx(IDX_INIT(req))
318{
319  assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
320  debug_only( verify_construction() );
321  NOT_PRODUCT(nodes_created++);
322  if (req == 0) {
323    assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
324    _in = NULL;
325  } else {
326    assert( _in[req-1] == this, "Must pass arg count to 'new'" );
327    Node** to = _in;
328    for(uint i = 0; i < req; i++) {
329      to[i] = NULL;
330    }
331  }
332}
333
334//------------------------------Node-------------------------------------------
335Node::Node(Node *n0)
336  : _idx(IDX_INIT(1))
337{
338  debug_only( verify_construction() );
339  NOT_PRODUCT(nodes_created++);
340  // Assert we allocated space for input array already
341  assert( _in[0] == this, "Must pass arg count to 'new'" );
342  assert( is_not_dead(n0), "can not use dead node");
343  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
344}
345
346//------------------------------Node-------------------------------------------
347Node::Node(Node *n0, Node *n1)
348  : _idx(IDX_INIT(2))
349{
350  debug_only( verify_construction() );
351  NOT_PRODUCT(nodes_created++);
352  // Assert we allocated space for input array already
353  assert( _in[1] == this, "Must pass arg count to 'new'" );
354  assert( is_not_dead(n0), "can not use dead node");
355  assert( is_not_dead(n1), "can not use dead node");
356  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
357  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
358}
359
360//------------------------------Node-------------------------------------------
361Node::Node(Node *n0, Node *n1, Node *n2)
362  : _idx(IDX_INIT(3))
363{
364  debug_only( verify_construction() );
365  NOT_PRODUCT(nodes_created++);
366  // Assert we allocated space for input array already
367  assert( _in[2] == this, "Must pass arg count to 'new'" );
368  assert( is_not_dead(n0), "can not use dead node");
369  assert( is_not_dead(n1), "can not use dead node");
370  assert( is_not_dead(n2), "can not use dead node");
371  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
372  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
373  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
374}
375
376//------------------------------Node-------------------------------------------
377Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
378  : _idx(IDX_INIT(4))
379{
380  debug_only( verify_construction() );
381  NOT_PRODUCT(nodes_created++);
382  // Assert we allocated space for input array already
383  assert( _in[3] == this, "Must pass arg count to 'new'" );
384  assert( is_not_dead(n0), "can not use dead node");
385  assert( is_not_dead(n1), "can not use dead node");
386  assert( is_not_dead(n2), "can not use dead node");
387  assert( is_not_dead(n3), "can not use dead node");
388  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
389  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
390  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
391  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
392}
393
394//------------------------------Node-------------------------------------------
395Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
396  : _idx(IDX_INIT(5))
397{
398  debug_only( verify_construction() );
399  NOT_PRODUCT(nodes_created++);
400  // Assert we allocated space for input array already
401  assert( _in[4] == this, "Must pass arg count to 'new'" );
402  assert( is_not_dead(n0), "can not use dead node");
403  assert( is_not_dead(n1), "can not use dead node");
404  assert( is_not_dead(n2), "can not use dead node");
405  assert( is_not_dead(n3), "can not use dead node");
406  assert( is_not_dead(n4), "can not use dead node");
407  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
408  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
409  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
410  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
411  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
412}
413
414//------------------------------Node-------------------------------------------
415Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
416                     Node *n4, Node *n5)
417  : _idx(IDX_INIT(6))
418{
419  debug_only( verify_construction() );
420  NOT_PRODUCT(nodes_created++);
421  // Assert we allocated space for input array already
422  assert( _in[5] == this, "Must pass arg count to 'new'" );
423  assert( is_not_dead(n0), "can not use dead node");
424  assert( is_not_dead(n1), "can not use dead node");
425  assert( is_not_dead(n2), "can not use dead node");
426  assert( is_not_dead(n3), "can not use dead node");
427  assert( is_not_dead(n4), "can not use dead node");
428  assert( is_not_dead(n5), "can not use dead node");
429  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
430  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
431  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
432  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
433  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
434  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
435}
436
437//------------------------------Node-------------------------------------------
438Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
439                     Node *n4, Node *n5, Node *n6)
440  : _idx(IDX_INIT(7))
441{
442  debug_only( verify_construction() );
443  NOT_PRODUCT(nodes_created++);
444  // Assert we allocated space for input array already
445  assert( _in[6] == this, "Must pass arg count to 'new'" );
446  assert( is_not_dead(n0), "can not use dead node");
447  assert( is_not_dead(n1), "can not use dead node");
448  assert( is_not_dead(n2), "can not use dead node");
449  assert( is_not_dead(n3), "can not use dead node");
450  assert( is_not_dead(n4), "can not use dead node");
451  assert( is_not_dead(n5), "can not use dead node");
452  assert( is_not_dead(n6), "can not use dead node");
453  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
454  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
455  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
456  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
457  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
458  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
459  _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
460}
461
462
463//------------------------------clone------------------------------------------
464// Clone a Node.
465Node *Node::clone() const {
466  Compile *compile = Compile::current();
467  uint s = size_of();           // Size of inherited Node
468  Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
469  Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
470  // Set the new input pointer array
471  n->_in = (Node**)(((char*)n)+s);
472  // Cannot share the old output pointer array, so kill it
473  n->_out = NO_OUT_ARRAY;
474  // And reset the counters to 0
475  n->_outcnt = 0;
476  n->_outmax = 0;
477  // Unlock this guy, since he is not in any hash table.
478  debug_only(n->_hash_lock = 0);
479  // Walk the old node's input list to duplicate its edges
480  uint i;
481  for( i = 0; i < len(); i++ ) {
482    Node *x = in(i);
483    n->_in[i] = x;
484    if (x != NULL) x->add_out(n);
485  }
486  if (is_macro())
487    compile->add_macro_node(n);
488
489  n->set_idx(compile->next_unique()); // Get new unique index as well
490  debug_only( n->verify_construction() );
491  NOT_PRODUCT(nodes_created++);
492  // Do not patch over the debug_idx of a clone, because it makes it
493  // impossible to break on the clone's moment of creation.
494  //debug_only( n->set_debug_idx( debug_idx() ) );
495
496  compile->copy_node_notes_to(n, (Node*) this);
497
498  // MachNode clone
499  uint nopnds;
500  if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
501    MachNode *mach  = n->as_Mach();
502    MachNode *mthis = this->as_Mach();
503    // Get address of _opnd_array.
504    // It should be the same offset since it is the clone of this node.
505    MachOper **from = mthis->_opnds;
506    MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
507                    pointer_delta((const void*)from,
508                                  (const void*)(&mthis->_opnds), 1));
509    mach->_opnds = to;
510    for ( uint i = 0; i < nopnds; ++i ) {
511      to[i] = from[i]->clone(compile);
512    }
513  }
514  // cloning CallNode may need to clone JVMState
515  if (n->is_Call()) {
516    CallNode *call = n->as_Call();
517    call->clone_jvms();
518  }
519  return n;                     // Return the clone
520}
521
522//---------------------------setup_is_top--------------------------------------
523// Call this when changing the top node, to reassert the invariants
524// required by Node::is_top.  See Compile::set_cached_top_node.
525void Node::setup_is_top() {
526  if (this == (Node*)Compile::current()->top()) {
527    // This node has just become top.  Kill its out array.
528    _outcnt = _outmax = 0;
529    _out = NULL;                           // marker value for top
530    assert(is_top(), "must be top");
531  } else {
532    if (_out == NULL)  _out = NO_OUT_ARRAY;
533    assert(!is_top(), "must not be top");
534  }
535}
536
537
538//------------------------------~Node------------------------------------------
539// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
540extern int reclaim_idx ;
541extern int reclaim_in  ;
542extern int reclaim_node;
543void Node::destruct() {
544  // Eagerly reclaim unique Node numberings
545  Compile* compile = Compile::current();
546  if ((uint)_idx+1 == compile->unique()) {
547    compile->set_unique(compile->unique()-1);
548#ifdef ASSERT
549    reclaim_idx++;
550#endif
551  }
552  // Clear debug info:
553  Node_Notes* nn = compile->node_notes_at(_idx);
554  if (nn != NULL)  nn->clear();
555  // Walk the input array, freeing the corresponding output edges
556  _cnt = _max;  // forget req/prec distinction
557  uint i;
558  for( i = 0; i < _max; i++ ) {
559    set_req(i, NULL);
560    //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
561  }
562  assert(outcnt() == 0, "deleting a node must not leave a dangling use");
563  // See if the input array was allocated just prior to the object
564  int edge_size = _max*sizeof(void*);
565  int out_edge_size = _outmax*sizeof(void*);
566  char *edge_end = ((char*)_in) + edge_size;
567  char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
568  char *out_edge_end = out_array + out_edge_size;
569  int node_size = size_of();
570
571  // Free the output edge array
572  if (out_edge_size > 0) {
573#ifdef ASSERT
574    if( out_edge_end == compile->node_arena()->hwm() )
575      reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
576#endif
577    compile->node_arena()->Afree(out_array, out_edge_size);
578  }
579
580  // Free the input edge array and the node itself
581  if( edge_end == (char*)this ) {
582#ifdef ASSERT
583    if( edge_end+node_size == compile->node_arena()->hwm() ) {
584      reclaim_in  += edge_size;
585      reclaim_node+= node_size;
586    }
587#else
588    // It was; free the input array and object all in one hit
589    compile->node_arena()->Afree(_in,edge_size+node_size);
590#endif
591  } else {
592
593    // Free just the input array
594#ifdef ASSERT
595    if( edge_end == compile->node_arena()->hwm() )
596      reclaim_in  += edge_size;
597#endif
598    compile->node_arena()->Afree(_in,edge_size);
599
600    // Free just the object
601#ifdef ASSERT
602    if( ((char*)this) + node_size == compile->node_arena()->hwm() )
603      reclaim_node+= node_size;
604#else
605    compile->node_arena()->Afree(this,node_size);
606#endif
607  }
608  if (is_macro()) {
609    compile->remove_macro_node(this);
610  }
611#ifdef ASSERT
612  // We will not actually delete the storage, but we'll make the node unusable.
613  *(address*)this = badAddress;  // smash the C++ vtbl, probably
614  _in = _out = (Node**) badAddress;
615  _max = _cnt = _outmax = _outcnt = 0;
616#endif
617}
618
619//------------------------------grow-------------------------------------------
620// Grow the input array, making space for more edges
621void Node::grow( uint len ) {
622  Arena* arena = Compile::current()->node_arena();
623  uint new_max = _max;
624  if( new_max == 0 ) {
625    _max = 4;
626    _in = (Node**)arena->Amalloc(4*sizeof(Node*));
627    Node** to = _in;
628    to[0] = NULL;
629    to[1] = NULL;
630    to[2] = NULL;
631    to[3] = NULL;
632    return;
633  }
634  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
635  // Trimming to limit allows a uint8 to handle up to 255 edges.
636  // Previously I was using only powers-of-2 which peaked at 128 edges.
637  //if( new_max >= limit ) new_max = limit-1;
638  _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
639  Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
640  _max = new_max;               // Record new max length
641  // This assertion makes sure that Node::_max is wide enough to
642  // represent the numerical value of new_max.
643  assert(_max == new_max && _max > len, "int width of _max is too small");
644}
645
646//-----------------------------out_grow----------------------------------------
647// Grow the input array, making space for more edges
648void Node::out_grow( uint len ) {
649  assert(!is_top(), "cannot grow a top node's out array");
650  Arena* arena = Compile::current()->node_arena();
651  uint new_max = _outmax;
652  if( new_max == 0 ) {
653    _outmax = 4;
654    _out = (Node **)arena->Amalloc(4*sizeof(Node*));
655    return;
656  }
657  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
658  // Trimming to limit allows a uint8 to handle up to 255 edges.
659  // Previously I was using only powers-of-2 which peaked at 128 edges.
660  //if( new_max >= limit ) new_max = limit-1;
661  assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
662  _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
663  //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
664  _outmax = new_max;               // Record new max length
665  // This assertion makes sure that Node::_max is wide enough to
666  // represent the numerical value of new_max.
667  assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
668}
669
670#ifdef ASSERT
671//------------------------------is_dead----------------------------------------
672bool Node::is_dead() const {
673  // Mach and pinch point nodes may look like dead.
674  if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
675    return false;
676  for( uint i = 0; i < _max; i++ )
677    if( _in[i] != NULL )
678      return false;
679  dump();
680  return true;
681}
682#endif
683
684//------------------------------add_req----------------------------------------
685// Add a new required input at the end
686void Node::add_req( Node *n ) {
687  assert( is_not_dead(n), "can not use dead node");
688
689  // Look to see if I can move precedence down one without reallocating
690  if( (_cnt >= _max) || (in(_max-1) != NULL) )
691    grow( _max+1 );
692
693  // Find a precedence edge to move
694  if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
695    uint i;
696    for( i=_cnt; i<_max; i++ )
697      if( in(i) == NULL )       // Find the NULL at end of prec edge list
698        break;                  // There must be one, since we grew the array
699    _in[i] = in(_cnt);          // Move prec over, making space for req edge
700  }
701  _in[_cnt++] = n;            // Stuff over old prec edge
702  if (n != NULL) n->add_out((Node *)this);
703}
704
705//---------------------------add_req_batch-------------------------------------
706// Add a new required input at the end
707void Node::add_req_batch( Node *n, uint m ) {
708  assert( is_not_dead(n), "can not use dead node");
709  // check various edge cases
710  if ((int)m <= 1) {
711    assert((int)m >= 0, "oob");
712    if (m != 0)  add_req(n);
713    return;
714  }
715
716  // Look to see if I can move precedence down one without reallocating
717  if( (_cnt+m) > _max || _in[_max-m] )
718    grow( _max+m );
719
720  // Find a precedence edge to move
721  if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
722    uint i;
723    for( i=_cnt; i<_max; i++ )
724      if( _in[i] == NULL )      // Find the NULL at end of prec edge list
725        break;                  // There must be one, since we grew the array
726    // Slide all the precs over by m positions (assume #prec << m).
727    Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
728  }
729
730  // Stuff over the old prec edges
731  for(uint i=0; i<m; i++ ) {
732    _in[_cnt++] = n;
733  }
734
735  // Insert multiple out edges on the node.
736  if (n != NULL && !n->is_top()) {
737    for(uint i=0; i<m; i++ ) {
738      n->add_out((Node *)this);
739    }
740  }
741}
742
743//------------------------------del_req----------------------------------------
744// Delete the required edge and compact the edge array
745void Node::del_req( uint idx ) {
746  // First remove corresponding def-use edge
747  Node *n = in(idx);
748  if (n != NULL) n->del_out((Node *)this);
749  _in[idx] = in(--_cnt);  // Compact the array
750  _in[_cnt] = NULL;       // NULL out emptied slot
751}
752
753//------------------------------ins_req----------------------------------------
754// Insert a new required input at the end
755void Node::ins_req( uint idx, Node *n ) {
756  assert( is_not_dead(n), "can not use dead node");
757  add_req(NULL);                // Make space
758  assert( idx < _max, "Must have allocated enough space");
759  // Slide over
760  if(_cnt-idx-1 > 0) {
761    Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
762  }
763  _in[idx] = n;                            // Stuff over old required edge
764  if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
765}
766
767//-----------------------------find_edge---------------------------------------
768int Node::find_edge(Node* n) {
769  for (uint i = 0; i < len(); i++) {
770    if (_in[i] == n)  return i;
771  }
772  return -1;
773}
774
775//----------------------------replace_edge-------------------------------------
776int Node::replace_edge(Node* old, Node* neww) {
777  if (old == neww)  return 0;  // nothing to do
778  uint nrep = 0;
779  for (uint i = 0; i < len(); i++) {
780    if (in(i) == old) {
781      if (i < req())
782        set_req(i, neww);
783      else
784        set_prec(i, neww);
785      nrep++;
786    }
787  }
788  return nrep;
789}
790
791//-------------------------disconnect_inputs-----------------------------------
792// NULL out all inputs to eliminate incoming Def-Use edges.
793// Return the number of edges between 'n' and 'this'
794int Node::disconnect_inputs(Node *n) {
795  int edges_to_n = 0;
796
797  uint cnt = req();
798  for( uint i = 0; i < cnt; ++i ) {
799    if( in(i) == 0 ) continue;
800    if( in(i) == n ) ++edges_to_n;
801    set_req(i, NULL);
802  }
803  // Remove precedence edges if any exist
804  // Note: Safepoints may have precedence edges, even during parsing
805  if( (req() != len()) && (in(req()) != NULL) ) {
806    uint max = len();
807    for( uint i = 0; i < max; ++i ) {
808      if( in(i) == 0 ) continue;
809      if( in(i) == n ) ++edges_to_n;
810      set_prec(i, NULL);
811    }
812  }
813
814  // Node::destruct requires all out edges be deleted first
815  // debug_only(destruct();)   // no reuse benefit expected
816  return edges_to_n;
817}
818
819//-----------------------------uncast---------------------------------------
820// %%% Temporary, until we sort out CheckCastPP vs. CastPP.
821// Strip away casting.  (It is depth-limited.)
822Node* Node::uncast() const {
823  // Should be inline:
824  //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
825  if (is_ConstraintCast() || is_CheckCastPP())
826    return uncast_helper(this);
827  else
828    return (Node*) this;
829}
830
831//---------------------------uncast_helper-------------------------------------
832Node* Node::uncast_helper(const Node* p) {
833  uint max_depth = 3;
834  for (uint i = 0; i < max_depth; i++) {
835    if (p == NULL || p->req() != 2) {
836      break;
837    } else if (p->is_ConstraintCast()) {
838      p = p->in(1);
839    } else if (p->is_CheckCastPP()) {
840      p = p->in(1);
841    } else {
842      break;
843    }
844  }
845  return (Node*) p;
846}
847
848//------------------------------add_prec---------------------------------------
849// Add a new precedence input.  Precedence inputs are unordered, with
850// duplicates removed and NULLs packed down at the end.
851void Node::add_prec( Node *n ) {
852  assert( is_not_dead(n), "can not use dead node");
853
854  // Check for NULL at end
855  if( _cnt >= _max || in(_max-1) )
856    grow( _max+1 );
857
858  // Find a precedence edge to move
859  uint i = _cnt;
860  while( in(i) != NULL ) i++;
861  _in[i] = n;                                // Stuff prec edge over NULL
862  if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
863}
864
865//------------------------------rm_prec----------------------------------------
866// Remove a precedence input.  Precedence inputs are unordered, with
867// duplicates removed and NULLs packed down at the end.
868void Node::rm_prec( uint j ) {
869
870  // Find end of precedence list to pack NULLs
871  uint i;
872  for( i=j; i<_max; i++ )
873    if( !_in[i] )               // Find the NULL at end of prec edge list
874      break;
875  if (_in[j] != NULL) _in[j]->del_out((Node *)this);
876  _in[j] = _in[--i];            // Move last element over removed guy
877  _in[i] = NULL;                // NULL out last element
878}
879
880//------------------------------size_of----------------------------------------
881uint Node::size_of() const { return sizeof(*this); }
882
883//------------------------------ideal_reg--------------------------------------
884uint Node::ideal_reg() const { return 0; }
885
886//------------------------------jvms-------------------------------------------
887JVMState* Node::jvms() const { return NULL; }
888
889#ifdef ASSERT
890//------------------------------jvms-------------------------------------------
891bool Node::verify_jvms(const JVMState* using_jvms) const {
892  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
893    if (jvms == using_jvms)  return true;
894  }
895  return false;
896}
897
898//------------------------------init_NodeProperty------------------------------
899void Node::init_NodeProperty() {
900  assert(_max_classes <= max_jushort, "too many NodeProperty classes");
901  assert(_max_flags <= max_jushort, "too many NodeProperty flags");
902}
903#endif
904
905//------------------------------format-----------------------------------------
906// Print as assembly
907void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
908//------------------------------emit-------------------------------------------
909// Emit bytes starting at parameter 'ptr'.
910void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
911//------------------------------size-------------------------------------------
912// Size of instruction in bytes
913uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
914
915//------------------------------CFG Construction-------------------------------
916// Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
917// Goto and Return.
918const Node *Node::is_block_proj() const { return 0; }
919
920// Minimum guaranteed type
921const Type *Node::bottom_type() const { return Type::BOTTOM; }
922
923
924//------------------------------raise_bottom_type------------------------------
925// Get the worst-case Type output for this Node.
926void Node::raise_bottom_type(const Type* new_type) {
927  if (is_Type()) {
928    TypeNode *n = this->as_Type();
929    if (VerifyAliases) {
930      assert(new_type->higher_equal(n->type()), "new type must refine old type");
931    }
932    n->set_type(new_type);
933  } else if (is_Load()) {
934    LoadNode *n = this->as_Load();
935    if (VerifyAliases) {
936      assert(new_type->higher_equal(n->type()), "new type must refine old type");
937    }
938    n->set_type(new_type);
939  }
940}
941
942//------------------------------Identity---------------------------------------
943// Return a node that the given node is equivalent to.
944Node *Node::Identity( PhaseTransform * ) {
945  return this;                  // Default to no identities
946}
947
948//------------------------------Value------------------------------------------
949// Compute a new Type for a node using the Type of the inputs.
950const Type *Node::Value( PhaseTransform * ) const {
951  return bottom_type();         // Default to worst-case Type
952}
953
954//------------------------------Ideal------------------------------------------
955//
956// 'Idealize' the graph rooted at this Node.
957//
958// In order to be efficient and flexible there are some subtle invariants
959// these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
960// these invariants, although its too slow to have on by default.  If you are
961// hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
962//
963// The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
964// pointer.  If ANY change is made, it must return the root of the reshaped
965// graph - even if the root is the same Node.  Example: swapping the inputs
966// to an AddINode gives the same answer and same root, but you still have to
967// return the 'this' pointer instead of NULL.
968//
969// You cannot return an OLD Node, except for the 'this' pointer.  Use the
970// Identity call to return an old Node; basically if Identity can find
971// another Node have the Ideal call make no change and return NULL.
972// Example: AddINode::Ideal must check for add of zero; in this case it
973// returns NULL instead of doing any graph reshaping.
974//
975// You cannot modify any old Nodes except for the 'this' pointer.  Due to
976// sharing there may be other users of the old Nodes relying on their current
977// semantics.  Modifying them will break the other users.
978// Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
979// "X+3" unchanged in case it is shared.
980//
981// If you modify the 'this' pointer's inputs, you should use
982// 'set_req'.  If you are making a new Node (either as the new root or
983// some new internal piece) you may use 'init_req' to set the initial
984// value.  You can make a new Node with either 'new' or 'clone'.  In
985// either case, def-use info is correctly maintained.
986//
987// Example: reshape "(X+3)+4" into "X+7":
988//    set_req(1, in(1)->in(1));
989//    set_req(2, phase->intcon(7));
990//    return this;
991// Example: reshape "X*4" into "X<<2"
992//    return new (C,3) LShiftINode(in(1), phase->intcon(2));
993//
994// You must call 'phase->transform(X)' on any new Nodes X you make, except
995// for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
996//    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
997//    return new (C,3) AddINode(shift, in(1));
998//
999// When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1000// These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
1001// The Right Thing with def-use info.
1002//
1003// You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1004// graph uses the 'this' Node it must be the root.  If you want a Node with
1005// the same Opcode as the 'this' pointer use 'clone'.
1006//
1007Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1008  return NULL;                  // Default to being Ideal already
1009}
1010
1011// Some nodes have specific Ideal subgraph transformations only if they are
1012// unique users of specific nodes. Such nodes should be put on IGVN worklist
1013// for the transformations to happen.
1014bool Node::has_special_unique_user() const {
1015  assert(outcnt() == 1, "match only for unique out");
1016  Node* n = unique_out();
1017  int op  = Opcode();
1018  if( this->is_Store() ) {
1019    // Condition for back-to-back stores folding.
1020    return n->Opcode() == op && n->in(MemNode::Memory) == this;
1021  } else if( op == Op_AddL ) {
1022    // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1023    return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1024  } else if( op == Op_SubI || op == Op_SubL ) {
1025    // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1026    return n->Opcode() == op && n->in(2) == this;
1027  }
1028  return false;
1029};
1030
1031//--------------------------find_exact_control---------------------------------
1032// Skip Proj and CatchProj nodes chains. Check for Null and Top.
1033Node* Node::find_exact_control(Node* ctrl) {
1034  if (ctrl == NULL && this->is_Region())
1035    ctrl = this->as_Region()->is_copy();
1036
1037  if (ctrl != NULL && ctrl->is_CatchProj()) {
1038    if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1039      ctrl = ctrl->in(0);
1040    if (ctrl != NULL && !ctrl->is_top())
1041      ctrl = ctrl->in(0);
1042  }
1043
1044  if (ctrl != NULL && ctrl->is_Proj())
1045    ctrl = ctrl->in(0);
1046
1047  return ctrl;
1048}
1049
1050//--------------------------dominates------------------------------------------
1051// Helper function for MemNode::all_controls_dominate().
1052// Check if 'this' control node dominates or equal to 'sub' control node.
1053// We already know that if any path back to Root or Start reaches 'this',
1054// then all paths so, so this is a simple search for one example,
1055// not an exhaustive search for a counterexample.
1056bool Node::dominates(Node* sub, Node_List &nlist) {
1057  assert(this->is_CFG(), "expecting control");
1058  assert(sub != NULL && sub->is_CFG(), "expecting control");
1059
1060  // detect dead cycle without regions
1061  int iterations_without_region_limit = DominatorSearchLimit;
1062
1063  Node* orig_sub = sub;
1064  Node* dom      = this;
1065  bool  met_dom  = false;
1066  nlist.clear();
1067
1068  // Walk 'sub' backward up the chain to 'dom', watching for regions.
1069  // After seeing 'dom', continue up to Root or Start.
1070  // If we hit a region (backward split point), it may be a loop head.
1071  // Keep going through one of the region's inputs.  If we reach the
1072  // same region again, go through a different input.  Eventually we
1073  // will either exit through the loop head, or give up.
1074  // (If we get confused, break out and return a conservative 'false'.)
1075  while (sub != NULL) {
1076    if (sub->is_top())  break; // Conservative answer for dead code.
1077    if (sub == dom) {
1078      if (nlist.size() == 0) {
1079        // No Region nodes except loops were visited before and the EntryControl
1080        // path was taken for loops: it did not walk in a cycle.
1081        return true;
1082      } else if (met_dom) {
1083        break;          // already met before: walk in a cycle
1084      } else {
1085        // Region nodes were visited. Continue walk up to Start or Root
1086        // to make sure that it did not walk in a cycle.
1087        met_dom = true; // first time meet
1088        iterations_without_region_limit = DominatorSearchLimit; // Reset
1089     }
1090    }
1091    if (sub->is_Start() || sub->is_Root()) {
1092      // Success if we met 'dom' along a path to Start or Root.
1093      // We assume there are no alternative paths that avoid 'dom'.
1094      // (This assumption is up to the caller to ensure!)
1095      return met_dom;
1096    }
1097    Node* up = sub->in(0);
1098    // Normalize simple pass-through regions and projections:
1099    up = sub->find_exact_control(up);
1100    // If sub == up, we found a self-loop.  Try to push past it.
1101    if (sub == up && sub->is_Loop()) {
1102      // Take loop entry path on the way up to 'dom'.
1103      up = sub->in(1); // in(LoopNode::EntryControl);
1104    } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1105      // Always take in(1) path on the way up to 'dom' for clone regions
1106      // (with only one input) or regions which merge > 2 paths
1107      // (usually used to merge fast/slow paths).
1108      up = sub->in(1);
1109    } else if (sub == up && sub->is_Region()) {
1110      // Try both paths for Regions with 2 input paths (it may be a loop head).
1111      // It could give conservative 'false' answer without information
1112      // which region's input is the entry path.
1113      iterations_without_region_limit = DominatorSearchLimit; // Reset
1114
1115      bool region_was_visited_before = false;
1116      // Was this Region node visited before?
1117      // If so, we have reached it because we accidentally took a
1118      // loop-back edge from 'sub' back into the body of the loop,
1119      // and worked our way up again to the loop header 'sub'.
1120      // So, take the first unexplored path on the way up to 'dom'.
1121      for (int j = nlist.size() - 1; j >= 0; j--) {
1122        intptr_t ni = (intptr_t)nlist.at(j);
1123        Node* visited = (Node*)(ni & ~1);
1124        bool  visited_twice_already = ((ni & 1) != 0);
1125        if (visited == sub) {
1126          if (visited_twice_already) {
1127            // Visited 2 paths, but still stuck in loop body.  Give up.
1128            return false;
1129          }
1130          // The Region node was visited before only once.
1131          // (We will repush with the low bit set, below.)
1132          nlist.remove(j);
1133          // We will find a new edge and re-insert.
1134          region_was_visited_before = true;
1135          break;
1136        }
1137      }
1138
1139      // Find an incoming edge which has not been seen yet; walk through it.
1140      assert(up == sub, "");
1141      uint skip = region_was_visited_before ? 1 : 0;
1142      for (uint i = 1; i < sub->req(); i++) {
1143        Node* in = sub->in(i);
1144        if (in != NULL && !in->is_top() && in != sub) {
1145          if (skip == 0) {
1146            up = in;
1147            break;
1148          }
1149          --skip;               // skip this nontrivial input
1150        }
1151      }
1152
1153      // Set 0 bit to indicate that both paths were taken.
1154      nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1155    }
1156
1157    if (up == sub) {
1158      break;    // some kind of tight cycle
1159    }
1160    if (up == orig_sub && met_dom) {
1161      // returned back after visiting 'dom'
1162      break;    // some kind of cycle
1163    }
1164    if (--iterations_without_region_limit < 0) {
1165      break;    // dead cycle
1166    }
1167    sub = up;
1168  }
1169
1170  // Did not meet Root or Start node in pred. chain.
1171  // Conservative answer for dead code.
1172  return false;
1173}
1174
1175//------------------------------remove_dead_region-----------------------------
1176// This control node is dead.  Follow the subgraph below it making everything
1177// using it dead as well.  This will happen normally via the usual IterGVN
1178// worklist but this call is more efficient.  Do not update use-def info
1179// inside the dead region, just at the borders.
1180static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1181  // Con's are a popular node to re-hit in the hash table again.
1182  if( dead->is_Con() ) return;
1183
1184  // Can't put ResourceMark here since igvn->_worklist uses the same arena
1185  // for verify pass with +VerifyOpto and we add/remove elements in it here.
1186  Node_List  nstack(Thread::current()->resource_area());
1187
1188  Node *top = igvn->C->top();
1189  nstack.push(dead);
1190
1191  while (nstack.size() > 0) {
1192    dead = nstack.pop();
1193    if (dead->outcnt() > 0) {
1194      // Keep dead node on stack until all uses are processed.
1195      nstack.push(dead);
1196      // For all Users of the Dead...    ;-)
1197      for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1198        Node* use = dead->last_out(k);
1199        igvn->hash_delete(use);       // Yank from hash table prior to mod
1200        if (use->in(0) == dead) {     // Found another dead node
1201          assert (!use->is_Con(), "Control for Con node should be Root node.");
1202          use->set_req(0, top);       // Cut dead edge to prevent processing
1203          nstack.push(use);           // the dead node again.
1204        } else {                      // Else found a not-dead user
1205          for (uint j = 1; j < use->req(); j++) {
1206            if (use->in(j) == dead) { // Turn all dead inputs into TOP
1207              use->set_req(j, top);
1208            }
1209          }
1210          igvn->_worklist.push(use);
1211        }
1212        // Refresh the iterator, since any number of kills might have happened.
1213        k = dead->last_outs(kmin);
1214      }
1215    } else { // (dead->outcnt() == 0)
1216      // Done with outputs.
1217      igvn->hash_delete(dead);
1218      igvn->_worklist.remove(dead);
1219      igvn->set_type(dead, Type::TOP);
1220      if (dead->is_macro()) {
1221        igvn->C->remove_macro_node(dead);
1222      }
1223      // Kill all inputs to the dead guy
1224      for (uint i=0; i < dead->req(); i++) {
1225        Node *n = dead->in(i);      // Get input to dead guy
1226        if (n != NULL && !n->is_top()) { // Input is valid?
1227          dead->set_req(i, top);    // Smash input away
1228          if (n->outcnt() == 0) {   // Input also goes dead?
1229            if (!n->is_Con())
1230              nstack.push(n);       // Clear it out as well
1231          } else if (n->outcnt() == 1 &&
1232                     n->has_special_unique_user()) {
1233            igvn->add_users_to_worklist( n );
1234          } else if (n->outcnt() <= 2 && n->is_Store()) {
1235            // Push store's uses on worklist to enable folding optimization for
1236            // store/store and store/load to the same address.
1237            // The restriction (outcnt() <= 2) is the same as in set_req_X()
1238            // and remove_globally_dead_node().
1239            igvn->add_users_to_worklist( n );
1240          }
1241        }
1242      }
1243    } // (dead->outcnt() == 0)
1244  }   // while (nstack.size() > 0) for outputs
1245  return;
1246}
1247
1248//------------------------------remove_dead_region-----------------------------
1249bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1250  Node *n = in(0);
1251  if( !n ) return false;
1252  // Lost control into this guy?  I.e., it became unreachable?
1253  // Aggressively kill all unreachable code.
1254  if (can_reshape && n->is_top()) {
1255    kill_dead_code(this, phase->is_IterGVN());
1256    return false; // Node is dead.
1257  }
1258
1259  if( n->is_Region() && n->as_Region()->is_copy() ) {
1260    Node *m = n->nonnull_req();
1261    set_req(0, m);
1262    return true;
1263  }
1264  return false;
1265}
1266
1267//------------------------------Ideal_DU_postCCP-------------------------------
1268// Idealize graph, using DU info.  Must clone result into new-space
1269Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1270  return NULL;                 // Default to no change
1271}
1272
1273//------------------------------hash-------------------------------------------
1274// Hash function over Nodes.
1275uint Node::hash() const {
1276  uint sum = 0;
1277  for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1278    sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1279  return (sum>>2) + _cnt + Opcode();
1280}
1281
1282//------------------------------cmp--------------------------------------------
1283// Compare special parts of simple Nodes
1284uint Node::cmp( const Node &n ) const {
1285  return 1;                     // Must be same
1286}
1287
1288//------------------------------rematerialize-----------------------------------
1289// Should we clone rather than spill this instruction?
1290bool Node::rematerialize() const {
1291  if ( is_Mach() )
1292    return this->as_Mach()->rematerialize();
1293  else
1294    return (_flags & Flag_rematerialize) != 0;
1295}
1296
1297//------------------------------needs_anti_dependence_check---------------------
1298// Nodes which use memory without consuming it, hence need antidependences.
1299bool Node::needs_anti_dependence_check() const {
1300  if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1301    return false;
1302  else
1303    return in(1)->bottom_type()->has_memory();
1304}
1305
1306
1307// Get an integer constant from a ConNode (or CastIINode).
1308// Return a default value if there is no apparent constant here.
1309const TypeInt* Node::find_int_type() const {
1310  if (this->is_Type()) {
1311    return this->as_Type()->type()->isa_int();
1312  } else if (this->is_Con()) {
1313    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1314    return this->bottom_type()->isa_int();
1315  }
1316  return NULL;
1317}
1318
1319// Get a pointer constant from a ConstNode.
1320// Returns the constant if it is a pointer ConstNode
1321intptr_t Node::get_ptr() const {
1322  assert( Opcode() == Op_ConP, "" );
1323  return ((ConPNode*)this)->type()->is_ptr()->get_con();
1324}
1325
1326// Get a narrow oop constant from a ConNNode.
1327intptr_t Node::get_narrowcon() const {
1328  assert( Opcode() == Op_ConN, "" );
1329  return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1330}
1331
1332// Get a long constant from a ConNode.
1333// Return a default value if there is no apparent constant here.
1334const TypeLong* Node::find_long_type() const {
1335  if (this->is_Type()) {
1336    return this->as_Type()->type()->isa_long();
1337  } else if (this->is_Con()) {
1338    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1339    return this->bottom_type()->isa_long();
1340  }
1341  return NULL;
1342}
1343
1344// Get a double constant from a ConstNode.
1345// Returns the constant if it is a double ConstNode
1346jdouble Node::getd() const {
1347  assert( Opcode() == Op_ConD, "" );
1348  return ((ConDNode*)this)->type()->is_double_constant()->getd();
1349}
1350
1351// Get a float constant from a ConstNode.
1352// Returns the constant if it is a float ConstNode
1353jfloat Node::getf() const {
1354  assert( Opcode() == Op_ConF, "" );
1355  return ((ConFNode*)this)->type()->is_float_constant()->getf();
1356}
1357
1358#ifndef PRODUCT
1359
1360//----------------------------NotANode----------------------------------------
1361// Used in debugging code to avoid walking across dead or uninitialized edges.
1362static inline bool NotANode(const Node* n) {
1363  if (n == NULL)                   return true;
1364  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1365  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1366  return false;
1367}
1368
1369
1370//------------------------------find------------------------------------------
1371// Find a neighbor of this Node with the given _idx
1372// If idx is negative, find its absolute value, following both _in and _out.
1373static void find_recur( Node* &result, Node *n, int idx, bool only_ctrl,
1374                        VectorSet &old_space, VectorSet &new_space ) {
1375  int node_idx = (idx >= 0) ? idx : -idx;
1376  if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1377  // Contained in new_space or old_space?
1378  VectorSet *v = Compile::current()->node_arena()->contains(n) ? &new_space : &old_space;
1379  if( v->test(n->_idx) ) return;
1380  if( (int)n->_idx == node_idx
1381      debug_only(|| n->debug_idx() == node_idx) ) {
1382    if (result != NULL)
1383      tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1384                 (uintptr_t)result, (uintptr_t)n, node_idx);
1385    result = n;
1386  }
1387  v->set(n->_idx);
1388  for( uint i=0; i<n->len(); i++ ) {
1389    if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1390    find_recur( result, n->in(i), idx, only_ctrl, old_space, new_space );
1391  }
1392  // Search along forward edges also:
1393  if (idx < 0 && !only_ctrl) {
1394    for( uint j=0; j<n->outcnt(); j++ ) {
1395      find_recur( result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1396    }
1397  }
1398#ifdef ASSERT
1399  // Search along debug_orig edges last:
1400  for (Node* orig = n->debug_orig(); orig != NULL && n != orig; orig = orig->debug_orig()) {
1401    if (NotANode(orig))  break;
1402    find_recur( result, orig, idx, only_ctrl, old_space, new_space );
1403  }
1404#endif //ASSERT
1405}
1406
1407// call this from debugger:
1408Node* find_node(Node* n, int idx) {
1409  return n->find(idx);
1410}
1411
1412//------------------------------find-------------------------------------------
1413Node* Node::find(int idx) const {
1414  ResourceArea *area = Thread::current()->resource_area();
1415  VectorSet old_space(area), new_space(area);
1416  Node* result = NULL;
1417  find_recur( result, (Node*) this, idx, false, old_space, new_space );
1418  return result;
1419}
1420
1421//------------------------------find_ctrl--------------------------------------
1422// Find an ancestor to this node in the control history with given _idx
1423Node* Node::find_ctrl(int idx) const {
1424  ResourceArea *area = Thread::current()->resource_area();
1425  VectorSet old_space(area), new_space(area);
1426  Node* result = NULL;
1427  find_recur( result, (Node*) this, idx, true, old_space, new_space );
1428  return result;
1429}
1430#endif
1431
1432
1433
1434#ifndef PRODUCT
1435int Node::_in_dump_cnt = 0;
1436
1437// -----------------------------Name-------------------------------------------
1438extern const char *NodeClassNames[];
1439const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1440
1441static bool is_disconnected(const Node* n) {
1442  for (uint i = 0; i < n->req(); i++) {
1443    if (n->in(i) != NULL)  return false;
1444  }
1445  return true;
1446}
1447
1448#ifdef ASSERT
1449static void dump_orig(Node* orig) {
1450  Compile* C = Compile::current();
1451  if (NotANode(orig))  orig = NULL;
1452  if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1453  if (orig == NULL)  return;
1454  tty->print(" !orig=");
1455  Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1456  if (NotANode(fast))  fast = NULL;
1457  while (orig != NULL) {
1458    bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1459    if (discon)  tty->print("[");
1460    if (!Compile::current()->node_arena()->contains(orig))
1461      tty->print("o");
1462    tty->print("%d", orig->_idx);
1463    if (discon)  tty->print("]");
1464    orig = orig->debug_orig();
1465    if (NotANode(orig))  orig = NULL;
1466    if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1467    if (orig != NULL)  tty->print(",");
1468    if (fast != NULL) {
1469      // Step fast twice for each single step of orig:
1470      fast = fast->debug_orig();
1471      if (NotANode(fast))  fast = NULL;
1472      if (fast != NULL && fast != orig) {
1473        fast = fast->debug_orig();
1474        if (NotANode(fast))  fast = NULL;
1475      }
1476      if (fast == orig) {
1477        tty->print("...");
1478        break;
1479      }
1480    }
1481  }
1482}
1483
1484void Node::set_debug_orig(Node* orig) {
1485  _debug_orig = orig;
1486  if (BreakAtNode == 0)  return;
1487  if (NotANode(orig))  orig = NULL;
1488  int trip = 10;
1489  while (orig != NULL) {
1490    if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1491      tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1492                    this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1493      BREAKPOINT;
1494    }
1495    orig = orig->debug_orig();
1496    if (NotANode(orig))  orig = NULL;
1497    if (trip-- <= 0)  break;
1498  }
1499}
1500#endif //ASSERT
1501
1502//------------------------------dump------------------------------------------
1503// Dump a Node
1504void Node::dump() const {
1505  Compile* C = Compile::current();
1506  bool is_new = C->node_arena()->contains(this);
1507  _in_dump_cnt++;
1508  tty->print("%c%d\t%s\t=== ",
1509             is_new ? ' ' : 'o', _idx, Name());
1510
1511  // Dump the required and precedence inputs
1512  dump_req();
1513  dump_prec();
1514  // Dump the outputs
1515  dump_out();
1516
1517  if (is_disconnected(this)) {
1518#ifdef ASSERT
1519    tty->print("  [%d]",debug_idx());
1520    dump_orig(debug_orig());
1521#endif
1522    tty->cr();
1523    _in_dump_cnt--;
1524    return;                     // don't process dead nodes
1525  }
1526
1527  // Dump node-specific info
1528  dump_spec(tty);
1529#ifdef ASSERT
1530  // Dump the non-reset _debug_idx
1531  if( Verbose && WizardMode ) {
1532    tty->print("  [%d]",debug_idx());
1533  }
1534#endif
1535
1536  const Type *t = bottom_type();
1537
1538  if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1539    const TypeInstPtr  *toop = t->isa_instptr();
1540    const TypeKlassPtr *tkls = t->isa_klassptr();
1541    ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1542    if( klass && klass->is_loaded() && klass->is_interface() ) {
1543      tty->print("  Interface:");
1544    } else if( toop ) {
1545      tty->print("  Oop:");
1546    } else if( tkls ) {
1547      tty->print("  Klass:");
1548    }
1549    t->dump();
1550  } else if( t == Type::MEMORY ) {
1551    tty->print("  Memory:");
1552    MemNode::dump_adr_type(this, adr_type(), tty);
1553  } else if( Verbose || WizardMode ) {
1554    tty->print("  Type:");
1555    if( t ) {
1556      t->dump();
1557    } else {
1558      tty->print("no type");
1559    }
1560  }
1561  if (is_new) {
1562    debug_only(dump_orig(debug_orig()));
1563    Node_Notes* nn = C->node_notes_at(_idx);
1564    if (nn != NULL && !nn->is_clear()) {
1565      if (nn->jvms() != NULL) {
1566        tty->print(" !jvms:");
1567        nn->jvms()->dump_spec(tty);
1568      }
1569    }
1570  }
1571  tty->cr();
1572  _in_dump_cnt--;
1573}
1574
1575//------------------------------dump_req--------------------------------------
1576void Node::dump_req() const {
1577  // Dump the required input edges
1578  for (uint i = 0; i < req(); i++) {    // For all required inputs
1579    Node* d = in(i);
1580    if (d == NULL) {
1581      tty->print("_ ");
1582    } else if (NotANode(d)) {
1583      tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1584    } else {
1585      tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1586    }
1587  }
1588}
1589
1590
1591//------------------------------dump_prec-------------------------------------
1592void Node::dump_prec() const {
1593  // Dump the precedence edges
1594  int any_prec = 0;
1595  for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1596    Node* p = in(i);
1597    if (p != NULL) {
1598      if( !any_prec++ ) tty->print(" |");
1599      if (NotANode(p)) { tty->print("NotANode "); continue; }
1600      tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1601    }
1602  }
1603}
1604
1605//------------------------------dump_out--------------------------------------
1606void Node::dump_out() const {
1607  // Delimit the output edges
1608  tty->print(" [[");
1609  // Dump the output edges
1610  for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1611    Node* u = _out[i];
1612    if (u == NULL) {
1613      tty->print("_ ");
1614    } else if (NotANode(u)) {
1615      tty->print("NotANode ");
1616    } else {
1617      tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1618    }
1619  }
1620  tty->print("]] ");
1621}
1622
1623//------------------------------dump_nodes-------------------------------------
1624static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1625  Node* s = (Node*)start; // remove const
1626  if (NotANode(s)) return;
1627
1628  uint depth = (uint)ABS(d);
1629  int direction = d;
1630  Compile* C = Compile::current();
1631  GrowableArray <Node *> nstack(C->unique());
1632
1633  nstack.append(s);
1634  int begin = 0;
1635  int end = 0;
1636  for(uint i = 0; i < depth; i++) {
1637    end = nstack.length();
1638    for(int j = begin; j < end; j++) {
1639      Node* tp  = nstack.at(j);
1640      uint limit = direction > 0 ? tp->len() : tp->outcnt();
1641      for(uint k = 0; k < limit; k++) {
1642        Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1643
1644        if (NotANode(n))  continue;
1645        // do not recurse through top or the root (would reach unrelated stuff)
1646        if (n->is_Root() || n->is_top())  continue;
1647        if (only_ctrl && !n->is_CFG()) continue;
1648
1649        bool on_stack = nstack.contains(n);
1650        if (!on_stack) {
1651          nstack.append(n);
1652        }
1653      }
1654    }
1655    begin = end;
1656  }
1657  end = nstack.length();
1658  if (direction > 0) {
1659    for(int j = end-1; j >= 0; j--) {
1660      nstack.at(j)->dump();
1661    }
1662  } else {
1663    for(int j = 0; j < end; j++) {
1664      nstack.at(j)->dump();
1665    }
1666  }
1667}
1668
1669//------------------------------dump-------------------------------------------
1670void Node::dump(int d) const {
1671  dump_nodes(this, d, false);
1672}
1673
1674//------------------------------dump_ctrl--------------------------------------
1675// Dump a Node's control history to depth
1676void Node::dump_ctrl(int d) const {
1677  dump_nodes(this, d, true);
1678}
1679
1680// VERIFICATION CODE
1681// For each input edge to a node (ie - for each Use-Def edge), verify that
1682// there is a corresponding Def-Use edge.
1683//------------------------------verify_edges-----------------------------------
1684void Node::verify_edges(Unique_Node_List &visited) {
1685  uint i, j, idx;
1686  int  cnt;
1687  Node *n;
1688
1689  // Recursive termination test
1690  if (visited.member(this))  return;
1691  visited.push(this);
1692
1693  // Walk over all input edges, checking for correspondence
1694  for( i = 0; i < len(); i++ ) {
1695    n = in(i);
1696    if (n != NULL && !n->is_top()) {
1697      // Count instances of (Node *)this
1698      cnt = 0;
1699      for (idx = 0; idx < n->_outcnt; idx++ ) {
1700        if (n->_out[idx] == (Node *)this)  cnt++;
1701      }
1702      assert( cnt > 0,"Failed to find Def-Use edge." );
1703      // Check for duplicate edges
1704      // walk the input array downcounting the input edges to n
1705      for( j = 0; j < len(); j++ ) {
1706        if( in(j) == n ) cnt--;
1707      }
1708      assert( cnt == 0,"Mismatched edge count.");
1709    } else if (n == NULL) {
1710      assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1711    } else {
1712      assert(n->is_top(), "sanity");
1713      // Nothing to check.
1714    }
1715  }
1716  // Recursive walk over all input edges
1717  for( i = 0; i < len(); i++ ) {
1718    n = in(i);
1719    if( n != NULL )
1720      in(i)->verify_edges(visited);
1721  }
1722}
1723
1724//------------------------------verify_recur-----------------------------------
1725static const Node *unique_top = NULL;
1726
1727void Node::verify_recur(const Node *n, int verify_depth,
1728                        VectorSet &old_space, VectorSet &new_space) {
1729  if ( verify_depth == 0 )  return;
1730  if (verify_depth > 0)  --verify_depth;
1731
1732  Compile* C = Compile::current();
1733
1734  // Contained in new_space or old_space?
1735  VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1736  // Check for visited in the proper space.  Numberings are not unique
1737  // across spaces so we need a separate VectorSet for each space.
1738  if( v->test_set(n->_idx) ) return;
1739
1740  if (n->is_Con() && n->bottom_type() == Type::TOP) {
1741    if (C->cached_top_node() == NULL)
1742      C->set_cached_top_node((Node*)n);
1743    assert(C->cached_top_node() == n, "TOP node must be unique");
1744  }
1745
1746  for( uint i = 0; i < n->len(); i++ ) {
1747    Node *x = n->in(i);
1748    if (!x || x->is_top()) continue;
1749
1750    // Verify my input has a def-use edge to me
1751    if (true /*VerifyDefUse*/) {
1752      // Count use-def edges from n to x
1753      int cnt = 0;
1754      for( uint j = 0; j < n->len(); j++ )
1755        if( n->in(j) == x )
1756          cnt++;
1757      // Count def-use edges from x to n
1758      uint max = x->_outcnt;
1759      for( uint k = 0; k < max; k++ )
1760        if (x->_out[k] == n)
1761          cnt--;
1762      assert( cnt == 0, "mismatched def-use edge counts" );
1763    }
1764
1765    verify_recur(x, verify_depth, old_space, new_space);
1766  }
1767
1768}
1769
1770//------------------------------verify-----------------------------------------
1771// Check Def-Use info for my subgraph
1772void Node::verify() const {
1773  Compile* C = Compile::current();
1774  Node* old_top = C->cached_top_node();
1775  ResourceMark rm;
1776  ResourceArea *area = Thread::current()->resource_area();
1777  VectorSet old_space(area), new_space(area);
1778  verify_recur(this, -1, old_space, new_space);
1779  C->set_cached_top_node(old_top);
1780}
1781#endif
1782
1783
1784//------------------------------walk-------------------------------------------
1785// Graph walk, with both pre-order and post-order functions
1786void Node::walk(NFunc pre, NFunc post, void *env) {
1787  VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1788  walk_(pre, post, env, visited);
1789}
1790
1791void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1792  if( visited.test_set(_idx) ) return;
1793  pre(*this,env);               // Call the pre-order walk function
1794  for( uint i=0; i<_max; i++ )
1795    if( in(i) )                 // Input exists and is not walked?
1796      in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1797  post(*this,env);              // Call the post-order walk function
1798}
1799
1800void Node::nop(Node &, void*) {}
1801
1802//------------------------------Registers--------------------------------------
1803// Do we Match on this edge index or not?  Generally false for Control
1804// and true for everything else.  Weird for calls & returns.
1805uint Node::match_edge(uint idx) const {
1806  return idx;                   // True for other than index 0 (control)
1807}
1808
1809// Register classes are defined for specific machines
1810const RegMask &Node::out_RegMask() const {
1811  ShouldNotCallThis();
1812  return *(new RegMask());
1813}
1814
1815const RegMask &Node::in_RegMask(uint) const {
1816  ShouldNotCallThis();
1817  return *(new RegMask());
1818}
1819
1820//=============================================================================
1821//-----------------------------------------------------------------------------
1822void Node_Array::reset( Arena *new_arena ) {
1823  _a->Afree(_nodes,_max*sizeof(Node*));
1824  _max   = 0;
1825  _nodes = NULL;
1826  _a     = new_arena;
1827}
1828
1829//------------------------------clear------------------------------------------
1830// Clear all entries in _nodes to NULL but keep storage
1831void Node_Array::clear() {
1832  Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1833}
1834
1835//-----------------------------------------------------------------------------
1836void Node_Array::grow( uint i ) {
1837  if( !_max ) {
1838    _max = 1;
1839    _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1840    _nodes[0] = NULL;
1841  }
1842  uint old = _max;
1843  while( i >= _max ) _max <<= 1;        // Double to fit
1844  _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1845  Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1846}
1847
1848//-----------------------------------------------------------------------------
1849void Node_Array::insert( uint i, Node *n ) {
1850  if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1851  Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1852  _nodes[i] = n;
1853}
1854
1855//-----------------------------------------------------------------------------
1856void Node_Array::remove( uint i ) {
1857  Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1858  _nodes[_max-1] = NULL;
1859}
1860
1861//-----------------------------------------------------------------------------
1862void Node_Array::sort( C_sort_func_t func) {
1863  qsort( _nodes, _max, sizeof( Node* ), func );
1864}
1865
1866//-----------------------------------------------------------------------------
1867void Node_Array::dump() const {
1868#ifndef PRODUCT
1869  for( uint i = 0; i < _max; i++ ) {
1870    Node *nn = _nodes[i];
1871    if( nn != NULL ) {
1872      tty->print("%5d--> ",i); nn->dump();
1873    }
1874  }
1875#endif
1876}
1877
1878//--------------------------is_iteratively_computed------------------------------
1879// Operation appears to be iteratively computed (such as an induction variable)
1880// It is possible for this operation to return false for a loop-varying
1881// value, if it appears (by local graph inspection) to be computed by a simple conditional.
1882bool Node::is_iteratively_computed() {
1883  if (ideal_reg()) { // does operation have a result register?
1884    for (uint i = 1; i < req(); i++) {
1885      Node* n = in(i);
1886      if (n != NULL && n->is_Phi()) {
1887        for (uint j = 1; j < n->req(); j++) {
1888          if (n->in(j) == this) {
1889            return true;
1890          }
1891        }
1892      }
1893    }
1894  }
1895  return false;
1896}
1897
1898//--------------------------find_similar------------------------------
1899// Return a node with opcode "opc" and same inputs as "this" if one can
1900// be found; Otherwise return NULL;
1901Node* Node::find_similar(int opc) {
1902  if (req() >= 2) {
1903    Node* def = in(1);
1904    if (def && def->outcnt() >= 2) {
1905      for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1906        Node* use = def->fast_out(i);
1907        if (use->Opcode() == opc &&
1908            use->req() == req()) {
1909          uint j;
1910          for (j = 0; j < use->req(); j++) {
1911            if (use->in(j) != in(j)) {
1912              break;
1913            }
1914          }
1915          if (j == use->req()) {
1916            return use;
1917          }
1918        }
1919      }
1920    }
1921  }
1922  return NULL;
1923}
1924
1925
1926//--------------------------unique_ctrl_out------------------------------
1927// Return the unique control out if only one. Null if none or more than one.
1928Node* Node::unique_ctrl_out() {
1929  Node* found = NULL;
1930  for (uint i = 0; i < outcnt(); i++) {
1931    Node* use = raw_out(i);
1932    if (use->is_CFG() && use != this) {
1933      if (found != NULL) return NULL;
1934      found = use;
1935    }
1936  }
1937  return found;
1938}
1939
1940//=============================================================================
1941//------------------------------yank-------------------------------------------
1942// Find and remove
1943void Node_List::yank( Node *n ) {
1944  uint i;
1945  for( i = 0; i < _cnt; i++ )
1946    if( _nodes[i] == n )
1947      break;
1948
1949  if( i < _cnt )
1950    _nodes[i] = _nodes[--_cnt];
1951}
1952
1953//------------------------------dump-------------------------------------------
1954void Node_List::dump() const {
1955#ifndef PRODUCT
1956  for( uint i = 0; i < _cnt; i++ )
1957    if( _nodes[i] ) {
1958      tty->print("%5d--> ",i);
1959      _nodes[i]->dump();
1960    }
1961#endif
1962}
1963
1964//=============================================================================
1965//------------------------------remove-----------------------------------------
1966void Unique_Node_List::remove( Node *n ) {
1967  if( _in_worklist[n->_idx] ) {
1968    for( uint i = 0; i < size(); i++ )
1969      if( _nodes[i] == n ) {
1970        map(i,Node_List::pop());
1971        _in_worklist >>= n->_idx;
1972        return;
1973      }
1974    ShouldNotReachHere();
1975  }
1976}
1977
1978//-----------------------remove_useless_nodes----------------------------------
1979// Remove useless nodes from worklist
1980void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
1981
1982  for( uint i = 0; i < size(); ++i ) {
1983    Node *n = at(i);
1984    assert( n != NULL, "Did not expect null entries in worklist");
1985    if( ! useful.test(n->_idx) ) {
1986      _in_worklist >>= n->_idx;
1987      map(i,Node_List::pop());
1988      // Node *replacement = Node_List::pop();
1989      // if( i != size() ) { // Check if removing last entry
1990      //   _nodes[i] = replacement;
1991      // }
1992      --i;  // Visit popped node
1993      // If it was last entry, loop terminates since size() was also reduced
1994    }
1995  }
1996}
1997
1998//=============================================================================
1999void Node_Stack::grow() {
2000  size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2001  size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2002  size_t max = old_max << 1;             // max * 2
2003  _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2004  _inode_max = _inodes + max;
2005  _inode_top = _inodes + old_top;        // restore _top
2006}
2007
2008//=============================================================================
2009uint TypeNode::size_of() const { return sizeof(*this); }
2010#ifndef PRODUCT
2011void TypeNode::dump_spec(outputStream *st) const {
2012  if( !Verbose && !WizardMode ) {
2013    // standard dump does this in Verbose and WizardMode
2014    st->print(" #"); _type->dump_on(st);
2015  }
2016}
2017#endif
2018uint TypeNode::hash() const {
2019  return Node::hash() + _type->hash();
2020}
2021uint TypeNode::cmp( const Node &n ) const
2022{ return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2023const Type *TypeNode::bottom_type() const { return _type; }
2024const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2025
2026//------------------------------ideal_reg--------------------------------------
2027uint TypeNode::ideal_reg() const {
2028  return Matcher::base2reg[_type->base()];
2029}
2030