mulnode.hpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27class PhaseTransform;
28
29//------------------------------MulNode----------------------------------------
30// Classic MULTIPLY functionality.  This covers all the usual 'multiply'
31// behaviors for an algebraic ring.  Multiply-integer, multiply-float,
32// multiply-double, and binary-and are all inherited from this class.  The
33// various identity values are supplied by virtual functions.
34class MulNode : public Node {
35  virtual uint hash() const;
36public:
37  MulNode( Node *in1, Node *in2 ): Node(0,in1,in2) {
38    init_class_id(Class_Mul);
39  }
40
41  // Handle algebraic identities here.  If we have an identity, return the Node
42  // we are equivalent to.  We look for "add of zero" as an identity.
43  virtual Node *Identity( PhaseTransform *phase );
44
45  // We also canonicalize the Node, moving constants to the right input,
46  // and flatten expressions (so that 1+x+2 becomes x+3).
47  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
48
49  // Compute a new Type for this node.  Basically we just do the pre-check,
50  // then call the virtual add() to set the type.
51  virtual const Type *Value( PhaseTransform *phase ) const;
52
53  // Supplied function returns the product of the inputs.
54  // This also type-checks the inputs for sanity.  Guaranteed never to
55  // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
56  // This call recognizes the multiplicative zero type.
57  virtual const Type *mul_ring( const Type *, const Type * ) const = 0;
58
59  // Supplied function to return the multiplicative identity type
60  virtual const Type *mul_id() const = 0;
61
62  // Supplied function to return the additive identity type
63  virtual const Type *add_id() const = 0;
64
65  // Supplied function to return the additive opcode
66  virtual int add_opcode() const = 0;
67
68  // Supplied function to return the multiplicative opcode
69  virtual int mul_opcode() const = 0;
70
71};
72
73//------------------------------MulINode---------------------------------------
74// Multiply 2 integers
75class MulINode : public MulNode {
76public:
77  MulINode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
78  virtual int Opcode() const;
79  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
80  virtual const Type *mul_ring( const Type *, const Type * ) const;
81  const Type *mul_id() const { return TypeInt::ONE; }
82  const Type *add_id() const { return TypeInt::ZERO; }
83  int add_opcode() const { return Op_AddI; }
84  int mul_opcode() const { return Op_MulI; }
85  const Type *bottom_type() const { return TypeInt::INT; }
86  virtual uint ideal_reg() const { return Op_RegI; }
87};
88
89//------------------------------MulLNode---------------------------------------
90// Multiply 2 longs
91class MulLNode : public MulNode {
92public:
93  MulLNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
94  virtual int Opcode() const;
95  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
96  virtual const Type *mul_ring( const Type *, const Type * ) const;
97  const Type *mul_id() const { return TypeLong::ONE; }
98  const Type *add_id() const { return TypeLong::ZERO; }
99  int add_opcode() const { return Op_AddL; }
100  int mul_opcode() const { return Op_MulL; }
101  const Type *bottom_type() const { return TypeLong::LONG; }
102  virtual uint ideal_reg() const { return Op_RegL; }
103};
104
105
106//------------------------------MulFNode---------------------------------------
107// Multiply 2 floats
108class MulFNode : public MulNode {
109public:
110  MulFNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
111  virtual int Opcode() const;
112  virtual const Type *mul_ring( const Type *, const Type * ) const;
113  const Type *mul_id() const { return TypeF::ONE; }
114  const Type *add_id() const { return TypeF::ZERO; }
115  int add_opcode() const { return Op_AddF; }
116  int mul_opcode() const { return Op_MulF; }
117  const Type *bottom_type() const { return Type::FLOAT; }
118  virtual uint ideal_reg() const { return Op_RegF; }
119};
120
121//------------------------------MulDNode---------------------------------------
122// Multiply 2 doubles
123class MulDNode : public MulNode {
124public:
125  MulDNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
126  virtual int Opcode() const;
127  virtual const Type *mul_ring( const Type *, const Type * ) const;
128  const Type *mul_id() const { return TypeD::ONE; }
129  const Type *add_id() const { return TypeD::ZERO; }
130  int add_opcode() const { return Op_AddD; }
131  int mul_opcode() const { return Op_MulD; }
132  const Type *bottom_type() const { return Type::DOUBLE; }
133  virtual uint ideal_reg() const { return Op_RegD; }
134};
135
136//-------------------------------MulHiLNode------------------------------------
137// Upper 64 bits of a 64 bit by 64 bit multiply
138class MulHiLNode : public Node {
139public:
140  MulHiLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
141  virtual int Opcode() const;
142  virtual const Type *Value( PhaseTransform *phase ) const;
143  const Type *bottom_type() const { return TypeLong::LONG; }
144  virtual uint ideal_reg() const { return Op_RegL; }
145};
146
147//------------------------------AndINode---------------------------------------
148// Logically AND 2 integers.  Included with the MUL nodes because it inherits
149// all the behavior of multiplication on a ring.
150class AndINode : public MulINode {
151public:
152  AndINode( Node *in1, Node *in2 ) : MulINode(in1,in2) {}
153  virtual int Opcode() const;
154  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
155  virtual Node *Identity( PhaseTransform *phase );
156  virtual const Type *mul_ring( const Type *, const Type * ) const;
157  const Type *mul_id() const { return TypeInt::MINUS_1; }
158  const Type *add_id() const { return TypeInt::ZERO; }
159  int add_opcode() const { return Op_OrI; }
160  int mul_opcode() const { return Op_AndI; }
161  virtual uint ideal_reg() const { return Op_RegI; }
162};
163
164//------------------------------AndINode---------------------------------------
165// Logically AND 2 longs.  Included with the MUL nodes because it inherits
166// all the behavior of multiplication on a ring.
167class AndLNode : public MulLNode {
168public:
169  AndLNode( Node *in1, Node *in2 ) : MulLNode(in1,in2) {}
170  virtual int Opcode() const;
171  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
172  virtual Node *Identity( PhaseTransform *phase );
173  virtual const Type *mul_ring( const Type *, const Type * ) const;
174  const Type *mul_id() const { return TypeLong::MINUS_1; }
175  const Type *add_id() const { return TypeLong::ZERO; }
176  int add_opcode() const { return Op_OrL; }
177  int mul_opcode() const { return Op_AndL; }
178  virtual uint ideal_reg() const { return Op_RegL; }
179};
180
181//------------------------------LShiftINode------------------------------------
182// Logical shift left
183class LShiftINode : public Node {
184public:
185  LShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
186  virtual int Opcode() const;
187  virtual Node *Identity( PhaseTransform *phase );
188  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
189  virtual const Type *Value( PhaseTransform *phase ) const;
190  const Type *bottom_type() const { return TypeInt::INT; }
191  virtual uint ideal_reg() const { return Op_RegI; }
192};
193
194//------------------------------LShiftLNode------------------------------------
195// Logical shift left
196class LShiftLNode : public Node {
197public:
198  LShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
199  virtual int Opcode() const;
200  virtual Node *Identity( PhaseTransform *phase );
201  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
202  virtual const Type *Value( PhaseTransform *phase ) const;
203  const Type *bottom_type() const { return TypeLong::LONG; }
204  virtual uint ideal_reg() const { return Op_RegL; }
205};
206
207//------------------------------RShiftINode------------------------------------
208// Signed shift right
209class RShiftINode : public Node {
210public:
211  RShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
212  virtual int Opcode() const;
213  virtual Node *Identity( PhaseTransform *phase );
214  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
215  virtual const Type *Value( PhaseTransform *phase ) const;
216  const Type *bottom_type() const { return TypeInt::INT; }
217  virtual uint ideal_reg() const { return Op_RegI; }
218};
219
220//------------------------------RShiftLNode------------------------------------
221// Signed shift right
222class RShiftLNode : public Node {
223public:
224  RShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
225  virtual int Opcode() const;
226  virtual Node *Identity( PhaseTransform *phase );
227  virtual const Type *Value( PhaseTransform *phase ) const;
228  const Type *bottom_type() const { return TypeLong::LONG; }
229  virtual uint ideal_reg() const { return Op_RegL; }
230};
231
232
233//------------------------------URShiftINode-----------------------------------
234// Logical shift right
235class URShiftINode : public Node {
236public:
237  URShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
238  virtual int Opcode() const;
239  virtual Node *Identity( PhaseTransform *phase );
240  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
241  virtual const Type *Value( PhaseTransform *phase ) const;
242  const Type *bottom_type() const { return TypeInt::INT; }
243  virtual uint ideal_reg() const { return Op_RegI; }
244};
245
246//------------------------------URShiftLNode-----------------------------------
247// Logical shift right
248class URShiftLNode : public Node {
249public:
250  URShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
251  virtual int Opcode() const;
252  virtual Node *Identity( PhaseTransform *phase );
253  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
254  virtual const Type *Value( PhaseTransform *phase ) const;
255  const Type *bottom_type() const { return TypeLong::LONG; }
256  virtual uint ideal_reg() const { return Op_RegL; }
257};
258