memnode.hpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_MEMNODE_HPP
26#define SHARE_VM_OPTO_MEMNODE_HPP
27
28#include "opto/multnode.hpp"
29#include "opto/node.hpp"
30#include "opto/opcodes.hpp"
31#include "opto/type.hpp"
32
33// Portions of code courtesy of Clifford Click
34
35class MultiNode;
36class PhaseCCP;
37class PhaseTransform;
38
39//------------------------------MemNode----------------------------------------
40// Load or Store, possibly throwing a NULL pointer exception
41class MemNode : public Node {
42protected:
43#ifdef ASSERT
44  const TypePtr* _adr_type;     // What kind of memory is being addressed?
45#endif
46  virtual uint size_of() const; // Size is bigger (ASSERT only)
47public:
48  enum { Control,               // When is it safe to do this load?
49         Memory,                // Chunk of memory is being loaded from
50         Address,               // Actually address, derived from base
51         ValueIn,               // Value to store
52         OopStore               // Preceeding oop store, only in StoreCM
53  };
54protected:
55  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
56    : Node(c0,c1,c2   ) {
57    init_class_id(Class_Mem);
58    debug_only(_adr_type=at; adr_type();)
59  }
60  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
61    : Node(c0,c1,c2,c3) {
62    init_class_id(Class_Mem);
63    debug_only(_adr_type=at; adr_type();)
64  }
65  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
66    : Node(c0,c1,c2,c3,c4) {
67    init_class_id(Class_Mem);
68    debug_only(_adr_type=at; adr_type();)
69  }
70
71public:
72  // Helpers for the optimizer.  Documented in memnode.cpp.
73  static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
74                                      Node* p2, AllocateNode* a2,
75                                      PhaseTransform* phase);
76  static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
77
78  static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
79  static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
80  // This one should probably be a phase-specific function:
81  static bool all_controls_dominate(Node* dom, Node* sub);
82
83  // Find any cast-away of null-ness and keep its control.
84  static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
85  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
86
87  virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
88
89  // Shared code for Ideal methods:
90  Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
91
92  // Helper function for adr_type() implementations.
93  static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
94
95  // Raw access function, to allow copying of adr_type efficiently in
96  // product builds and retain the debug info for debug builds.
97  const TypePtr *raw_adr_type() const {
98#ifdef ASSERT
99    return _adr_type;
100#else
101    return 0;
102#endif
103  }
104
105  // Map a load or store opcode to its corresponding store opcode.
106  // (Return -1 if unknown.)
107  virtual int store_Opcode() const { return -1; }
108
109  // What is the type of the value in memory?  (T_VOID mean "unspecified".)
110  virtual BasicType memory_type() const = 0;
111  virtual int memory_size() const {
112#ifdef ASSERT
113    return type2aelembytes(memory_type(), true);
114#else
115    return type2aelembytes(memory_type());
116#endif
117  }
118
119  // Search through memory states which precede this node (load or store).
120  // Look for an exact match for the address, with no intervening
121  // aliased stores.
122  Node* find_previous_store(PhaseTransform* phase);
123
124  // Can this node (load or store) accurately see a stored value in
125  // the given memory state?  (The state may or may not be in(Memory).)
126  Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
127
128#ifndef PRODUCT
129  static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
130  virtual void dump_spec(outputStream *st) const;
131#endif
132};
133
134//------------------------------LoadNode---------------------------------------
135// Load value; requires Memory and Address
136class LoadNode : public MemNode {
137protected:
138  virtual uint cmp( const Node &n ) const;
139  virtual uint size_of() const; // Size is bigger
140  const Type* const _type;      // What kind of value is loaded?
141public:
142
143  LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
144    : MemNode(c,mem,adr,at), _type(rt) {
145    init_class_id(Class_Load);
146  }
147
148  // Polymorphic factory method:
149  static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
150                     const TypePtr* at, const Type *rt, BasicType bt );
151
152  virtual uint hash()   const;  // Check the type
153
154  // Handle algebraic identities here.  If we have an identity, return the Node
155  // we are equivalent to.  We look for Load of a Store.
156  virtual Node *Identity( PhaseTransform *phase );
157
158  // If the load is from Field memory and the pointer is non-null, we can
159  // zero out the control input.
160  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
161
162  // Split instance field load through Phi.
163  Node* split_through_phi(PhaseGVN *phase);
164
165  // Recover original value from boxed values
166  Node *eliminate_autobox(PhaseGVN *phase);
167
168  // Compute a new Type for this node.  Basically we just do the pre-check,
169  // then call the virtual add() to set the type.
170  virtual const Type *Value( PhaseTransform *phase ) const;
171
172  // Common methods for LoadKlass and LoadNKlass nodes.
173  const Type *klass_value_common( PhaseTransform *phase ) const;
174  Node *klass_identity_common( PhaseTransform *phase );
175
176  virtual uint ideal_reg() const;
177  virtual const Type *bottom_type() const;
178  // Following method is copied from TypeNode:
179  void set_type(const Type* t) {
180    assert(t != NULL, "sanity");
181    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
182    *(const Type**)&_type = t;   // cast away const-ness
183    // If this node is in the hash table, make sure it doesn't need a rehash.
184    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
185  }
186  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
187
188  // Do not match memory edge
189  virtual uint match_edge(uint idx) const;
190
191  // Map a load opcode to its corresponding store opcode.
192  virtual int store_Opcode() const = 0;
193
194  // Check if the load's memory input is a Phi node with the same control.
195  bool is_instance_field_load_with_local_phi(Node* ctrl);
196
197#ifndef PRODUCT
198  virtual void dump_spec(outputStream *st) const;
199#endif
200#ifdef ASSERT
201  // Helper function to allow a raw load without control edge for some cases
202  static bool is_immutable_value(Node* adr);
203#endif
204protected:
205  const Type* load_array_final_field(const TypeKlassPtr *tkls,
206                                     ciKlass* klass) const;
207  // depends_only_on_test is almost always true, and needs to be almost always
208  // true to enable key hoisting & commoning optimizations.  However, for the
209  // special case of RawPtr loads from TLS top & end, and other loads performed by
210  // GC barriers, the control edge carries the dependence preventing hoisting past
211  // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
212  // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
213  // which produce results (new raw memory state) inside of loops preventing all
214  // manner of other optimizations).  Basically, it's ugly but so is the alternative.
215  // See comment in macro.cpp, around line 125 expand_allocate_common().
216  virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
217
218};
219
220//------------------------------LoadBNode--------------------------------------
221// Load a byte (8bits signed) from memory
222class LoadBNode : public LoadNode {
223public:
224  LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
225    : LoadNode(c,mem,adr,at,ti) {}
226  virtual int Opcode() const;
227  virtual uint ideal_reg() const { return Op_RegI; }
228  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
229  virtual const Type *Value(PhaseTransform *phase) const;
230  virtual int store_Opcode() const { return Op_StoreB; }
231  virtual BasicType memory_type() const { return T_BYTE; }
232};
233
234//------------------------------LoadUBNode-------------------------------------
235// Load a unsigned byte (8bits unsigned) from memory
236class LoadUBNode : public LoadNode {
237public:
238  LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
239    : LoadNode(c, mem, adr, at, ti) {}
240  virtual int Opcode() const;
241  virtual uint ideal_reg() const { return Op_RegI; }
242  virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
243  virtual const Type *Value(PhaseTransform *phase) const;
244  virtual int store_Opcode() const { return Op_StoreB; }
245  virtual BasicType memory_type() const { return T_BYTE; }
246};
247
248//------------------------------LoadUSNode-------------------------------------
249// Load an unsigned short/char (16bits unsigned) from memory
250class LoadUSNode : public LoadNode {
251public:
252  LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
253    : LoadNode(c,mem,adr,at,ti) {}
254  virtual int Opcode() const;
255  virtual uint ideal_reg() const { return Op_RegI; }
256  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
257  virtual const Type *Value(PhaseTransform *phase) const;
258  virtual int store_Opcode() const { return Op_StoreC; }
259  virtual BasicType memory_type() const { return T_CHAR; }
260};
261
262//------------------------------LoadSNode--------------------------------------
263// Load a short (16bits signed) from memory
264class LoadSNode : public LoadNode {
265public:
266  LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
267    : LoadNode(c,mem,adr,at,ti) {}
268  virtual int Opcode() const;
269  virtual uint ideal_reg() const { return Op_RegI; }
270  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
271  virtual const Type *Value(PhaseTransform *phase) const;
272  virtual int store_Opcode() const { return Op_StoreC; }
273  virtual BasicType memory_type() const { return T_SHORT; }
274};
275
276//------------------------------LoadINode--------------------------------------
277// Load an integer from memory
278class LoadINode : public LoadNode {
279public:
280  LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
281    : LoadNode(c,mem,adr,at,ti) {}
282  virtual int Opcode() const;
283  virtual uint ideal_reg() const { return Op_RegI; }
284  virtual int store_Opcode() const { return Op_StoreI; }
285  virtual BasicType memory_type() const { return T_INT; }
286};
287
288//------------------------------LoadRangeNode----------------------------------
289// Load an array length from the array
290class LoadRangeNode : public LoadINode {
291public:
292  LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
293    : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
294  virtual int Opcode() const;
295  virtual const Type *Value( PhaseTransform *phase ) const;
296  virtual Node *Identity( PhaseTransform *phase );
297  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
298};
299
300//------------------------------LoadLNode--------------------------------------
301// Load a long from memory
302class LoadLNode : public LoadNode {
303  virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
304  virtual uint cmp( const Node &n ) const {
305    return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
306      && LoadNode::cmp(n);
307  }
308  virtual uint size_of() const { return sizeof(*this); }
309  const bool _require_atomic_access;  // is piecewise load forbidden?
310
311public:
312  LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
313             const TypeLong *tl = TypeLong::LONG,
314             bool require_atomic_access = false )
315    : LoadNode(c,mem,adr,at,tl)
316    , _require_atomic_access(require_atomic_access)
317  {}
318  virtual int Opcode() const;
319  virtual uint ideal_reg() const { return Op_RegL; }
320  virtual int store_Opcode() const { return Op_StoreL; }
321  virtual BasicType memory_type() const { return T_LONG; }
322  bool require_atomic_access() { return _require_atomic_access; }
323  static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
324#ifndef PRODUCT
325  virtual void dump_spec(outputStream *st) const {
326    LoadNode::dump_spec(st);
327    if (_require_atomic_access)  st->print(" Atomic!");
328  }
329#endif
330};
331
332//------------------------------LoadL_unalignedNode----------------------------
333// Load a long from unaligned memory
334class LoadL_unalignedNode : public LoadLNode {
335public:
336  LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
337    : LoadLNode(c,mem,adr,at) {}
338  virtual int Opcode() const;
339};
340
341//------------------------------LoadFNode--------------------------------------
342// Load a float (64 bits) from memory
343class LoadFNode : public LoadNode {
344public:
345  LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
346    : LoadNode(c,mem,adr,at,t) {}
347  virtual int Opcode() const;
348  virtual uint ideal_reg() const { return Op_RegF; }
349  virtual int store_Opcode() const { return Op_StoreF; }
350  virtual BasicType memory_type() const { return T_FLOAT; }
351};
352
353//------------------------------LoadDNode--------------------------------------
354// Load a double (64 bits) from memory
355class LoadDNode : public LoadNode {
356public:
357  LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
358    : LoadNode(c,mem,adr,at,t) {}
359  virtual int Opcode() const;
360  virtual uint ideal_reg() const { return Op_RegD; }
361  virtual int store_Opcode() const { return Op_StoreD; }
362  virtual BasicType memory_type() const { return T_DOUBLE; }
363};
364
365//------------------------------LoadD_unalignedNode----------------------------
366// Load a double from unaligned memory
367class LoadD_unalignedNode : public LoadDNode {
368public:
369  LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
370    : LoadDNode(c,mem,adr,at) {}
371  virtual int Opcode() const;
372};
373
374//------------------------------LoadPNode--------------------------------------
375// Load a pointer from memory (either object or array)
376class LoadPNode : public LoadNode {
377public:
378  LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
379    : LoadNode(c,mem,adr,at,t) {}
380  virtual int Opcode() const;
381  virtual uint ideal_reg() const { return Op_RegP; }
382  virtual int store_Opcode() const { return Op_StoreP; }
383  virtual BasicType memory_type() const { return T_ADDRESS; }
384};
385
386
387//------------------------------LoadNNode--------------------------------------
388// Load a narrow oop from memory (either object or array)
389class LoadNNode : public LoadNode {
390public:
391  LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
392    : LoadNode(c,mem,adr,at,t) {}
393  virtual int Opcode() const;
394  virtual uint ideal_reg() const { return Op_RegN; }
395  virtual int store_Opcode() const { return Op_StoreN; }
396  virtual BasicType memory_type() const { return T_NARROWOOP; }
397};
398
399//------------------------------LoadKlassNode----------------------------------
400// Load a Klass from an object
401class LoadKlassNode : public LoadPNode {
402public:
403  LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
404    : LoadPNode(c,mem,adr,at,tk) {}
405  virtual int Opcode() const;
406  virtual const Type *Value( PhaseTransform *phase ) const;
407  virtual Node *Identity( PhaseTransform *phase );
408  virtual bool depends_only_on_test() const { return true; }
409
410  // Polymorphic factory method:
411  static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
412                     const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
413};
414
415//------------------------------LoadNKlassNode---------------------------------
416// Load a narrow Klass from an object.
417class LoadNKlassNode : public LoadNNode {
418public:
419  LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk )
420    : LoadNNode(c,mem,adr,at,tk) {}
421  virtual int Opcode() const;
422  virtual uint ideal_reg() const { return Op_RegN; }
423  virtual int store_Opcode() const { return Op_StoreNKlass; }
424  virtual BasicType memory_type() const { return T_NARROWKLASS; }
425
426  virtual const Type *Value( PhaseTransform *phase ) const;
427  virtual Node *Identity( PhaseTransform *phase );
428  virtual bool depends_only_on_test() const { return true; }
429};
430
431
432//------------------------------StoreNode--------------------------------------
433// Store value; requires Store, Address and Value
434class StoreNode : public MemNode {
435protected:
436  virtual uint cmp( const Node &n ) const;
437  virtual bool depends_only_on_test() const { return false; }
438
439  Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
440  Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
441
442public:
443  StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
444    : MemNode(c,mem,adr,at,val) {
445    init_class_id(Class_Store);
446  }
447  StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
448    : MemNode(c,mem,adr,at,val,oop_store) {
449    init_class_id(Class_Store);
450  }
451
452  // Polymorphic factory method:
453  static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
454                          const TypePtr* at, Node *val, BasicType bt );
455
456  virtual uint hash() const;    // Check the type
457
458  // If the store is to Field memory and the pointer is non-null, we can
459  // zero out the control input.
460  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
461
462  // Compute a new Type for this node.  Basically we just do the pre-check,
463  // then call the virtual add() to set the type.
464  virtual const Type *Value( PhaseTransform *phase ) const;
465
466  // Check for identity function on memory (Load then Store at same address)
467  virtual Node *Identity( PhaseTransform *phase );
468
469  // Do not match memory edge
470  virtual uint match_edge(uint idx) const;
471
472  virtual const Type *bottom_type() const;  // returns Type::MEMORY
473
474  // Map a store opcode to its corresponding own opcode, trivially.
475  virtual int store_Opcode() const { return Opcode(); }
476
477  // have all possible loads of the value stored been optimized away?
478  bool value_never_loaded(PhaseTransform *phase) const;
479};
480
481//------------------------------StoreBNode-------------------------------------
482// Store byte to memory
483class StoreBNode : public StoreNode {
484public:
485  StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
486  virtual int Opcode() const;
487  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
488  virtual BasicType memory_type() const { return T_BYTE; }
489};
490
491//------------------------------StoreCNode-------------------------------------
492// Store char/short to memory
493class StoreCNode : public StoreNode {
494public:
495  StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
496  virtual int Opcode() const;
497  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
498  virtual BasicType memory_type() const { return T_CHAR; }
499};
500
501//------------------------------StoreINode-------------------------------------
502// Store int to memory
503class StoreINode : public StoreNode {
504public:
505  StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
506  virtual int Opcode() const;
507  virtual BasicType memory_type() const { return T_INT; }
508};
509
510//------------------------------StoreLNode-------------------------------------
511// Store long to memory
512class StoreLNode : public StoreNode {
513  virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
514  virtual uint cmp( const Node &n ) const {
515    return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
516      && StoreNode::cmp(n);
517  }
518  virtual uint size_of() const { return sizeof(*this); }
519  const bool _require_atomic_access;  // is piecewise store forbidden?
520
521public:
522  StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
523              bool require_atomic_access = false )
524    : StoreNode(c,mem,adr,at,val)
525    , _require_atomic_access(require_atomic_access)
526  {}
527  virtual int Opcode() const;
528  virtual BasicType memory_type() const { return T_LONG; }
529  bool require_atomic_access() { return _require_atomic_access; }
530  static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
531#ifndef PRODUCT
532  virtual void dump_spec(outputStream *st) const {
533    StoreNode::dump_spec(st);
534    if (_require_atomic_access)  st->print(" Atomic!");
535  }
536#endif
537};
538
539//------------------------------StoreFNode-------------------------------------
540// Store float to memory
541class StoreFNode : public StoreNode {
542public:
543  StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
544  virtual int Opcode() const;
545  virtual BasicType memory_type() const { return T_FLOAT; }
546};
547
548//------------------------------StoreDNode-------------------------------------
549// Store double to memory
550class StoreDNode : public StoreNode {
551public:
552  StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
553  virtual int Opcode() const;
554  virtual BasicType memory_type() const { return T_DOUBLE; }
555};
556
557//------------------------------StorePNode-------------------------------------
558// Store pointer to memory
559class StorePNode : public StoreNode {
560public:
561  StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
562  virtual int Opcode() const;
563  virtual BasicType memory_type() const { return T_ADDRESS; }
564};
565
566//------------------------------StoreNNode-------------------------------------
567// Store narrow oop to memory
568class StoreNNode : public StoreNode {
569public:
570  StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
571  virtual int Opcode() const;
572  virtual BasicType memory_type() const { return T_NARROWOOP; }
573};
574
575//------------------------------StoreNKlassNode--------------------------------------
576// Store narrow klass to memory
577class StoreNKlassNode : public StoreNNode {
578public:
579  StoreNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNNode(c,mem,adr,at,val) {}
580  virtual int Opcode() const;
581  virtual BasicType memory_type() const { return T_NARROWKLASS; }
582};
583
584//------------------------------StoreCMNode-----------------------------------
585// Store card-mark byte to memory for CM
586// The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
587// Preceeding equivalent StoreCMs may be eliminated.
588class StoreCMNode : public StoreNode {
589 private:
590  virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
591  virtual uint cmp( const Node &n ) const {
592    return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
593      && StoreNode::cmp(n);
594  }
595  virtual uint size_of() const { return sizeof(*this); }
596  int _oop_alias_idx;   // The alias_idx of OopStore
597
598public:
599  StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
600    StoreNode(c,mem,adr,at,val,oop_store),
601    _oop_alias_idx(oop_alias_idx) {
602    assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
603           _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
604           "bad oop alias idx");
605  }
606  virtual int Opcode() const;
607  virtual Node *Identity( PhaseTransform *phase );
608  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
609  virtual const Type *Value( PhaseTransform *phase ) const;
610  virtual BasicType memory_type() const { return T_VOID; } // unspecific
611  int oop_alias_idx() const { return _oop_alias_idx; }
612};
613
614//------------------------------LoadPLockedNode---------------------------------
615// Load-locked a pointer from memory (either object or array).
616// On Sparc & Intel this is implemented as a normal pointer load.
617// On PowerPC and friends it's a real load-locked.
618class LoadPLockedNode : public LoadPNode {
619public:
620  LoadPLockedNode( Node *c, Node *mem, Node *adr )
621    : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
622  virtual int Opcode() const;
623  virtual int store_Opcode() const { return Op_StorePConditional; }
624  virtual bool depends_only_on_test() const { return true; }
625};
626
627//------------------------------SCMemProjNode---------------------------------------
628// This class defines a projection of the memory  state of a store conditional node.
629// These nodes return a value, but also update memory.
630class SCMemProjNode : public ProjNode {
631public:
632  enum {SCMEMPROJCON = (uint)-2};
633  SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
634  virtual int Opcode() const;
635  virtual bool      is_CFG() const  { return false; }
636  virtual const Type *bottom_type() const {return Type::MEMORY;}
637  virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
638  virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
639  virtual const Type *Value( PhaseTransform *phase ) const;
640#ifndef PRODUCT
641  virtual void dump_spec(outputStream *st) const {};
642#endif
643};
644
645//------------------------------LoadStoreNode---------------------------
646// Note: is_Mem() method returns 'true' for this class.
647class LoadStoreNode : public Node {
648private:
649  const Type* const _type;      // What kind of value is loaded?
650  const TypePtr* _adr_type;     // What kind of memory is being addressed?
651  virtual uint size_of() const; // Size is bigger
652public:
653  LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
654  virtual bool depends_only_on_test() const { return false; }
655  virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
656
657  virtual const Type *bottom_type() const { return _type; }
658  virtual uint ideal_reg() const;
659  virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
660
661  bool result_not_used() const;
662};
663
664class LoadStoreConditionalNode : public LoadStoreNode {
665public:
666  enum {
667    ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
668  };
669  LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
670};
671
672//------------------------------StorePConditionalNode---------------------------
673// Conditionally store pointer to memory, if no change since prior
674// load-locked.  Sets flags for success or failure of the store.
675class StorePConditionalNode : public LoadStoreConditionalNode {
676public:
677  StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
678  virtual int Opcode() const;
679  // Produces flags
680  virtual uint ideal_reg() const { return Op_RegFlags; }
681};
682
683//------------------------------StoreIConditionalNode---------------------------
684// Conditionally store int to memory, if no change since prior
685// load-locked.  Sets flags for success or failure of the store.
686class StoreIConditionalNode : public LoadStoreConditionalNode {
687public:
688  StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
689  virtual int Opcode() const;
690  // Produces flags
691  virtual uint ideal_reg() const { return Op_RegFlags; }
692};
693
694//------------------------------StoreLConditionalNode---------------------------
695// Conditionally store long to memory, if no change since prior
696// load-locked.  Sets flags for success or failure of the store.
697class StoreLConditionalNode : public LoadStoreConditionalNode {
698public:
699  StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
700  virtual int Opcode() const;
701  // Produces flags
702  virtual uint ideal_reg() const { return Op_RegFlags; }
703};
704
705
706//------------------------------CompareAndSwapLNode---------------------------
707class CompareAndSwapLNode : public LoadStoreConditionalNode {
708public:
709  CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
710  virtual int Opcode() const;
711};
712
713
714//------------------------------CompareAndSwapINode---------------------------
715class CompareAndSwapINode : public LoadStoreConditionalNode {
716public:
717  CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
718  virtual int Opcode() const;
719};
720
721
722//------------------------------CompareAndSwapPNode---------------------------
723class CompareAndSwapPNode : public LoadStoreConditionalNode {
724public:
725  CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
726  virtual int Opcode() const;
727};
728
729//------------------------------CompareAndSwapNNode---------------------------
730class CompareAndSwapNNode : public LoadStoreConditionalNode {
731public:
732  CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
733  virtual int Opcode() const;
734};
735
736//------------------------------GetAndAddINode---------------------------
737class GetAndAddINode : public LoadStoreNode {
738public:
739  GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
740  virtual int Opcode() const;
741};
742
743//------------------------------GetAndAddLNode---------------------------
744class GetAndAddLNode : public LoadStoreNode {
745public:
746  GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
747  virtual int Opcode() const;
748};
749
750
751//------------------------------GetAndSetINode---------------------------
752class GetAndSetINode : public LoadStoreNode {
753public:
754  GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
755  virtual int Opcode() const;
756};
757
758//------------------------------GetAndSetINode---------------------------
759class GetAndSetLNode : public LoadStoreNode {
760public:
761  GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
762  virtual int Opcode() const;
763};
764
765//------------------------------GetAndSetPNode---------------------------
766class GetAndSetPNode : public LoadStoreNode {
767public:
768  GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
769  virtual int Opcode() const;
770};
771
772//------------------------------GetAndSetNNode---------------------------
773class GetAndSetNNode : public LoadStoreNode {
774public:
775  GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
776  virtual int Opcode() const;
777};
778
779//------------------------------ClearArray-------------------------------------
780class ClearArrayNode: public Node {
781public:
782  ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
783    : Node(ctrl,arymem,word_cnt,base) {
784    init_class_id(Class_ClearArray);
785  }
786  virtual int         Opcode() const;
787  virtual const Type *bottom_type() const { return Type::MEMORY; }
788  // ClearArray modifies array elements, and so affects only the
789  // array memory addressed by the bottom_type of its base address.
790  virtual const class TypePtr *adr_type() const;
791  virtual Node *Identity( PhaseTransform *phase );
792  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
793  virtual uint match_edge(uint idx) const;
794
795  // Clear the given area of an object or array.
796  // The start offset must always be aligned mod BytesPerInt.
797  // The end offset must always be aligned mod BytesPerLong.
798  // Return the new memory.
799  static Node* clear_memory(Node* control, Node* mem, Node* dest,
800                            intptr_t start_offset,
801                            intptr_t end_offset,
802                            PhaseGVN* phase);
803  static Node* clear_memory(Node* control, Node* mem, Node* dest,
804                            intptr_t start_offset,
805                            Node* end_offset,
806                            PhaseGVN* phase);
807  static Node* clear_memory(Node* control, Node* mem, Node* dest,
808                            Node* start_offset,
809                            Node* end_offset,
810                            PhaseGVN* phase);
811  // Return allocation input memory edge if it is different instance
812  // or itself if it is the one we are looking for.
813  static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
814};
815
816//------------------------------StrIntrinsic-------------------------------
817// Base class for Ideal nodes used in String instrinsic code.
818class StrIntrinsicNode: public Node {
819public:
820  StrIntrinsicNode(Node* control, Node* char_array_mem,
821                   Node* s1, Node* c1, Node* s2, Node* c2):
822    Node(control, char_array_mem, s1, c1, s2, c2) {
823  }
824
825  StrIntrinsicNode(Node* control, Node* char_array_mem,
826                   Node* s1, Node* s2, Node* c):
827    Node(control, char_array_mem, s1, s2, c) {
828  }
829
830  StrIntrinsicNode(Node* control, Node* char_array_mem,
831                   Node* s1, Node* s2):
832    Node(control, char_array_mem, s1, s2) {
833  }
834
835  virtual bool depends_only_on_test() const { return false; }
836  virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
837  virtual uint match_edge(uint idx) const;
838  virtual uint ideal_reg() const { return Op_RegI; }
839  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
840  virtual const Type *Value(PhaseTransform *phase) const;
841};
842
843//------------------------------StrComp-------------------------------------
844class StrCompNode: public StrIntrinsicNode {
845public:
846  StrCompNode(Node* control, Node* char_array_mem,
847              Node* s1, Node* c1, Node* s2, Node* c2):
848    StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
849  virtual int Opcode() const;
850  virtual const Type* bottom_type() const { return TypeInt::INT; }
851};
852
853//------------------------------StrEquals-------------------------------------
854class StrEqualsNode: public StrIntrinsicNode {
855public:
856  StrEqualsNode(Node* control, Node* char_array_mem,
857                Node* s1, Node* s2, Node* c):
858    StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
859  virtual int Opcode() const;
860  virtual const Type* bottom_type() const { return TypeInt::BOOL; }
861};
862
863//------------------------------StrIndexOf-------------------------------------
864class StrIndexOfNode: public StrIntrinsicNode {
865public:
866  StrIndexOfNode(Node* control, Node* char_array_mem,
867              Node* s1, Node* c1, Node* s2, Node* c2):
868    StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
869  virtual int Opcode() const;
870  virtual const Type* bottom_type() const { return TypeInt::INT; }
871};
872
873//------------------------------AryEq---------------------------------------
874class AryEqNode: public StrIntrinsicNode {
875public:
876  AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
877    StrIntrinsicNode(control, char_array_mem, s1, s2) {};
878  virtual int Opcode() const;
879  virtual const Type* bottom_type() const { return TypeInt::BOOL; }
880};
881
882
883//------------------------------EncodeISOArray--------------------------------
884// encode char[] to byte[] in ISO_8859_1
885class EncodeISOArrayNode: public Node {
886public:
887  EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
888  virtual int Opcode() const;
889  virtual bool depends_only_on_test() const { return false; }
890  virtual const Type* bottom_type() const { return TypeInt::INT; }
891  virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
892  virtual uint match_edge(uint idx) const;
893  virtual uint ideal_reg() const { return Op_RegI; }
894  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
895  virtual const Type *Value(PhaseTransform *phase) const;
896};
897
898//------------------------------MemBar-----------------------------------------
899// There are different flavors of Memory Barriers to match the Java Memory
900// Model.  Monitor-enter and volatile-load act as Aquires: no following ref
901// can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
902// volatile-load.  Monitor-exit and volatile-store act as Release: no
903// preceding ref can be moved to after them.  We insert a MemBar-Release
904// before a FastUnlock or volatile-store.  All volatiles need to be
905// serialized, so we follow all volatile-stores with a MemBar-Volatile to
906// separate it from any following volatile-load.
907class MemBarNode: public MultiNode {
908  virtual uint hash() const ;                  // { return NO_HASH; }
909  virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
910
911  virtual uint size_of() const { return sizeof(*this); }
912  // Memory type this node is serializing.  Usually either rawptr or bottom.
913  const TypePtr* _adr_type;
914
915public:
916  enum {
917    Precedent = TypeFunc::Parms  // optional edge to force precedence
918  };
919  MemBarNode(Compile* C, int alias_idx, Node* precedent);
920  virtual int Opcode() const = 0;
921  virtual const class TypePtr *adr_type() const { return _adr_type; }
922  virtual const Type *Value( PhaseTransform *phase ) const;
923  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
924  virtual uint match_edge(uint idx) const { return 0; }
925  virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
926  virtual Node *match( const ProjNode *proj, const Matcher *m );
927  // Factory method.  Builds a wide or narrow membar.
928  // Optional 'precedent' becomes an extra edge if not null.
929  static MemBarNode* make(Compile* C, int opcode,
930                          int alias_idx = Compile::AliasIdxBot,
931                          Node* precedent = NULL);
932};
933
934// "Acquire" - no following ref can move before (but earlier refs can
935// follow, like an early Load stalled in cache).  Requires multi-cpu
936// visibility.  Inserted after a volatile load.
937class MemBarAcquireNode: public MemBarNode {
938public:
939  MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
940    : MemBarNode(C, alias_idx, precedent) {}
941  virtual int Opcode() const;
942};
943
944// "Release" - no earlier ref can move after (but later refs can move
945// up, like a speculative pipelined cache-hitting Load).  Requires
946// multi-cpu visibility.  Inserted before a volatile store.
947class MemBarReleaseNode: public MemBarNode {
948public:
949  MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
950    : MemBarNode(C, alias_idx, precedent) {}
951  virtual int Opcode() const;
952};
953
954// "Acquire" - no following ref can move before (but earlier refs can
955// follow, like an early Load stalled in cache).  Requires multi-cpu
956// visibility.  Inserted after a FastLock.
957class MemBarAcquireLockNode: public MemBarNode {
958public:
959  MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
960    : MemBarNode(C, alias_idx, precedent) {}
961  virtual int Opcode() const;
962};
963
964// "Release" - no earlier ref can move after (but later refs can move
965// up, like a speculative pipelined cache-hitting Load).  Requires
966// multi-cpu visibility.  Inserted before a FastUnLock.
967class MemBarReleaseLockNode: public MemBarNode {
968public:
969  MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
970    : MemBarNode(C, alias_idx, precedent) {}
971  virtual int Opcode() const;
972};
973
974class MemBarStoreStoreNode: public MemBarNode {
975public:
976  MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
977    : MemBarNode(C, alias_idx, precedent) {
978    init_class_id(Class_MemBarStoreStore);
979  }
980  virtual int Opcode() const;
981};
982
983// Ordering between a volatile store and a following volatile load.
984// Requires multi-CPU visibility?
985class MemBarVolatileNode: public MemBarNode {
986public:
987  MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
988    : MemBarNode(C, alias_idx, precedent) {}
989  virtual int Opcode() const;
990};
991
992// Ordering within the same CPU.  Used to order unsafe memory references
993// inside the compiler when we lack alias info.  Not needed "outside" the
994// compiler because the CPU does all the ordering for us.
995class MemBarCPUOrderNode: public MemBarNode {
996public:
997  MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
998    : MemBarNode(C, alias_idx, precedent) {}
999  virtual int Opcode() const;
1000  virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1001};
1002
1003// Isolation of object setup after an AllocateNode and before next safepoint.
1004// (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1005class InitializeNode: public MemBarNode {
1006  friend class AllocateNode;
1007
1008  enum {
1009    Incomplete    = 0,
1010    Complete      = 1,
1011    WithArraycopy = 2
1012  };
1013  int _is_complete;
1014
1015  bool _does_not_escape;
1016
1017public:
1018  enum {
1019    Control    = TypeFunc::Control,
1020    Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1021    RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1022    RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1023  };
1024
1025  InitializeNode(Compile* C, int adr_type, Node* rawoop);
1026  virtual int Opcode() const;
1027  virtual uint size_of() const { return sizeof(*this); }
1028  virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1029  virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1030
1031  // Manage incoming memory edges via a MergeMem on in(Memory):
1032  Node* memory(uint alias_idx);
1033
1034  // The raw memory edge coming directly from the Allocation.
1035  // The contents of this memory are *always* all-zero-bits.
1036  Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1037
1038  // Return the corresponding allocation for this initialization (or null if none).
1039  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1040  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1041  AllocateNode* allocation();
1042
1043  // Anything other than zeroing in this init?
1044  bool is_non_zero();
1045
1046  // An InitializeNode must completed before macro expansion is done.
1047  // Completion requires that the AllocateNode must be followed by
1048  // initialization of the new memory to zero, then to any initializers.
1049  bool is_complete() { return _is_complete != Incomplete; }
1050  bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1051
1052  // Mark complete.  (Must not yet be complete.)
1053  void set_complete(PhaseGVN* phase);
1054  void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1055
1056  bool does_not_escape() { return _does_not_escape; }
1057  void set_does_not_escape() { _does_not_escape = true; }
1058
1059#ifdef ASSERT
1060  // ensure all non-degenerate stores are ordered and non-overlapping
1061  bool stores_are_sane(PhaseTransform* phase);
1062#endif //ASSERT
1063
1064  // See if this store can be captured; return offset where it initializes.
1065  // Return 0 if the store cannot be moved (any sort of problem).
1066  intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1067
1068  // Capture another store; reformat it to write my internal raw memory.
1069  // Return the captured copy, else NULL if there is some sort of problem.
1070  Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1071
1072  // Find captured store which corresponds to the range [start..start+size).
1073  // Return my own memory projection (meaning the initial zero bits)
1074  // if there is no such store.  Return NULL if there is a problem.
1075  Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1076
1077  // Called when the associated AllocateNode is expanded into CFG.
1078  Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1079                        intptr_t header_size, Node* size_in_bytes,
1080                        PhaseGVN* phase);
1081
1082 private:
1083  void remove_extra_zeroes();
1084
1085  // Find out where a captured store should be placed (or already is placed).
1086  int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1087                                     PhaseTransform* phase);
1088
1089  static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1090
1091  Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1092
1093  bool detect_init_independence(Node* n, int& count);
1094
1095  void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1096                               PhaseGVN* phase);
1097
1098  intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1099};
1100
1101//------------------------------MergeMem---------------------------------------
1102// (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1103class MergeMemNode: public Node {
1104  virtual uint hash() const ;                  // { return NO_HASH; }
1105  virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1106  friend class MergeMemStream;
1107  MergeMemNode(Node* def);  // clients use MergeMemNode::make
1108
1109public:
1110  // If the input is a whole memory state, clone it with all its slices intact.
1111  // Otherwise, make a new memory state with just that base memory input.
1112  // In either case, the result is a newly created MergeMem.
1113  static MergeMemNode* make(Compile* C, Node* base_memory);
1114
1115  virtual int Opcode() const;
1116  virtual Node *Identity( PhaseTransform *phase );
1117  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1118  virtual uint ideal_reg() const { return NotAMachineReg; }
1119  virtual uint match_edge(uint idx) const { return 0; }
1120  virtual const RegMask &out_RegMask() const;
1121  virtual const Type *bottom_type() const { return Type::MEMORY; }
1122  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1123  // sparse accessors
1124  // Fetch the previously stored "set_memory_at", or else the base memory.
1125  // (Caller should clone it if it is a phi-nest.)
1126  Node* memory_at(uint alias_idx) const;
1127  // set the memory, regardless of its previous value
1128  void set_memory_at(uint alias_idx, Node* n);
1129  // the "base" is the memory that provides the non-finite support
1130  Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1131  // warning: setting the base can implicitly set any of the other slices too
1132  void set_base_memory(Node* def);
1133  // sentinel value which denotes a copy of the base memory:
1134  Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1135  static Node* make_empty_memory(); // where the sentinel comes from
1136  bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1137  // hook for the iterator, to perform any necessary setup
1138  void iteration_setup(const MergeMemNode* other = NULL);
1139  // push sentinels until I am at least as long as the other (semantic no-op)
1140  void grow_to_match(const MergeMemNode* other);
1141  bool verify_sparse() const PRODUCT_RETURN0;
1142#ifndef PRODUCT
1143  virtual void dump_spec(outputStream *st) const;
1144#endif
1145};
1146
1147class MergeMemStream : public StackObj {
1148 private:
1149  MergeMemNode*       _mm;
1150  const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1151  Node*               _mm_base;  // loop-invariant base memory of _mm
1152  int                 _idx;
1153  int                 _cnt;
1154  Node*               _mem;
1155  Node*               _mem2;
1156  int                 _cnt2;
1157
1158  void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1159    // subsume_node will break sparseness at times, whenever a memory slice
1160    // folds down to a copy of the base ("fat") memory.  In such a case,
1161    // the raw edge will update to base, although it should be top.
1162    // This iterator will recognize either top or base_memory as an
1163    // "empty" slice.  See is_empty, is_empty2, and next below.
1164    //
1165    // The sparseness property is repaired in MergeMemNode::Ideal.
1166    // As long as access to a MergeMem goes through this iterator
1167    // or the memory_at accessor, flaws in the sparseness will
1168    // never be observed.
1169    //
1170    // Also, iteration_setup repairs sparseness.
1171    assert(mm->verify_sparse(), "please, no dups of base");
1172    assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1173
1174    _mm  = mm;
1175    _mm_base = mm->base_memory();
1176    _mm2 = mm2;
1177    _cnt = mm->req();
1178    _idx = Compile::AliasIdxBot-1; // start at the base memory
1179    _mem = NULL;
1180    _mem2 = NULL;
1181  }
1182
1183#ifdef ASSERT
1184  Node* check_memory() const {
1185    if (at_base_memory())
1186      return _mm->base_memory();
1187    else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1188      return _mm->memory_at(_idx);
1189    else
1190      return _mm_base;
1191  }
1192  Node* check_memory2() const {
1193    return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1194  }
1195#endif
1196
1197  static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1198  void assert_synch() const {
1199    assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1200           "no side-effects except through the stream");
1201  }
1202
1203 public:
1204
1205  // expected usages:
1206  // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1207  // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1208
1209  // iterate over one merge
1210  MergeMemStream(MergeMemNode* mm) {
1211    mm->iteration_setup();
1212    init(mm);
1213    debug_only(_cnt2 = 999);
1214  }
1215  // iterate in parallel over two merges
1216  // only iterates through non-empty elements of mm2
1217  MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1218    assert(mm2, "second argument must be a MergeMem also");
1219    ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1220    mm->iteration_setup(mm2);
1221    init(mm, mm2);
1222    _cnt2 = mm2->req();
1223  }
1224#ifdef ASSERT
1225  ~MergeMemStream() {
1226    assert_synch();
1227  }
1228#endif
1229
1230  MergeMemNode* all_memory() const {
1231    return _mm;
1232  }
1233  Node* base_memory() const {
1234    assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1235    return _mm_base;
1236  }
1237  const MergeMemNode* all_memory2() const {
1238    assert(_mm2 != NULL, "");
1239    return _mm2;
1240  }
1241  bool at_base_memory() const {
1242    return _idx == Compile::AliasIdxBot;
1243  }
1244  int alias_idx() const {
1245    assert(_mem, "must call next 1st");
1246    return _idx;
1247  }
1248
1249  const TypePtr* adr_type() const {
1250    return Compile::current()->get_adr_type(alias_idx());
1251  }
1252
1253  const TypePtr* adr_type(Compile* C) const {
1254    return C->get_adr_type(alias_idx());
1255  }
1256  bool is_empty() const {
1257    assert(_mem, "must call next 1st");
1258    assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1259    return _mem->is_top();
1260  }
1261  bool is_empty2() const {
1262    assert(_mem2, "must call next 1st");
1263    assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1264    return _mem2->is_top();
1265  }
1266  Node* memory() const {
1267    assert(!is_empty(), "must not be empty");
1268    assert_synch();
1269    return _mem;
1270  }
1271  // get the current memory, regardless of empty or non-empty status
1272  Node* force_memory() const {
1273    assert(!is_empty() || !at_base_memory(), "");
1274    // Use _mm_base to defend against updates to _mem->base_memory().
1275    Node *mem = _mem->is_top() ? _mm_base : _mem;
1276    assert(mem == check_memory(), "");
1277    return mem;
1278  }
1279  Node* memory2() const {
1280    assert(_mem2 == check_memory2(), "");
1281    return _mem2;
1282  }
1283  void set_memory(Node* mem) {
1284    if (at_base_memory()) {
1285      // Note that this does not change the invariant _mm_base.
1286      _mm->set_base_memory(mem);
1287    } else {
1288      _mm->set_memory_at(_idx, mem);
1289    }
1290    _mem = mem;
1291    assert_synch();
1292  }
1293
1294  // Recover from a side effect to the MergeMemNode.
1295  void set_memory() {
1296    _mem = _mm->in(_idx);
1297  }
1298
1299  bool next()  { return next(false); }
1300  bool next2() { return next(true); }
1301
1302  bool next_non_empty()  { return next_non_empty(false); }
1303  bool next_non_empty2() { return next_non_empty(true); }
1304  // next_non_empty2 can yield states where is_empty() is true
1305
1306 private:
1307  // find the next item, which might be empty
1308  bool next(bool have_mm2) {
1309    assert((_mm2 != NULL) == have_mm2, "use other next");
1310    assert_synch();
1311    if (++_idx < _cnt) {
1312      // Note:  This iterator allows _mm to be non-sparse.
1313      // It behaves the same whether _mem is top or base_memory.
1314      _mem = _mm->in(_idx);
1315      if (have_mm2)
1316        _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1317      return true;
1318    }
1319    return false;
1320  }
1321
1322  // find the next non-empty item
1323  bool next_non_empty(bool have_mm2) {
1324    while (next(have_mm2)) {
1325      if (!is_empty()) {
1326        // make sure _mem2 is filled in sensibly
1327        if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1328        return true;
1329      } else if (have_mm2 && !is_empty2()) {
1330        return true;   // is_empty() == true
1331      }
1332    }
1333    return false;
1334  }
1335};
1336
1337//------------------------------Prefetch---------------------------------------
1338
1339// Non-faulting prefetch load.  Prefetch for many reads.
1340class PrefetchReadNode : public Node {
1341public:
1342  PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1343  virtual int Opcode() const;
1344  virtual uint ideal_reg() const { return NotAMachineReg; }
1345  virtual uint match_edge(uint idx) const { return idx==2; }
1346  virtual const Type *bottom_type() const { return Type::ABIO; }
1347};
1348
1349// Non-faulting prefetch load.  Prefetch for many reads & many writes.
1350class PrefetchWriteNode : public Node {
1351public:
1352  PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1353  virtual int Opcode() const;
1354  virtual uint ideal_reg() const { return NotAMachineReg; }
1355  virtual uint match_edge(uint idx) const { return idx==2; }
1356  virtual const Type *bottom_type() const { return Type::ABIO; }
1357};
1358
1359// Allocation prefetch which may fault, TLAB size have to be adjusted.
1360class PrefetchAllocationNode : public Node {
1361public:
1362  PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1363  virtual int Opcode() const;
1364  virtual uint ideal_reg() const { return NotAMachineReg; }
1365  virtual uint match_edge(uint idx) const { return idx==2; }
1366  virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1367};
1368
1369#endif // SHARE_VM_OPTO_MEMNODE_HPP
1370