memnode.hpp revision 3718:b9a9ed0f8eeb
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_MEMNODE_HPP
26#define SHARE_VM_OPTO_MEMNODE_HPP
27
28#include "opto/multnode.hpp"
29#include "opto/node.hpp"
30#include "opto/opcodes.hpp"
31#include "opto/type.hpp"
32
33// Portions of code courtesy of Clifford Click
34
35class MultiNode;
36class PhaseCCP;
37class PhaseTransform;
38
39//------------------------------MemNode----------------------------------------
40// Load or Store, possibly throwing a NULL pointer exception
41class MemNode : public Node {
42protected:
43#ifdef ASSERT
44  const TypePtr* _adr_type;     // What kind of memory is being addressed?
45#endif
46  virtual uint size_of() const; // Size is bigger (ASSERT only)
47public:
48  enum { Control,               // When is it safe to do this load?
49         Memory,                // Chunk of memory is being loaded from
50         Address,               // Actually address, derived from base
51         ValueIn,               // Value to store
52         OopStore               // Preceeding oop store, only in StoreCM
53  };
54protected:
55  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
56    : Node(c0,c1,c2   ) {
57    init_class_id(Class_Mem);
58    debug_only(_adr_type=at; adr_type();)
59  }
60  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
61    : Node(c0,c1,c2,c3) {
62    init_class_id(Class_Mem);
63    debug_only(_adr_type=at; adr_type();)
64  }
65  MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
66    : Node(c0,c1,c2,c3,c4) {
67    init_class_id(Class_Mem);
68    debug_only(_adr_type=at; adr_type();)
69  }
70
71public:
72  // Helpers for the optimizer.  Documented in memnode.cpp.
73  static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
74                                      Node* p2, AllocateNode* a2,
75                                      PhaseTransform* phase);
76  static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
77
78  static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
79  static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
80  // This one should probably be a phase-specific function:
81  static bool all_controls_dominate(Node* dom, Node* sub);
82
83  // Find any cast-away of null-ness and keep its control.
84  static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
85  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
86
87  virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
88
89  // Shared code for Ideal methods:
90  Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
91
92  // Helper function for adr_type() implementations.
93  static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
94
95  // Raw access function, to allow copying of adr_type efficiently in
96  // product builds and retain the debug info for debug builds.
97  const TypePtr *raw_adr_type() const {
98#ifdef ASSERT
99    return _adr_type;
100#else
101    return 0;
102#endif
103  }
104
105  // Map a load or store opcode to its corresponding store opcode.
106  // (Return -1 if unknown.)
107  virtual int store_Opcode() const { return -1; }
108
109  // What is the type of the value in memory?  (T_VOID mean "unspecified".)
110  virtual BasicType memory_type() const = 0;
111  virtual int memory_size() const {
112#ifdef ASSERT
113    return type2aelembytes(memory_type(), true);
114#else
115    return type2aelembytes(memory_type());
116#endif
117  }
118
119  // Search through memory states which precede this node (load or store).
120  // Look for an exact match for the address, with no intervening
121  // aliased stores.
122  Node* find_previous_store(PhaseTransform* phase);
123
124  // Can this node (load or store) accurately see a stored value in
125  // the given memory state?  (The state may or may not be in(Memory).)
126  Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
127
128#ifndef PRODUCT
129  static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
130  virtual void dump_spec(outputStream *st) const;
131#endif
132};
133
134//------------------------------LoadNode---------------------------------------
135// Load value; requires Memory and Address
136class LoadNode : public MemNode {
137protected:
138  virtual uint cmp( const Node &n ) const;
139  virtual uint size_of() const; // Size is bigger
140  const Type* const _type;      // What kind of value is loaded?
141public:
142
143  LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
144    : MemNode(c,mem,adr,at), _type(rt) {
145    init_class_id(Class_Load);
146  }
147
148  // Polymorphic factory method:
149  static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
150                     const TypePtr* at, const Type *rt, BasicType bt );
151
152  virtual uint hash()   const;  // Check the type
153
154  // Handle algebraic identities here.  If we have an identity, return the Node
155  // we are equivalent to.  We look for Load of a Store.
156  virtual Node *Identity( PhaseTransform *phase );
157
158  // If the load is from Field memory and the pointer is non-null, we can
159  // zero out the control input.
160  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
161
162  // Split instance field load through Phi.
163  Node* split_through_phi(PhaseGVN *phase);
164
165  // Recover original value from boxed values
166  Node *eliminate_autobox(PhaseGVN *phase);
167
168  // Compute a new Type for this node.  Basically we just do the pre-check,
169  // then call the virtual add() to set the type.
170  virtual const Type *Value( PhaseTransform *phase ) const;
171
172  // Common methods for LoadKlass and LoadNKlass nodes.
173  const Type *klass_value_common( PhaseTransform *phase ) const;
174  Node *klass_identity_common( PhaseTransform *phase );
175
176  virtual uint ideal_reg() const;
177  virtual const Type *bottom_type() const;
178  // Following method is copied from TypeNode:
179  void set_type(const Type* t) {
180    assert(t != NULL, "sanity");
181    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
182    *(const Type**)&_type = t;   // cast away const-ness
183    // If this node is in the hash table, make sure it doesn't need a rehash.
184    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
185  }
186  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
187
188  // Do not match memory edge
189  virtual uint match_edge(uint idx) const;
190
191  // Map a load opcode to its corresponding store opcode.
192  virtual int store_Opcode() const = 0;
193
194  // Check if the load's memory input is a Phi node with the same control.
195  bool is_instance_field_load_with_local_phi(Node* ctrl);
196
197#ifndef PRODUCT
198  virtual void dump_spec(outputStream *st) const;
199#endif
200#ifdef ASSERT
201  // Helper function to allow a raw load without control edge for some cases
202  static bool is_immutable_value(Node* adr);
203#endif
204protected:
205  const Type* load_array_final_field(const TypeKlassPtr *tkls,
206                                     ciKlass* klass) const;
207};
208
209//------------------------------LoadBNode--------------------------------------
210// Load a byte (8bits signed) from memory
211class LoadBNode : public LoadNode {
212public:
213  LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
214    : LoadNode(c,mem,adr,at,ti) {}
215  virtual int Opcode() const;
216  virtual uint ideal_reg() const { return Op_RegI; }
217  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
218  virtual const Type *Value(PhaseTransform *phase) const;
219  virtual int store_Opcode() const { return Op_StoreB; }
220  virtual BasicType memory_type() const { return T_BYTE; }
221};
222
223//------------------------------LoadUBNode-------------------------------------
224// Load a unsigned byte (8bits unsigned) from memory
225class LoadUBNode : public LoadNode {
226public:
227  LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
228    : LoadNode(c, mem, adr, at, ti) {}
229  virtual int Opcode() const;
230  virtual uint ideal_reg() const { return Op_RegI; }
231  virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
232  virtual const Type *Value(PhaseTransform *phase) const;
233  virtual int store_Opcode() const { return Op_StoreB; }
234  virtual BasicType memory_type() const { return T_BYTE; }
235};
236
237//------------------------------LoadUSNode-------------------------------------
238// Load an unsigned short/char (16bits unsigned) from memory
239class LoadUSNode : public LoadNode {
240public:
241  LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
242    : LoadNode(c,mem,adr,at,ti) {}
243  virtual int Opcode() const;
244  virtual uint ideal_reg() const { return Op_RegI; }
245  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
246  virtual const Type *Value(PhaseTransform *phase) const;
247  virtual int store_Opcode() const { return Op_StoreC; }
248  virtual BasicType memory_type() const { return T_CHAR; }
249};
250
251//------------------------------LoadSNode--------------------------------------
252// Load a short (16bits signed) from memory
253class LoadSNode : public LoadNode {
254public:
255  LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
256    : LoadNode(c,mem,adr,at,ti) {}
257  virtual int Opcode() const;
258  virtual uint ideal_reg() const { return Op_RegI; }
259  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
260  virtual const Type *Value(PhaseTransform *phase) const;
261  virtual int store_Opcode() const { return Op_StoreC; }
262  virtual BasicType memory_type() const { return T_SHORT; }
263};
264
265//------------------------------LoadINode--------------------------------------
266// Load an integer from memory
267class LoadINode : public LoadNode {
268public:
269  LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
270    : LoadNode(c,mem,adr,at,ti) {}
271  virtual int Opcode() const;
272  virtual uint ideal_reg() const { return Op_RegI; }
273  virtual int store_Opcode() const { return Op_StoreI; }
274  virtual BasicType memory_type() const { return T_INT; }
275};
276
277//------------------------------LoadUI2LNode-----------------------------------
278// Load an unsigned integer into long from memory
279class LoadUI2LNode : public LoadNode {
280public:
281  LoadUI2LNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeLong* t = TypeLong::UINT)
282    : LoadNode(c, mem, adr, at, t) {}
283  virtual int Opcode() const;
284  virtual uint ideal_reg() const { return Op_RegL; }
285  virtual int store_Opcode() const { return Op_StoreL; }
286  virtual BasicType memory_type() const { return T_LONG; }
287};
288
289//------------------------------LoadRangeNode----------------------------------
290// Load an array length from the array
291class LoadRangeNode : public LoadINode {
292public:
293  LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
294    : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
295  virtual int Opcode() const;
296  virtual const Type *Value( PhaseTransform *phase ) const;
297  virtual Node *Identity( PhaseTransform *phase );
298  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
299};
300
301//------------------------------LoadLNode--------------------------------------
302// Load a long from memory
303class LoadLNode : public LoadNode {
304  virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
305  virtual uint cmp( const Node &n ) const {
306    return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
307      && LoadNode::cmp(n);
308  }
309  virtual uint size_of() const { return sizeof(*this); }
310  const bool _require_atomic_access;  // is piecewise load forbidden?
311
312public:
313  LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
314             const TypeLong *tl = TypeLong::LONG,
315             bool require_atomic_access = false )
316    : LoadNode(c,mem,adr,at,tl)
317    , _require_atomic_access(require_atomic_access)
318  {}
319  virtual int Opcode() const;
320  virtual uint ideal_reg() const { return Op_RegL; }
321  virtual int store_Opcode() const { return Op_StoreL; }
322  virtual BasicType memory_type() const { return T_LONG; }
323  bool require_atomic_access() { return _require_atomic_access; }
324  static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
325#ifndef PRODUCT
326  virtual void dump_spec(outputStream *st) const {
327    LoadNode::dump_spec(st);
328    if (_require_atomic_access)  st->print(" Atomic!");
329  }
330#endif
331};
332
333//------------------------------LoadL_unalignedNode----------------------------
334// Load a long from unaligned memory
335class LoadL_unalignedNode : public LoadLNode {
336public:
337  LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
338    : LoadLNode(c,mem,adr,at) {}
339  virtual int Opcode() const;
340};
341
342//------------------------------LoadFNode--------------------------------------
343// Load a float (64 bits) from memory
344class LoadFNode : public LoadNode {
345public:
346  LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
347    : LoadNode(c,mem,adr,at,t) {}
348  virtual int Opcode() const;
349  virtual uint ideal_reg() const { return Op_RegF; }
350  virtual int store_Opcode() const { return Op_StoreF; }
351  virtual BasicType memory_type() const { return T_FLOAT; }
352};
353
354//------------------------------LoadDNode--------------------------------------
355// Load a double (64 bits) from memory
356class LoadDNode : public LoadNode {
357public:
358  LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
359    : LoadNode(c,mem,adr,at,t) {}
360  virtual int Opcode() const;
361  virtual uint ideal_reg() const { return Op_RegD; }
362  virtual int store_Opcode() const { return Op_StoreD; }
363  virtual BasicType memory_type() const { return T_DOUBLE; }
364};
365
366//------------------------------LoadD_unalignedNode----------------------------
367// Load a double from unaligned memory
368class LoadD_unalignedNode : public LoadDNode {
369public:
370  LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
371    : LoadDNode(c,mem,adr,at) {}
372  virtual int Opcode() const;
373};
374
375//------------------------------LoadPNode--------------------------------------
376// Load a pointer from memory (either object or array)
377class LoadPNode : public LoadNode {
378public:
379  LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
380    : LoadNode(c,mem,adr,at,t) {}
381  virtual int Opcode() const;
382  virtual uint ideal_reg() const { return Op_RegP; }
383  virtual int store_Opcode() const { return Op_StoreP; }
384  virtual BasicType memory_type() const { return T_ADDRESS; }
385  // depends_only_on_test is almost always true, and needs to be almost always
386  // true to enable key hoisting & commoning optimizations.  However, for the
387  // special case of RawPtr loads from TLS top & end, the control edge carries
388  // the dependence preventing hoisting past a Safepoint instead of the memory
389  // edge.  (An unfortunate consequence of having Safepoints not set Raw
390  // Memory; itself an unfortunate consequence of having Nodes which produce
391  // results (new raw memory state) inside of loops preventing all manner of
392  // other optimizations).  Basically, it's ugly but so is the alternative.
393  // See comment in macro.cpp, around line 125 expand_allocate_common().
394  virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
395};
396
397
398//------------------------------LoadNNode--------------------------------------
399// Load a narrow oop from memory (either object or array)
400class LoadNNode : public LoadNode {
401public:
402  LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
403    : LoadNode(c,mem,adr,at,t) {}
404  virtual int Opcode() const;
405  virtual uint ideal_reg() const { return Op_RegN; }
406  virtual int store_Opcode() const { return Op_StoreN; }
407  virtual BasicType memory_type() const { return T_NARROWOOP; }
408  // depends_only_on_test is almost always true, and needs to be almost always
409  // true to enable key hoisting & commoning optimizations.  However, for the
410  // special case of RawPtr loads from TLS top & end, the control edge carries
411  // the dependence preventing hoisting past a Safepoint instead of the memory
412  // edge.  (An unfortunate consequence of having Safepoints not set Raw
413  // Memory; itself an unfortunate consequence of having Nodes which produce
414  // results (new raw memory state) inside of loops preventing all manner of
415  // other optimizations).  Basically, it's ugly but so is the alternative.
416  // See comment in macro.cpp, around line 125 expand_allocate_common().
417  virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
418};
419
420//------------------------------LoadKlassNode----------------------------------
421// Load a Klass from an object
422class LoadKlassNode : public LoadPNode {
423public:
424  LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
425    : LoadPNode(c,mem,adr,at,tk) {}
426  virtual int Opcode() const;
427  virtual const Type *Value( PhaseTransform *phase ) const;
428  virtual Node *Identity( PhaseTransform *phase );
429  virtual bool depends_only_on_test() const { return true; }
430
431  // Polymorphic factory method:
432  static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
433                     const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
434};
435
436//------------------------------LoadNKlassNode---------------------------------
437// Load a narrow Klass from an object.
438class LoadNKlassNode : public LoadNNode {
439public:
440  LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
441    : LoadNNode(c,mem,adr,at,tk) {}
442  virtual int Opcode() const;
443  virtual uint ideal_reg() const { return Op_RegN; }
444  virtual int store_Opcode() const { return Op_StoreN; }
445  virtual BasicType memory_type() const { return T_NARROWOOP; }
446
447  virtual const Type *Value( PhaseTransform *phase ) const;
448  virtual Node *Identity( PhaseTransform *phase );
449  virtual bool depends_only_on_test() const { return true; }
450};
451
452
453//------------------------------StoreNode--------------------------------------
454// Store value; requires Store, Address and Value
455class StoreNode : public MemNode {
456protected:
457  virtual uint cmp( const Node &n ) const;
458  virtual bool depends_only_on_test() const { return false; }
459
460  Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
461  Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
462
463public:
464  StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
465    : MemNode(c,mem,adr,at,val) {
466    init_class_id(Class_Store);
467  }
468  StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
469    : MemNode(c,mem,adr,at,val,oop_store) {
470    init_class_id(Class_Store);
471  }
472
473  // Polymorphic factory method:
474  static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
475                          const TypePtr* at, Node *val, BasicType bt );
476
477  virtual uint hash() const;    // Check the type
478
479  // If the store is to Field memory and the pointer is non-null, we can
480  // zero out the control input.
481  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
482
483  // Compute a new Type for this node.  Basically we just do the pre-check,
484  // then call the virtual add() to set the type.
485  virtual const Type *Value( PhaseTransform *phase ) const;
486
487  // Check for identity function on memory (Load then Store at same address)
488  virtual Node *Identity( PhaseTransform *phase );
489
490  // Do not match memory edge
491  virtual uint match_edge(uint idx) const;
492
493  virtual const Type *bottom_type() const;  // returns Type::MEMORY
494
495  // Map a store opcode to its corresponding own opcode, trivially.
496  virtual int store_Opcode() const { return Opcode(); }
497
498  // have all possible loads of the value stored been optimized away?
499  bool value_never_loaded(PhaseTransform *phase) const;
500};
501
502//------------------------------StoreBNode-------------------------------------
503// Store byte to memory
504class StoreBNode : public StoreNode {
505public:
506  StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
507  virtual int Opcode() const;
508  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
509  virtual BasicType memory_type() const { return T_BYTE; }
510};
511
512//------------------------------StoreCNode-------------------------------------
513// Store char/short to memory
514class StoreCNode : public StoreNode {
515public:
516  StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
517  virtual int Opcode() const;
518  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
519  virtual BasicType memory_type() const { return T_CHAR; }
520};
521
522//------------------------------StoreINode-------------------------------------
523// Store int to memory
524class StoreINode : public StoreNode {
525public:
526  StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
527  virtual int Opcode() const;
528  virtual BasicType memory_type() const { return T_INT; }
529};
530
531//------------------------------StoreLNode-------------------------------------
532// Store long to memory
533class StoreLNode : public StoreNode {
534  virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
535  virtual uint cmp( const Node &n ) const {
536    return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
537      && StoreNode::cmp(n);
538  }
539  virtual uint size_of() const { return sizeof(*this); }
540  const bool _require_atomic_access;  // is piecewise store forbidden?
541
542public:
543  StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
544              bool require_atomic_access = false )
545    : StoreNode(c,mem,adr,at,val)
546    , _require_atomic_access(require_atomic_access)
547  {}
548  virtual int Opcode() const;
549  virtual BasicType memory_type() const { return T_LONG; }
550  bool require_atomic_access() { return _require_atomic_access; }
551  static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
552#ifndef PRODUCT
553  virtual void dump_spec(outputStream *st) const {
554    StoreNode::dump_spec(st);
555    if (_require_atomic_access)  st->print(" Atomic!");
556  }
557#endif
558};
559
560//------------------------------StoreFNode-------------------------------------
561// Store float to memory
562class StoreFNode : public StoreNode {
563public:
564  StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
565  virtual int Opcode() const;
566  virtual BasicType memory_type() const { return T_FLOAT; }
567};
568
569//------------------------------StoreDNode-------------------------------------
570// Store double to memory
571class StoreDNode : public StoreNode {
572public:
573  StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
574  virtual int Opcode() const;
575  virtual BasicType memory_type() const { return T_DOUBLE; }
576};
577
578//------------------------------StorePNode-------------------------------------
579// Store pointer to memory
580class StorePNode : public StoreNode {
581public:
582  StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
583  virtual int Opcode() const;
584  virtual BasicType memory_type() const { return T_ADDRESS; }
585};
586
587//------------------------------StoreNNode-------------------------------------
588// Store narrow oop to memory
589class StoreNNode : public StoreNode {
590public:
591  StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
592  virtual int Opcode() const;
593  virtual BasicType memory_type() const { return T_NARROWOOP; }
594};
595
596//------------------------------StoreCMNode-----------------------------------
597// Store card-mark byte to memory for CM
598// The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
599// Preceeding equivalent StoreCMs may be eliminated.
600class StoreCMNode : public StoreNode {
601 private:
602  virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
603  virtual uint cmp( const Node &n ) const {
604    return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
605      && StoreNode::cmp(n);
606  }
607  virtual uint size_of() const { return sizeof(*this); }
608  int _oop_alias_idx;   // The alias_idx of OopStore
609
610public:
611  StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
612    StoreNode(c,mem,adr,at,val,oop_store),
613    _oop_alias_idx(oop_alias_idx) {
614    assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
615           _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
616           "bad oop alias idx");
617  }
618  virtual int Opcode() const;
619  virtual Node *Identity( PhaseTransform *phase );
620  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
621  virtual const Type *Value( PhaseTransform *phase ) const;
622  virtual BasicType memory_type() const { return T_VOID; } // unspecific
623  int oop_alias_idx() const { return _oop_alias_idx; }
624};
625
626//------------------------------LoadPLockedNode---------------------------------
627// Load-locked a pointer from memory (either object or array).
628// On Sparc & Intel this is implemented as a normal pointer load.
629// On PowerPC and friends it's a real load-locked.
630class LoadPLockedNode : public LoadPNode {
631public:
632  LoadPLockedNode( Node *c, Node *mem, Node *adr )
633    : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
634  virtual int Opcode() const;
635  virtual int store_Opcode() const { return Op_StorePConditional; }
636  virtual bool depends_only_on_test() const { return true; }
637};
638
639//------------------------------SCMemProjNode---------------------------------------
640// This class defines a projection of the memory  state of a store conditional node.
641// These nodes return a value, but also update memory.
642class SCMemProjNode : public ProjNode {
643public:
644  enum {SCMEMPROJCON = (uint)-2};
645  SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
646  virtual int Opcode() const;
647  virtual bool      is_CFG() const  { return false; }
648  virtual const Type *bottom_type() const {return Type::MEMORY;}
649  virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
650  virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
651  virtual const Type *Value( PhaseTransform *phase ) const;
652#ifndef PRODUCT
653  virtual void dump_spec(outputStream *st) const {};
654#endif
655};
656
657//------------------------------LoadStoreNode---------------------------
658// Note: is_Mem() method returns 'true' for this class.
659class LoadStoreNode : public Node {
660private:
661  const Type* const _type;      // What kind of value is loaded?
662  const TypePtr* _adr_type;     // What kind of memory is being addressed?
663  virtual uint size_of() const; // Size is bigger
664public:
665  LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
666  virtual bool depends_only_on_test() const { return false; }
667  virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
668
669  virtual const Type *bottom_type() const { return _type; }
670  virtual uint ideal_reg() const;
671  virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
672
673  bool result_not_used() const;
674};
675
676class LoadStoreConditionalNode : public LoadStoreNode {
677public:
678  enum {
679    ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
680  };
681  LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
682};
683
684//------------------------------StorePConditionalNode---------------------------
685// Conditionally store pointer to memory, if no change since prior
686// load-locked.  Sets flags for success or failure of the store.
687class StorePConditionalNode : public LoadStoreConditionalNode {
688public:
689  StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
690  virtual int Opcode() const;
691  // Produces flags
692  virtual uint ideal_reg() const { return Op_RegFlags; }
693};
694
695//------------------------------StoreIConditionalNode---------------------------
696// Conditionally store int to memory, if no change since prior
697// load-locked.  Sets flags for success or failure of the store.
698class StoreIConditionalNode : public LoadStoreConditionalNode {
699public:
700  StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
701  virtual int Opcode() const;
702  // Produces flags
703  virtual uint ideal_reg() const { return Op_RegFlags; }
704};
705
706//------------------------------StoreLConditionalNode---------------------------
707// Conditionally store long to memory, if no change since prior
708// load-locked.  Sets flags for success or failure of the store.
709class StoreLConditionalNode : public LoadStoreConditionalNode {
710public:
711  StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
712  virtual int Opcode() const;
713  // Produces flags
714  virtual uint ideal_reg() const { return Op_RegFlags; }
715};
716
717
718//------------------------------CompareAndSwapLNode---------------------------
719class CompareAndSwapLNode : public LoadStoreConditionalNode {
720public:
721  CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
722  virtual int Opcode() const;
723};
724
725
726//------------------------------CompareAndSwapINode---------------------------
727class CompareAndSwapINode : public LoadStoreConditionalNode {
728public:
729  CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
730  virtual int Opcode() const;
731};
732
733
734//------------------------------CompareAndSwapPNode---------------------------
735class CompareAndSwapPNode : public LoadStoreConditionalNode {
736public:
737  CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
738  virtual int Opcode() const;
739};
740
741//------------------------------CompareAndSwapNNode---------------------------
742class CompareAndSwapNNode : public LoadStoreConditionalNode {
743public:
744  CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
745  virtual int Opcode() const;
746};
747
748//------------------------------GetAndAddINode---------------------------
749class GetAndAddINode : public LoadStoreNode {
750public:
751  GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
752  virtual int Opcode() const;
753};
754
755//------------------------------GetAndAddLNode---------------------------
756class GetAndAddLNode : public LoadStoreNode {
757public:
758  GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
759  virtual int Opcode() const;
760};
761
762
763//------------------------------GetAndSetINode---------------------------
764class GetAndSetINode : public LoadStoreNode {
765public:
766  GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
767  virtual int Opcode() const;
768};
769
770//------------------------------GetAndSetINode---------------------------
771class GetAndSetLNode : public LoadStoreNode {
772public:
773  GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
774  virtual int Opcode() const;
775};
776
777//------------------------------GetAndSetPNode---------------------------
778class GetAndSetPNode : public LoadStoreNode {
779public:
780  GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
781  virtual int Opcode() const;
782};
783
784//------------------------------GetAndSetNNode---------------------------
785class GetAndSetNNode : public LoadStoreNode {
786public:
787  GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
788  virtual int Opcode() const;
789};
790
791//------------------------------ClearArray-------------------------------------
792class ClearArrayNode: public Node {
793public:
794  ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
795    : Node(ctrl,arymem,word_cnt,base) {
796    init_class_id(Class_ClearArray);
797  }
798  virtual int         Opcode() const;
799  virtual const Type *bottom_type() const { return Type::MEMORY; }
800  // ClearArray modifies array elements, and so affects only the
801  // array memory addressed by the bottom_type of its base address.
802  virtual const class TypePtr *adr_type() const;
803  virtual Node *Identity( PhaseTransform *phase );
804  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
805  virtual uint match_edge(uint idx) const;
806
807  // Clear the given area of an object or array.
808  // The start offset must always be aligned mod BytesPerInt.
809  // The end offset must always be aligned mod BytesPerLong.
810  // Return the new memory.
811  static Node* clear_memory(Node* control, Node* mem, Node* dest,
812                            intptr_t start_offset,
813                            intptr_t end_offset,
814                            PhaseGVN* phase);
815  static Node* clear_memory(Node* control, Node* mem, Node* dest,
816                            intptr_t start_offset,
817                            Node* end_offset,
818                            PhaseGVN* phase);
819  static Node* clear_memory(Node* control, Node* mem, Node* dest,
820                            Node* start_offset,
821                            Node* end_offset,
822                            PhaseGVN* phase);
823  // Return allocation input memory edge if it is different instance
824  // or itself if it is the one we are looking for.
825  static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
826};
827
828//------------------------------StrIntrinsic-------------------------------
829// Base class for Ideal nodes used in String instrinsic code.
830class StrIntrinsicNode: public Node {
831public:
832  StrIntrinsicNode(Node* control, Node* char_array_mem,
833                   Node* s1, Node* c1, Node* s2, Node* c2):
834    Node(control, char_array_mem, s1, c1, s2, c2) {
835  }
836
837  StrIntrinsicNode(Node* control, Node* char_array_mem,
838                   Node* s1, Node* s2, Node* c):
839    Node(control, char_array_mem, s1, s2, c) {
840  }
841
842  StrIntrinsicNode(Node* control, Node* char_array_mem,
843                   Node* s1, Node* s2):
844    Node(control, char_array_mem, s1, s2) {
845  }
846
847  virtual bool depends_only_on_test() const { return false; }
848  virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
849  virtual uint match_edge(uint idx) const;
850  virtual uint ideal_reg() const { return Op_RegI; }
851  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
852  virtual const Type *Value(PhaseTransform *phase) const;
853};
854
855//------------------------------StrComp-------------------------------------
856class StrCompNode: public StrIntrinsicNode {
857public:
858  StrCompNode(Node* control, Node* char_array_mem,
859              Node* s1, Node* c1, Node* s2, Node* c2):
860    StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
861  virtual int Opcode() const;
862  virtual const Type* bottom_type() const { return TypeInt::INT; }
863};
864
865//------------------------------StrEquals-------------------------------------
866class StrEqualsNode: public StrIntrinsicNode {
867public:
868  StrEqualsNode(Node* control, Node* char_array_mem,
869                Node* s1, Node* s2, Node* c):
870    StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
871  virtual int Opcode() const;
872  virtual const Type* bottom_type() const { return TypeInt::BOOL; }
873};
874
875//------------------------------StrIndexOf-------------------------------------
876class StrIndexOfNode: public StrIntrinsicNode {
877public:
878  StrIndexOfNode(Node* control, Node* char_array_mem,
879              Node* s1, Node* c1, Node* s2, Node* c2):
880    StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
881  virtual int Opcode() const;
882  virtual const Type* bottom_type() const { return TypeInt::INT; }
883};
884
885//------------------------------AryEq---------------------------------------
886class AryEqNode: public StrIntrinsicNode {
887public:
888  AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
889    StrIntrinsicNode(control, char_array_mem, s1, s2) {};
890  virtual int Opcode() const;
891  virtual const Type* bottom_type() const { return TypeInt::BOOL; }
892};
893
894//------------------------------MemBar-----------------------------------------
895// There are different flavors of Memory Barriers to match the Java Memory
896// Model.  Monitor-enter and volatile-load act as Aquires: no following ref
897// can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
898// volatile-load.  Monitor-exit and volatile-store act as Release: no
899// preceding ref can be moved to after them.  We insert a MemBar-Release
900// before a FastUnlock or volatile-store.  All volatiles need to be
901// serialized, so we follow all volatile-stores with a MemBar-Volatile to
902// separate it from any following volatile-load.
903class MemBarNode: public MultiNode {
904  virtual uint hash() const ;                  // { return NO_HASH; }
905  virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
906
907  virtual uint size_of() const { return sizeof(*this); }
908  // Memory type this node is serializing.  Usually either rawptr or bottom.
909  const TypePtr* _adr_type;
910
911public:
912  enum {
913    Precedent = TypeFunc::Parms  // optional edge to force precedence
914  };
915  MemBarNode(Compile* C, int alias_idx, Node* precedent);
916  virtual int Opcode() const = 0;
917  virtual const class TypePtr *adr_type() const { return _adr_type; }
918  virtual const Type *Value( PhaseTransform *phase ) const;
919  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
920  virtual uint match_edge(uint idx) const { return 0; }
921  virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
922  virtual Node *match( const ProjNode *proj, const Matcher *m );
923  // Factory method.  Builds a wide or narrow membar.
924  // Optional 'precedent' becomes an extra edge if not null.
925  static MemBarNode* make(Compile* C, int opcode,
926                          int alias_idx = Compile::AliasIdxBot,
927                          Node* precedent = NULL);
928};
929
930// "Acquire" - no following ref can move before (but earlier refs can
931// follow, like an early Load stalled in cache).  Requires multi-cpu
932// visibility.  Inserted after a volatile load.
933class MemBarAcquireNode: public MemBarNode {
934public:
935  MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
936    : MemBarNode(C, alias_idx, precedent) {}
937  virtual int Opcode() const;
938};
939
940// "Release" - no earlier ref can move after (but later refs can move
941// up, like a speculative pipelined cache-hitting Load).  Requires
942// multi-cpu visibility.  Inserted before a volatile store.
943class MemBarReleaseNode: public MemBarNode {
944public:
945  MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
946    : MemBarNode(C, alias_idx, precedent) {}
947  virtual int Opcode() const;
948};
949
950// "Acquire" - no following ref can move before (but earlier refs can
951// follow, like an early Load stalled in cache).  Requires multi-cpu
952// visibility.  Inserted after a FastLock.
953class MemBarAcquireLockNode: public MemBarNode {
954public:
955  MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
956    : MemBarNode(C, alias_idx, precedent) {}
957  virtual int Opcode() const;
958};
959
960// "Release" - no earlier ref can move after (but later refs can move
961// up, like a speculative pipelined cache-hitting Load).  Requires
962// multi-cpu visibility.  Inserted before a FastUnLock.
963class MemBarReleaseLockNode: public MemBarNode {
964public:
965  MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
966    : MemBarNode(C, alias_idx, precedent) {}
967  virtual int Opcode() const;
968};
969
970class MemBarStoreStoreNode: public MemBarNode {
971public:
972  MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
973    : MemBarNode(C, alias_idx, precedent) {
974    init_class_id(Class_MemBarStoreStore);
975  }
976  virtual int Opcode() const;
977};
978
979// Ordering between a volatile store and a following volatile load.
980// Requires multi-CPU visibility?
981class MemBarVolatileNode: public MemBarNode {
982public:
983  MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
984    : MemBarNode(C, alias_idx, precedent) {}
985  virtual int Opcode() const;
986};
987
988// Ordering within the same CPU.  Used to order unsafe memory references
989// inside the compiler when we lack alias info.  Not needed "outside" the
990// compiler because the CPU does all the ordering for us.
991class MemBarCPUOrderNode: public MemBarNode {
992public:
993  MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
994    : MemBarNode(C, alias_idx, precedent) {}
995  virtual int Opcode() const;
996  virtual uint ideal_reg() const { return 0; } // not matched in the AD file
997};
998
999// Isolation of object setup after an AllocateNode and before next safepoint.
1000// (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1001class InitializeNode: public MemBarNode {
1002  friend class AllocateNode;
1003
1004  enum {
1005    Incomplete    = 0,
1006    Complete      = 1,
1007    WithArraycopy = 2
1008  };
1009  int _is_complete;
1010
1011  bool _does_not_escape;
1012
1013public:
1014  enum {
1015    Control    = TypeFunc::Control,
1016    Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1017    RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1018    RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1019  };
1020
1021  InitializeNode(Compile* C, int adr_type, Node* rawoop);
1022  virtual int Opcode() const;
1023  virtual uint size_of() const { return sizeof(*this); }
1024  virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1025  virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1026
1027  // Manage incoming memory edges via a MergeMem on in(Memory):
1028  Node* memory(uint alias_idx);
1029
1030  // The raw memory edge coming directly from the Allocation.
1031  // The contents of this memory are *always* all-zero-bits.
1032  Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1033
1034  // Return the corresponding allocation for this initialization (or null if none).
1035  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1036  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1037  AllocateNode* allocation();
1038
1039  // Anything other than zeroing in this init?
1040  bool is_non_zero();
1041
1042  // An InitializeNode must completed before macro expansion is done.
1043  // Completion requires that the AllocateNode must be followed by
1044  // initialization of the new memory to zero, then to any initializers.
1045  bool is_complete() { return _is_complete != Incomplete; }
1046  bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1047
1048  // Mark complete.  (Must not yet be complete.)
1049  void set_complete(PhaseGVN* phase);
1050  void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1051
1052  bool does_not_escape() { return _does_not_escape; }
1053  void set_does_not_escape() { _does_not_escape = true; }
1054
1055#ifdef ASSERT
1056  // ensure all non-degenerate stores are ordered and non-overlapping
1057  bool stores_are_sane(PhaseTransform* phase);
1058#endif //ASSERT
1059
1060  // See if this store can be captured; return offset where it initializes.
1061  // Return 0 if the store cannot be moved (any sort of problem).
1062  intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
1063
1064  // Capture another store; reformat it to write my internal raw memory.
1065  // Return the captured copy, else NULL if there is some sort of problem.
1066  Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
1067
1068  // Find captured store which corresponds to the range [start..start+size).
1069  // Return my own memory projection (meaning the initial zero bits)
1070  // if there is no such store.  Return NULL if there is a problem.
1071  Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1072
1073  // Called when the associated AllocateNode is expanded into CFG.
1074  Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1075                        intptr_t header_size, Node* size_in_bytes,
1076                        PhaseGVN* phase);
1077
1078 private:
1079  void remove_extra_zeroes();
1080
1081  // Find out where a captured store should be placed (or already is placed).
1082  int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1083                                     PhaseTransform* phase);
1084
1085  static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1086
1087  Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1088
1089  bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
1090
1091  void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1092                               PhaseGVN* phase);
1093
1094  intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1095};
1096
1097//------------------------------MergeMem---------------------------------------
1098// (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1099class MergeMemNode: public Node {
1100  virtual uint hash() const ;                  // { return NO_HASH; }
1101  virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1102  friend class MergeMemStream;
1103  MergeMemNode(Node* def);  // clients use MergeMemNode::make
1104
1105public:
1106  // If the input is a whole memory state, clone it with all its slices intact.
1107  // Otherwise, make a new memory state with just that base memory input.
1108  // In either case, the result is a newly created MergeMem.
1109  static MergeMemNode* make(Compile* C, Node* base_memory);
1110
1111  virtual int Opcode() const;
1112  virtual Node *Identity( PhaseTransform *phase );
1113  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1114  virtual uint ideal_reg() const { return NotAMachineReg; }
1115  virtual uint match_edge(uint idx) const { return 0; }
1116  virtual const RegMask &out_RegMask() const;
1117  virtual const Type *bottom_type() const { return Type::MEMORY; }
1118  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1119  // sparse accessors
1120  // Fetch the previously stored "set_memory_at", or else the base memory.
1121  // (Caller should clone it if it is a phi-nest.)
1122  Node* memory_at(uint alias_idx) const;
1123  // set the memory, regardless of its previous value
1124  void set_memory_at(uint alias_idx, Node* n);
1125  // the "base" is the memory that provides the non-finite support
1126  Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1127  // warning: setting the base can implicitly set any of the other slices too
1128  void set_base_memory(Node* def);
1129  // sentinel value which denotes a copy of the base memory:
1130  Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1131  static Node* make_empty_memory(); // where the sentinel comes from
1132  bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1133  // hook for the iterator, to perform any necessary setup
1134  void iteration_setup(const MergeMemNode* other = NULL);
1135  // push sentinels until I am at least as long as the other (semantic no-op)
1136  void grow_to_match(const MergeMemNode* other);
1137  bool verify_sparse() const PRODUCT_RETURN0;
1138#ifndef PRODUCT
1139  virtual void dump_spec(outputStream *st) const;
1140#endif
1141};
1142
1143class MergeMemStream : public StackObj {
1144 private:
1145  MergeMemNode*       _mm;
1146  const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1147  Node*               _mm_base;  // loop-invariant base memory of _mm
1148  int                 _idx;
1149  int                 _cnt;
1150  Node*               _mem;
1151  Node*               _mem2;
1152  int                 _cnt2;
1153
1154  void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1155    // subsume_node will break sparseness at times, whenever a memory slice
1156    // folds down to a copy of the base ("fat") memory.  In such a case,
1157    // the raw edge will update to base, although it should be top.
1158    // This iterator will recognize either top or base_memory as an
1159    // "empty" slice.  See is_empty, is_empty2, and next below.
1160    //
1161    // The sparseness property is repaired in MergeMemNode::Ideal.
1162    // As long as access to a MergeMem goes through this iterator
1163    // or the memory_at accessor, flaws in the sparseness will
1164    // never be observed.
1165    //
1166    // Also, iteration_setup repairs sparseness.
1167    assert(mm->verify_sparse(), "please, no dups of base");
1168    assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1169
1170    _mm  = mm;
1171    _mm_base = mm->base_memory();
1172    _mm2 = mm2;
1173    _cnt = mm->req();
1174    _idx = Compile::AliasIdxBot-1; // start at the base memory
1175    _mem = NULL;
1176    _mem2 = NULL;
1177  }
1178
1179#ifdef ASSERT
1180  Node* check_memory() const {
1181    if (at_base_memory())
1182      return _mm->base_memory();
1183    else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1184      return _mm->memory_at(_idx);
1185    else
1186      return _mm_base;
1187  }
1188  Node* check_memory2() const {
1189    return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1190  }
1191#endif
1192
1193  static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1194  void assert_synch() const {
1195    assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1196           "no side-effects except through the stream");
1197  }
1198
1199 public:
1200
1201  // expected usages:
1202  // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1203  // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1204
1205  // iterate over one merge
1206  MergeMemStream(MergeMemNode* mm) {
1207    mm->iteration_setup();
1208    init(mm);
1209    debug_only(_cnt2 = 999);
1210  }
1211  // iterate in parallel over two merges
1212  // only iterates through non-empty elements of mm2
1213  MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1214    assert(mm2, "second argument must be a MergeMem also");
1215    ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1216    mm->iteration_setup(mm2);
1217    init(mm, mm2);
1218    _cnt2 = mm2->req();
1219  }
1220#ifdef ASSERT
1221  ~MergeMemStream() {
1222    assert_synch();
1223  }
1224#endif
1225
1226  MergeMemNode* all_memory() const {
1227    return _mm;
1228  }
1229  Node* base_memory() const {
1230    assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1231    return _mm_base;
1232  }
1233  const MergeMemNode* all_memory2() const {
1234    assert(_mm2 != NULL, "");
1235    return _mm2;
1236  }
1237  bool at_base_memory() const {
1238    return _idx == Compile::AliasIdxBot;
1239  }
1240  int alias_idx() const {
1241    assert(_mem, "must call next 1st");
1242    return _idx;
1243  }
1244
1245  const TypePtr* adr_type() const {
1246    return Compile::current()->get_adr_type(alias_idx());
1247  }
1248
1249  const TypePtr* adr_type(Compile* C) const {
1250    return C->get_adr_type(alias_idx());
1251  }
1252  bool is_empty() const {
1253    assert(_mem, "must call next 1st");
1254    assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1255    return _mem->is_top();
1256  }
1257  bool is_empty2() const {
1258    assert(_mem2, "must call next 1st");
1259    assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1260    return _mem2->is_top();
1261  }
1262  Node* memory() const {
1263    assert(!is_empty(), "must not be empty");
1264    assert_synch();
1265    return _mem;
1266  }
1267  // get the current memory, regardless of empty or non-empty status
1268  Node* force_memory() const {
1269    assert(!is_empty() || !at_base_memory(), "");
1270    // Use _mm_base to defend against updates to _mem->base_memory().
1271    Node *mem = _mem->is_top() ? _mm_base : _mem;
1272    assert(mem == check_memory(), "");
1273    return mem;
1274  }
1275  Node* memory2() const {
1276    assert(_mem2 == check_memory2(), "");
1277    return _mem2;
1278  }
1279  void set_memory(Node* mem) {
1280    if (at_base_memory()) {
1281      // Note that this does not change the invariant _mm_base.
1282      _mm->set_base_memory(mem);
1283    } else {
1284      _mm->set_memory_at(_idx, mem);
1285    }
1286    _mem = mem;
1287    assert_synch();
1288  }
1289
1290  // Recover from a side effect to the MergeMemNode.
1291  void set_memory() {
1292    _mem = _mm->in(_idx);
1293  }
1294
1295  bool next()  { return next(false); }
1296  bool next2() { return next(true); }
1297
1298  bool next_non_empty()  { return next_non_empty(false); }
1299  bool next_non_empty2() { return next_non_empty(true); }
1300  // next_non_empty2 can yield states where is_empty() is true
1301
1302 private:
1303  // find the next item, which might be empty
1304  bool next(bool have_mm2) {
1305    assert((_mm2 != NULL) == have_mm2, "use other next");
1306    assert_synch();
1307    if (++_idx < _cnt) {
1308      // Note:  This iterator allows _mm to be non-sparse.
1309      // It behaves the same whether _mem is top or base_memory.
1310      _mem = _mm->in(_idx);
1311      if (have_mm2)
1312        _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1313      return true;
1314    }
1315    return false;
1316  }
1317
1318  // find the next non-empty item
1319  bool next_non_empty(bool have_mm2) {
1320    while (next(have_mm2)) {
1321      if (!is_empty()) {
1322        // make sure _mem2 is filled in sensibly
1323        if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1324        return true;
1325      } else if (have_mm2 && !is_empty2()) {
1326        return true;   // is_empty() == true
1327      }
1328    }
1329    return false;
1330  }
1331};
1332
1333//------------------------------Prefetch---------------------------------------
1334
1335// Non-faulting prefetch load.  Prefetch for many reads.
1336class PrefetchReadNode : public Node {
1337public:
1338  PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1339  virtual int Opcode() const;
1340  virtual uint ideal_reg() const { return NotAMachineReg; }
1341  virtual uint match_edge(uint idx) const { return idx==2; }
1342  virtual const Type *bottom_type() const { return Type::ABIO; }
1343};
1344
1345// Non-faulting prefetch load.  Prefetch for many reads & many writes.
1346class PrefetchWriteNode : public Node {
1347public:
1348  PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1349  virtual int Opcode() const;
1350  virtual uint ideal_reg() const { return NotAMachineReg; }
1351  virtual uint match_edge(uint idx) const { return idx==2; }
1352  virtual const Type *bottom_type() const { return Type::ABIO; }
1353};
1354
1355// Allocation prefetch which may fault, TLAB size have to be adjusted.
1356class PrefetchAllocationNode : public Node {
1357public:
1358  PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1359  virtual int Opcode() const;
1360  virtual uint ideal_reg() const { return NotAMachineReg; }
1361  virtual uint match_edge(uint idx) const { return idx==2; }
1362  virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1363};
1364
1365#endif // SHARE_VM_OPTO_MEMNODE_HPP
1366