matcher.cpp revision 6760:22b98ab2a69f
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/ad.hpp"
28#include "opto/addnode.hpp"
29#include "opto/callnode.hpp"
30#include "opto/idealGraphPrinter.hpp"
31#include "opto/matcher.hpp"
32#include "opto/memnode.hpp"
33#include "opto/movenode.hpp"
34#include "opto/opcodes.hpp"
35#include "opto/regmask.hpp"
36#include "opto/rootnode.hpp"
37#include "opto/runtime.hpp"
38#include "opto/type.hpp"
39#include "opto/vectornode.hpp"
40#include "runtime/os.hpp"
41
42OptoReg::Name OptoReg::c_frame_pointer;
43
44const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
45RegMask Matcher::mreg2regmask[_last_Mach_Reg];
46RegMask Matcher::STACK_ONLY_mask;
47RegMask Matcher::c_frame_ptr_mask;
48const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
49const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
50
51//---------------------------Matcher-------------------------------------------
52Matcher::Matcher()
53: PhaseTransform( Phase::Ins_Select ),
54#ifdef ASSERT
55  _old2new_map(C->comp_arena()),
56  _new2old_map(C->comp_arena()),
57#endif
58  _shared_nodes(C->comp_arena()),
59  _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
60  _swallowed(swallowed),
61  _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
62  _end_inst_chain_rule(_END_INST_CHAIN_RULE),
63  _must_clone(must_clone),
64  _register_save_policy(register_save_policy),
65  _c_reg_save_policy(c_reg_save_policy),
66  _register_save_type(register_save_type),
67  _ruleName(ruleName),
68  _allocation_started(false),
69  _states_arena(Chunk::medium_size),
70  _visited(&_states_arena),
71  _shared(&_states_arena),
72  _dontcare(&_states_arena) {
73  C->set_matcher(this);
74
75  idealreg2spillmask  [Op_RegI] = NULL;
76  idealreg2spillmask  [Op_RegN] = NULL;
77  idealreg2spillmask  [Op_RegL] = NULL;
78  idealreg2spillmask  [Op_RegF] = NULL;
79  idealreg2spillmask  [Op_RegD] = NULL;
80  idealreg2spillmask  [Op_RegP] = NULL;
81  idealreg2spillmask  [Op_VecS] = NULL;
82  idealreg2spillmask  [Op_VecD] = NULL;
83  idealreg2spillmask  [Op_VecX] = NULL;
84  idealreg2spillmask  [Op_VecY] = NULL;
85
86  idealreg2debugmask  [Op_RegI] = NULL;
87  idealreg2debugmask  [Op_RegN] = NULL;
88  idealreg2debugmask  [Op_RegL] = NULL;
89  idealreg2debugmask  [Op_RegF] = NULL;
90  idealreg2debugmask  [Op_RegD] = NULL;
91  idealreg2debugmask  [Op_RegP] = NULL;
92  idealreg2debugmask  [Op_VecS] = NULL;
93  idealreg2debugmask  [Op_VecD] = NULL;
94  idealreg2debugmask  [Op_VecX] = NULL;
95  idealreg2debugmask  [Op_VecY] = NULL;
96
97  idealreg2mhdebugmask[Op_RegI] = NULL;
98  idealreg2mhdebugmask[Op_RegN] = NULL;
99  idealreg2mhdebugmask[Op_RegL] = NULL;
100  idealreg2mhdebugmask[Op_RegF] = NULL;
101  idealreg2mhdebugmask[Op_RegD] = NULL;
102  idealreg2mhdebugmask[Op_RegP] = NULL;
103  idealreg2mhdebugmask[Op_VecS] = NULL;
104  idealreg2mhdebugmask[Op_VecD] = NULL;
105  idealreg2mhdebugmask[Op_VecX] = NULL;
106  idealreg2mhdebugmask[Op_VecY] = NULL;
107
108  debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
109}
110
111//------------------------------warp_incoming_stk_arg------------------------
112// This warps a VMReg into an OptoReg::Name
113OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
114  OptoReg::Name warped;
115  if( reg->is_stack() ) {  // Stack slot argument?
116    warped = OptoReg::add(_old_SP, reg->reg2stack() );
117    warped = OptoReg::add(warped, C->out_preserve_stack_slots());
118    if( warped >= _in_arg_limit )
119      _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
120    if (!RegMask::can_represent_arg(warped)) {
121      // the compiler cannot represent this method's calling sequence
122      C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
123      return OptoReg::Bad;
124    }
125    return warped;
126  }
127  return OptoReg::as_OptoReg(reg);
128}
129
130//---------------------------compute_old_SP------------------------------------
131OptoReg::Name Compile::compute_old_SP() {
132  int fixed    = fixed_slots();
133  int preserve = in_preserve_stack_slots();
134  return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
135}
136
137
138
139#ifdef ASSERT
140void Matcher::verify_new_nodes_only(Node* xroot) {
141  // Make sure that the new graph only references new nodes
142  ResourceMark rm;
143  Unique_Node_List worklist;
144  VectorSet visited(Thread::current()->resource_area());
145  worklist.push(xroot);
146  while (worklist.size() > 0) {
147    Node* n = worklist.pop();
148    visited <<= n->_idx;
149    assert(C->node_arena()->contains(n), "dead node");
150    for (uint j = 0; j < n->req(); j++) {
151      Node* in = n->in(j);
152      if (in != NULL) {
153        assert(C->node_arena()->contains(in), "dead node");
154        if (!visited.test(in->_idx)) {
155          worklist.push(in);
156        }
157      }
158    }
159  }
160}
161#endif
162
163
164//---------------------------match---------------------------------------------
165void Matcher::match( ) {
166  if( MaxLabelRootDepth < 100 ) { // Too small?
167    assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
168    MaxLabelRootDepth = 100;
169  }
170  // One-time initialization of some register masks.
171  init_spill_mask( C->root()->in(1) );
172  _return_addr_mask = return_addr();
173#ifdef _LP64
174  // Pointers take 2 slots in 64-bit land
175  _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
176#endif
177
178  // Map a Java-signature return type into return register-value
179  // machine registers for 0, 1 and 2 returned values.
180  const TypeTuple *range = C->tf()->range();
181  if( range->cnt() > TypeFunc::Parms ) { // If not a void function
182    // Get ideal-register return type
183    int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
184    // Get machine return register
185    uint sop = C->start()->Opcode();
186    OptoRegPair regs = return_value(ireg, false);
187
188    // And mask for same
189    _return_value_mask = RegMask(regs.first());
190    if( OptoReg::is_valid(regs.second()) )
191      _return_value_mask.Insert(regs.second());
192  }
193
194  // ---------------
195  // Frame Layout
196
197  // Need the method signature to determine the incoming argument types,
198  // because the types determine which registers the incoming arguments are
199  // in, and this affects the matched code.
200  const TypeTuple *domain = C->tf()->domain();
201  uint             argcnt = domain->cnt() - TypeFunc::Parms;
202  BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
203  VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
204  _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
205  _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
206  uint i;
207  for( i = 0; i<argcnt; i++ ) {
208    sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
209  }
210
211  // Pass array of ideal registers and length to USER code (from the AD file)
212  // that will convert this to an array of register numbers.
213  const StartNode *start = C->start();
214  start->calling_convention( sig_bt, vm_parm_regs, argcnt );
215#ifdef ASSERT
216  // Sanity check users' calling convention.  Real handy while trying to
217  // get the initial port correct.
218  { for (uint i = 0; i<argcnt; i++) {
219      if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
220        assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
221        _parm_regs[i].set_bad();
222        continue;
223      }
224      VMReg parm_reg = vm_parm_regs[i].first();
225      assert(parm_reg->is_valid(), "invalid arg?");
226      if (parm_reg->is_reg()) {
227        OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
228        assert(can_be_java_arg(opto_parm_reg) ||
229               C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
230               opto_parm_reg == inline_cache_reg(),
231               "parameters in register must be preserved by runtime stubs");
232      }
233      for (uint j = 0; j < i; j++) {
234        assert(parm_reg != vm_parm_regs[j].first(),
235               "calling conv. must produce distinct regs");
236      }
237    }
238  }
239#endif
240
241  // Do some initial frame layout.
242
243  // Compute the old incoming SP (may be called FP) as
244  //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
245  _old_SP = C->compute_old_SP();
246  assert( is_even(_old_SP), "must be even" );
247
248  // Compute highest incoming stack argument as
249  //   _old_SP + out_preserve_stack_slots + incoming argument size.
250  _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
251  assert( is_even(_in_arg_limit), "out_preserve must be even" );
252  for( i = 0; i < argcnt; i++ ) {
253    // Permit args to have no register
254    _calling_convention_mask[i].Clear();
255    if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
256      continue;
257    }
258    // calling_convention returns stack arguments as a count of
259    // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
260    // the allocators point of view, taking into account all the
261    // preserve area, locks & pad2.
262
263    OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
264    if( OptoReg::is_valid(reg1))
265      _calling_convention_mask[i].Insert(reg1);
266
267    OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
268    if( OptoReg::is_valid(reg2))
269      _calling_convention_mask[i].Insert(reg2);
270
271    // Saved biased stack-slot register number
272    _parm_regs[i].set_pair(reg2, reg1);
273  }
274
275  // Finally, make sure the incoming arguments take up an even number of
276  // words, in case the arguments or locals need to contain doubleword stack
277  // slots.  The rest of the system assumes that stack slot pairs (in
278  // particular, in the spill area) which look aligned will in fact be
279  // aligned relative to the stack pointer in the target machine.  Double
280  // stack slots will always be allocated aligned.
281  _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
282
283  // Compute highest outgoing stack argument as
284  //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
285  _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
286  assert( is_even(_out_arg_limit), "out_preserve must be even" );
287
288  if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
289    // the compiler cannot represent this method's calling sequence
290    C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
291  }
292
293  if (C->failing())  return;  // bailed out on incoming arg failure
294
295  // ---------------
296  // Collect roots of matcher trees.  Every node for which
297  // _shared[_idx] is cleared is guaranteed to not be shared, and thus
298  // can be a valid interior of some tree.
299  find_shared( C->root() );
300  find_shared( C->top() );
301
302  C->print_method(PHASE_BEFORE_MATCHING);
303
304  // Create new ideal node ConP #NULL even if it does exist in old space
305  // to avoid false sharing if the corresponding mach node is not used.
306  // The corresponding mach node is only used in rare cases for derived
307  // pointers.
308  Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
309
310  // Swap out to old-space; emptying new-space
311  Arena *old = C->node_arena()->move_contents(C->old_arena());
312
313  // Save debug and profile information for nodes in old space:
314  _old_node_note_array = C->node_note_array();
315  if (_old_node_note_array != NULL) {
316    C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
317                           (C->comp_arena(), _old_node_note_array->length(),
318                            0, NULL));
319  }
320
321  // Pre-size the new_node table to avoid the need for range checks.
322  grow_new_node_array(C->unique());
323
324  // Reset node counter so MachNodes start with _idx at 0
325  int nodes = C->unique(); // save value
326  C->set_unique(0);
327  C->reset_dead_node_list();
328
329  // Recursively match trees from old space into new space.
330  // Correct leaves of new-space Nodes; they point to old-space.
331  _visited.Clear();             // Clear visit bits for xform call
332  C->set_cached_top_node(xform( C->top(), nodes ));
333  if (!C->failing()) {
334    Node* xroot =        xform( C->root(), 1 );
335    if (xroot == NULL) {
336      Matcher::soft_match_failure();  // recursive matching process failed
337      C->record_method_not_compilable("instruction match failed");
338    } else {
339      // During matching shared constants were attached to C->root()
340      // because xroot wasn't available yet, so transfer the uses to
341      // the xroot.
342      for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
343        Node* n = C->root()->fast_out(j);
344        if (C->node_arena()->contains(n)) {
345          assert(n->in(0) == C->root(), "should be control user");
346          n->set_req(0, xroot);
347          --j;
348          --jmax;
349        }
350      }
351
352      // Generate new mach node for ConP #NULL
353      assert(new_ideal_null != NULL, "sanity");
354      _mach_null = match_tree(new_ideal_null);
355      // Don't set control, it will confuse GCM since there are no uses.
356      // The control will be set when this node is used first time
357      // in find_base_for_derived().
358      assert(_mach_null != NULL, "");
359
360      C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
361
362#ifdef ASSERT
363      verify_new_nodes_only(xroot);
364#endif
365    }
366  }
367  if (C->top() == NULL || C->root() == NULL) {
368    C->record_method_not_compilable("graph lost"); // %%% cannot happen?
369  }
370  if (C->failing()) {
371    // delete old;
372    old->destruct_contents();
373    return;
374  }
375  assert( C->top(), "" );
376  assert( C->root(), "" );
377  validate_null_checks();
378
379  // Now smoke old-space
380  NOT_DEBUG( old->destruct_contents() );
381
382  // ------------------------
383  // Set up save-on-entry registers
384  Fixup_Save_On_Entry( );
385}
386
387
388//------------------------------Fixup_Save_On_Entry----------------------------
389// The stated purpose of this routine is to take care of save-on-entry
390// registers.  However, the overall goal of the Match phase is to convert into
391// machine-specific instructions which have RegMasks to guide allocation.
392// So what this procedure really does is put a valid RegMask on each input
393// to the machine-specific variations of all Return, TailCall and Halt
394// instructions.  It also adds edgs to define the save-on-entry values (and of
395// course gives them a mask).
396
397static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
398  RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
399  // Do all the pre-defined register masks
400  rms[TypeFunc::Control  ] = RegMask::Empty;
401  rms[TypeFunc::I_O      ] = RegMask::Empty;
402  rms[TypeFunc::Memory   ] = RegMask::Empty;
403  rms[TypeFunc::ReturnAdr] = ret_adr;
404  rms[TypeFunc::FramePtr ] = fp;
405  return rms;
406}
407
408//---------------------------init_first_stack_mask-----------------------------
409// Create the initial stack mask used by values spilling to the stack.
410// Disallow any debug info in outgoing argument areas by setting the
411// initial mask accordingly.
412void Matcher::init_first_stack_mask() {
413
414  // Allocate storage for spill masks as masks for the appropriate load type.
415  RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
416
417  idealreg2spillmask  [Op_RegN] = &rms[0];
418  idealreg2spillmask  [Op_RegI] = &rms[1];
419  idealreg2spillmask  [Op_RegL] = &rms[2];
420  idealreg2spillmask  [Op_RegF] = &rms[3];
421  idealreg2spillmask  [Op_RegD] = &rms[4];
422  idealreg2spillmask  [Op_RegP] = &rms[5];
423
424  idealreg2debugmask  [Op_RegN] = &rms[6];
425  idealreg2debugmask  [Op_RegI] = &rms[7];
426  idealreg2debugmask  [Op_RegL] = &rms[8];
427  idealreg2debugmask  [Op_RegF] = &rms[9];
428  idealreg2debugmask  [Op_RegD] = &rms[10];
429  idealreg2debugmask  [Op_RegP] = &rms[11];
430
431  idealreg2mhdebugmask[Op_RegN] = &rms[12];
432  idealreg2mhdebugmask[Op_RegI] = &rms[13];
433  idealreg2mhdebugmask[Op_RegL] = &rms[14];
434  idealreg2mhdebugmask[Op_RegF] = &rms[15];
435  idealreg2mhdebugmask[Op_RegD] = &rms[16];
436  idealreg2mhdebugmask[Op_RegP] = &rms[17];
437
438  idealreg2spillmask  [Op_VecS] = &rms[18];
439  idealreg2spillmask  [Op_VecD] = &rms[19];
440  idealreg2spillmask  [Op_VecX] = &rms[20];
441  idealreg2spillmask  [Op_VecY] = &rms[21];
442
443  OptoReg::Name i;
444
445  // At first, start with the empty mask
446  C->FIRST_STACK_mask().Clear();
447
448  // Add in the incoming argument area
449  OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
450  for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
451    C->FIRST_STACK_mask().Insert(i);
452  }
453  // Add in all bits past the outgoing argument area
454  guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
455            "must be able to represent all call arguments in reg mask");
456  OptoReg::Name init = _out_arg_limit;
457  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
458    C->FIRST_STACK_mask().Insert(i);
459  }
460  // Finally, set the "infinite stack" bit.
461  C->FIRST_STACK_mask().set_AllStack();
462
463  // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
464  RegMask aligned_stack_mask = C->FIRST_STACK_mask();
465  // Keep spill masks aligned.
466  aligned_stack_mask.clear_to_pairs();
467  assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
468
469  *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
470#ifdef _LP64
471  *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
472   idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
473   idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
474#else
475   idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
476#endif
477  *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
478   idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
479  *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
480   idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
481  *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
482   idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
483  *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
484   idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
485
486  if (Matcher::vector_size_supported(T_BYTE,4)) {
487    *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
488     idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
489  }
490  if (Matcher::vector_size_supported(T_FLOAT,2)) {
491    // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
492    // RA guarantees such alignment since it is needed for Double and Long values.
493    *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
494     idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
495  }
496  if (Matcher::vector_size_supported(T_FLOAT,4)) {
497    // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
498    //
499    // RA can use input arguments stack slots for spills but until RA
500    // we don't know frame size and offset of input arg stack slots.
501    //
502    // Exclude last input arg stack slots to avoid spilling vectors there
503    // otherwise vector spills could stomp over stack slots in caller frame.
504    OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
505    for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
506      aligned_stack_mask.Remove(in);
507      in = OptoReg::add(in, -1);
508    }
509     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
510     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
511    *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
512     idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
513  }
514  if (Matcher::vector_size_supported(T_FLOAT,8)) {
515    // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
516    OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
517    for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
518      aligned_stack_mask.Remove(in);
519      in = OptoReg::add(in, -1);
520    }
521     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
522     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
523    *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
524     idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
525  }
526   if (UseFPUForSpilling) {
527     // This mask logic assumes that the spill operations are
528     // symmetric and that the registers involved are the same size.
529     // On sparc for instance we may have to use 64 bit moves will
530     // kill 2 registers when used with F0-F31.
531     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
532     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
533#ifdef _LP64
534     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
535     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
536     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
537     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
538#else
539     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
540#ifdef ARM
541     // ARM has support for moving 64bit values between a pair of
542     // integer registers and a double register
543     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
544     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
545#endif
546#endif
547   }
548
549  // Make up debug masks.  Any spill slot plus callee-save registers.
550  // Caller-save registers are assumed to be trashable by the various
551  // inline-cache fixup routines.
552  *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
553  *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
554  *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
555  *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
556  *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
557  *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
558
559  *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
560  *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
561  *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
562  *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
563  *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
564  *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
565
566  // Prevent stub compilations from attempting to reference
567  // callee-saved registers from debug info
568  bool exclude_soe = !Compile::current()->is_method_compilation();
569
570  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
571    // registers the caller has to save do not work
572    if( _register_save_policy[i] == 'C' ||
573        _register_save_policy[i] == 'A' ||
574        (_register_save_policy[i] == 'E' && exclude_soe) ) {
575      idealreg2debugmask  [Op_RegN]->Remove(i);
576      idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
577      idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
578      idealreg2debugmask  [Op_RegF]->Remove(i); // masks
579      idealreg2debugmask  [Op_RegD]->Remove(i);
580      idealreg2debugmask  [Op_RegP]->Remove(i);
581
582      idealreg2mhdebugmask[Op_RegN]->Remove(i);
583      idealreg2mhdebugmask[Op_RegI]->Remove(i);
584      idealreg2mhdebugmask[Op_RegL]->Remove(i);
585      idealreg2mhdebugmask[Op_RegF]->Remove(i);
586      idealreg2mhdebugmask[Op_RegD]->Remove(i);
587      idealreg2mhdebugmask[Op_RegP]->Remove(i);
588    }
589  }
590
591  // Subtract the register we use to save the SP for MethodHandle
592  // invokes to from the debug mask.
593  const RegMask save_mask = method_handle_invoke_SP_save_mask();
594  idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
595  idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
596  idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
597  idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
598  idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
599  idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
600}
601
602//---------------------------is_save_on_entry----------------------------------
603bool Matcher::is_save_on_entry( int reg ) {
604  return
605    _register_save_policy[reg] == 'E' ||
606    _register_save_policy[reg] == 'A' || // Save-on-entry register?
607    // Also save argument registers in the trampolining stubs
608    (C->save_argument_registers() && is_spillable_arg(reg));
609}
610
611//---------------------------Fixup_Save_On_Entry-------------------------------
612void Matcher::Fixup_Save_On_Entry( ) {
613  init_first_stack_mask();
614
615  Node *root = C->root();       // Short name for root
616  // Count number of save-on-entry registers.
617  uint soe_cnt = number_of_saved_registers();
618  uint i;
619
620  // Find the procedure Start Node
621  StartNode *start = C->start();
622  assert( start, "Expect a start node" );
623
624  // Save argument registers in the trampolining stubs
625  if( C->save_argument_registers() )
626    for( i = 0; i < _last_Mach_Reg; i++ )
627      if( is_spillable_arg(i) )
628        soe_cnt++;
629
630  // Input RegMask array shared by all Returns.
631  // The type for doubles and longs has a count of 2, but
632  // there is only 1 returned value
633  uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
634  RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
635  // Returns have 0 or 1 returned values depending on call signature.
636  // Return register is specified by return_value in the AD file.
637  if (ret_edge_cnt > TypeFunc::Parms)
638    ret_rms[TypeFunc::Parms+0] = _return_value_mask;
639
640  // Input RegMask array shared by all Rethrows.
641  uint reth_edge_cnt = TypeFunc::Parms+1;
642  RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
643  // Rethrow takes exception oop only, but in the argument 0 slot.
644  reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
645#ifdef _LP64
646  // Need two slots for ptrs in 64-bit land
647  reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
648#endif
649
650  // Input RegMask array shared by all TailCalls
651  uint tail_call_edge_cnt = TypeFunc::Parms+2;
652  RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
653
654  // Input RegMask array shared by all TailJumps
655  uint tail_jump_edge_cnt = TypeFunc::Parms+2;
656  RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
657
658  // TailCalls have 2 returned values (target & moop), whose masks come
659  // from the usual MachNode/MachOper mechanism.  Find a sample
660  // TailCall to extract these masks and put the correct masks into
661  // the tail_call_rms array.
662  for( i=1; i < root->req(); i++ ) {
663    MachReturnNode *m = root->in(i)->as_MachReturn();
664    if( m->ideal_Opcode() == Op_TailCall ) {
665      tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
666      tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
667      break;
668    }
669  }
670
671  // TailJumps have 2 returned values (target & ex_oop), whose masks come
672  // from the usual MachNode/MachOper mechanism.  Find a sample
673  // TailJump to extract these masks and put the correct masks into
674  // the tail_jump_rms array.
675  for( i=1; i < root->req(); i++ ) {
676    MachReturnNode *m = root->in(i)->as_MachReturn();
677    if( m->ideal_Opcode() == Op_TailJump ) {
678      tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
679      tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
680      break;
681    }
682  }
683
684  // Input RegMask array shared by all Halts
685  uint halt_edge_cnt = TypeFunc::Parms;
686  RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
687
688  // Capture the return input masks into each exit flavor
689  for( i=1; i < root->req(); i++ ) {
690    MachReturnNode *exit = root->in(i)->as_MachReturn();
691    switch( exit->ideal_Opcode() ) {
692      case Op_Return   : exit->_in_rms = ret_rms;  break;
693      case Op_Rethrow  : exit->_in_rms = reth_rms; break;
694      case Op_TailCall : exit->_in_rms = tail_call_rms; break;
695      case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
696      case Op_Halt     : exit->_in_rms = halt_rms; break;
697      default          : ShouldNotReachHere();
698    }
699  }
700
701  // Next unused projection number from Start.
702  int proj_cnt = C->tf()->domain()->cnt();
703
704  // Do all the save-on-entry registers.  Make projections from Start for
705  // them, and give them a use at the exit points.  To the allocator, they
706  // look like incoming register arguments.
707  for( i = 0; i < _last_Mach_Reg; i++ ) {
708    if( is_save_on_entry(i) ) {
709
710      // Add the save-on-entry to the mask array
711      ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
712      reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
713      tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
714      tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
715      // Halts need the SOE registers, but only in the stack as debug info.
716      // A just-prior uncommon-trap or deoptimization will use the SOE regs.
717      halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
718
719      Node *mproj;
720
721      // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
722      // into a single RegD.
723      if( (i&1) == 0 &&
724          _register_save_type[i  ] == Op_RegF &&
725          _register_save_type[i+1] == Op_RegF &&
726          is_save_on_entry(i+1) ) {
727        // Add other bit for double
728        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
729        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
730        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
731        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
732        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
733        mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
734        proj_cnt += 2;          // Skip 2 for doubles
735      }
736      else if( (i&1) == 1 &&    // Else check for high half of double
737               _register_save_type[i-1] == Op_RegF &&
738               _register_save_type[i  ] == Op_RegF &&
739               is_save_on_entry(i-1) ) {
740        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
741        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
742        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
743        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
744        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
745        mproj = C->top();
746      }
747      // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
748      // into a single RegL.
749      else if( (i&1) == 0 &&
750          _register_save_type[i  ] == Op_RegI &&
751          _register_save_type[i+1] == Op_RegI &&
752        is_save_on_entry(i+1) ) {
753        // Add other bit for long
754        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
755        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
756        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
757        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
758        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
759        mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
760        proj_cnt += 2;          // Skip 2 for longs
761      }
762      else if( (i&1) == 1 &&    // Else check for high half of long
763               _register_save_type[i-1] == Op_RegI &&
764               _register_save_type[i  ] == Op_RegI &&
765               is_save_on_entry(i-1) ) {
766        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
767        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
768        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
769        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
770        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
771        mproj = C->top();
772      } else {
773        // Make a projection for it off the Start
774        mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
775      }
776
777      ret_edge_cnt ++;
778      reth_edge_cnt ++;
779      tail_call_edge_cnt ++;
780      tail_jump_edge_cnt ++;
781      halt_edge_cnt ++;
782
783      // Add a use of the SOE register to all exit paths
784      for( uint j=1; j < root->req(); j++ )
785        root->in(j)->add_req(mproj);
786    } // End of if a save-on-entry register
787  } // End of for all machine registers
788}
789
790//------------------------------init_spill_mask--------------------------------
791void Matcher::init_spill_mask( Node *ret ) {
792  if( idealreg2regmask[Op_RegI] ) return; // One time only init
793
794  OptoReg::c_frame_pointer = c_frame_pointer();
795  c_frame_ptr_mask = c_frame_pointer();
796#ifdef _LP64
797  // pointers are twice as big
798  c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
799#endif
800
801  // Start at OptoReg::stack0()
802  STACK_ONLY_mask.Clear();
803  OptoReg::Name init = OptoReg::stack2reg(0);
804  // STACK_ONLY_mask is all stack bits
805  OptoReg::Name i;
806  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
807    STACK_ONLY_mask.Insert(i);
808  // Also set the "infinite stack" bit.
809  STACK_ONLY_mask.set_AllStack();
810
811  // Copy the register names over into the shared world
812  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
813    // SharedInfo::regName[i] = regName[i];
814    // Handy RegMasks per machine register
815    mreg2regmask[i].Insert(i);
816  }
817
818  // Grab the Frame Pointer
819  Node *fp  = ret->in(TypeFunc::FramePtr);
820  Node *mem = ret->in(TypeFunc::Memory);
821  const TypePtr* atp = TypePtr::BOTTOM;
822  // Share frame pointer while making spill ops
823  set_shared(fp);
824
825  // Compute generic short-offset Loads
826#ifdef _LP64
827  MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
828#endif
829  MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
830  MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered,false));
831  MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
832  MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
833  MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
834  assert(spillI != NULL && spillL != NULL && spillF != NULL &&
835         spillD != NULL && spillP != NULL, "");
836  // Get the ADLC notion of the right regmask, for each basic type.
837#ifdef _LP64
838  idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
839#endif
840  idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
841  idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
842  idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
843  idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
844  idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
845
846  // Vector regmasks.
847  if (Matcher::vector_size_supported(T_BYTE,4)) {
848    TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
849    MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
850    idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
851  }
852  if (Matcher::vector_size_supported(T_FLOAT,2)) {
853    MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
854    idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
855  }
856  if (Matcher::vector_size_supported(T_FLOAT,4)) {
857    MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
858    idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
859  }
860  if (Matcher::vector_size_supported(T_FLOAT,8)) {
861    MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
862    idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
863  }
864}
865
866#ifdef ASSERT
867static void match_alias_type(Compile* C, Node* n, Node* m) {
868  if (!VerifyAliases)  return;  // do not go looking for trouble by default
869  const TypePtr* nat = n->adr_type();
870  const TypePtr* mat = m->adr_type();
871  int nidx = C->get_alias_index(nat);
872  int midx = C->get_alias_index(mat);
873  // Detune the assert for cases like (AndI 0xFF (LoadB p)).
874  if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
875    for (uint i = 1; i < n->req(); i++) {
876      Node* n1 = n->in(i);
877      const TypePtr* n1at = n1->adr_type();
878      if (n1at != NULL) {
879        nat = n1at;
880        nidx = C->get_alias_index(n1at);
881      }
882    }
883  }
884  // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
885  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
886    switch (n->Opcode()) {
887    case Op_PrefetchRead:
888    case Op_PrefetchWrite:
889    case Op_PrefetchAllocation:
890      nidx = Compile::AliasIdxRaw;
891      nat = TypeRawPtr::BOTTOM;
892      break;
893    }
894  }
895  if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
896    switch (n->Opcode()) {
897    case Op_ClearArray:
898      midx = Compile::AliasIdxRaw;
899      mat = TypeRawPtr::BOTTOM;
900      break;
901    }
902  }
903  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
904    switch (n->Opcode()) {
905    case Op_Return:
906    case Op_Rethrow:
907    case Op_Halt:
908    case Op_TailCall:
909    case Op_TailJump:
910      nidx = Compile::AliasIdxBot;
911      nat = TypePtr::BOTTOM;
912      break;
913    }
914  }
915  if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
916    switch (n->Opcode()) {
917    case Op_StrComp:
918    case Op_StrEquals:
919    case Op_StrIndexOf:
920    case Op_AryEq:
921    case Op_MemBarVolatile:
922    case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
923    case Op_EncodeISOArray:
924      nidx = Compile::AliasIdxTop;
925      nat = NULL;
926      break;
927    }
928  }
929  if (nidx != midx) {
930    if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
931      tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
932      n->dump();
933      m->dump();
934    }
935    assert(C->subsume_loads() && C->must_alias(nat, midx),
936           "must not lose alias info when matching");
937  }
938}
939#endif
940
941
942//------------------------------MStack-----------------------------------------
943// State and MStack class used in xform() and find_shared() iterative methods.
944enum Node_State { Pre_Visit,  // node has to be pre-visited
945                      Visit,  // visit node
946                 Post_Visit,  // post-visit node
947             Alt_Post_Visit   // alternative post-visit path
948                };
949
950class MStack: public Node_Stack {
951  public:
952    MStack(int size) : Node_Stack(size) { }
953
954    void push(Node *n, Node_State ns) {
955      Node_Stack::push(n, (uint)ns);
956    }
957    void push(Node *n, Node_State ns, Node *parent, int indx) {
958      ++_inode_top;
959      if ((_inode_top + 1) >= _inode_max) grow();
960      _inode_top->node = parent;
961      _inode_top->indx = (uint)indx;
962      ++_inode_top;
963      _inode_top->node = n;
964      _inode_top->indx = (uint)ns;
965    }
966    Node *parent() {
967      pop();
968      return node();
969    }
970    Node_State state() const {
971      return (Node_State)index();
972    }
973    void set_state(Node_State ns) {
974      set_index((uint)ns);
975    }
976};
977
978
979//------------------------------xform------------------------------------------
980// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
981// Node in new-space.  Given a new-space Node, recursively walk his children.
982Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
983Node *Matcher::xform( Node *n, int max_stack ) {
984  // Use one stack to keep both: child's node/state and parent's node/index
985  MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
986  mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
987
988  while (mstack.is_nonempty()) {
989    C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
990    if (C->failing()) return NULL;
991    n = mstack.node();          // Leave node on stack
992    Node_State nstate = mstack.state();
993    if (nstate == Visit) {
994      mstack.set_state(Post_Visit);
995      Node *oldn = n;
996      // Old-space or new-space check
997      if (!C->node_arena()->contains(n)) {
998        // Old space!
999        Node* m;
1000        if (has_new_node(n)) {  // Not yet Label/Reduced
1001          m = new_node(n);
1002        } else {
1003          if (!is_dontcare(n)) { // Matcher can match this guy
1004            // Calls match special.  They match alone with no children.
1005            // Their children, the incoming arguments, match normally.
1006            m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1007            if (C->failing())  return NULL;
1008            if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1009          } else {                  // Nothing the matcher cares about
1010            if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1011              // Convert to machine-dependent projection
1012              m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1013#ifdef ASSERT
1014              _new2old_map.map(m->_idx, n);
1015#endif
1016              if (m->in(0) != NULL) // m might be top
1017                collect_null_checks(m, n);
1018            } else {                // Else just a regular 'ol guy
1019              m = n->clone();       // So just clone into new-space
1020#ifdef ASSERT
1021              _new2old_map.map(m->_idx, n);
1022#endif
1023              // Def-Use edges will be added incrementally as Uses
1024              // of this node are matched.
1025              assert(m->outcnt() == 0, "no Uses of this clone yet");
1026            }
1027          }
1028
1029          set_new_node(n, m);       // Map old to new
1030          if (_old_node_note_array != NULL) {
1031            Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1032                                                  n->_idx);
1033            C->set_node_notes_at(m->_idx, nn);
1034          }
1035          debug_only(match_alias_type(C, n, m));
1036        }
1037        n = m;    // n is now a new-space node
1038        mstack.set_node(n);
1039      }
1040
1041      // New space!
1042      if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1043
1044      int i;
1045      // Put precedence edges on stack first (match them last).
1046      for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1047        Node *m = oldn->in(i);
1048        if (m == NULL) break;
1049        // set -1 to call add_prec() instead of set_req() during Step1
1050        mstack.push(m, Visit, n, -1);
1051      }
1052
1053      // For constant debug info, I'd rather have unmatched constants.
1054      int cnt = n->req();
1055      JVMState* jvms = n->jvms();
1056      int debug_cnt = jvms ? jvms->debug_start() : cnt;
1057
1058      // Now do only debug info.  Clone constants rather than matching.
1059      // Constants are represented directly in the debug info without
1060      // the need for executable machine instructions.
1061      // Monitor boxes are also represented directly.
1062      for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1063        Node *m = n->in(i);          // Get input
1064        int op = m->Opcode();
1065        assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1066        if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1067            op == Op_ConF || op == Op_ConD || op == Op_ConL
1068            // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1069            ) {
1070          m = m->clone();
1071#ifdef ASSERT
1072          _new2old_map.map(m->_idx, n);
1073#endif
1074          mstack.push(m, Post_Visit, n, i); // Don't need to visit
1075          mstack.push(m->in(0), Visit, m, 0);
1076        } else {
1077          mstack.push(m, Visit, n, i);
1078        }
1079      }
1080
1081      // And now walk his children, and convert his inputs to new-space.
1082      for( ; i >= 0; --i ) { // For all normal inputs do
1083        Node *m = n->in(i);  // Get input
1084        if(m != NULL)
1085          mstack.push(m, Visit, n, i);
1086      }
1087
1088    }
1089    else if (nstate == Post_Visit) {
1090      // Set xformed input
1091      Node *p = mstack.parent();
1092      if (p != NULL) { // root doesn't have parent
1093        int i = (int)mstack.index();
1094        if (i >= 0)
1095          p->set_req(i, n); // required input
1096        else if (i == -1)
1097          p->add_prec(n);   // precedence input
1098        else
1099          ShouldNotReachHere();
1100      }
1101      mstack.pop(); // remove processed node from stack
1102    }
1103    else {
1104      ShouldNotReachHere();
1105    }
1106  } // while (mstack.is_nonempty())
1107  return n; // Return new-space Node
1108}
1109
1110//------------------------------warp_outgoing_stk_arg------------------------
1111OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1112  // Convert outgoing argument location to a pre-biased stack offset
1113  if (reg->is_stack()) {
1114    OptoReg::Name warped = reg->reg2stack();
1115    // Adjust the stack slot offset to be the register number used
1116    // by the allocator.
1117    warped = OptoReg::add(begin_out_arg_area, warped);
1118    // Keep track of the largest numbered stack slot used for an arg.
1119    // Largest used slot per call-site indicates the amount of stack
1120    // that is killed by the call.
1121    if( warped >= out_arg_limit_per_call )
1122      out_arg_limit_per_call = OptoReg::add(warped,1);
1123    if (!RegMask::can_represent_arg(warped)) {
1124      C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1125      return OptoReg::Bad;
1126    }
1127    return warped;
1128  }
1129  return OptoReg::as_OptoReg(reg);
1130}
1131
1132
1133//------------------------------match_sfpt-------------------------------------
1134// Helper function to match call instructions.  Calls match special.
1135// They match alone with no children.  Their children, the incoming
1136// arguments, match normally.
1137MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1138  MachSafePointNode *msfpt = NULL;
1139  MachCallNode      *mcall = NULL;
1140  uint               cnt;
1141  // Split out case for SafePoint vs Call
1142  CallNode *call;
1143  const TypeTuple *domain;
1144  ciMethod*        method = NULL;
1145  bool             is_method_handle_invoke = false;  // for special kill effects
1146  if( sfpt->is_Call() ) {
1147    call = sfpt->as_Call();
1148    domain = call->tf()->domain();
1149    cnt = domain->cnt();
1150
1151    // Match just the call, nothing else
1152    MachNode *m = match_tree(call);
1153    if (C->failing())  return NULL;
1154    if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1155
1156    // Copy data from the Ideal SafePoint to the machine version
1157    mcall = m->as_MachCall();
1158
1159    mcall->set_tf(         call->tf());
1160    mcall->set_entry_point(call->entry_point());
1161    mcall->set_cnt(        call->cnt());
1162
1163    if( mcall->is_MachCallJava() ) {
1164      MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1165      const CallJavaNode *call_java =  call->as_CallJava();
1166      method = call_java->method();
1167      mcall_java->_method = method;
1168      mcall_java->_bci = call_java->_bci;
1169      mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1170      is_method_handle_invoke = call_java->is_method_handle_invoke();
1171      mcall_java->_method_handle_invoke = is_method_handle_invoke;
1172      if (is_method_handle_invoke) {
1173        C->set_has_method_handle_invokes(true);
1174      }
1175      if( mcall_java->is_MachCallStaticJava() )
1176        mcall_java->as_MachCallStaticJava()->_name =
1177         call_java->as_CallStaticJava()->_name;
1178      if( mcall_java->is_MachCallDynamicJava() )
1179        mcall_java->as_MachCallDynamicJava()->_vtable_index =
1180         call_java->as_CallDynamicJava()->_vtable_index;
1181    }
1182    else if( mcall->is_MachCallRuntime() ) {
1183      mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1184    }
1185    msfpt = mcall;
1186  }
1187  // This is a non-call safepoint
1188  else {
1189    call = NULL;
1190    domain = NULL;
1191    MachNode *mn = match_tree(sfpt);
1192    if (C->failing())  return NULL;
1193    msfpt = mn->as_MachSafePoint();
1194    cnt = TypeFunc::Parms;
1195  }
1196
1197  // Advertise the correct memory effects (for anti-dependence computation).
1198  msfpt->set_adr_type(sfpt->adr_type());
1199
1200  // Allocate a private array of RegMasks.  These RegMasks are not shared.
1201  msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1202  // Empty them all.
1203  memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1204
1205  // Do all the pre-defined non-Empty register masks
1206  msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1207  msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1208
1209  // Place first outgoing argument can possibly be put.
1210  OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1211  assert( is_even(begin_out_arg_area), "" );
1212  // Compute max outgoing register number per call site.
1213  OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1214  // Calls to C may hammer extra stack slots above and beyond any arguments.
1215  // These are usually backing store for register arguments for varargs.
1216  if( call != NULL && call->is_CallRuntime() )
1217    out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1218
1219
1220  // Do the normal argument list (parameters) register masks
1221  int argcnt = cnt - TypeFunc::Parms;
1222  if( argcnt > 0 ) {          // Skip it all if we have no args
1223    BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1224    VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1225    int i;
1226    for( i = 0; i < argcnt; i++ ) {
1227      sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1228    }
1229    // V-call to pick proper calling convention
1230    call->calling_convention( sig_bt, parm_regs, argcnt );
1231
1232#ifdef ASSERT
1233    // Sanity check users' calling convention.  Really handy during
1234    // the initial porting effort.  Fairly expensive otherwise.
1235    { for (int i = 0; i<argcnt; i++) {
1236      if( !parm_regs[i].first()->is_valid() &&
1237          !parm_regs[i].second()->is_valid() ) continue;
1238      VMReg reg1 = parm_regs[i].first();
1239      VMReg reg2 = parm_regs[i].second();
1240      for (int j = 0; j < i; j++) {
1241        if( !parm_regs[j].first()->is_valid() &&
1242            !parm_regs[j].second()->is_valid() ) continue;
1243        VMReg reg3 = parm_regs[j].first();
1244        VMReg reg4 = parm_regs[j].second();
1245        if( !reg1->is_valid() ) {
1246          assert( !reg2->is_valid(), "valid halvsies" );
1247        } else if( !reg3->is_valid() ) {
1248          assert( !reg4->is_valid(), "valid halvsies" );
1249        } else {
1250          assert( reg1 != reg2, "calling conv. must produce distinct regs");
1251          assert( reg1 != reg3, "calling conv. must produce distinct regs");
1252          assert( reg1 != reg4, "calling conv. must produce distinct regs");
1253          assert( reg2 != reg3, "calling conv. must produce distinct regs");
1254          assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1255          assert( reg3 != reg4, "calling conv. must produce distinct regs");
1256        }
1257      }
1258    }
1259    }
1260#endif
1261
1262    // Visit each argument.  Compute its outgoing register mask.
1263    // Return results now can have 2 bits returned.
1264    // Compute max over all outgoing arguments both per call-site
1265    // and over the entire method.
1266    for( i = 0; i < argcnt; i++ ) {
1267      // Address of incoming argument mask to fill in
1268      RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1269      if( !parm_regs[i].first()->is_valid() &&
1270          !parm_regs[i].second()->is_valid() ) {
1271        continue;               // Avoid Halves
1272      }
1273      // Grab first register, adjust stack slots and insert in mask.
1274      OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1275      if (OptoReg::is_valid(reg1))
1276        rm->Insert( reg1 );
1277      // Grab second register (if any), adjust stack slots and insert in mask.
1278      OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1279      if (OptoReg::is_valid(reg2))
1280        rm->Insert( reg2 );
1281    } // End of for all arguments
1282
1283    // Compute number of stack slots needed to restore stack in case of
1284    // Pascal-style argument popping.
1285    mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1286  }
1287
1288  // Compute the max stack slot killed by any call.  These will not be
1289  // available for debug info, and will be used to adjust FIRST_STACK_mask
1290  // after all call sites have been visited.
1291  if( _out_arg_limit < out_arg_limit_per_call)
1292    _out_arg_limit = out_arg_limit_per_call;
1293
1294  if (mcall) {
1295    // Kill the outgoing argument area, including any non-argument holes and
1296    // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1297    // Since the max-per-method covers the max-per-call-site and debug info
1298    // is excluded on the max-per-method basis, debug info cannot land in
1299    // this killed area.
1300    uint r_cnt = mcall->tf()->range()->cnt();
1301    MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1302    if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1303      C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1304    } else {
1305      for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1306        proj->_rout.Insert(OptoReg::Name(i));
1307    }
1308    if (proj->_rout.is_NotEmpty()) {
1309      push_projection(proj);
1310    }
1311  }
1312  // Transfer the safepoint information from the call to the mcall
1313  // Move the JVMState list
1314  msfpt->set_jvms(sfpt->jvms());
1315  for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1316    jvms->set_map(sfpt);
1317  }
1318
1319  // Debug inputs begin just after the last incoming parameter
1320  assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1321         (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1322
1323  // Move the OopMap
1324  msfpt->_oop_map = sfpt->_oop_map;
1325
1326  // Add additional edges.
1327  if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1328    // For these calls we can not add MachConstantBase in expand(), as the
1329    // ins are not complete then.
1330    msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1331    if (msfpt->jvms() &&
1332        msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1333      // We added an edge before jvms, so we must adapt the position of the ins.
1334      msfpt->jvms()->adapt_position(+1);
1335    }
1336  }
1337
1338  // Registers killed by the call are set in the local scheduling pass
1339  // of Global Code Motion.
1340  return msfpt;
1341}
1342
1343//---------------------------match_tree----------------------------------------
1344// Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1345// of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1346// making GotoNodes while building the CFG and in init_spill_mask() to identify
1347// a Load's result RegMask for memoization in idealreg2regmask[]
1348MachNode *Matcher::match_tree( const Node *n ) {
1349  assert( n->Opcode() != Op_Phi, "cannot match" );
1350  assert( !n->is_block_start(), "cannot match" );
1351  // Set the mark for all locally allocated State objects.
1352  // When this call returns, the _states_arena arena will be reset
1353  // freeing all State objects.
1354  ResourceMark rm( &_states_arena );
1355
1356  LabelRootDepth = 0;
1357
1358  // StoreNodes require their Memory input to match any LoadNodes
1359  Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1360#ifdef ASSERT
1361  Node* save_mem_node = _mem_node;
1362  _mem_node = n->is_Store() ? (Node*)n : NULL;
1363#endif
1364  // State object for root node of match tree
1365  // Allocate it on _states_arena - stack allocation can cause stack overflow.
1366  State *s = new (&_states_arena) State;
1367  s->_kids[0] = NULL;
1368  s->_kids[1] = NULL;
1369  s->_leaf = (Node*)n;
1370  // Label the input tree, allocating labels from top-level arena
1371  Label_Root( n, s, n->in(0), mem );
1372  if (C->failing())  return NULL;
1373
1374  // The minimum cost match for the whole tree is found at the root State
1375  uint mincost = max_juint;
1376  uint cost = max_juint;
1377  uint i;
1378  for( i = 0; i < NUM_OPERANDS; i++ ) {
1379    if( s->valid(i) &&                // valid entry and
1380        s->_cost[i] < cost &&         // low cost and
1381        s->_rule[i] >= NUM_OPERANDS ) // not an operand
1382      cost = s->_cost[mincost=i];
1383  }
1384  if (mincost == max_juint) {
1385#ifndef PRODUCT
1386    tty->print("No matching rule for:");
1387    s->dump();
1388#endif
1389    Matcher::soft_match_failure();
1390    return NULL;
1391  }
1392  // Reduce input tree based upon the state labels to machine Nodes
1393  MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1394#ifdef ASSERT
1395  _old2new_map.map(n->_idx, m);
1396  _new2old_map.map(m->_idx, (Node*)n);
1397#endif
1398
1399  // Add any Matcher-ignored edges
1400  uint cnt = n->req();
1401  uint start = 1;
1402  if( mem != (Node*)1 ) start = MemNode::Memory+1;
1403  if( n->is_AddP() ) {
1404    assert( mem == (Node*)1, "" );
1405    start = AddPNode::Base+1;
1406  }
1407  for( i = start; i < cnt; i++ ) {
1408    if( !n->match_edge(i) ) {
1409      if( i < m->req() )
1410        m->ins_req( i, n->in(i) );
1411      else
1412        m->add_req( n->in(i) );
1413    }
1414  }
1415
1416  debug_only( _mem_node = save_mem_node; )
1417  return m;
1418}
1419
1420
1421//------------------------------match_into_reg---------------------------------
1422// Choose to either match this Node in a register or part of the current
1423// match tree.  Return true for requiring a register and false for matching
1424// as part of the current match tree.
1425static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1426
1427  const Type *t = m->bottom_type();
1428
1429  if (t->singleton()) {
1430    // Never force constants into registers.  Allow them to match as
1431    // constants or registers.  Copies of the same value will share
1432    // the same register.  See find_shared_node.
1433    return false;
1434  } else {                      // Not a constant
1435    // Stop recursion if they have different Controls.
1436    Node* m_control = m->in(0);
1437    // Control of load's memory can post-dominates load's control.
1438    // So use it since load can't float above its memory.
1439    Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1440    if (control && m_control && control != m_control && control != mem_control) {
1441
1442      // Actually, we can live with the most conservative control we
1443      // find, if it post-dominates the others.  This allows us to
1444      // pick up load/op/store trees where the load can float a little
1445      // above the store.
1446      Node *x = control;
1447      const uint max_scan = 6;  // Arbitrary scan cutoff
1448      uint j;
1449      for (j=0; j<max_scan; j++) {
1450        if (x->is_Region())     // Bail out at merge points
1451          return true;
1452        x = x->in(0);
1453        if (x == m_control)     // Does 'control' post-dominate
1454          break;                // m->in(0)?  If so, we can use it
1455        if (x == mem_control)   // Does 'control' post-dominate
1456          break;                // mem_control?  If so, we can use it
1457      }
1458      if (j == max_scan)        // No post-domination before scan end?
1459        return true;            // Then break the match tree up
1460    }
1461    if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1462        (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1463      // These are commonly used in address expressions and can
1464      // efficiently fold into them on X64 in some cases.
1465      return false;
1466    }
1467  }
1468
1469  // Not forceable cloning.  If shared, put it into a register.
1470  return shared;
1471}
1472
1473
1474//------------------------------Instruction Selection--------------------------
1475// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1476// ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1477// things the Matcher does not match (e.g., Memory), and things with different
1478// Controls (hence forced into different blocks).  We pass in the Control
1479// selected for this entire State tree.
1480
1481// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1482// Store and the Load must have identical Memories (as well as identical
1483// pointers).  Since the Matcher does not have anything for Memory (and
1484// does not handle DAGs), I have to match the Memory input myself.  If the
1485// Tree root is a Store, I require all Loads to have the identical memory.
1486Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1487  // Since Label_Root is a recursive function, its possible that we might run
1488  // out of stack space.  See bugs 6272980 & 6227033 for more info.
1489  LabelRootDepth++;
1490  if (LabelRootDepth > MaxLabelRootDepth) {
1491    C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1492    return NULL;
1493  }
1494  uint care = 0;                // Edges matcher cares about
1495  uint cnt = n->req();
1496  uint i = 0;
1497
1498  // Examine children for memory state
1499  // Can only subsume a child into your match-tree if that child's memory state
1500  // is not modified along the path to another input.
1501  // It is unsafe even if the other inputs are separate roots.
1502  Node *input_mem = NULL;
1503  for( i = 1; i < cnt; i++ ) {
1504    if( !n->match_edge(i) ) continue;
1505    Node *m = n->in(i);         // Get ith input
1506    assert( m, "expect non-null children" );
1507    if( m->is_Load() ) {
1508      if( input_mem == NULL ) {
1509        input_mem = m->in(MemNode::Memory);
1510      } else if( input_mem != m->in(MemNode::Memory) ) {
1511        input_mem = NodeSentinel;
1512      }
1513    }
1514  }
1515
1516  for( i = 1; i < cnt; i++ ){// For my children
1517    if( !n->match_edge(i) ) continue;
1518    Node *m = n->in(i);         // Get ith input
1519    // Allocate states out of a private arena
1520    State *s = new (&_states_arena) State;
1521    svec->_kids[care++] = s;
1522    assert( care <= 2, "binary only for now" );
1523
1524    // Recursively label the State tree.
1525    s->_kids[0] = NULL;
1526    s->_kids[1] = NULL;
1527    s->_leaf = m;
1528
1529    // Check for leaves of the State Tree; things that cannot be a part of
1530    // the current tree.  If it finds any, that value is matched as a
1531    // register operand.  If not, then the normal matching is used.
1532    if( match_into_reg(n, m, control, i, is_shared(m)) ||
1533        //
1534        // Stop recursion if this is LoadNode and the root of this tree is a
1535        // StoreNode and the load & store have different memories.
1536        ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1537        // Can NOT include the match of a subtree when its memory state
1538        // is used by any of the other subtrees
1539        (input_mem == NodeSentinel) ) {
1540#ifndef PRODUCT
1541      // Print when we exclude matching due to different memory states at input-loads
1542      if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1543        && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1544        tty->print_cr("invalid input_mem");
1545      }
1546#endif
1547      // Switch to a register-only opcode; this value must be in a register
1548      // and cannot be subsumed as part of a larger instruction.
1549      s->DFA( m->ideal_reg(), m );
1550
1551    } else {
1552      // If match tree has no control and we do, adopt it for entire tree
1553      if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1554        control = m->in(0);         // Pick up control
1555      // Else match as a normal part of the match tree.
1556      control = Label_Root(m,s,control,mem);
1557      if (C->failing()) return NULL;
1558    }
1559  }
1560
1561
1562  // Call DFA to match this node, and return
1563  svec->DFA( n->Opcode(), n );
1564
1565#ifdef ASSERT
1566  uint x;
1567  for( x = 0; x < _LAST_MACH_OPER; x++ )
1568    if( svec->valid(x) )
1569      break;
1570
1571  if (x >= _LAST_MACH_OPER) {
1572    n->dump();
1573    svec->dump();
1574    assert( false, "bad AD file" );
1575  }
1576#endif
1577  return control;
1578}
1579
1580
1581// Con nodes reduced using the same rule can share their MachNode
1582// which reduces the number of copies of a constant in the final
1583// program.  The register allocator is free to split uses later to
1584// split live ranges.
1585MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1586  if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1587
1588  // See if this Con has already been reduced using this rule.
1589  if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1590  MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1591  if (last != NULL && rule == last->rule()) {
1592    // Don't expect control change for DecodeN
1593    if (leaf->is_DecodeNarrowPtr())
1594      return last;
1595    // Get the new space root.
1596    Node* xroot = new_node(C->root());
1597    if (xroot == NULL) {
1598      // This shouldn't happen give the order of matching.
1599      return NULL;
1600    }
1601
1602    // Shared constants need to have their control be root so they
1603    // can be scheduled properly.
1604    Node* control = last->in(0);
1605    if (control != xroot) {
1606      if (control == NULL || control == C->root()) {
1607        last->set_req(0, xroot);
1608      } else {
1609        assert(false, "unexpected control");
1610        return NULL;
1611      }
1612    }
1613    return last;
1614  }
1615  return NULL;
1616}
1617
1618
1619//------------------------------ReduceInst-------------------------------------
1620// Reduce a State tree (with given Control) into a tree of MachNodes.
1621// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1622// complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1623// Each MachNode has a number of complicated MachOper operands; each
1624// MachOper also covers a further tree of Ideal Nodes.
1625
1626// The root of the Ideal match tree is always an instruction, so we enter
1627// the recursion here.  After building the MachNode, we need to recurse
1628// the tree checking for these cases:
1629// (1) Child is an instruction -
1630//     Build the instruction (recursively), add it as an edge.
1631//     Build a simple operand (register) to hold the result of the instruction.
1632// (2) Child is an interior part of an instruction -
1633//     Skip over it (do nothing)
1634// (3) Child is the start of a operand -
1635//     Build the operand, place it inside the instruction
1636//     Call ReduceOper.
1637MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1638  assert( rule >= NUM_OPERANDS, "called with operand rule" );
1639
1640  MachNode* shared_node = find_shared_node(s->_leaf, rule);
1641  if (shared_node != NULL) {
1642    return shared_node;
1643  }
1644
1645  // Build the object to represent this state & prepare for recursive calls
1646  MachNode *mach = s->MachNodeGenerator( rule, C );
1647  mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1648  assert( mach->_opnds[0] != NULL, "Missing result operand" );
1649  Node *leaf = s->_leaf;
1650  // Check for instruction or instruction chain rule
1651  if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1652    assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1653           "duplicating node that's already been matched");
1654    // Instruction
1655    mach->add_req( leaf->in(0) ); // Set initial control
1656    // Reduce interior of complex instruction
1657    ReduceInst_Interior( s, rule, mem, mach, 1 );
1658  } else {
1659    // Instruction chain rules are data-dependent on their inputs
1660    mach->add_req(0);             // Set initial control to none
1661    ReduceInst_Chain_Rule( s, rule, mem, mach );
1662  }
1663
1664  // If a Memory was used, insert a Memory edge
1665  if( mem != (Node*)1 ) {
1666    mach->ins_req(MemNode::Memory,mem);
1667#ifdef ASSERT
1668    // Verify adr type after matching memory operation
1669    const MachOper* oper = mach->memory_operand();
1670    if (oper != NULL && oper != (MachOper*)-1) {
1671      // It has a unique memory operand.  Find corresponding ideal mem node.
1672      Node* m = NULL;
1673      if (leaf->is_Mem()) {
1674        m = leaf;
1675      } else {
1676        m = _mem_node;
1677        assert(m != NULL && m->is_Mem(), "expecting memory node");
1678      }
1679      const Type* mach_at = mach->adr_type();
1680      // DecodeN node consumed by an address may have different type
1681      // then its input. Don't compare types for such case.
1682      if (m->adr_type() != mach_at &&
1683          (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1684           m->in(MemNode::Address)->is_AddP() &&
1685           m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1686           m->in(MemNode::Address)->is_AddP() &&
1687           m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1688           m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1689        mach_at = m->adr_type();
1690      }
1691      if (m->adr_type() != mach_at) {
1692        m->dump();
1693        tty->print_cr("mach:");
1694        mach->dump(1);
1695      }
1696      assert(m->adr_type() == mach_at, "matcher should not change adr type");
1697    }
1698#endif
1699  }
1700
1701  // If the _leaf is an AddP, insert the base edge
1702  if (leaf->is_AddP()) {
1703    mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1704  }
1705
1706  uint number_of_projections_prior = number_of_projections();
1707
1708  // Perform any 1-to-many expansions required
1709  MachNode *ex = mach->Expand(s, _projection_list, mem);
1710  if (ex != mach) {
1711    assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1712    if( ex->in(1)->is_Con() )
1713      ex->in(1)->set_req(0, C->root());
1714    // Remove old node from the graph
1715    for( uint i=0; i<mach->req(); i++ ) {
1716      mach->set_req(i,NULL);
1717    }
1718#ifdef ASSERT
1719    _new2old_map.map(ex->_idx, s->_leaf);
1720#endif
1721  }
1722
1723  // PhaseChaitin::fixup_spills will sometimes generate spill code
1724  // via the matcher.  By the time, nodes have been wired into the CFG,
1725  // and any further nodes generated by expand rules will be left hanging
1726  // in space, and will not get emitted as output code.  Catch this.
1727  // Also, catch any new register allocation constraints ("projections")
1728  // generated belatedly during spill code generation.
1729  if (_allocation_started) {
1730    guarantee(ex == mach, "no expand rules during spill generation");
1731    guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1732  }
1733
1734  if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1735    // Record the con for sharing
1736    _shared_nodes.map(leaf->_idx, ex);
1737  }
1738
1739  return ex;
1740}
1741
1742void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1743  // 'op' is what I am expecting to receive
1744  int op = _leftOp[rule];
1745  // Operand type to catch childs result
1746  // This is what my child will give me.
1747  int opnd_class_instance = s->_rule[op];
1748  // Choose between operand class or not.
1749  // This is what I will receive.
1750  int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1751  // New rule for child.  Chase operand classes to get the actual rule.
1752  int newrule = s->_rule[catch_op];
1753
1754  if( newrule < NUM_OPERANDS ) {
1755    // Chain from operand or operand class, may be output of shared node
1756    assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1757            "Bad AD file: Instruction chain rule must chain from operand");
1758    // Insert operand into array of operands for this instruction
1759    mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1760
1761    ReduceOper( s, newrule, mem, mach );
1762  } else {
1763    // Chain from the result of an instruction
1764    assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1765    mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1766    Node *mem1 = (Node*)1;
1767    debug_only(Node *save_mem_node = _mem_node;)
1768    mach->add_req( ReduceInst(s, newrule, mem1) );
1769    debug_only(_mem_node = save_mem_node;)
1770  }
1771  return;
1772}
1773
1774
1775uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1776  if( s->_leaf->is_Load() ) {
1777    Node *mem2 = s->_leaf->in(MemNode::Memory);
1778    assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1779    debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1780    mem = mem2;
1781  }
1782  if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1783    if( mach->in(0) == NULL )
1784      mach->set_req(0, s->_leaf->in(0));
1785  }
1786
1787  // Now recursively walk the state tree & add operand list.
1788  for( uint i=0; i<2; i++ ) {   // binary tree
1789    State *newstate = s->_kids[i];
1790    if( newstate == NULL ) break;      // Might only have 1 child
1791    // 'op' is what I am expecting to receive
1792    int op;
1793    if( i == 0 ) {
1794      op = _leftOp[rule];
1795    } else {
1796      op = _rightOp[rule];
1797    }
1798    // Operand type to catch childs result
1799    // This is what my child will give me.
1800    int opnd_class_instance = newstate->_rule[op];
1801    // Choose between operand class or not.
1802    // This is what I will receive.
1803    int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1804    // New rule for child.  Chase operand classes to get the actual rule.
1805    int newrule = newstate->_rule[catch_op];
1806
1807    if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1808      // Operand/operandClass
1809      // Insert operand into array of operands for this instruction
1810      mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1811      ReduceOper( newstate, newrule, mem, mach );
1812
1813    } else {                    // Child is internal operand or new instruction
1814      if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1815        // internal operand --> call ReduceInst_Interior
1816        // Interior of complex instruction.  Do nothing but recurse.
1817        num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1818      } else {
1819        // instruction --> call build operand(  ) to catch result
1820        //             --> ReduceInst( newrule )
1821        mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1822        Node *mem1 = (Node*)1;
1823        debug_only(Node *save_mem_node = _mem_node;)
1824        mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1825        debug_only(_mem_node = save_mem_node;)
1826      }
1827    }
1828    assert( mach->_opnds[num_opnds-1], "" );
1829  }
1830  return num_opnds;
1831}
1832
1833// This routine walks the interior of possible complex operands.
1834// At each point we check our children in the match tree:
1835// (1) No children -
1836//     We are a leaf; add _leaf field as an input to the MachNode
1837// (2) Child is an internal operand -
1838//     Skip over it ( do nothing )
1839// (3) Child is an instruction -
1840//     Call ReduceInst recursively and
1841//     and instruction as an input to the MachNode
1842void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1843  assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1844  State *kid = s->_kids[0];
1845  assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1846
1847  // Leaf?  And not subsumed?
1848  if( kid == NULL && !_swallowed[rule] ) {
1849    mach->add_req( s->_leaf );  // Add leaf pointer
1850    return;                     // Bail out
1851  }
1852
1853  if( s->_leaf->is_Load() ) {
1854    assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1855    mem = s->_leaf->in(MemNode::Memory);
1856    debug_only(_mem_node = s->_leaf;)
1857  }
1858  if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1859    if( !mach->in(0) )
1860      mach->set_req(0,s->_leaf->in(0));
1861    else {
1862      assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1863    }
1864  }
1865
1866  for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1867    int newrule;
1868    if( i == 0)
1869      newrule = kid->_rule[_leftOp[rule]];
1870    else
1871      newrule = kid->_rule[_rightOp[rule]];
1872
1873    if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1874      // Internal operand; recurse but do nothing else
1875      ReduceOper( kid, newrule, mem, mach );
1876
1877    } else {                    // Child is a new instruction
1878      // Reduce the instruction, and add a direct pointer from this
1879      // machine instruction to the newly reduced one.
1880      Node *mem1 = (Node*)1;
1881      debug_only(Node *save_mem_node = _mem_node;)
1882      mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1883      debug_only(_mem_node = save_mem_node;)
1884    }
1885  }
1886}
1887
1888
1889// -------------------------------------------------------------------------
1890// Java-Java calling convention
1891// (what you use when Java calls Java)
1892
1893//------------------------------find_receiver----------------------------------
1894// For a given signature, return the OptoReg for parameter 0.
1895OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1896  VMRegPair regs;
1897  BasicType sig_bt = T_OBJECT;
1898  calling_convention(&sig_bt, &regs, 1, is_outgoing);
1899  // Return argument 0 register.  In the LP64 build pointers
1900  // take 2 registers, but the VM wants only the 'main' name.
1901  return OptoReg::as_OptoReg(regs.first());
1902}
1903
1904// This function identifies sub-graphs in which a 'load' node is
1905// input to two different nodes, and such that it can be matched
1906// with BMI instructions like blsi, blsr, etc.
1907// Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1908// The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1909// refers to the same node.
1910#ifdef X86
1911// Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1912// This is a temporary solution until we make DAGs expressible in ADL.
1913template<typename ConType>
1914class FusedPatternMatcher {
1915  Node* _op1_node;
1916  Node* _mop_node;
1917  int _con_op;
1918
1919  static int match_next(Node* n, int next_op, int next_op_idx) {
1920    if (n->in(1) == NULL || n->in(2) == NULL) {
1921      return -1;
1922    }
1923
1924    if (next_op_idx == -1) { // n is commutative, try rotations
1925      if (n->in(1)->Opcode() == next_op) {
1926        return 1;
1927      } else if (n->in(2)->Opcode() == next_op) {
1928        return 2;
1929      }
1930    } else {
1931      assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1932      if (n->in(next_op_idx)->Opcode() == next_op) {
1933        return next_op_idx;
1934      }
1935    }
1936    return -1;
1937  }
1938public:
1939  FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1940    _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1941
1942  bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1943             int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1944             typename ConType::NativeType con_value) {
1945    if (_op1_node->Opcode() != op1) {
1946      return false;
1947    }
1948    if (_mop_node->outcnt() > 2) {
1949      return false;
1950    }
1951    op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1952    if (op1_op2_idx == -1) {
1953      return false;
1954    }
1955    // Memory operation must be the other edge
1956    int op1_mop_idx = (op1_op2_idx & 1) + 1;
1957
1958    // Check that the mop node is really what we want
1959    if (_op1_node->in(op1_mop_idx) == _mop_node) {
1960      Node *op2_node = _op1_node->in(op1_op2_idx);
1961      if (op2_node->outcnt() > 1) {
1962        return false;
1963      }
1964      assert(op2_node->Opcode() == op2, "Should be");
1965      op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
1966      if (op2_con_idx == -1) {
1967        return false;
1968      }
1969      // Memory operation must be the other edge
1970      int op2_mop_idx = (op2_con_idx & 1) + 1;
1971      // Check that the memory operation is the same node
1972      if (op2_node->in(op2_mop_idx) == _mop_node) {
1973        // Now check the constant
1974        const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1975        if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1976          return true;
1977        }
1978      }
1979    }
1980    return false;
1981  }
1982};
1983
1984
1985bool Matcher::is_bmi_pattern(Node *n, Node *m) {
1986  if (n != NULL && m != NULL) {
1987    if (m->Opcode() == Op_LoadI) {
1988      FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
1989      return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
1990             bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
1991             bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
1992    } else if (m->Opcode() == Op_LoadL) {
1993      FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
1994      return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
1995             bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
1996             bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
1997    }
1998  }
1999  return false;
2000}
2001#endif // X86
2002
2003// A method-klass-holder may be passed in the inline_cache_reg
2004// and then expanded into the inline_cache_reg and a method_oop register
2005//   defined in ad_<arch>.cpp
2006
2007
2008//------------------------------find_shared------------------------------------
2009// Set bits if Node is shared or otherwise a root
2010void Matcher::find_shared( Node *n ) {
2011  // Allocate stack of size C->unique() * 2 to avoid frequent realloc
2012  MStack mstack(C->unique() * 2);
2013  // Mark nodes as address_visited if they are inputs to an address expression
2014  VectorSet address_visited(Thread::current()->resource_area());
2015  mstack.push(n, Visit);     // Don't need to pre-visit root node
2016  while (mstack.is_nonempty()) {
2017    n = mstack.node();       // Leave node on stack
2018    Node_State nstate = mstack.state();
2019    uint nop = n->Opcode();
2020    if (nstate == Pre_Visit) {
2021      if (address_visited.test(n->_idx)) { // Visited in address already?
2022        // Flag as visited and shared now.
2023        set_visited(n);
2024      }
2025      if (is_visited(n)) {   // Visited already?
2026        // Node is shared and has no reason to clone.  Flag it as shared.
2027        // This causes it to match into a register for the sharing.
2028        set_shared(n);       // Flag as shared and
2029        mstack.pop();        // remove node from stack
2030        continue;
2031      }
2032      nstate = Visit; // Not already visited; so visit now
2033    }
2034    if (nstate == Visit) {
2035      mstack.set_state(Post_Visit);
2036      set_visited(n);   // Flag as visited now
2037      bool mem_op = false;
2038
2039      switch( nop ) {  // Handle some opcodes special
2040      case Op_Phi:             // Treat Phis as shared roots
2041      case Op_Parm:
2042      case Op_Proj:            // All handled specially during matching
2043      case Op_SafePointScalarObject:
2044        set_shared(n);
2045        set_dontcare(n);
2046        break;
2047      case Op_If:
2048      case Op_CountedLoopEnd:
2049        mstack.set_state(Alt_Post_Visit); // Alternative way
2050        // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2051        // with matching cmp/branch in 1 instruction.  The Matcher needs the
2052        // Bool and CmpX side-by-side, because it can only get at constants
2053        // that are at the leaves of Match trees, and the Bool's condition acts
2054        // as a constant here.
2055        mstack.push(n->in(1), Visit);         // Clone the Bool
2056        mstack.push(n->in(0), Pre_Visit);     // Visit control input
2057        continue; // while (mstack.is_nonempty())
2058      case Op_ConvI2D:         // These forms efficiently match with a prior
2059      case Op_ConvI2F:         //   Load but not a following Store
2060        if( n->in(1)->is_Load() &&        // Prior load
2061            n->outcnt() == 1 &&           // Not already shared
2062            n->unique_out()->is_Store() ) // Following store
2063          set_shared(n);       // Force it to be a root
2064        break;
2065      case Op_ReverseBytesI:
2066      case Op_ReverseBytesL:
2067        if( n->in(1)->is_Load() &&        // Prior load
2068            n->outcnt() == 1 )            // Not already shared
2069          set_shared(n);                  // Force it to be a root
2070        break;
2071      case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2072      case Op_IfFalse:
2073      case Op_IfTrue:
2074      case Op_MachProj:
2075      case Op_MergeMem:
2076      case Op_Catch:
2077      case Op_CatchProj:
2078      case Op_CProj:
2079      case Op_JumpProj:
2080      case Op_JProj:
2081      case Op_NeverBranch:
2082        set_dontcare(n);
2083        break;
2084      case Op_Jump:
2085        mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2086        mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2087        continue;                             // while (mstack.is_nonempty())
2088      case Op_StrComp:
2089      case Op_StrEquals:
2090      case Op_StrIndexOf:
2091      case Op_AryEq:
2092      case Op_EncodeISOArray:
2093        set_shared(n); // Force result into register (it will be anyways)
2094        break;
2095      case Op_ConP: {  // Convert pointers above the centerline to NUL
2096        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2097        const TypePtr* tp = tn->type()->is_ptr();
2098        if (tp->_ptr == TypePtr::AnyNull) {
2099          tn->set_type(TypePtr::NULL_PTR);
2100        }
2101        break;
2102      }
2103      case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2104        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2105        const TypePtr* tp = tn->type()->make_ptr();
2106        if (tp && tp->_ptr == TypePtr::AnyNull) {
2107          tn->set_type(TypeNarrowOop::NULL_PTR);
2108        }
2109        break;
2110      }
2111      case Op_Binary:         // These are introduced in the Post_Visit state.
2112        ShouldNotReachHere();
2113        break;
2114      case Op_ClearArray:
2115      case Op_SafePoint:
2116        mem_op = true;
2117        break;
2118      default:
2119        if( n->is_Store() ) {
2120          // Do match stores, despite no ideal reg
2121          mem_op = true;
2122          break;
2123        }
2124        if( n->is_Mem() ) { // Loads and LoadStores
2125          mem_op = true;
2126          // Loads must be root of match tree due to prior load conflict
2127          if( C->subsume_loads() == false )
2128            set_shared(n);
2129        }
2130        // Fall into default case
2131        if( !n->ideal_reg() )
2132          set_dontcare(n);  // Unmatchable Nodes
2133      } // end_switch
2134
2135      for(int i = n->req() - 1; i >= 0; --i) { // For my children
2136        Node *m = n->in(i); // Get ith input
2137        if (m == NULL) continue;  // Ignore NULLs
2138        uint mop = m->Opcode();
2139
2140        // Must clone all producers of flags, or we will not match correctly.
2141        // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2142        // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2143        // are also there, so we may match a float-branch to int-flags and
2144        // expect the allocator to haul the flags from the int-side to the
2145        // fp-side.  No can do.
2146        if( _must_clone[mop] ) {
2147          mstack.push(m, Visit);
2148          continue; // for(int i = ...)
2149        }
2150
2151        if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2152          // Bases used in addresses must be shared but since
2153          // they are shared through a DecodeN they may appear
2154          // to have a single use so force sharing here.
2155          set_shared(m->in(AddPNode::Base)->in(1));
2156        }
2157
2158        // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2159#ifdef X86
2160        if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2161          mstack.push(m, Visit);
2162          continue;
2163        }
2164#endif
2165
2166        // Clone addressing expressions as they are "free" in memory access instructions
2167        if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2168          // Some inputs for address expression are not put on stack
2169          // to avoid marking them as shared and forcing them into register
2170          // if they are used only in address expressions.
2171          // But they should be marked as shared if there are other uses
2172          // besides address expressions.
2173
2174          Node *off = m->in(AddPNode::Offset);
2175          if( off->is_Con() &&
2176              // When there are other uses besides address expressions
2177              // put it on stack and mark as shared.
2178              !is_visited(m) ) {
2179            address_visited.test_set(m->_idx); // Flag as address_visited
2180            Node *adr = m->in(AddPNode::Address);
2181
2182            // Intel, ARM and friends can handle 2 adds in addressing mode
2183            if( clone_shift_expressions && adr->is_AddP() &&
2184                // AtomicAdd is not an addressing expression.
2185                // Cheap to find it by looking for screwy base.
2186                !adr->in(AddPNode::Base)->is_top() &&
2187                // Are there other uses besides address expressions?
2188                !is_visited(adr) ) {
2189              address_visited.set(adr->_idx); // Flag as address_visited
2190              Node *shift = adr->in(AddPNode::Offset);
2191              // Check for shift by small constant as well
2192              if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2193                  shift->in(2)->get_int() <= 3 &&
2194                  // Are there other uses besides address expressions?
2195                  !is_visited(shift) ) {
2196                address_visited.set(shift->_idx); // Flag as address_visited
2197                mstack.push(shift->in(2), Visit);
2198                Node *conv = shift->in(1);
2199#ifdef _LP64
2200                // Allow Matcher to match the rule which bypass
2201                // ConvI2L operation for an array index on LP64
2202                // if the index value is positive.
2203                if( conv->Opcode() == Op_ConvI2L &&
2204                    conv->as_Type()->type()->is_long()->_lo >= 0 &&
2205                    // Are there other uses besides address expressions?
2206                    !is_visited(conv) ) {
2207                  address_visited.set(conv->_idx); // Flag as address_visited
2208                  mstack.push(conv->in(1), Pre_Visit);
2209                } else
2210#endif
2211                mstack.push(conv, Pre_Visit);
2212              } else {
2213                mstack.push(shift, Pre_Visit);
2214              }
2215              mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2216              mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2217            } else {  // Sparc, Alpha, PPC and friends
2218              mstack.push(adr, Pre_Visit);
2219            }
2220
2221            // Clone X+offset as it also folds into most addressing expressions
2222            mstack.push(off, Visit);
2223            mstack.push(m->in(AddPNode::Base), Pre_Visit);
2224            continue; // for(int i = ...)
2225          } // if( off->is_Con() )
2226        }   // if( mem_op &&
2227        mstack.push(m, Pre_Visit);
2228      }     // for(int i = ...)
2229    }
2230    else if (nstate == Alt_Post_Visit) {
2231      mstack.pop(); // Remove node from stack
2232      // We cannot remove the Cmp input from the Bool here, as the Bool may be
2233      // shared and all users of the Bool need to move the Cmp in parallel.
2234      // This leaves both the Bool and the If pointing at the Cmp.  To
2235      // prevent the Matcher from trying to Match the Cmp along both paths
2236      // BoolNode::match_edge always returns a zero.
2237
2238      // We reorder the Op_If in a pre-order manner, so we can visit without
2239      // accidentally sharing the Cmp (the Bool and the If make 2 users).
2240      n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2241    }
2242    else if (nstate == Post_Visit) {
2243      mstack.pop(); // Remove node from stack
2244
2245      // Now hack a few special opcodes
2246      switch( n->Opcode() ) {       // Handle some opcodes special
2247      case Op_StorePConditional:
2248      case Op_StoreIConditional:
2249      case Op_StoreLConditional:
2250      case Op_CompareAndSwapI:
2251      case Op_CompareAndSwapL:
2252      case Op_CompareAndSwapP:
2253      case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2254        Node *newval = n->in(MemNode::ValueIn );
2255        Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2256        Node *pair = new BinaryNode( oldval, newval );
2257        n->set_req(MemNode::ValueIn,pair);
2258        n->del_req(LoadStoreConditionalNode::ExpectedIn);
2259        break;
2260      }
2261      case Op_CMoveD:              // Convert trinary to binary-tree
2262      case Op_CMoveF:
2263      case Op_CMoveI:
2264      case Op_CMoveL:
2265      case Op_CMoveN:
2266      case Op_CMoveP: {
2267        // Restructure into a binary tree for Matching.  It's possible that
2268        // we could move this code up next to the graph reshaping for IfNodes
2269        // or vice-versa, but I do not want to debug this for Ladybird.
2270        // 10/2/2000 CNC.
2271        Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2272        n->set_req(1,pair1);
2273        Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2274        n->set_req(2,pair2);
2275        n->del_req(3);
2276        break;
2277      }
2278      case Op_LoopLimit: {
2279        Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2280        n->set_req(1,pair1);
2281        n->set_req(2,n->in(3));
2282        n->del_req(3);
2283        break;
2284      }
2285      case Op_StrEquals: {
2286        Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2287        n->set_req(2,pair1);
2288        n->set_req(3,n->in(4));
2289        n->del_req(4);
2290        break;
2291      }
2292      case Op_StrComp:
2293      case Op_StrIndexOf: {
2294        Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2295        n->set_req(2,pair1);
2296        Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2297        n->set_req(3,pair2);
2298        n->del_req(5);
2299        n->del_req(4);
2300        break;
2301      }
2302      case Op_EncodeISOArray: {
2303        // Restructure into a binary tree for Matching.
2304        Node* pair = new BinaryNode(n->in(3), n->in(4));
2305        n->set_req(3, pair);
2306        n->del_req(4);
2307        break;
2308      }
2309      default:
2310        break;
2311      }
2312    }
2313    else {
2314      ShouldNotReachHere();
2315    }
2316  } // end of while (mstack.is_nonempty())
2317}
2318
2319#ifdef ASSERT
2320// machine-independent root to machine-dependent root
2321void Matcher::dump_old2new_map() {
2322  _old2new_map.dump();
2323}
2324#endif
2325
2326//---------------------------collect_null_checks-------------------------------
2327// Find null checks in the ideal graph; write a machine-specific node for
2328// it.  Used by later implicit-null-check handling.  Actually collects
2329// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2330// value being tested.
2331void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2332  Node *iff = proj->in(0);
2333  if( iff->Opcode() == Op_If ) {
2334    // During matching If's have Bool & Cmp side-by-side
2335    BoolNode *b = iff->in(1)->as_Bool();
2336    Node *cmp = iff->in(2);
2337    int opc = cmp->Opcode();
2338    if (opc != Op_CmpP && opc != Op_CmpN) return;
2339
2340    const Type* ct = cmp->in(2)->bottom_type();
2341    if (ct == TypePtr::NULL_PTR ||
2342        (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2343
2344      bool push_it = false;
2345      if( proj->Opcode() == Op_IfTrue ) {
2346        extern int all_null_checks_found;
2347        all_null_checks_found++;
2348        if( b->_test._test == BoolTest::ne ) {
2349          push_it = true;
2350        }
2351      } else {
2352        assert( proj->Opcode() == Op_IfFalse, "" );
2353        if( b->_test._test == BoolTest::eq ) {
2354          push_it = true;
2355        }
2356      }
2357      if( push_it ) {
2358        _null_check_tests.push(proj);
2359        Node* val = cmp->in(1);
2360#ifdef _LP64
2361        if (val->bottom_type()->isa_narrowoop() &&
2362            !Matcher::narrow_oop_use_complex_address()) {
2363          //
2364          // Look for DecodeN node which should be pinned to orig_proj.
2365          // On platforms (Sparc) which can not handle 2 adds
2366          // in addressing mode we have to keep a DecodeN node and
2367          // use it to do implicit NULL check in address.
2368          //
2369          // DecodeN node was pinned to non-null path (orig_proj) during
2370          // CastPP transformation in final_graph_reshaping_impl().
2371          //
2372          uint cnt = orig_proj->outcnt();
2373          for (uint i = 0; i < orig_proj->outcnt(); i++) {
2374            Node* d = orig_proj->raw_out(i);
2375            if (d->is_DecodeN() && d->in(1) == val) {
2376              val = d;
2377              val->set_req(0, NULL); // Unpin now.
2378              // Mark this as special case to distinguish from
2379              // a regular case: CmpP(DecodeN, NULL).
2380              val = (Node*)(((intptr_t)val) | 1);
2381              break;
2382            }
2383          }
2384        }
2385#endif
2386        _null_check_tests.push(val);
2387      }
2388    }
2389  }
2390}
2391
2392//---------------------------validate_null_checks------------------------------
2393// Its possible that the value being NULL checked is not the root of a match
2394// tree.  If so, I cannot use the value in an implicit null check.
2395void Matcher::validate_null_checks( ) {
2396  uint cnt = _null_check_tests.size();
2397  for( uint i=0; i < cnt; i+=2 ) {
2398    Node *test = _null_check_tests[i];
2399    Node *val = _null_check_tests[i+1];
2400    bool is_decoden = ((intptr_t)val) & 1;
2401    val = (Node*)(((intptr_t)val) & ~1);
2402    if (has_new_node(val)) {
2403      Node* new_val = new_node(val);
2404      if (is_decoden) {
2405        assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2406        // Note: new_val may have a control edge if
2407        // the original ideal node DecodeN was matched before
2408        // it was unpinned in Matcher::collect_null_checks().
2409        // Unpin the mach node and mark it.
2410        new_val->set_req(0, NULL);
2411        new_val = (Node*)(((intptr_t)new_val) | 1);
2412      }
2413      // Is a match-tree root, so replace with the matched value
2414      _null_check_tests.map(i+1, new_val);
2415    } else {
2416      // Yank from candidate list
2417      _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2418      _null_check_tests.map(i,_null_check_tests[--cnt]);
2419      _null_check_tests.pop();
2420      _null_check_tests.pop();
2421      i-=2;
2422    }
2423  }
2424}
2425
2426// Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2427// atomic instruction acting as a store_load barrier without any
2428// intervening volatile load, and thus we don't need a barrier here.
2429// We retain the Node to act as a compiler ordering barrier.
2430bool Matcher::post_store_load_barrier(const Node* vmb) {
2431  Compile* C = Compile::current();
2432  assert(vmb->is_MemBar(), "");
2433  assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2434  const MemBarNode* membar = vmb->as_MemBar();
2435
2436  // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2437  Node* ctrl = NULL;
2438  for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2439    Node* p = membar->fast_out(i);
2440    assert(p->is_Proj(), "only projections here");
2441    if ((p->as_Proj()->_con == TypeFunc::Control) &&
2442        !C->node_arena()->contains(p)) { // Unmatched old-space only
2443      ctrl = p;
2444      break;
2445    }
2446  }
2447  assert((ctrl != NULL), "missing control projection");
2448
2449  for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2450    Node *x = ctrl->fast_out(j);
2451    int xop = x->Opcode();
2452
2453    // We don't need current barrier if we see another or a lock
2454    // before seeing volatile load.
2455    //
2456    // Op_Fastunlock previously appeared in the Op_* list below.
2457    // With the advent of 1-0 lock operations we're no longer guaranteed
2458    // that a monitor exit operation contains a serializing instruction.
2459
2460    if (xop == Op_MemBarVolatile ||
2461        xop == Op_CompareAndSwapL ||
2462        xop == Op_CompareAndSwapP ||
2463        xop == Op_CompareAndSwapN ||
2464        xop == Op_CompareAndSwapI) {
2465      return true;
2466    }
2467
2468    // Op_FastLock previously appeared in the Op_* list above.
2469    // With biased locking we're no longer guaranteed that a monitor
2470    // enter operation contains a serializing instruction.
2471    if ((xop == Op_FastLock) && !UseBiasedLocking) {
2472      return true;
2473    }
2474
2475    if (x->is_MemBar()) {
2476      // We must retain this membar if there is an upcoming volatile
2477      // load, which will be followed by acquire membar.
2478      if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2479        return false;
2480      } else {
2481        // For other kinds of barriers, check by pretending we
2482        // are them, and seeing if we can be removed.
2483        return post_store_load_barrier(x->as_MemBar());
2484      }
2485    }
2486
2487    // probably not necessary to check for these
2488    if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2489      return false;
2490    }
2491  }
2492  return false;
2493}
2494
2495// Check whether node n is a branch to an uncommon trap that we could
2496// optimize as test with very high branch costs in case of going to
2497// the uncommon trap. The code must be able to be recompiled to use
2498// a cheaper test.
2499bool Matcher::branches_to_uncommon_trap(const Node *n) {
2500  // Don't do it for natives, adapters, or runtime stubs
2501  Compile *C = Compile::current();
2502  if (!C->is_method_compilation()) return false;
2503
2504  assert(n->is_If(), "You should only call this on if nodes.");
2505  IfNode *ifn = n->as_If();
2506
2507  Node *ifFalse = NULL;
2508  for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2509    if (ifn->fast_out(i)->is_IfFalse()) {
2510      ifFalse = ifn->fast_out(i);
2511      break;
2512    }
2513  }
2514  assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2515
2516  Node *reg = ifFalse;
2517  int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2518               // Alternatively use visited set?  Seems too expensive.
2519  while (reg != NULL && cnt > 0) {
2520    CallNode *call = NULL;
2521    RegionNode *nxt_reg = NULL;
2522    for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2523      Node *o = reg->fast_out(i);
2524      if (o->is_Call()) {
2525        call = o->as_Call();
2526      }
2527      if (o->is_Region()) {
2528        nxt_reg = o->as_Region();
2529      }
2530    }
2531
2532    if (call &&
2533        call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2534      const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2535      if (trtype->isa_int() && trtype->is_int()->is_con()) {
2536        jint tr_con = trtype->is_int()->get_con();
2537        Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2538        Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2539        assert((int)reason < (int)BitsPerInt, "recode bit map");
2540
2541        if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2542            && action != Deoptimization::Action_none) {
2543          // This uncommon trap is sure to recompile, eventually.
2544          // When that happens, C->too_many_traps will prevent
2545          // this transformation from happening again.
2546          return true;
2547        }
2548      }
2549    }
2550
2551    reg = nxt_reg;
2552    cnt--;
2553  }
2554
2555  return false;
2556}
2557
2558//=============================================================================
2559//---------------------------State---------------------------------------------
2560State::State(void) {
2561#ifdef ASSERT
2562  _id = 0;
2563  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2564  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2565  //memset(_cost, -1, sizeof(_cost));
2566  //memset(_rule, -1, sizeof(_rule));
2567#endif
2568  memset(_valid, 0, sizeof(_valid));
2569}
2570
2571#ifdef ASSERT
2572State::~State() {
2573  _id = 99;
2574  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2575  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2576  memset(_cost, -3, sizeof(_cost));
2577  memset(_rule, -3, sizeof(_rule));
2578}
2579#endif
2580
2581#ifndef PRODUCT
2582//---------------------------dump----------------------------------------------
2583void State::dump() {
2584  tty->print("\n");
2585  dump(0);
2586}
2587
2588void State::dump(int depth) {
2589  for( int j = 0; j < depth; j++ )
2590    tty->print("   ");
2591  tty->print("--N: ");
2592  _leaf->dump();
2593  uint i;
2594  for( i = 0; i < _LAST_MACH_OPER; i++ )
2595    // Check for valid entry
2596    if( valid(i) ) {
2597      for( int j = 0; j < depth; j++ )
2598        tty->print("   ");
2599        assert(_cost[i] != max_juint, "cost must be a valid value");
2600        assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2601        tty->print_cr("%s  %d  %s",
2602                      ruleName[i], _cost[i], ruleName[_rule[i]] );
2603      }
2604  tty->cr();
2605
2606  for( i=0; i<2; i++ )
2607    if( _kids[i] )
2608      _kids[i]->dump(depth+1);
2609}
2610#endif
2611