matcher.cpp revision 5947:f4f6ae481e1a
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/addnode.hpp"
28#include "opto/callnode.hpp"
29#include "opto/connode.hpp"
30#include "opto/idealGraphPrinter.hpp"
31#include "opto/matcher.hpp"
32#include "opto/memnode.hpp"
33#include "opto/opcodes.hpp"
34#include "opto/regmask.hpp"
35#include "opto/rootnode.hpp"
36#include "opto/runtime.hpp"
37#include "opto/type.hpp"
38#include "opto/vectornode.hpp"
39#include "runtime/atomic.hpp"
40#include "runtime/os.hpp"
41#ifdef TARGET_ARCH_MODEL_x86_32
42# include "adfiles/ad_x86_32.hpp"
43#endif
44#ifdef TARGET_ARCH_MODEL_x86_64
45# include "adfiles/ad_x86_64.hpp"
46#endif
47#ifdef TARGET_ARCH_MODEL_sparc
48# include "adfiles/ad_sparc.hpp"
49#endif
50#ifdef TARGET_ARCH_MODEL_zero
51# include "adfiles/ad_zero.hpp"
52#endif
53#ifdef TARGET_ARCH_MODEL_arm
54# include "adfiles/ad_arm.hpp"
55#endif
56#ifdef TARGET_ARCH_MODEL_ppc_32
57# include "adfiles/ad_ppc_32.hpp"
58#endif
59#ifdef TARGET_ARCH_MODEL_ppc_64
60# include "adfiles/ad_ppc_64.hpp"
61#endif
62
63OptoReg::Name OptoReg::c_frame_pointer;
64
65const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
66RegMask Matcher::mreg2regmask[_last_Mach_Reg];
67RegMask Matcher::STACK_ONLY_mask;
68RegMask Matcher::c_frame_ptr_mask;
69const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
70const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
71
72//---------------------------Matcher-------------------------------------------
73Matcher::Matcher( Node_List &proj_list ) :
74  PhaseTransform( Phase::Ins_Select ),
75#ifdef ASSERT
76  _old2new_map(C->comp_arena()),
77  _new2old_map(C->comp_arena()),
78#endif
79  _shared_nodes(C->comp_arena()),
80  _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
81  _swallowed(swallowed),
82  _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
83  _end_inst_chain_rule(_END_INST_CHAIN_RULE),
84  _must_clone(must_clone), _proj_list(proj_list),
85  _register_save_policy(register_save_policy),
86  _c_reg_save_policy(c_reg_save_policy),
87  _register_save_type(register_save_type),
88  _ruleName(ruleName),
89  _allocation_started(false),
90  _states_arena(Chunk::medium_size),
91  _visited(&_states_arena),
92  _shared(&_states_arena),
93  _dontcare(&_states_arena) {
94  C->set_matcher(this);
95
96  idealreg2spillmask  [Op_RegI] = NULL;
97  idealreg2spillmask  [Op_RegN] = NULL;
98  idealreg2spillmask  [Op_RegL] = NULL;
99  idealreg2spillmask  [Op_RegF] = NULL;
100  idealreg2spillmask  [Op_RegD] = NULL;
101  idealreg2spillmask  [Op_RegP] = NULL;
102  idealreg2spillmask  [Op_VecS] = NULL;
103  idealreg2spillmask  [Op_VecD] = NULL;
104  idealreg2spillmask  [Op_VecX] = NULL;
105  idealreg2spillmask  [Op_VecY] = NULL;
106
107  idealreg2debugmask  [Op_RegI] = NULL;
108  idealreg2debugmask  [Op_RegN] = NULL;
109  idealreg2debugmask  [Op_RegL] = NULL;
110  idealreg2debugmask  [Op_RegF] = NULL;
111  idealreg2debugmask  [Op_RegD] = NULL;
112  idealreg2debugmask  [Op_RegP] = NULL;
113  idealreg2debugmask  [Op_VecS] = NULL;
114  idealreg2debugmask  [Op_VecD] = NULL;
115  idealreg2debugmask  [Op_VecX] = NULL;
116  idealreg2debugmask  [Op_VecY] = NULL;
117
118  idealreg2mhdebugmask[Op_RegI] = NULL;
119  idealreg2mhdebugmask[Op_RegN] = NULL;
120  idealreg2mhdebugmask[Op_RegL] = NULL;
121  idealreg2mhdebugmask[Op_RegF] = NULL;
122  idealreg2mhdebugmask[Op_RegD] = NULL;
123  idealreg2mhdebugmask[Op_RegP] = NULL;
124  idealreg2mhdebugmask[Op_VecS] = NULL;
125  idealreg2mhdebugmask[Op_VecD] = NULL;
126  idealreg2mhdebugmask[Op_VecX] = NULL;
127  idealreg2mhdebugmask[Op_VecY] = NULL;
128
129  debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
130}
131
132//------------------------------warp_incoming_stk_arg------------------------
133// This warps a VMReg into an OptoReg::Name
134OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
135  OptoReg::Name warped;
136  if( reg->is_stack() ) {  // Stack slot argument?
137    warped = OptoReg::add(_old_SP, reg->reg2stack() );
138    warped = OptoReg::add(warped, C->out_preserve_stack_slots());
139    if( warped >= _in_arg_limit )
140      _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
141    if (!RegMask::can_represent_arg(warped)) {
142      // the compiler cannot represent this method's calling sequence
143      C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
144      return OptoReg::Bad;
145    }
146    return warped;
147  }
148  return OptoReg::as_OptoReg(reg);
149}
150
151//---------------------------compute_old_SP------------------------------------
152OptoReg::Name Compile::compute_old_SP() {
153  int fixed    = fixed_slots();
154  int preserve = in_preserve_stack_slots();
155  return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
156}
157
158
159
160#ifdef ASSERT
161void Matcher::verify_new_nodes_only(Node* xroot) {
162  // Make sure that the new graph only references new nodes
163  ResourceMark rm;
164  Unique_Node_List worklist;
165  VectorSet visited(Thread::current()->resource_area());
166  worklist.push(xroot);
167  while (worklist.size() > 0) {
168    Node* n = worklist.pop();
169    visited <<= n->_idx;
170    assert(C->node_arena()->contains(n), "dead node");
171    for (uint j = 0; j < n->req(); j++) {
172      Node* in = n->in(j);
173      if (in != NULL) {
174        assert(C->node_arena()->contains(in), "dead node");
175        if (!visited.test(in->_idx)) {
176          worklist.push(in);
177        }
178      }
179    }
180  }
181}
182#endif
183
184
185//---------------------------match---------------------------------------------
186void Matcher::match( ) {
187  if( MaxLabelRootDepth < 100 ) { // Too small?
188    assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
189    MaxLabelRootDepth = 100;
190  }
191  // One-time initialization of some register masks.
192  init_spill_mask( C->root()->in(1) );
193  _return_addr_mask = return_addr();
194#ifdef _LP64
195  // Pointers take 2 slots in 64-bit land
196  _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
197#endif
198
199  // Map a Java-signature return type into return register-value
200  // machine registers for 0, 1 and 2 returned values.
201  const TypeTuple *range = C->tf()->range();
202  if( range->cnt() > TypeFunc::Parms ) { // If not a void function
203    // Get ideal-register return type
204    int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
205    // Get machine return register
206    uint sop = C->start()->Opcode();
207    OptoRegPair regs = return_value(ireg, false);
208
209    // And mask for same
210    _return_value_mask = RegMask(regs.first());
211    if( OptoReg::is_valid(regs.second()) )
212      _return_value_mask.Insert(regs.second());
213  }
214
215  // ---------------
216  // Frame Layout
217
218  // Need the method signature to determine the incoming argument types,
219  // because the types determine which registers the incoming arguments are
220  // in, and this affects the matched code.
221  const TypeTuple *domain = C->tf()->domain();
222  uint             argcnt = domain->cnt() - TypeFunc::Parms;
223  BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
224  VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
225  _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
226  _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
227  uint i;
228  for( i = 0; i<argcnt; i++ ) {
229    sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
230  }
231
232  // Pass array of ideal registers and length to USER code (from the AD file)
233  // that will convert this to an array of register numbers.
234  const StartNode *start = C->start();
235  start->calling_convention( sig_bt, vm_parm_regs, argcnt );
236#ifdef ASSERT
237  // Sanity check users' calling convention.  Real handy while trying to
238  // get the initial port correct.
239  { for (uint i = 0; i<argcnt; i++) {
240      if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
241        assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
242        _parm_regs[i].set_bad();
243        continue;
244      }
245      VMReg parm_reg = vm_parm_regs[i].first();
246      assert(parm_reg->is_valid(), "invalid arg?");
247      if (parm_reg->is_reg()) {
248        OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
249        assert(can_be_java_arg(opto_parm_reg) ||
250               C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
251               opto_parm_reg == inline_cache_reg(),
252               "parameters in register must be preserved by runtime stubs");
253      }
254      for (uint j = 0; j < i; j++) {
255        assert(parm_reg != vm_parm_regs[j].first(),
256               "calling conv. must produce distinct regs");
257      }
258    }
259  }
260#endif
261
262  // Do some initial frame layout.
263
264  // Compute the old incoming SP (may be called FP) as
265  //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
266  _old_SP = C->compute_old_SP();
267  assert( is_even(_old_SP), "must be even" );
268
269  // Compute highest incoming stack argument as
270  //   _old_SP + out_preserve_stack_slots + incoming argument size.
271  _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
272  assert( is_even(_in_arg_limit), "out_preserve must be even" );
273  for( i = 0; i < argcnt; i++ ) {
274    // Permit args to have no register
275    _calling_convention_mask[i].Clear();
276    if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
277      continue;
278    }
279    // calling_convention returns stack arguments as a count of
280    // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
281    // the allocators point of view, taking into account all the
282    // preserve area, locks & pad2.
283
284    OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
285    if( OptoReg::is_valid(reg1))
286      _calling_convention_mask[i].Insert(reg1);
287
288    OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
289    if( OptoReg::is_valid(reg2))
290      _calling_convention_mask[i].Insert(reg2);
291
292    // Saved biased stack-slot register number
293    _parm_regs[i].set_pair(reg2, reg1);
294  }
295
296  // Finally, make sure the incoming arguments take up an even number of
297  // words, in case the arguments or locals need to contain doubleword stack
298  // slots.  The rest of the system assumes that stack slot pairs (in
299  // particular, in the spill area) which look aligned will in fact be
300  // aligned relative to the stack pointer in the target machine.  Double
301  // stack slots will always be allocated aligned.
302  _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
303
304  // Compute highest outgoing stack argument as
305  //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
306  _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
307  assert( is_even(_out_arg_limit), "out_preserve must be even" );
308
309  if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
310    // the compiler cannot represent this method's calling sequence
311    C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
312  }
313
314  if (C->failing())  return;  // bailed out on incoming arg failure
315
316  // ---------------
317  // Collect roots of matcher trees.  Every node for which
318  // _shared[_idx] is cleared is guaranteed to not be shared, and thus
319  // can be a valid interior of some tree.
320  find_shared( C->root() );
321  find_shared( C->top() );
322
323  C->print_method(PHASE_BEFORE_MATCHING);
324
325  // Create new ideal node ConP #NULL even if it does exist in old space
326  // to avoid false sharing if the corresponding mach node is not used.
327  // The corresponding mach node is only used in rare cases for derived
328  // pointers.
329  Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
330
331  // Swap out to old-space; emptying new-space
332  Arena *old = C->node_arena()->move_contents(C->old_arena());
333
334  // Save debug and profile information for nodes in old space:
335  _old_node_note_array = C->node_note_array();
336  if (_old_node_note_array != NULL) {
337    C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
338                           (C->comp_arena(), _old_node_note_array->length(),
339                            0, NULL));
340  }
341
342  // Pre-size the new_node table to avoid the need for range checks.
343  grow_new_node_array(C->unique());
344
345  // Reset node counter so MachNodes start with _idx at 0
346  int nodes = C->unique(); // save value
347  C->set_unique(0);
348  C->reset_dead_node_list();
349
350  // Recursively match trees from old space into new space.
351  // Correct leaves of new-space Nodes; they point to old-space.
352  _visited.Clear();             // Clear visit bits for xform call
353  C->set_cached_top_node(xform( C->top(), nodes ));
354  if (!C->failing()) {
355    Node* xroot =        xform( C->root(), 1 );
356    if (xroot == NULL) {
357      Matcher::soft_match_failure();  // recursive matching process failed
358      C->record_method_not_compilable("instruction match failed");
359    } else {
360      // During matching shared constants were attached to C->root()
361      // because xroot wasn't available yet, so transfer the uses to
362      // the xroot.
363      for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
364        Node* n = C->root()->fast_out(j);
365        if (C->node_arena()->contains(n)) {
366          assert(n->in(0) == C->root(), "should be control user");
367          n->set_req(0, xroot);
368          --j;
369          --jmax;
370        }
371      }
372
373      // Generate new mach node for ConP #NULL
374      assert(new_ideal_null != NULL, "sanity");
375      _mach_null = match_tree(new_ideal_null);
376      // Don't set control, it will confuse GCM since there are no uses.
377      // The control will be set when this node is used first time
378      // in find_base_for_derived().
379      assert(_mach_null != NULL, "");
380
381      C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
382
383#ifdef ASSERT
384      verify_new_nodes_only(xroot);
385#endif
386    }
387  }
388  if (C->top() == NULL || C->root() == NULL) {
389    C->record_method_not_compilable("graph lost"); // %%% cannot happen?
390  }
391  if (C->failing()) {
392    // delete old;
393    old->destruct_contents();
394    return;
395  }
396  assert( C->top(), "" );
397  assert( C->root(), "" );
398  validate_null_checks();
399
400  // Now smoke old-space
401  NOT_DEBUG( old->destruct_contents() );
402
403  // ------------------------
404  // Set up save-on-entry registers
405  Fixup_Save_On_Entry( );
406}
407
408
409//------------------------------Fixup_Save_On_Entry----------------------------
410// The stated purpose of this routine is to take care of save-on-entry
411// registers.  However, the overall goal of the Match phase is to convert into
412// machine-specific instructions which have RegMasks to guide allocation.
413// So what this procedure really does is put a valid RegMask on each input
414// to the machine-specific variations of all Return, TailCall and Halt
415// instructions.  It also adds edgs to define the save-on-entry values (and of
416// course gives them a mask).
417
418static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
419  RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
420  // Do all the pre-defined register masks
421  rms[TypeFunc::Control  ] = RegMask::Empty;
422  rms[TypeFunc::I_O      ] = RegMask::Empty;
423  rms[TypeFunc::Memory   ] = RegMask::Empty;
424  rms[TypeFunc::ReturnAdr] = ret_adr;
425  rms[TypeFunc::FramePtr ] = fp;
426  return rms;
427}
428
429//---------------------------init_first_stack_mask-----------------------------
430// Create the initial stack mask used by values spilling to the stack.
431// Disallow any debug info in outgoing argument areas by setting the
432// initial mask accordingly.
433void Matcher::init_first_stack_mask() {
434
435  // Allocate storage for spill masks as masks for the appropriate load type.
436  RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
437
438  idealreg2spillmask  [Op_RegN] = &rms[0];
439  idealreg2spillmask  [Op_RegI] = &rms[1];
440  idealreg2spillmask  [Op_RegL] = &rms[2];
441  idealreg2spillmask  [Op_RegF] = &rms[3];
442  idealreg2spillmask  [Op_RegD] = &rms[4];
443  idealreg2spillmask  [Op_RegP] = &rms[5];
444
445  idealreg2debugmask  [Op_RegN] = &rms[6];
446  idealreg2debugmask  [Op_RegI] = &rms[7];
447  idealreg2debugmask  [Op_RegL] = &rms[8];
448  idealreg2debugmask  [Op_RegF] = &rms[9];
449  idealreg2debugmask  [Op_RegD] = &rms[10];
450  idealreg2debugmask  [Op_RegP] = &rms[11];
451
452  idealreg2mhdebugmask[Op_RegN] = &rms[12];
453  idealreg2mhdebugmask[Op_RegI] = &rms[13];
454  idealreg2mhdebugmask[Op_RegL] = &rms[14];
455  idealreg2mhdebugmask[Op_RegF] = &rms[15];
456  idealreg2mhdebugmask[Op_RegD] = &rms[16];
457  idealreg2mhdebugmask[Op_RegP] = &rms[17];
458
459  idealreg2spillmask  [Op_VecS] = &rms[18];
460  idealreg2spillmask  [Op_VecD] = &rms[19];
461  idealreg2spillmask  [Op_VecX] = &rms[20];
462  idealreg2spillmask  [Op_VecY] = &rms[21];
463
464  OptoReg::Name i;
465
466  // At first, start with the empty mask
467  C->FIRST_STACK_mask().Clear();
468
469  // Add in the incoming argument area
470  OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
471  for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
472    C->FIRST_STACK_mask().Insert(i);
473
474  // Add in all bits past the outgoing argument area
475  guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
476            "must be able to represent all call arguments in reg mask");
477  init = _out_arg_limit;
478  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
479    C->FIRST_STACK_mask().Insert(i);
480
481  // Finally, set the "infinite stack" bit.
482  C->FIRST_STACK_mask().set_AllStack();
483
484  // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
485  RegMask aligned_stack_mask = C->FIRST_STACK_mask();
486  // Keep spill masks aligned.
487  aligned_stack_mask.clear_to_pairs();
488  assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
489
490  *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
491#ifdef _LP64
492  *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
493   idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
494   idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
495#else
496   idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
497#endif
498  *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
499   idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
500  *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
501   idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
502  *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
503   idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
504  *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
505   idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
506
507  if (Matcher::vector_size_supported(T_BYTE,4)) {
508    *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
509     idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
510  }
511  if (Matcher::vector_size_supported(T_FLOAT,2)) {
512    *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
513     idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
514  }
515  if (Matcher::vector_size_supported(T_FLOAT,4)) {
516     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
517     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
518    *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
519     idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
520  }
521  if (Matcher::vector_size_supported(T_FLOAT,8)) {
522     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
523     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
524    *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
525     idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
526  }
527   if (UseFPUForSpilling) {
528     // This mask logic assumes that the spill operations are
529     // symmetric and that the registers involved are the same size.
530     // On sparc for instance we may have to use 64 bit moves will
531     // kill 2 registers when used with F0-F31.
532     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
533     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
534#ifdef _LP64
535     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
536     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
537     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
538     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
539#else
540     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
541#ifdef ARM
542     // ARM has support for moving 64bit values between a pair of
543     // integer registers and a double register
544     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
545     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
546#endif
547#endif
548   }
549
550  // Make up debug masks.  Any spill slot plus callee-save registers.
551  // Caller-save registers are assumed to be trashable by the various
552  // inline-cache fixup routines.
553  *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
554  *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
555  *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
556  *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
557  *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
558  *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
559
560  *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
561  *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
562  *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
563  *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
564  *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
565  *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
566
567  // Prevent stub compilations from attempting to reference
568  // callee-saved registers from debug info
569  bool exclude_soe = !Compile::current()->is_method_compilation();
570
571  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
572    // registers the caller has to save do not work
573    if( _register_save_policy[i] == 'C' ||
574        _register_save_policy[i] == 'A' ||
575        (_register_save_policy[i] == 'E' && exclude_soe) ) {
576      idealreg2debugmask  [Op_RegN]->Remove(i);
577      idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
578      idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
579      idealreg2debugmask  [Op_RegF]->Remove(i); // masks
580      idealreg2debugmask  [Op_RegD]->Remove(i);
581      idealreg2debugmask  [Op_RegP]->Remove(i);
582
583      idealreg2mhdebugmask[Op_RegN]->Remove(i);
584      idealreg2mhdebugmask[Op_RegI]->Remove(i);
585      idealreg2mhdebugmask[Op_RegL]->Remove(i);
586      idealreg2mhdebugmask[Op_RegF]->Remove(i);
587      idealreg2mhdebugmask[Op_RegD]->Remove(i);
588      idealreg2mhdebugmask[Op_RegP]->Remove(i);
589    }
590  }
591
592  // Subtract the register we use to save the SP for MethodHandle
593  // invokes to from the debug mask.
594  const RegMask save_mask = method_handle_invoke_SP_save_mask();
595  idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
596  idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
597  idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
598  idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
599  idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
600  idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
601}
602
603//---------------------------is_save_on_entry----------------------------------
604bool Matcher::is_save_on_entry( int reg ) {
605  return
606    _register_save_policy[reg] == 'E' ||
607    _register_save_policy[reg] == 'A' || // Save-on-entry register?
608    // Also save argument registers in the trampolining stubs
609    (C->save_argument_registers() && is_spillable_arg(reg));
610}
611
612//---------------------------Fixup_Save_On_Entry-------------------------------
613void Matcher::Fixup_Save_On_Entry( ) {
614  init_first_stack_mask();
615
616  Node *root = C->root();       // Short name for root
617  // Count number of save-on-entry registers.
618  uint soe_cnt = number_of_saved_registers();
619  uint i;
620
621  // Find the procedure Start Node
622  StartNode *start = C->start();
623  assert( start, "Expect a start node" );
624
625  // Save argument registers in the trampolining stubs
626  if( C->save_argument_registers() )
627    for( i = 0; i < _last_Mach_Reg; i++ )
628      if( is_spillable_arg(i) )
629        soe_cnt++;
630
631  // Input RegMask array shared by all Returns.
632  // The type for doubles and longs has a count of 2, but
633  // there is only 1 returned value
634  uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
635  RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
636  // Returns have 0 or 1 returned values depending on call signature.
637  // Return register is specified by return_value in the AD file.
638  if (ret_edge_cnt > TypeFunc::Parms)
639    ret_rms[TypeFunc::Parms+0] = _return_value_mask;
640
641  // Input RegMask array shared by all Rethrows.
642  uint reth_edge_cnt = TypeFunc::Parms+1;
643  RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
644  // Rethrow takes exception oop only, but in the argument 0 slot.
645  reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
646#ifdef _LP64
647  // Need two slots for ptrs in 64-bit land
648  reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
649#endif
650
651  // Input RegMask array shared by all TailCalls
652  uint tail_call_edge_cnt = TypeFunc::Parms+2;
653  RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
654
655  // Input RegMask array shared by all TailJumps
656  uint tail_jump_edge_cnt = TypeFunc::Parms+2;
657  RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
658
659  // TailCalls have 2 returned values (target & moop), whose masks come
660  // from the usual MachNode/MachOper mechanism.  Find a sample
661  // TailCall to extract these masks and put the correct masks into
662  // the tail_call_rms array.
663  for( i=1; i < root->req(); i++ ) {
664    MachReturnNode *m = root->in(i)->as_MachReturn();
665    if( m->ideal_Opcode() == Op_TailCall ) {
666      tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
667      tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
668      break;
669    }
670  }
671
672  // TailJumps have 2 returned values (target & ex_oop), whose masks come
673  // from the usual MachNode/MachOper mechanism.  Find a sample
674  // TailJump to extract these masks and put the correct masks into
675  // the tail_jump_rms array.
676  for( i=1; i < root->req(); i++ ) {
677    MachReturnNode *m = root->in(i)->as_MachReturn();
678    if( m->ideal_Opcode() == Op_TailJump ) {
679      tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
680      tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
681      break;
682    }
683  }
684
685  // Input RegMask array shared by all Halts
686  uint halt_edge_cnt = TypeFunc::Parms;
687  RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
688
689  // Capture the return input masks into each exit flavor
690  for( i=1; i < root->req(); i++ ) {
691    MachReturnNode *exit = root->in(i)->as_MachReturn();
692    switch( exit->ideal_Opcode() ) {
693      case Op_Return   : exit->_in_rms = ret_rms;  break;
694      case Op_Rethrow  : exit->_in_rms = reth_rms; break;
695      case Op_TailCall : exit->_in_rms = tail_call_rms; break;
696      case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
697      case Op_Halt     : exit->_in_rms = halt_rms; break;
698      default          : ShouldNotReachHere();
699    }
700  }
701
702  // Next unused projection number from Start.
703  int proj_cnt = C->tf()->domain()->cnt();
704
705  // Do all the save-on-entry registers.  Make projections from Start for
706  // them, and give them a use at the exit points.  To the allocator, they
707  // look like incoming register arguments.
708  for( i = 0; i < _last_Mach_Reg; i++ ) {
709    if( is_save_on_entry(i) ) {
710
711      // Add the save-on-entry to the mask array
712      ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
713      reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
714      tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
715      tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
716      // Halts need the SOE registers, but only in the stack as debug info.
717      // A just-prior uncommon-trap or deoptimization will use the SOE regs.
718      halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
719
720      Node *mproj;
721
722      // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
723      // into a single RegD.
724      if( (i&1) == 0 &&
725          _register_save_type[i  ] == Op_RegF &&
726          _register_save_type[i+1] == Op_RegF &&
727          is_save_on_entry(i+1) ) {
728        // Add other bit for double
729        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
730        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
731        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
732        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
733        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
734        mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
735        proj_cnt += 2;          // Skip 2 for doubles
736      }
737      else if( (i&1) == 1 &&    // Else check for high half of double
738               _register_save_type[i-1] == Op_RegF &&
739               _register_save_type[i  ] == Op_RegF &&
740               is_save_on_entry(i-1) ) {
741        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
742        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
743        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
744        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
745        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
746        mproj = C->top();
747      }
748      // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
749      // into a single RegL.
750      else if( (i&1) == 0 &&
751          _register_save_type[i  ] == Op_RegI &&
752          _register_save_type[i+1] == Op_RegI &&
753        is_save_on_entry(i+1) ) {
754        // Add other bit for long
755        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
756        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
757        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
758        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
759        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
760        mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
761        proj_cnt += 2;          // Skip 2 for longs
762      }
763      else if( (i&1) == 1 &&    // Else check for high half of long
764               _register_save_type[i-1] == Op_RegI &&
765               _register_save_type[i  ] == Op_RegI &&
766               is_save_on_entry(i-1) ) {
767        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
768        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
769        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
770        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
771        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
772        mproj = C->top();
773      } else {
774        // Make a projection for it off the Start
775        mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
776      }
777
778      ret_edge_cnt ++;
779      reth_edge_cnt ++;
780      tail_call_edge_cnt ++;
781      tail_jump_edge_cnt ++;
782      halt_edge_cnt ++;
783
784      // Add a use of the SOE register to all exit paths
785      for( uint j=1; j < root->req(); j++ )
786        root->in(j)->add_req(mproj);
787    } // End of if a save-on-entry register
788  } // End of for all machine registers
789}
790
791//------------------------------init_spill_mask--------------------------------
792void Matcher::init_spill_mask( Node *ret ) {
793  if( idealreg2regmask[Op_RegI] ) return; // One time only init
794
795  OptoReg::c_frame_pointer = c_frame_pointer();
796  c_frame_ptr_mask = c_frame_pointer();
797#ifdef _LP64
798  // pointers are twice as big
799  c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
800#endif
801
802  // Start at OptoReg::stack0()
803  STACK_ONLY_mask.Clear();
804  OptoReg::Name init = OptoReg::stack2reg(0);
805  // STACK_ONLY_mask is all stack bits
806  OptoReg::Name i;
807  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
808    STACK_ONLY_mask.Insert(i);
809  // Also set the "infinite stack" bit.
810  STACK_ONLY_mask.set_AllStack();
811
812  // Copy the register names over into the shared world
813  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
814    // SharedInfo::regName[i] = regName[i];
815    // Handy RegMasks per machine register
816    mreg2regmask[i].Insert(i);
817  }
818
819  // Grab the Frame Pointer
820  Node *fp  = ret->in(TypeFunc::FramePtr);
821  Node *mem = ret->in(TypeFunc::Memory);
822  const TypePtr* atp = TypePtr::BOTTOM;
823  // Share frame pointer while making spill ops
824  set_shared(fp);
825
826  // Compute generic short-offset Loads
827#ifdef _LP64
828  MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
829#endif
830  MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp));
831  MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp));
832  MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp));
833  MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp));
834  MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
835  assert(spillI != NULL && spillL != NULL && spillF != NULL &&
836         spillD != NULL && spillP != NULL, "");
837
838  // Get the ADLC notion of the right regmask, for each basic type.
839#ifdef _LP64
840  idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
841#endif
842  idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
843  idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
844  idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
845  idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
846  idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
847
848  // Vector regmasks.
849  if (Matcher::vector_size_supported(T_BYTE,4)) {
850    TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
851    MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
852    idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
853  }
854  if (Matcher::vector_size_supported(T_FLOAT,2)) {
855    MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
856    idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
857  }
858  if (Matcher::vector_size_supported(T_FLOAT,4)) {
859    MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
860    idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
861  }
862  if (Matcher::vector_size_supported(T_FLOAT,8)) {
863    MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
864    idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
865  }
866}
867
868#ifdef ASSERT
869static void match_alias_type(Compile* C, Node* n, Node* m) {
870  if (!VerifyAliases)  return;  // do not go looking for trouble by default
871  const TypePtr* nat = n->adr_type();
872  const TypePtr* mat = m->adr_type();
873  int nidx = C->get_alias_index(nat);
874  int midx = C->get_alias_index(mat);
875  // Detune the assert for cases like (AndI 0xFF (LoadB p)).
876  if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
877    for (uint i = 1; i < n->req(); i++) {
878      Node* n1 = n->in(i);
879      const TypePtr* n1at = n1->adr_type();
880      if (n1at != NULL) {
881        nat = n1at;
882        nidx = C->get_alias_index(n1at);
883      }
884    }
885  }
886  // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
887  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
888    switch (n->Opcode()) {
889    case Op_PrefetchRead:
890    case Op_PrefetchWrite:
891    case Op_PrefetchAllocation:
892      nidx = Compile::AliasIdxRaw;
893      nat = TypeRawPtr::BOTTOM;
894      break;
895    }
896  }
897  if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
898    switch (n->Opcode()) {
899    case Op_ClearArray:
900      midx = Compile::AliasIdxRaw;
901      mat = TypeRawPtr::BOTTOM;
902      break;
903    }
904  }
905  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
906    switch (n->Opcode()) {
907    case Op_Return:
908    case Op_Rethrow:
909    case Op_Halt:
910    case Op_TailCall:
911    case Op_TailJump:
912      nidx = Compile::AliasIdxBot;
913      nat = TypePtr::BOTTOM;
914      break;
915    }
916  }
917  if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
918    switch (n->Opcode()) {
919    case Op_StrComp:
920    case Op_StrEquals:
921    case Op_StrIndexOf:
922    case Op_AryEq:
923    case Op_MemBarVolatile:
924    case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
925    case Op_EncodeISOArray:
926      nidx = Compile::AliasIdxTop;
927      nat = NULL;
928      break;
929    }
930  }
931  if (nidx != midx) {
932    if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
933      tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
934      n->dump();
935      m->dump();
936    }
937    assert(C->subsume_loads() && C->must_alias(nat, midx),
938           "must not lose alias info when matching");
939  }
940}
941#endif
942
943
944//------------------------------MStack-----------------------------------------
945// State and MStack class used in xform() and find_shared() iterative methods.
946enum Node_State { Pre_Visit,  // node has to be pre-visited
947                      Visit,  // visit node
948                 Post_Visit,  // post-visit node
949             Alt_Post_Visit   // alternative post-visit path
950                };
951
952class MStack: public Node_Stack {
953  public:
954    MStack(int size) : Node_Stack(size) { }
955
956    void push(Node *n, Node_State ns) {
957      Node_Stack::push(n, (uint)ns);
958    }
959    void push(Node *n, Node_State ns, Node *parent, int indx) {
960      ++_inode_top;
961      if ((_inode_top + 1) >= _inode_max) grow();
962      _inode_top->node = parent;
963      _inode_top->indx = (uint)indx;
964      ++_inode_top;
965      _inode_top->node = n;
966      _inode_top->indx = (uint)ns;
967    }
968    Node *parent() {
969      pop();
970      return node();
971    }
972    Node_State state() const {
973      return (Node_State)index();
974    }
975    void set_state(Node_State ns) {
976      set_index((uint)ns);
977    }
978};
979
980
981//------------------------------xform------------------------------------------
982// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
983// Node in new-space.  Given a new-space Node, recursively walk his children.
984Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
985Node *Matcher::xform( Node *n, int max_stack ) {
986  // Use one stack to keep both: child's node/state and parent's node/index
987  MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
988  mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
989
990  while (mstack.is_nonempty()) {
991    C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
992    if (C->failing()) return NULL;
993    n = mstack.node();          // Leave node on stack
994    Node_State nstate = mstack.state();
995    if (nstate == Visit) {
996      mstack.set_state(Post_Visit);
997      Node *oldn = n;
998      // Old-space or new-space check
999      if (!C->node_arena()->contains(n)) {
1000        // Old space!
1001        Node* m;
1002        if (has_new_node(n)) {  // Not yet Label/Reduced
1003          m = new_node(n);
1004        } else {
1005          if (!is_dontcare(n)) { // Matcher can match this guy
1006            // Calls match special.  They match alone with no children.
1007            // Their children, the incoming arguments, match normally.
1008            m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1009            if (C->failing())  return NULL;
1010            if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1011          } else {                  // Nothing the matcher cares about
1012            if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1013              // Convert to machine-dependent projection
1014              m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1015#ifdef ASSERT
1016              _new2old_map.map(m->_idx, n);
1017#endif
1018              if (m->in(0) != NULL) // m might be top
1019                collect_null_checks(m, n);
1020            } else {                // Else just a regular 'ol guy
1021              m = n->clone();       // So just clone into new-space
1022#ifdef ASSERT
1023              _new2old_map.map(m->_idx, n);
1024#endif
1025              // Def-Use edges will be added incrementally as Uses
1026              // of this node are matched.
1027              assert(m->outcnt() == 0, "no Uses of this clone yet");
1028            }
1029          }
1030
1031          set_new_node(n, m);       // Map old to new
1032          if (_old_node_note_array != NULL) {
1033            Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1034                                                  n->_idx);
1035            C->set_node_notes_at(m->_idx, nn);
1036          }
1037          debug_only(match_alias_type(C, n, m));
1038        }
1039        n = m;    // n is now a new-space node
1040        mstack.set_node(n);
1041      }
1042
1043      // New space!
1044      if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1045
1046      int i;
1047      // Put precedence edges on stack first (match them last).
1048      for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1049        Node *m = oldn->in(i);
1050        if (m == NULL) break;
1051        // set -1 to call add_prec() instead of set_req() during Step1
1052        mstack.push(m, Visit, n, -1);
1053      }
1054
1055      // For constant debug info, I'd rather have unmatched constants.
1056      int cnt = n->req();
1057      JVMState* jvms = n->jvms();
1058      int debug_cnt = jvms ? jvms->debug_start() : cnt;
1059
1060      // Now do only debug info.  Clone constants rather than matching.
1061      // Constants are represented directly in the debug info without
1062      // the need for executable machine instructions.
1063      // Monitor boxes are also represented directly.
1064      for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1065        Node *m = n->in(i);          // Get input
1066        int op = m->Opcode();
1067        assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1068        if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1069            op == Op_ConF || op == Op_ConD || op == Op_ConL
1070            // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1071            ) {
1072          m = m->clone();
1073#ifdef ASSERT
1074          _new2old_map.map(m->_idx, n);
1075#endif
1076          mstack.push(m, Post_Visit, n, i); // Don't need to visit
1077          mstack.push(m->in(0), Visit, m, 0);
1078        } else {
1079          mstack.push(m, Visit, n, i);
1080        }
1081      }
1082
1083      // And now walk his children, and convert his inputs to new-space.
1084      for( ; i >= 0; --i ) { // For all normal inputs do
1085        Node *m = n->in(i);  // Get input
1086        if(m != NULL)
1087          mstack.push(m, Visit, n, i);
1088      }
1089
1090    }
1091    else if (nstate == Post_Visit) {
1092      // Set xformed input
1093      Node *p = mstack.parent();
1094      if (p != NULL) { // root doesn't have parent
1095        int i = (int)mstack.index();
1096        if (i >= 0)
1097          p->set_req(i, n); // required input
1098        else if (i == -1)
1099          p->add_prec(n);   // precedence input
1100        else
1101          ShouldNotReachHere();
1102      }
1103      mstack.pop(); // remove processed node from stack
1104    }
1105    else {
1106      ShouldNotReachHere();
1107    }
1108  } // while (mstack.is_nonempty())
1109  return n; // Return new-space Node
1110}
1111
1112//------------------------------warp_outgoing_stk_arg------------------------
1113OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1114  // Convert outgoing argument location to a pre-biased stack offset
1115  if (reg->is_stack()) {
1116    OptoReg::Name warped = reg->reg2stack();
1117    // Adjust the stack slot offset to be the register number used
1118    // by the allocator.
1119    warped = OptoReg::add(begin_out_arg_area, warped);
1120    // Keep track of the largest numbered stack slot used for an arg.
1121    // Largest used slot per call-site indicates the amount of stack
1122    // that is killed by the call.
1123    if( warped >= out_arg_limit_per_call )
1124      out_arg_limit_per_call = OptoReg::add(warped,1);
1125    if (!RegMask::can_represent_arg(warped)) {
1126      C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1127      return OptoReg::Bad;
1128    }
1129    return warped;
1130  }
1131  return OptoReg::as_OptoReg(reg);
1132}
1133
1134
1135//------------------------------match_sfpt-------------------------------------
1136// Helper function to match call instructions.  Calls match special.
1137// They match alone with no children.  Their children, the incoming
1138// arguments, match normally.
1139MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1140  MachSafePointNode *msfpt = NULL;
1141  MachCallNode      *mcall = NULL;
1142  uint               cnt;
1143  // Split out case for SafePoint vs Call
1144  CallNode *call;
1145  const TypeTuple *domain;
1146  ciMethod*        method = NULL;
1147  bool             is_method_handle_invoke = false;  // for special kill effects
1148  if( sfpt->is_Call() ) {
1149    call = sfpt->as_Call();
1150    domain = call->tf()->domain();
1151    cnt = domain->cnt();
1152
1153    // Match just the call, nothing else
1154    MachNode *m = match_tree(call);
1155    if (C->failing())  return NULL;
1156    if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1157
1158    // Copy data from the Ideal SafePoint to the machine version
1159    mcall = m->as_MachCall();
1160
1161    mcall->set_tf(         call->tf());
1162    mcall->set_entry_point(call->entry_point());
1163    mcall->set_cnt(        call->cnt());
1164
1165    if( mcall->is_MachCallJava() ) {
1166      MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1167      const CallJavaNode *call_java =  call->as_CallJava();
1168      method = call_java->method();
1169      mcall_java->_method = method;
1170      mcall_java->_bci = call_java->_bci;
1171      mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1172      is_method_handle_invoke = call_java->is_method_handle_invoke();
1173      mcall_java->_method_handle_invoke = is_method_handle_invoke;
1174      if (is_method_handle_invoke) {
1175        C->set_has_method_handle_invokes(true);
1176      }
1177      if( mcall_java->is_MachCallStaticJava() )
1178        mcall_java->as_MachCallStaticJava()->_name =
1179         call_java->as_CallStaticJava()->_name;
1180      if( mcall_java->is_MachCallDynamicJava() )
1181        mcall_java->as_MachCallDynamicJava()->_vtable_index =
1182         call_java->as_CallDynamicJava()->_vtable_index;
1183    }
1184    else if( mcall->is_MachCallRuntime() ) {
1185      mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1186    }
1187    msfpt = mcall;
1188  }
1189  // This is a non-call safepoint
1190  else {
1191    call = NULL;
1192    domain = NULL;
1193    MachNode *mn = match_tree(sfpt);
1194    if (C->failing())  return NULL;
1195    msfpt = mn->as_MachSafePoint();
1196    cnt = TypeFunc::Parms;
1197  }
1198
1199  // Advertise the correct memory effects (for anti-dependence computation).
1200  msfpt->set_adr_type(sfpt->adr_type());
1201
1202  // Allocate a private array of RegMasks.  These RegMasks are not shared.
1203  msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1204  // Empty them all.
1205  memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1206
1207  // Do all the pre-defined non-Empty register masks
1208  msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1209  msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1210
1211  // Place first outgoing argument can possibly be put.
1212  OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1213  assert( is_even(begin_out_arg_area), "" );
1214  // Compute max outgoing register number per call site.
1215  OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1216  // Calls to C may hammer extra stack slots above and beyond any arguments.
1217  // These are usually backing store for register arguments for varargs.
1218  if( call != NULL && call->is_CallRuntime() )
1219    out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1220
1221
1222  // Do the normal argument list (parameters) register masks
1223  int argcnt = cnt - TypeFunc::Parms;
1224  if( argcnt > 0 ) {          // Skip it all if we have no args
1225    BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1226    VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1227    int i;
1228    for( i = 0; i < argcnt; i++ ) {
1229      sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1230    }
1231    // V-call to pick proper calling convention
1232    call->calling_convention( sig_bt, parm_regs, argcnt );
1233
1234#ifdef ASSERT
1235    // Sanity check users' calling convention.  Really handy during
1236    // the initial porting effort.  Fairly expensive otherwise.
1237    { for (int i = 0; i<argcnt; i++) {
1238      if( !parm_regs[i].first()->is_valid() &&
1239          !parm_regs[i].second()->is_valid() ) continue;
1240      VMReg reg1 = parm_regs[i].first();
1241      VMReg reg2 = parm_regs[i].second();
1242      for (int j = 0; j < i; j++) {
1243        if( !parm_regs[j].first()->is_valid() &&
1244            !parm_regs[j].second()->is_valid() ) continue;
1245        VMReg reg3 = parm_regs[j].first();
1246        VMReg reg4 = parm_regs[j].second();
1247        if( !reg1->is_valid() ) {
1248          assert( !reg2->is_valid(), "valid halvsies" );
1249        } else if( !reg3->is_valid() ) {
1250          assert( !reg4->is_valid(), "valid halvsies" );
1251        } else {
1252          assert( reg1 != reg2, "calling conv. must produce distinct regs");
1253          assert( reg1 != reg3, "calling conv. must produce distinct regs");
1254          assert( reg1 != reg4, "calling conv. must produce distinct regs");
1255          assert( reg2 != reg3, "calling conv. must produce distinct regs");
1256          assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1257          assert( reg3 != reg4, "calling conv. must produce distinct regs");
1258        }
1259      }
1260    }
1261    }
1262#endif
1263
1264    // Visit each argument.  Compute its outgoing register mask.
1265    // Return results now can have 2 bits returned.
1266    // Compute max over all outgoing arguments both per call-site
1267    // and over the entire method.
1268    for( i = 0; i < argcnt; i++ ) {
1269      // Address of incoming argument mask to fill in
1270      RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1271      if( !parm_regs[i].first()->is_valid() &&
1272          !parm_regs[i].second()->is_valid() ) {
1273        continue;               // Avoid Halves
1274      }
1275      // Grab first register, adjust stack slots and insert in mask.
1276      OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1277      if (OptoReg::is_valid(reg1))
1278        rm->Insert( reg1 );
1279      // Grab second register (if any), adjust stack slots and insert in mask.
1280      OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1281      if (OptoReg::is_valid(reg2))
1282        rm->Insert( reg2 );
1283    } // End of for all arguments
1284
1285    // Compute number of stack slots needed to restore stack in case of
1286    // Pascal-style argument popping.
1287    mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1288  }
1289
1290  // Compute the max stack slot killed by any call.  These will not be
1291  // available for debug info, and will be used to adjust FIRST_STACK_mask
1292  // after all call sites have been visited.
1293  if( _out_arg_limit < out_arg_limit_per_call)
1294    _out_arg_limit = out_arg_limit_per_call;
1295
1296  if (mcall) {
1297    // Kill the outgoing argument area, including any non-argument holes and
1298    // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1299    // Since the max-per-method covers the max-per-call-site and debug info
1300    // is excluded on the max-per-method basis, debug info cannot land in
1301    // this killed area.
1302    uint r_cnt = mcall->tf()->range()->cnt();
1303    MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1304    if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1305      C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1306    } else {
1307      for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1308        proj->_rout.Insert(OptoReg::Name(i));
1309    }
1310    if( proj->_rout.is_NotEmpty() )
1311      _proj_list.push(proj);
1312  }
1313  // Transfer the safepoint information from the call to the mcall
1314  // Move the JVMState list
1315  msfpt->set_jvms(sfpt->jvms());
1316  for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1317    jvms->set_map(sfpt);
1318  }
1319
1320  // Debug inputs begin just after the last incoming parameter
1321  assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1322          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1323
1324  // Move the OopMap
1325  msfpt->_oop_map = sfpt->_oop_map;
1326
1327  // Registers killed by the call are set in the local scheduling pass
1328  // of Global Code Motion.
1329  return msfpt;
1330}
1331
1332//---------------------------match_tree----------------------------------------
1333// Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1334// of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1335// making GotoNodes while building the CFG and in init_spill_mask() to identify
1336// a Load's result RegMask for memoization in idealreg2regmask[]
1337MachNode *Matcher::match_tree( const Node *n ) {
1338  assert( n->Opcode() != Op_Phi, "cannot match" );
1339  assert( !n->is_block_start(), "cannot match" );
1340  // Set the mark for all locally allocated State objects.
1341  // When this call returns, the _states_arena arena will be reset
1342  // freeing all State objects.
1343  ResourceMark rm( &_states_arena );
1344
1345  LabelRootDepth = 0;
1346
1347  // StoreNodes require their Memory input to match any LoadNodes
1348  Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1349#ifdef ASSERT
1350  Node* save_mem_node = _mem_node;
1351  _mem_node = n->is_Store() ? (Node*)n : NULL;
1352#endif
1353  // State object for root node of match tree
1354  // Allocate it on _states_arena - stack allocation can cause stack overflow.
1355  State *s = new (&_states_arena) State;
1356  s->_kids[0] = NULL;
1357  s->_kids[1] = NULL;
1358  s->_leaf = (Node*)n;
1359  // Label the input tree, allocating labels from top-level arena
1360  Label_Root( n, s, n->in(0), mem );
1361  if (C->failing())  return NULL;
1362
1363  // The minimum cost match for the whole tree is found at the root State
1364  uint mincost = max_juint;
1365  uint cost = max_juint;
1366  uint i;
1367  for( i = 0; i < NUM_OPERANDS; i++ ) {
1368    if( s->valid(i) &&                // valid entry and
1369        s->_cost[i] < cost &&         // low cost and
1370        s->_rule[i] >= NUM_OPERANDS ) // not an operand
1371      cost = s->_cost[mincost=i];
1372  }
1373  if (mincost == max_juint) {
1374#ifndef PRODUCT
1375    tty->print("No matching rule for:");
1376    s->dump();
1377#endif
1378    Matcher::soft_match_failure();
1379    return NULL;
1380  }
1381  // Reduce input tree based upon the state labels to machine Nodes
1382  MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1383#ifdef ASSERT
1384  _old2new_map.map(n->_idx, m);
1385  _new2old_map.map(m->_idx, (Node*)n);
1386#endif
1387
1388  // Add any Matcher-ignored edges
1389  uint cnt = n->req();
1390  uint start = 1;
1391  if( mem != (Node*)1 ) start = MemNode::Memory+1;
1392  if( n->is_AddP() ) {
1393    assert( mem == (Node*)1, "" );
1394    start = AddPNode::Base+1;
1395  }
1396  for( i = start; i < cnt; i++ ) {
1397    if( !n->match_edge(i) ) {
1398      if( i < m->req() )
1399        m->ins_req( i, n->in(i) );
1400      else
1401        m->add_req( n->in(i) );
1402    }
1403  }
1404
1405  debug_only( _mem_node = save_mem_node; )
1406  return m;
1407}
1408
1409
1410//------------------------------match_into_reg---------------------------------
1411// Choose to either match this Node in a register or part of the current
1412// match tree.  Return true for requiring a register and false for matching
1413// as part of the current match tree.
1414static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1415
1416  const Type *t = m->bottom_type();
1417
1418  if (t->singleton()) {
1419    // Never force constants into registers.  Allow them to match as
1420    // constants or registers.  Copies of the same value will share
1421    // the same register.  See find_shared_node.
1422    return false;
1423  } else {                      // Not a constant
1424    // Stop recursion if they have different Controls.
1425    Node* m_control = m->in(0);
1426    // Control of load's memory can post-dominates load's control.
1427    // So use it since load can't float above its memory.
1428    Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1429    if (control && m_control && control != m_control && control != mem_control) {
1430
1431      // Actually, we can live with the most conservative control we
1432      // find, if it post-dominates the others.  This allows us to
1433      // pick up load/op/store trees where the load can float a little
1434      // above the store.
1435      Node *x = control;
1436      const uint max_scan = 6;  // Arbitrary scan cutoff
1437      uint j;
1438      for (j=0; j<max_scan; j++) {
1439        if (x->is_Region())     // Bail out at merge points
1440          return true;
1441        x = x->in(0);
1442        if (x == m_control)     // Does 'control' post-dominate
1443          break;                // m->in(0)?  If so, we can use it
1444        if (x == mem_control)   // Does 'control' post-dominate
1445          break;                // mem_control?  If so, we can use it
1446      }
1447      if (j == max_scan)        // No post-domination before scan end?
1448        return true;            // Then break the match tree up
1449    }
1450    if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1451        (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1452      // These are commonly used in address expressions and can
1453      // efficiently fold into them on X64 in some cases.
1454      return false;
1455    }
1456  }
1457
1458  // Not forceable cloning.  If shared, put it into a register.
1459  return shared;
1460}
1461
1462
1463//------------------------------Instruction Selection--------------------------
1464// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1465// ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1466// things the Matcher does not match (e.g., Memory), and things with different
1467// Controls (hence forced into different blocks).  We pass in the Control
1468// selected for this entire State tree.
1469
1470// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1471// Store and the Load must have identical Memories (as well as identical
1472// pointers).  Since the Matcher does not have anything for Memory (and
1473// does not handle DAGs), I have to match the Memory input myself.  If the
1474// Tree root is a Store, I require all Loads to have the identical memory.
1475Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1476  // Since Label_Root is a recursive function, its possible that we might run
1477  // out of stack space.  See bugs 6272980 & 6227033 for more info.
1478  LabelRootDepth++;
1479  if (LabelRootDepth > MaxLabelRootDepth) {
1480    C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1481    return NULL;
1482  }
1483  uint care = 0;                // Edges matcher cares about
1484  uint cnt = n->req();
1485  uint i = 0;
1486
1487  // Examine children for memory state
1488  // Can only subsume a child into your match-tree if that child's memory state
1489  // is not modified along the path to another input.
1490  // It is unsafe even if the other inputs are separate roots.
1491  Node *input_mem = NULL;
1492  for( i = 1; i < cnt; i++ ) {
1493    if( !n->match_edge(i) ) continue;
1494    Node *m = n->in(i);         // Get ith input
1495    assert( m, "expect non-null children" );
1496    if( m->is_Load() ) {
1497      if( input_mem == NULL ) {
1498        input_mem = m->in(MemNode::Memory);
1499      } else if( input_mem != m->in(MemNode::Memory) ) {
1500        input_mem = NodeSentinel;
1501      }
1502    }
1503  }
1504
1505  for( i = 1; i < cnt; i++ ){// For my children
1506    if( !n->match_edge(i) ) continue;
1507    Node *m = n->in(i);         // Get ith input
1508    // Allocate states out of a private arena
1509    State *s = new (&_states_arena) State;
1510    svec->_kids[care++] = s;
1511    assert( care <= 2, "binary only for now" );
1512
1513    // Recursively label the State tree.
1514    s->_kids[0] = NULL;
1515    s->_kids[1] = NULL;
1516    s->_leaf = m;
1517
1518    // Check for leaves of the State Tree; things that cannot be a part of
1519    // the current tree.  If it finds any, that value is matched as a
1520    // register operand.  If not, then the normal matching is used.
1521    if( match_into_reg(n, m, control, i, is_shared(m)) ||
1522        //
1523        // Stop recursion if this is LoadNode and the root of this tree is a
1524        // StoreNode and the load & store have different memories.
1525        ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1526        // Can NOT include the match of a subtree when its memory state
1527        // is used by any of the other subtrees
1528        (input_mem == NodeSentinel) ) {
1529#ifndef PRODUCT
1530      // Print when we exclude matching due to different memory states at input-loads
1531      if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1532        && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1533        tty->print_cr("invalid input_mem");
1534      }
1535#endif
1536      // Switch to a register-only opcode; this value must be in a register
1537      // and cannot be subsumed as part of a larger instruction.
1538      s->DFA( m->ideal_reg(), m );
1539
1540    } else {
1541      // If match tree has no control and we do, adopt it for entire tree
1542      if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1543        control = m->in(0);         // Pick up control
1544      // Else match as a normal part of the match tree.
1545      control = Label_Root(m,s,control,mem);
1546      if (C->failing()) return NULL;
1547    }
1548  }
1549
1550
1551  // Call DFA to match this node, and return
1552  svec->DFA( n->Opcode(), n );
1553
1554#ifdef ASSERT
1555  uint x;
1556  for( x = 0; x < _LAST_MACH_OPER; x++ )
1557    if( svec->valid(x) )
1558      break;
1559
1560  if (x >= _LAST_MACH_OPER) {
1561    n->dump();
1562    svec->dump();
1563    assert( false, "bad AD file" );
1564  }
1565#endif
1566  return control;
1567}
1568
1569
1570// Con nodes reduced using the same rule can share their MachNode
1571// which reduces the number of copies of a constant in the final
1572// program.  The register allocator is free to split uses later to
1573// split live ranges.
1574MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1575  if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1576
1577  // See if this Con has already been reduced using this rule.
1578  if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1579  MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1580  if (last != NULL && rule == last->rule()) {
1581    // Don't expect control change for DecodeN
1582    if (leaf->is_DecodeNarrowPtr())
1583      return last;
1584    // Get the new space root.
1585    Node* xroot = new_node(C->root());
1586    if (xroot == NULL) {
1587      // This shouldn't happen give the order of matching.
1588      return NULL;
1589    }
1590
1591    // Shared constants need to have their control be root so they
1592    // can be scheduled properly.
1593    Node* control = last->in(0);
1594    if (control != xroot) {
1595      if (control == NULL || control == C->root()) {
1596        last->set_req(0, xroot);
1597      } else {
1598        assert(false, "unexpected control");
1599        return NULL;
1600      }
1601    }
1602    return last;
1603  }
1604  return NULL;
1605}
1606
1607
1608//------------------------------ReduceInst-------------------------------------
1609// Reduce a State tree (with given Control) into a tree of MachNodes.
1610// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1611// complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1612// Each MachNode has a number of complicated MachOper operands; each
1613// MachOper also covers a further tree of Ideal Nodes.
1614
1615// The root of the Ideal match tree is always an instruction, so we enter
1616// the recursion here.  After building the MachNode, we need to recurse
1617// the tree checking for these cases:
1618// (1) Child is an instruction -
1619//     Build the instruction (recursively), add it as an edge.
1620//     Build a simple operand (register) to hold the result of the instruction.
1621// (2) Child is an interior part of an instruction -
1622//     Skip over it (do nothing)
1623// (3) Child is the start of a operand -
1624//     Build the operand, place it inside the instruction
1625//     Call ReduceOper.
1626MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1627  assert( rule >= NUM_OPERANDS, "called with operand rule" );
1628
1629  MachNode* shared_node = find_shared_node(s->_leaf, rule);
1630  if (shared_node != NULL) {
1631    return shared_node;
1632  }
1633
1634  // Build the object to represent this state & prepare for recursive calls
1635  MachNode *mach = s->MachNodeGenerator( rule, C );
1636  mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1637  assert( mach->_opnds[0] != NULL, "Missing result operand" );
1638  Node *leaf = s->_leaf;
1639  // Check for instruction or instruction chain rule
1640  if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1641    assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1642           "duplicating node that's already been matched");
1643    // Instruction
1644    mach->add_req( leaf->in(0) ); // Set initial control
1645    // Reduce interior of complex instruction
1646    ReduceInst_Interior( s, rule, mem, mach, 1 );
1647  } else {
1648    // Instruction chain rules are data-dependent on their inputs
1649    mach->add_req(0);             // Set initial control to none
1650    ReduceInst_Chain_Rule( s, rule, mem, mach );
1651  }
1652
1653  // If a Memory was used, insert a Memory edge
1654  if( mem != (Node*)1 ) {
1655    mach->ins_req(MemNode::Memory,mem);
1656#ifdef ASSERT
1657    // Verify adr type after matching memory operation
1658    const MachOper* oper = mach->memory_operand();
1659    if (oper != NULL && oper != (MachOper*)-1) {
1660      // It has a unique memory operand.  Find corresponding ideal mem node.
1661      Node* m = NULL;
1662      if (leaf->is_Mem()) {
1663        m = leaf;
1664      } else {
1665        m = _mem_node;
1666        assert(m != NULL && m->is_Mem(), "expecting memory node");
1667      }
1668      const Type* mach_at = mach->adr_type();
1669      // DecodeN node consumed by an address may have different type
1670      // then its input. Don't compare types for such case.
1671      if (m->adr_type() != mach_at &&
1672          (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1673           m->in(MemNode::Address)->is_AddP() &&
1674           m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1675           m->in(MemNode::Address)->is_AddP() &&
1676           m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1677           m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1678        mach_at = m->adr_type();
1679      }
1680      if (m->adr_type() != mach_at) {
1681        m->dump();
1682        tty->print_cr("mach:");
1683        mach->dump(1);
1684      }
1685      assert(m->adr_type() == mach_at, "matcher should not change adr type");
1686    }
1687#endif
1688  }
1689
1690  // If the _leaf is an AddP, insert the base edge
1691  if( leaf->is_AddP() )
1692    mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1693
1694  uint num_proj = _proj_list.size();
1695
1696  // Perform any 1-to-many expansions required
1697  MachNode *ex = mach->Expand(s,_proj_list, mem);
1698  if( ex != mach ) {
1699    assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1700    if( ex->in(1)->is_Con() )
1701      ex->in(1)->set_req(0, C->root());
1702    // Remove old node from the graph
1703    for( uint i=0; i<mach->req(); i++ ) {
1704      mach->set_req(i,NULL);
1705    }
1706#ifdef ASSERT
1707    _new2old_map.map(ex->_idx, s->_leaf);
1708#endif
1709  }
1710
1711  // PhaseChaitin::fixup_spills will sometimes generate spill code
1712  // via the matcher.  By the time, nodes have been wired into the CFG,
1713  // and any further nodes generated by expand rules will be left hanging
1714  // in space, and will not get emitted as output code.  Catch this.
1715  // Also, catch any new register allocation constraints ("projections")
1716  // generated belatedly during spill code generation.
1717  if (_allocation_started) {
1718    guarantee(ex == mach, "no expand rules during spill generation");
1719    guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1720  }
1721
1722  if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1723    // Record the con for sharing
1724    _shared_nodes.map(leaf->_idx, ex);
1725  }
1726
1727  return ex;
1728}
1729
1730void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1731  // 'op' is what I am expecting to receive
1732  int op = _leftOp[rule];
1733  // Operand type to catch childs result
1734  // This is what my child will give me.
1735  int opnd_class_instance = s->_rule[op];
1736  // Choose between operand class or not.
1737  // This is what I will receive.
1738  int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1739  // New rule for child.  Chase operand classes to get the actual rule.
1740  int newrule = s->_rule[catch_op];
1741
1742  if( newrule < NUM_OPERANDS ) {
1743    // Chain from operand or operand class, may be output of shared node
1744    assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1745            "Bad AD file: Instruction chain rule must chain from operand");
1746    // Insert operand into array of operands for this instruction
1747    mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1748
1749    ReduceOper( s, newrule, mem, mach );
1750  } else {
1751    // Chain from the result of an instruction
1752    assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1753    mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1754    Node *mem1 = (Node*)1;
1755    debug_only(Node *save_mem_node = _mem_node;)
1756    mach->add_req( ReduceInst(s, newrule, mem1) );
1757    debug_only(_mem_node = save_mem_node;)
1758  }
1759  return;
1760}
1761
1762
1763uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1764  if( s->_leaf->is_Load() ) {
1765    Node *mem2 = s->_leaf->in(MemNode::Memory);
1766    assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1767    debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1768    mem = mem2;
1769  }
1770  if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1771    if( mach->in(0) == NULL )
1772      mach->set_req(0, s->_leaf->in(0));
1773  }
1774
1775  // Now recursively walk the state tree & add operand list.
1776  for( uint i=0; i<2; i++ ) {   // binary tree
1777    State *newstate = s->_kids[i];
1778    if( newstate == NULL ) break;      // Might only have 1 child
1779    // 'op' is what I am expecting to receive
1780    int op;
1781    if( i == 0 ) {
1782      op = _leftOp[rule];
1783    } else {
1784      op = _rightOp[rule];
1785    }
1786    // Operand type to catch childs result
1787    // This is what my child will give me.
1788    int opnd_class_instance = newstate->_rule[op];
1789    // Choose between operand class or not.
1790    // This is what I will receive.
1791    int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1792    // New rule for child.  Chase operand classes to get the actual rule.
1793    int newrule = newstate->_rule[catch_op];
1794
1795    if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1796      // Operand/operandClass
1797      // Insert operand into array of operands for this instruction
1798      mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1799      ReduceOper( newstate, newrule, mem, mach );
1800
1801    } else {                    // Child is internal operand or new instruction
1802      if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1803        // internal operand --> call ReduceInst_Interior
1804        // Interior of complex instruction.  Do nothing but recurse.
1805        num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1806      } else {
1807        // instruction --> call build operand(  ) to catch result
1808        //             --> ReduceInst( newrule )
1809        mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1810        Node *mem1 = (Node*)1;
1811        debug_only(Node *save_mem_node = _mem_node;)
1812        mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1813        debug_only(_mem_node = save_mem_node;)
1814      }
1815    }
1816    assert( mach->_opnds[num_opnds-1], "" );
1817  }
1818  return num_opnds;
1819}
1820
1821// This routine walks the interior of possible complex operands.
1822// At each point we check our children in the match tree:
1823// (1) No children -
1824//     We are a leaf; add _leaf field as an input to the MachNode
1825// (2) Child is an internal operand -
1826//     Skip over it ( do nothing )
1827// (3) Child is an instruction -
1828//     Call ReduceInst recursively and
1829//     and instruction as an input to the MachNode
1830void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1831  assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1832  State *kid = s->_kids[0];
1833  assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1834
1835  // Leaf?  And not subsumed?
1836  if( kid == NULL && !_swallowed[rule] ) {
1837    mach->add_req( s->_leaf );  // Add leaf pointer
1838    return;                     // Bail out
1839  }
1840
1841  if( s->_leaf->is_Load() ) {
1842    assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1843    mem = s->_leaf->in(MemNode::Memory);
1844    debug_only(_mem_node = s->_leaf;)
1845  }
1846  if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1847    if( !mach->in(0) )
1848      mach->set_req(0,s->_leaf->in(0));
1849    else {
1850      assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1851    }
1852  }
1853
1854  for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1855    int newrule;
1856    if( i == 0)
1857      newrule = kid->_rule[_leftOp[rule]];
1858    else
1859      newrule = kid->_rule[_rightOp[rule]];
1860
1861    if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1862      // Internal operand; recurse but do nothing else
1863      ReduceOper( kid, newrule, mem, mach );
1864
1865    } else {                    // Child is a new instruction
1866      // Reduce the instruction, and add a direct pointer from this
1867      // machine instruction to the newly reduced one.
1868      Node *mem1 = (Node*)1;
1869      debug_only(Node *save_mem_node = _mem_node;)
1870      mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1871      debug_only(_mem_node = save_mem_node;)
1872    }
1873  }
1874}
1875
1876
1877// -------------------------------------------------------------------------
1878// Java-Java calling convention
1879// (what you use when Java calls Java)
1880
1881//------------------------------find_receiver----------------------------------
1882// For a given signature, return the OptoReg for parameter 0.
1883OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1884  VMRegPair regs;
1885  BasicType sig_bt = T_OBJECT;
1886  calling_convention(&sig_bt, &regs, 1, is_outgoing);
1887  // Return argument 0 register.  In the LP64 build pointers
1888  // take 2 registers, but the VM wants only the 'main' name.
1889  return OptoReg::as_OptoReg(regs.first());
1890}
1891
1892// A method-klass-holder may be passed in the inline_cache_reg
1893// and then expanded into the inline_cache_reg and a method_oop register
1894//   defined in ad_<arch>.cpp
1895
1896
1897//------------------------------find_shared------------------------------------
1898// Set bits if Node is shared or otherwise a root
1899void Matcher::find_shared( Node *n ) {
1900  // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1901  MStack mstack(C->unique() * 2);
1902  // Mark nodes as address_visited if they are inputs to an address expression
1903  VectorSet address_visited(Thread::current()->resource_area());
1904  mstack.push(n, Visit);     // Don't need to pre-visit root node
1905  while (mstack.is_nonempty()) {
1906    n = mstack.node();       // Leave node on stack
1907    Node_State nstate = mstack.state();
1908    uint nop = n->Opcode();
1909    if (nstate == Pre_Visit) {
1910      if (address_visited.test(n->_idx)) { // Visited in address already?
1911        // Flag as visited and shared now.
1912        set_visited(n);
1913      }
1914      if (is_visited(n)) {   // Visited already?
1915        // Node is shared and has no reason to clone.  Flag it as shared.
1916        // This causes it to match into a register for the sharing.
1917        set_shared(n);       // Flag as shared and
1918        mstack.pop();        // remove node from stack
1919        continue;
1920      }
1921      nstate = Visit; // Not already visited; so visit now
1922    }
1923    if (nstate == Visit) {
1924      mstack.set_state(Post_Visit);
1925      set_visited(n);   // Flag as visited now
1926      bool mem_op = false;
1927
1928      switch( nop ) {  // Handle some opcodes special
1929      case Op_Phi:             // Treat Phis as shared roots
1930      case Op_Parm:
1931      case Op_Proj:            // All handled specially during matching
1932      case Op_SafePointScalarObject:
1933        set_shared(n);
1934        set_dontcare(n);
1935        break;
1936      case Op_If:
1937      case Op_CountedLoopEnd:
1938        mstack.set_state(Alt_Post_Visit); // Alternative way
1939        // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1940        // with matching cmp/branch in 1 instruction.  The Matcher needs the
1941        // Bool and CmpX side-by-side, because it can only get at constants
1942        // that are at the leaves of Match trees, and the Bool's condition acts
1943        // as a constant here.
1944        mstack.push(n->in(1), Visit);         // Clone the Bool
1945        mstack.push(n->in(0), Pre_Visit);     // Visit control input
1946        continue; // while (mstack.is_nonempty())
1947      case Op_ConvI2D:         // These forms efficiently match with a prior
1948      case Op_ConvI2F:         //   Load but not a following Store
1949        if( n->in(1)->is_Load() &&        // Prior load
1950            n->outcnt() == 1 &&           // Not already shared
1951            n->unique_out()->is_Store() ) // Following store
1952          set_shared(n);       // Force it to be a root
1953        break;
1954      case Op_ReverseBytesI:
1955      case Op_ReverseBytesL:
1956        if( n->in(1)->is_Load() &&        // Prior load
1957            n->outcnt() == 1 )            // Not already shared
1958          set_shared(n);                  // Force it to be a root
1959        break;
1960      case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1961      case Op_IfFalse:
1962      case Op_IfTrue:
1963      case Op_MachProj:
1964      case Op_MergeMem:
1965      case Op_Catch:
1966      case Op_CatchProj:
1967      case Op_CProj:
1968      case Op_JumpProj:
1969      case Op_JProj:
1970      case Op_NeverBranch:
1971        set_dontcare(n);
1972        break;
1973      case Op_Jump:
1974        mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
1975        mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1976        continue;                             // while (mstack.is_nonempty())
1977      case Op_StrComp:
1978      case Op_StrEquals:
1979      case Op_StrIndexOf:
1980      case Op_AryEq:
1981      case Op_EncodeISOArray:
1982        set_shared(n); // Force result into register (it will be anyways)
1983        break;
1984      case Op_ConP: {  // Convert pointers above the centerline to NUL
1985        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1986        const TypePtr* tp = tn->type()->is_ptr();
1987        if (tp->_ptr == TypePtr::AnyNull) {
1988          tn->set_type(TypePtr::NULL_PTR);
1989        }
1990        break;
1991      }
1992      case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1993        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1994        const TypePtr* tp = tn->type()->make_ptr();
1995        if (tp && tp->_ptr == TypePtr::AnyNull) {
1996          tn->set_type(TypeNarrowOop::NULL_PTR);
1997        }
1998        break;
1999      }
2000      case Op_Binary:         // These are introduced in the Post_Visit state.
2001        ShouldNotReachHere();
2002        break;
2003      case Op_ClearArray:
2004      case Op_SafePoint:
2005        mem_op = true;
2006        break;
2007      default:
2008        if( n->is_Store() ) {
2009          // Do match stores, despite no ideal reg
2010          mem_op = true;
2011          break;
2012        }
2013        if( n->is_Mem() ) { // Loads and LoadStores
2014          mem_op = true;
2015          // Loads must be root of match tree due to prior load conflict
2016          if( C->subsume_loads() == false )
2017            set_shared(n);
2018        }
2019        // Fall into default case
2020        if( !n->ideal_reg() )
2021          set_dontcare(n);  // Unmatchable Nodes
2022      } // end_switch
2023
2024      for(int i = n->req() - 1; i >= 0; --i) { // For my children
2025        Node *m = n->in(i); // Get ith input
2026        if (m == NULL) continue;  // Ignore NULLs
2027        uint mop = m->Opcode();
2028
2029        // Must clone all producers of flags, or we will not match correctly.
2030        // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2031        // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2032        // are also there, so we may match a float-branch to int-flags and
2033        // expect the allocator to haul the flags from the int-side to the
2034        // fp-side.  No can do.
2035        if( _must_clone[mop] ) {
2036          mstack.push(m, Visit);
2037          continue; // for(int i = ...)
2038        }
2039
2040        if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2041          // Bases used in addresses must be shared but since
2042          // they are shared through a DecodeN they may appear
2043          // to have a single use so force sharing here.
2044          set_shared(m->in(AddPNode::Base)->in(1));
2045        }
2046
2047        // Clone addressing expressions as they are "free" in memory access instructions
2048        if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2049          // Some inputs for address expression are not put on stack
2050          // to avoid marking them as shared and forcing them into register
2051          // if they are used only in address expressions.
2052          // But they should be marked as shared if there are other uses
2053          // besides address expressions.
2054
2055          Node *off = m->in(AddPNode::Offset);
2056          if( off->is_Con() &&
2057              // When there are other uses besides address expressions
2058              // put it on stack and mark as shared.
2059              !is_visited(m) ) {
2060            address_visited.test_set(m->_idx); // Flag as address_visited
2061            Node *adr = m->in(AddPNode::Address);
2062
2063            // Intel, ARM and friends can handle 2 adds in addressing mode
2064            if( clone_shift_expressions && adr->is_AddP() &&
2065                // AtomicAdd is not an addressing expression.
2066                // Cheap to find it by looking for screwy base.
2067                !adr->in(AddPNode::Base)->is_top() &&
2068                // Are there other uses besides address expressions?
2069                !is_visited(adr) ) {
2070              address_visited.set(adr->_idx); // Flag as address_visited
2071              Node *shift = adr->in(AddPNode::Offset);
2072              // Check for shift by small constant as well
2073              if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2074                  shift->in(2)->get_int() <= 3 &&
2075                  // Are there other uses besides address expressions?
2076                  !is_visited(shift) ) {
2077                address_visited.set(shift->_idx); // Flag as address_visited
2078                mstack.push(shift->in(2), Visit);
2079                Node *conv = shift->in(1);
2080#ifdef _LP64
2081                // Allow Matcher to match the rule which bypass
2082                // ConvI2L operation for an array index on LP64
2083                // if the index value is positive.
2084                if( conv->Opcode() == Op_ConvI2L &&
2085                    conv->as_Type()->type()->is_long()->_lo >= 0 &&
2086                    // Are there other uses besides address expressions?
2087                    !is_visited(conv) ) {
2088                  address_visited.set(conv->_idx); // Flag as address_visited
2089                  mstack.push(conv->in(1), Pre_Visit);
2090                } else
2091#endif
2092                mstack.push(conv, Pre_Visit);
2093              } else {
2094                mstack.push(shift, Pre_Visit);
2095              }
2096              mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2097              mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2098            } else {  // Sparc, Alpha, PPC and friends
2099              mstack.push(adr, Pre_Visit);
2100            }
2101
2102            // Clone X+offset as it also folds into most addressing expressions
2103            mstack.push(off, Visit);
2104            mstack.push(m->in(AddPNode::Base), Pre_Visit);
2105            continue; // for(int i = ...)
2106          } // if( off->is_Con() )
2107        }   // if( mem_op &&
2108        mstack.push(m, Pre_Visit);
2109      }     // for(int i = ...)
2110    }
2111    else if (nstate == Alt_Post_Visit) {
2112      mstack.pop(); // Remove node from stack
2113      // We cannot remove the Cmp input from the Bool here, as the Bool may be
2114      // shared and all users of the Bool need to move the Cmp in parallel.
2115      // This leaves both the Bool and the If pointing at the Cmp.  To
2116      // prevent the Matcher from trying to Match the Cmp along both paths
2117      // BoolNode::match_edge always returns a zero.
2118
2119      // We reorder the Op_If in a pre-order manner, so we can visit without
2120      // accidentally sharing the Cmp (the Bool and the If make 2 users).
2121      n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2122    }
2123    else if (nstate == Post_Visit) {
2124      mstack.pop(); // Remove node from stack
2125
2126      // Now hack a few special opcodes
2127      switch( n->Opcode() ) {       // Handle some opcodes special
2128      case Op_StorePConditional:
2129      case Op_StoreIConditional:
2130      case Op_StoreLConditional:
2131      case Op_CompareAndSwapI:
2132      case Op_CompareAndSwapL:
2133      case Op_CompareAndSwapP:
2134      case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2135        Node *newval = n->in(MemNode::ValueIn );
2136        Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2137        Node *pair = new (C) BinaryNode( oldval, newval );
2138        n->set_req(MemNode::ValueIn,pair);
2139        n->del_req(LoadStoreConditionalNode::ExpectedIn);
2140        break;
2141      }
2142      case Op_CMoveD:              // Convert trinary to binary-tree
2143      case Op_CMoveF:
2144      case Op_CMoveI:
2145      case Op_CMoveL:
2146      case Op_CMoveN:
2147      case Op_CMoveP: {
2148        // Restructure into a binary tree for Matching.  It's possible that
2149        // we could move this code up next to the graph reshaping for IfNodes
2150        // or vice-versa, but I do not want to debug this for Ladybird.
2151        // 10/2/2000 CNC.
2152        Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
2153        n->set_req(1,pair1);
2154        Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
2155        n->set_req(2,pair2);
2156        n->del_req(3);
2157        break;
2158      }
2159      case Op_LoopLimit: {
2160        Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
2161        n->set_req(1,pair1);
2162        n->set_req(2,n->in(3));
2163        n->del_req(3);
2164        break;
2165      }
2166      case Op_StrEquals: {
2167        Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2168        n->set_req(2,pair1);
2169        n->set_req(3,n->in(4));
2170        n->del_req(4);
2171        break;
2172      }
2173      case Op_StrComp:
2174      case Op_StrIndexOf: {
2175        Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2176        n->set_req(2,pair1);
2177        Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
2178        n->set_req(3,pair2);
2179        n->del_req(5);
2180        n->del_req(4);
2181        break;
2182      }
2183      case Op_EncodeISOArray: {
2184        // Restructure into a binary tree for Matching.
2185        Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
2186        n->set_req(3, pair);
2187        n->del_req(4);
2188        break;
2189      }
2190      default:
2191        break;
2192      }
2193    }
2194    else {
2195      ShouldNotReachHere();
2196    }
2197  } // end of while (mstack.is_nonempty())
2198}
2199
2200#ifdef ASSERT
2201// machine-independent root to machine-dependent root
2202void Matcher::dump_old2new_map() {
2203  _old2new_map.dump();
2204}
2205#endif
2206
2207//---------------------------collect_null_checks-------------------------------
2208// Find null checks in the ideal graph; write a machine-specific node for
2209// it.  Used by later implicit-null-check handling.  Actually collects
2210// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2211// value being tested.
2212void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2213  Node *iff = proj->in(0);
2214  if( iff->Opcode() == Op_If ) {
2215    // During matching If's have Bool & Cmp side-by-side
2216    BoolNode *b = iff->in(1)->as_Bool();
2217    Node *cmp = iff->in(2);
2218    int opc = cmp->Opcode();
2219    if (opc != Op_CmpP && opc != Op_CmpN) return;
2220
2221    const Type* ct = cmp->in(2)->bottom_type();
2222    if (ct == TypePtr::NULL_PTR ||
2223        (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2224
2225      bool push_it = false;
2226      if( proj->Opcode() == Op_IfTrue ) {
2227        extern int all_null_checks_found;
2228        all_null_checks_found++;
2229        if( b->_test._test == BoolTest::ne ) {
2230          push_it = true;
2231        }
2232      } else {
2233        assert( proj->Opcode() == Op_IfFalse, "" );
2234        if( b->_test._test == BoolTest::eq ) {
2235          push_it = true;
2236        }
2237      }
2238      if( push_it ) {
2239        _null_check_tests.push(proj);
2240        Node* val = cmp->in(1);
2241#ifdef _LP64
2242        if (val->bottom_type()->isa_narrowoop() &&
2243            !Matcher::narrow_oop_use_complex_address()) {
2244          //
2245          // Look for DecodeN node which should be pinned to orig_proj.
2246          // On platforms (Sparc) which can not handle 2 adds
2247          // in addressing mode we have to keep a DecodeN node and
2248          // use it to do implicit NULL check in address.
2249          //
2250          // DecodeN node was pinned to non-null path (orig_proj) during
2251          // CastPP transformation in final_graph_reshaping_impl().
2252          //
2253          uint cnt = orig_proj->outcnt();
2254          for (uint i = 0; i < orig_proj->outcnt(); i++) {
2255            Node* d = orig_proj->raw_out(i);
2256            if (d->is_DecodeN() && d->in(1) == val) {
2257              val = d;
2258              val->set_req(0, NULL); // Unpin now.
2259              // Mark this as special case to distinguish from
2260              // a regular case: CmpP(DecodeN, NULL).
2261              val = (Node*)(((intptr_t)val) | 1);
2262              break;
2263            }
2264          }
2265        }
2266#endif
2267        _null_check_tests.push(val);
2268      }
2269    }
2270  }
2271}
2272
2273//---------------------------validate_null_checks------------------------------
2274// Its possible that the value being NULL checked is not the root of a match
2275// tree.  If so, I cannot use the value in an implicit null check.
2276void Matcher::validate_null_checks( ) {
2277  uint cnt = _null_check_tests.size();
2278  for( uint i=0; i < cnt; i+=2 ) {
2279    Node *test = _null_check_tests[i];
2280    Node *val = _null_check_tests[i+1];
2281    bool is_decoden = ((intptr_t)val) & 1;
2282    val = (Node*)(((intptr_t)val) & ~1);
2283    if (has_new_node(val)) {
2284      Node* new_val = new_node(val);
2285      if (is_decoden) {
2286        assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2287        // Note: new_val may have a control edge if
2288        // the original ideal node DecodeN was matched before
2289        // it was unpinned in Matcher::collect_null_checks().
2290        // Unpin the mach node and mark it.
2291        new_val->set_req(0, NULL);
2292        new_val = (Node*)(((intptr_t)new_val) | 1);
2293      }
2294      // Is a match-tree root, so replace with the matched value
2295      _null_check_tests.map(i+1, new_val);
2296    } else {
2297      // Yank from candidate list
2298      _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2299      _null_check_tests.map(i,_null_check_tests[--cnt]);
2300      _null_check_tests.pop();
2301      _null_check_tests.pop();
2302      i-=2;
2303    }
2304  }
2305}
2306
2307// Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2308// atomic instruction acting as a store_load barrier without any
2309// intervening volatile load, and thus we don't need a barrier here.
2310// We retain the Node to act as a compiler ordering barrier.
2311bool Matcher::post_store_load_barrier(const Node *vmb) {
2312  Compile *C = Compile::current();
2313  assert( vmb->is_MemBar(), "" );
2314  assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2315  const MemBarNode *mem = (const MemBarNode*)vmb;
2316
2317  // Get the Proj node, ctrl, that can be used to iterate forward
2318  Node *ctrl = NULL;
2319  DUIterator_Fast imax, i = mem->fast_outs(imax);
2320  while( true ) {
2321    ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2322    assert( ctrl->is_Proj(), "only projections here" );
2323    ProjNode *proj = (ProjNode*)ctrl;
2324    if( proj->_con == TypeFunc::Control &&
2325        !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2326      break;
2327    i++;
2328  }
2329
2330  for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2331    Node *x = ctrl->fast_out(j);
2332    int xop = x->Opcode();
2333
2334    // We don't need current barrier if we see another or a lock
2335    // before seeing volatile load.
2336    //
2337    // Op_Fastunlock previously appeared in the Op_* list below.
2338    // With the advent of 1-0 lock operations we're no longer guaranteed
2339    // that a monitor exit operation contains a serializing instruction.
2340
2341    if (xop == Op_MemBarVolatile ||
2342        xop == Op_FastLock ||
2343        xop == Op_CompareAndSwapL ||
2344        xop == Op_CompareAndSwapP ||
2345        xop == Op_CompareAndSwapN ||
2346        xop == Op_CompareAndSwapI)
2347      return true;
2348
2349    if (x->is_MemBar()) {
2350      // We must retain this membar if there is an upcoming volatile
2351      // load, which will be preceded by acquire membar.
2352      if (xop == Op_MemBarAcquire)
2353        return false;
2354      // For other kinds of barriers, check by pretending we
2355      // are them, and seeing if we can be removed.
2356      else
2357        return post_store_load_barrier((const MemBarNode*)x);
2358    }
2359
2360    // Delicate code to detect case of an upcoming fastlock block
2361    if( x->is_If() && x->req() > 1 &&
2362        !C->node_arena()->contains(x) ) { // Unmatched old-space only
2363      Node *iff = x;
2364      Node *bol = iff->in(1);
2365      // The iff might be some random subclass of If or bol might be Con-Top
2366      if (!bol->is_Bool())  return false;
2367      assert( bol->req() > 1, "" );
2368      return (bol->in(1)->Opcode() == Op_FastUnlock);
2369    }
2370    // probably not necessary to check for these
2371    if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2372      return false;
2373  }
2374  return false;
2375}
2376
2377//=============================================================================
2378//---------------------------State---------------------------------------------
2379State::State(void) {
2380#ifdef ASSERT
2381  _id = 0;
2382  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2383  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2384  //memset(_cost, -1, sizeof(_cost));
2385  //memset(_rule, -1, sizeof(_rule));
2386#endif
2387  memset(_valid, 0, sizeof(_valid));
2388}
2389
2390#ifdef ASSERT
2391State::~State() {
2392  _id = 99;
2393  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2394  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2395  memset(_cost, -3, sizeof(_cost));
2396  memset(_rule, -3, sizeof(_rule));
2397}
2398#endif
2399
2400#ifndef PRODUCT
2401//---------------------------dump----------------------------------------------
2402void State::dump() {
2403  tty->print("\n");
2404  dump(0);
2405}
2406
2407void State::dump(int depth) {
2408  for( int j = 0; j < depth; j++ )
2409    tty->print("   ");
2410  tty->print("--N: ");
2411  _leaf->dump();
2412  uint i;
2413  for( i = 0; i < _LAST_MACH_OPER; i++ )
2414    // Check for valid entry
2415    if( valid(i) ) {
2416      for( int j = 0; j < depth; j++ )
2417        tty->print("   ");
2418        assert(_cost[i] != max_juint, "cost must be a valid value");
2419        assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2420        tty->print_cr("%s  %d  %s",
2421                      ruleName[i], _cost[i], ruleName[_rule[i]] );
2422      }
2423  tty->print_cr("");
2424
2425  for( i=0; i<2; i++ )
2426    if( _kids[i] )
2427      _kids[i]->dump(depth+1);
2428}
2429#endif
2430