matcher.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/addnode.hpp"
28#include "opto/callnode.hpp"
29#include "opto/connode.hpp"
30#include "opto/idealGraphPrinter.hpp"
31#include "opto/matcher.hpp"
32#include "opto/memnode.hpp"
33#include "opto/opcodes.hpp"
34#include "opto/regmask.hpp"
35#include "opto/rootnode.hpp"
36#include "opto/runtime.hpp"
37#include "opto/type.hpp"
38#include "opto/vectornode.hpp"
39#include "runtime/atomic.hpp"
40#include "runtime/os.hpp"
41#ifdef TARGET_ARCH_MODEL_x86_32
42# include "adfiles/ad_x86_32.hpp"
43#endif
44#ifdef TARGET_ARCH_MODEL_x86_64
45# include "adfiles/ad_x86_64.hpp"
46#endif
47#ifdef TARGET_ARCH_MODEL_sparc
48# include "adfiles/ad_sparc.hpp"
49#endif
50#ifdef TARGET_ARCH_MODEL_zero
51# include "adfiles/ad_zero.hpp"
52#endif
53#ifdef TARGET_ARCH_MODEL_arm
54# include "adfiles/ad_arm.hpp"
55#endif
56#ifdef TARGET_ARCH_MODEL_ppc
57# include "adfiles/ad_ppc.hpp"
58#endif
59
60OptoReg::Name OptoReg::c_frame_pointer;
61
62const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
63RegMask Matcher::mreg2regmask[_last_Mach_Reg];
64RegMask Matcher::STACK_ONLY_mask;
65RegMask Matcher::c_frame_ptr_mask;
66const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
67const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
68
69//---------------------------Matcher-------------------------------------------
70Matcher::Matcher( Node_List &proj_list ) :
71  PhaseTransform( Phase::Ins_Select ),
72#ifdef ASSERT
73  _old2new_map(C->comp_arena()),
74  _new2old_map(C->comp_arena()),
75#endif
76  _shared_nodes(C->comp_arena()),
77  _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
78  _swallowed(swallowed),
79  _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
80  _end_inst_chain_rule(_END_INST_CHAIN_RULE),
81  _must_clone(must_clone), _proj_list(proj_list),
82  _register_save_policy(register_save_policy),
83  _c_reg_save_policy(c_reg_save_policy),
84  _register_save_type(register_save_type),
85  _ruleName(ruleName),
86  _allocation_started(false),
87  _states_arena(Chunk::medium_size),
88  _visited(&_states_arena),
89  _shared(&_states_arena),
90  _dontcare(&_states_arena) {
91  C->set_matcher(this);
92
93  idealreg2spillmask  [Op_RegI] = NULL;
94  idealreg2spillmask  [Op_RegN] = NULL;
95  idealreg2spillmask  [Op_RegL] = NULL;
96  idealreg2spillmask  [Op_RegF] = NULL;
97  idealreg2spillmask  [Op_RegD] = NULL;
98  idealreg2spillmask  [Op_RegP] = NULL;
99  idealreg2spillmask  [Op_VecS] = NULL;
100  idealreg2spillmask  [Op_VecD] = NULL;
101  idealreg2spillmask  [Op_VecX] = NULL;
102  idealreg2spillmask  [Op_VecY] = NULL;
103
104  idealreg2debugmask  [Op_RegI] = NULL;
105  idealreg2debugmask  [Op_RegN] = NULL;
106  idealreg2debugmask  [Op_RegL] = NULL;
107  idealreg2debugmask  [Op_RegF] = NULL;
108  idealreg2debugmask  [Op_RegD] = NULL;
109  idealreg2debugmask  [Op_RegP] = NULL;
110  idealreg2debugmask  [Op_VecS] = NULL;
111  idealreg2debugmask  [Op_VecD] = NULL;
112  idealreg2debugmask  [Op_VecX] = NULL;
113  idealreg2debugmask  [Op_VecY] = NULL;
114
115  idealreg2mhdebugmask[Op_RegI] = NULL;
116  idealreg2mhdebugmask[Op_RegN] = NULL;
117  idealreg2mhdebugmask[Op_RegL] = NULL;
118  idealreg2mhdebugmask[Op_RegF] = NULL;
119  idealreg2mhdebugmask[Op_RegD] = NULL;
120  idealreg2mhdebugmask[Op_RegP] = NULL;
121  idealreg2mhdebugmask[Op_VecS] = NULL;
122  idealreg2mhdebugmask[Op_VecD] = NULL;
123  idealreg2mhdebugmask[Op_VecX] = NULL;
124  idealreg2mhdebugmask[Op_VecY] = NULL;
125
126  debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
127}
128
129//------------------------------warp_incoming_stk_arg------------------------
130// This warps a VMReg into an OptoReg::Name
131OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
132  OptoReg::Name warped;
133  if( reg->is_stack() ) {  // Stack slot argument?
134    warped = OptoReg::add(_old_SP, reg->reg2stack() );
135    warped = OptoReg::add(warped, C->out_preserve_stack_slots());
136    if( warped >= _in_arg_limit )
137      _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
138    if (!RegMask::can_represent_arg(warped)) {
139      // the compiler cannot represent this method's calling sequence
140      C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
141      return OptoReg::Bad;
142    }
143    return warped;
144  }
145  return OptoReg::as_OptoReg(reg);
146}
147
148//---------------------------compute_old_SP------------------------------------
149OptoReg::Name Compile::compute_old_SP() {
150  int fixed    = fixed_slots();
151  int preserve = in_preserve_stack_slots();
152  return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
153}
154
155
156
157#ifdef ASSERT
158void Matcher::verify_new_nodes_only(Node* xroot) {
159  // Make sure that the new graph only references new nodes
160  ResourceMark rm;
161  Unique_Node_List worklist;
162  VectorSet visited(Thread::current()->resource_area());
163  worklist.push(xroot);
164  while (worklist.size() > 0) {
165    Node* n = worklist.pop();
166    visited <<= n->_idx;
167    assert(C->node_arena()->contains(n), "dead node");
168    for (uint j = 0; j < n->req(); j++) {
169      Node* in = n->in(j);
170      if (in != NULL) {
171        assert(C->node_arena()->contains(in), "dead node");
172        if (!visited.test(in->_idx)) {
173          worklist.push(in);
174        }
175      }
176    }
177  }
178}
179#endif
180
181
182//---------------------------match---------------------------------------------
183void Matcher::match( ) {
184  if( MaxLabelRootDepth < 100 ) { // Too small?
185    assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
186    MaxLabelRootDepth = 100;
187  }
188  // One-time initialization of some register masks.
189  init_spill_mask( C->root()->in(1) );
190  _return_addr_mask = return_addr();
191#ifdef _LP64
192  // Pointers take 2 slots in 64-bit land
193  _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
194#endif
195
196  // Map a Java-signature return type into return register-value
197  // machine registers for 0, 1 and 2 returned values.
198  const TypeTuple *range = C->tf()->range();
199  if( range->cnt() > TypeFunc::Parms ) { // If not a void function
200    // Get ideal-register return type
201    int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
202    // Get machine return register
203    uint sop = C->start()->Opcode();
204    OptoRegPair regs = return_value(ireg, false);
205
206    // And mask for same
207    _return_value_mask = RegMask(regs.first());
208    if( OptoReg::is_valid(regs.second()) )
209      _return_value_mask.Insert(regs.second());
210  }
211
212  // ---------------
213  // Frame Layout
214
215  // Need the method signature to determine the incoming argument types,
216  // because the types determine which registers the incoming arguments are
217  // in, and this affects the matched code.
218  const TypeTuple *domain = C->tf()->domain();
219  uint             argcnt = domain->cnt() - TypeFunc::Parms;
220  BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
221  VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
222  _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
223  _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
224  uint i;
225  for( i = 0; i<argcnt; i++ ) {
226    sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
227  }
228
229  // Pass array of ideal registers and length to USER code (from the AD file)
230  // that will convert this to an array of register numbers.
231  const StartNode *start = C->start();
232  start->calling_convention( sig_bt, vm_parm_regs, argcnt );
233#ifdef ASSERT
234  // Sanity check users' calling convention.  Real handy while trying to
235  // get the initial port correct.
236  { for (uint i = 0; i<argcnt; i++) {
237      if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
238        assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
239        _parm_regs[i].set_bad();
240        continue;
241      }
242      VMReg parm_reg = vm_parm_regs[i].first();
243      assert(parm_reg->is_valid(), "invalid arg?");
244      if (parm_reg->is_reg()) {
245        OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
246        assert(can_be_java_arg(opto_parm_reg) ||
247               C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
248               opto_parm_reg == inline_cache_reg(),
249               "parameters in register must be preserved by runtime stubs");
250      }
251      for (uint j = 0; j < i; j++) {
252        assert(parm_reg != vm_parm_regs[j].first(),
253               "calling conv. must produce distinct regs");
254      }
255    }
256  }
257#endif
258
259  // Do some initial frame layout.
260
261  // Compute the old incoming SP (may be called FP) as
262  //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
263  _old_SP = C->compute_old_SP();
264  assert( is_even(_old_SP), "must be even" );
265
266  // Compute highest incoming stack argument as
267  //   _old_SP + out_preserve_stack_slots + incoming argument size.
268  _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
269  assert( is_even(_in_arg_limit), "out_preserve must be even" );
270  for( i = 0; i < argcnt; i++ ) {
271    // Permit args to have no register
272    _calling_convention_mask[i].Clear();
273    if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
274      continue;
275    }
276    // calling_convention returns stack arguments as a count of
277    // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
278    // the allocators point of view, taking into account all the
279    // preserve area, locks & pad2.
280
281    OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
282    if( OptoReg::is_valid(reg1))
283      _calling_convention_mask[i].Insert(reg1);
284
285    OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
286    if( OptoReg::is_valid(reg2))
287      _calling_convention_mask[i].Insert(reg2);
288
289    // Saved biased stack-slot register number
290    _parm_regs[i].set_pair(reg2, reg1);
291  }
292
293  // Finally, make sure the incoming arguments take up an even number of
294  // words, in case the arguments or locals need to contain doubleword stack
295  // slots.  The rest of the system assumes that stack slot pairs (in
296  // particular, in the spill area) which look aligned will in fact be
297  // aligned relative to the stack pointer in the target machine.  Double
298  // stack slots will always be allocated aligned.
299  _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
300
301  // Compute highest outgoing stack argument as
302  //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
303  _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
304  assert( is_even(_out_arg_limit), "out_preserve must be even" );
305
306  if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
307    // the compiler cannot represent this method's calling sequence
308    C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
309  }
310
311  if (C->failing())  return;  // bailed out on incoming arg failure
312
313  // ---------------
314  // Collect roots of matcher trees.  Every node for which
315  // _shared[_idx] is cleared is guaranteed to not be shared, and thus
316  // can be a valid interior of some tree.
317  find_shared( C->root() );
318  find_shared( C->top() );
319
320  C->print_method("Before Matching");
321
322  // Create new ideal node ConP #NULL even if it does exist in old space
323  // to avoid false sharing if the corresponding mach node is not used.
324  // The corresponding mach node is only used in rare cases for derived
325  // pointers.
326  Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
327
328  // Swap out to old-space; emptying new-space
329  Arena *old = C->node_arena()->move_contents(C->old_arena());
330
331  // Save debug and profile information for nodes in old space:
332  _old_node_note_array = C->node_note_array();
333  if (_old_node_note_array != NULL) {
334    C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
335                           (C->comp_arena(), _old_node_note_array->length(),
336                            0, NULL));
337  }
338
339  // Pre-size the new_node table to avoid the need for range checks.
340  grow_new_node_array(C->unique());
341
342  // Reset node counter so MachNodes start with _idx at 0
343  int nodes = C->unique(); // save value
344  C->set_unique(0);
345
346  // Recursively match trees from old space into new space.
347  // Correct leaves of new-space Nodes; they point to old-space.
348  _visited.Clear();             // Clear visit bits for xform call
349  C->set_cached_top_node(xform( C->top(), nodes ));
350  if (!C->failing()) {
351    Node* xroot =        xform( C->root(), 1 );
352    if (xroot == NULL) {
353      Matcher::soft_match_failure();  // recursive matching process failed
354      C->record_method_not_compilable("instruction match failed");
355    } else {
356      // During matching shared constants were attached to C->root()
357      // because xroot wasn't available yet, so transfer the uses to
358      // the xroot.
359      for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
360        Node* n = C->root()->fast_out(j);
361        if (C->node_arena()->contains(n)) {
362          assert(n->in(0) == C->root(), "should be control user");
363          n->set_req(0, xroot);
364          --j;
365          --jmax;
366        }
367      }
368
369      // Generate new mach node for ConP #NULL
370      assert(new_ideal_null != NULL, "sanity");
371      _mach_null = match_tree(new_ideal_null);
372      // Don't set control, it will confuse GCM since there are no uses.
373      // The control will be set when this node is used first time
374      // in find_base_for_derived().
375      assert(_mach_null != NULL, "");
376
377      C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
378
379#ifdef ASSERT
380      verify_new_nodes_only(xroot);
381#endif
382    }
383  }
384  if (C->top() == NULL || C->root() == NULL) {
385    C->record_method_not_compilable("graph lost"); // %%% cannot happen?
386  }
387  if (C->failing()) {
388    // delete old;
389    old->destruct_contents();
390    return;
391  }
392  assert( C->top(), "" );
393  assert( C->root(), "" );
394  validate_null_checks();
395
396  // Now smoke old-space
397  NOT_DEBUG( old->destruct_contents() );
398
399  // ------------------------
400  // Set up save-on-entry registers
401  Fixup_Save_On_Entry( );
402}
403
404
405//------------------------------Fixup_Save_On_Entry----------------------------
406// The stated purpose of this routine is to take care of save-on-entry
407// registers.  However, the overall goal of the Match phase is to convert into
408// machine-specific instructions which have RegMasks to guide allocation.
409// So what this procedure really does is put a valid RegMask on each input
410// to the machine-specific variations of all Return, TailCall and Halt
411// instructions.  It also adds edgs to define the save-on-entry values (and of
412// course gives them a mask).
413
414static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
415  RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
416  // Do all the pre-defined register masks
417  rms[TypeFunc::Control  ] = RegMask::Empty;
418  rms[TypeFunc::I_O      ] = RegMask::Empty;
419  rms[TypeFunc::Memory   ] = RegMask::Empty;
420  rms[TypeFunc::ReturnAdr] = ret_adr;
421  rms[TypeFunc::FramePtr ] = fp;
422  return rms;
423}
424
425//---------------------------init_first_stack_mask-----------------------------
426// Create the initial stack mask used by values spilling to the stack.
427// Disallow any debug info in outgoing argument areas by setting the
428// initial mask accordingly.
429void Matcher::init_first_stack_mask() {
430
431  // Allocate storage for spill masks as masks for the appropriate load type.
432  RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
433
434  idealreg2spillmask  [Op_RegN] = &rms[0];
435  idealreg2spillmask  [Op_RegI] = &rms[1];
436  idealreg2spillmask  [Op_RegL] = &rms[2];
437  idealreg2spillmask  [Op_RegF] = &rms[3];
438  idealreg2spillmask  [Op_RegD] = &rms[4];
439  idealreg2spillmask  [Op_RegP] = &rms[5];
440
441  idealreg2debugmask  [Op_RegN] = &rms[6];
442  idealreg2debugmask  [Op_RegI] = &rms[7];
443  idealreg2debugmask  [Op_RegL] = &rms[8];
444  idealreg2debugmask  [Op_RegF] = &rms[9];
445  idealreg2debugmask  [Op_RegD] = &rms[10];
446  idealreg2debugmask  [Op_RegP] = &rms[11];
447
448  idealreg2mhdebugmask[Op_RegN] = &rms[12];
449  idealreg2mhdebugmask[Op_RegI] = &rms[13];
450  idealreg2mhdebugmask[Op_RegL] = &rms[14];
451  idealreg2mhdebugmask[Op_RegF] = &rms[15];
452  idealreg2mhdebugmask[Op_RegD] = &rms[16];
453  idealreg2mhdebugmask[Op_RegP] = &rms[17];
454
455  idealreg2spillmask  [Op_VecS] = &rms[18];
456  idealreg2spillmask  [Op_VecD] = &rms[19];
457  idealreg2spillmask  [Op_VecX] = &rms[20];
458  idealreg2spillmask  [Op_VecY] = &rms[21];
459
460  OptoReg::Name i;
461
462  // At first, start with the empty mask
463  C->FIRST_STACK_mask().Clear();
464
465  // Add in the incoming argument area
466  OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
467  for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
468    C->FIRST_STACK_mask().Insert(i);
469
470  // Add in all bits past the outgoing argument area
471  guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
472            "must be able to represent all call arguments in reg mask");
473  init = _out_arg_limit;
474  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
475    C->FIRST_STACK_mask().Insert(i);
476
477  // Finally, set the "infinite stack" bit.
478  C->FIRST_STACK_mask().set_AllStack();
479
480  // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
481  RegMask aligned_stack_mask = C->FIRST_STACK_mask();
482  // Keep spill masks aligned.
483  aligned_stack_mask.clear_to_pairs();
484  assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
485
486  *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
487#ifdef _LP64
488  *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
489   idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
490   idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
491#else
492   idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
493#endif
494  *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
495   idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
496  *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
497   idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
498  *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
499   idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
500  *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
501   idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
502
503  if (Matcher::vector_size_supported(T_BYTE,4)) {
504    *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
505     idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
506  }
507  if (Matcher::vector_size_supported(T_FLOAT,2)) {
508    *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
509     idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
510  }
511  if (Matcher::vector_size_supported(T_FLOAT,4)) {
512     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
513     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
514    *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
515     idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
516  }
517  if (Matcher::vector_size_supported(T_FLOAT,8)) {
518     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
519     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
520    *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
521     idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
522  }
523   if (UseFPUForSpilling) {
524     // This mask logic assumes that the spill operations are
525     // symmetric and that the registers involved are the same size.
526     // On sparc for instance we may have to use 64 bit moves will
527     // kill 2 registers when used with F0-F31.
528     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
529     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
530#ifdef _LP64
531     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
532     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
533     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
534     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
535#else
536     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
537#ifdef ARM
538     // ARM has support for moving 64bit values between a pair of
539     // integer registers and a double register
540     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
541     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
542#endif
543#endif
544   }
545
546  // Make up debug masks.  Any spill slot plus callee-save registers.
547  // Caller-save registers are assumed to be trashable by the various
548  // inline-cache fixup routines.
549  *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
550  *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
551  *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
552  *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
553  *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
554  *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
555
556  *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
557  *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
558  *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
559  *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
560  *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
561  *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
562
563  // Prevent stub compilations from attempting to reference
564  // callee-saved registers from debug info
565  bool exclude_soe = !Compile::current()->is_method_compilation();
566
567  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
568    // registers the caller has to save do not work
569    if( _register_save_policy[i] == 'C' ||
570        _register_save_policy[i] == 'A' ||
571        (_register_save_policy[i] == 'E' && exclude_soe) ) {
572      idealreg2debugmask  [Op_RegN]->Remove(i);
573      idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
574      idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
575      idealreg2debugmask  [Op_RegF]->Remove(i); // masks
576      idealreg2debugmask  [Op_RegD]->Remove(i);
577      idealreg2debugmask  [Op_RegP]->Remove(i);
578
579      idealreg2mhdebugmask[Op_RegN]->Remove(i);
580      idealreg2mhdebugmask[Op_RegI]->Remove(i);
581      idealreg2mhdebugmask[Op_RegL]->Remove(i);
582      idealreg2mhdebugmask[Op_RegF]->Remove(i);
583      idealreg2mhdebugmask[Op_RegD]->Remove(i);
584      idealreg2mhdebugmask[Op_RegP]->Remove(i);
585    }
586  }
587
588  // Subtract the register we use to save the SP for MethodHandle
589  // invokes to from the debug mask.
590  const RegMask save_mask = method_handle_invoke_SP_save_mask();
591  idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
592  idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
593  idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
594  idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
595  idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
596  idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
597}
598
599//---------------------------is_save_on_entry----------------------------------
600bool Matcher::is_save_on_entry( int reg ) {
601  return
602    _register_save_policy[reg] == 'E' ||
603    _register_save_policy[reg] == 'A' || // Save-on-entry register?
604    // Also save argument registers in the trampolining stubs
605    (C->save_argument_registers() && is_spillable_arg(reg));
606}
607
608//---------------------------Fixup_Save_On_Entry-------------------------------
609void Matcher::Fixup_Save_On_Entry( ) {
610  init_first_stack_mask();
611
612  Node *root = C->root();       // Short name for root
613  // Count number of save-on-entry registers.
614  uint soe_cnt = number_of_saved_registers();
615  uint i;
616
617  // Find the procedure Start Node
618  StartNode *start = C->start();
619  assert( start, "Expect a start node" );
620
621  // Save argument registers in the trampolining stubs
622  if( C->save_argument_registers() )
623    for( i = 0; i < _last_Mach_Reg; i++ )
624      if( is_spillable_arg(i) )
625        soe_cnt++;
626
627  // Input RegMask array shared by all Returns.
628  // The type for doubles and longs has a count of 2, but
629  // there is only 1 returned value
630  uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
631  RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
632  // Returns have 0 or 1 returned values depending on call signature.
633  // Return register is specified by return_value in the AD file.
634  if (ret_edge_cnt > TypeFunc::Parms)
635    ret_rms[TypeFunc::Parms+0] = _return_value_mask;
636
637  // Input RegMask array shared by all Rethrows.
638  uint reth_edge_cnt = TypeFunc::Parms+1;
639  RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
640  // Rethrow takes exception oop only, but in the argument 0 slot.
641  reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
642#ifdef _LP64
643  // Need two slots for ptrs in 64-bit land
644  reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
645#endif
646
647  // Input RegMask array shared by all TailCalls
648  uint tail_call_edge_cnt = TypeFunc::Parms+2;
649  RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
650
651  // Input RegMask array shared by all TailJumps
652  uint tail_jump_edge_cnt = TypeFunc::Parms+2;
653  RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
654
655  // TailCalls have 2 returned values (target & moop), whose masks come
656  // from the usual MachNode/MachOper mechanism.  Find a sample
657  // TailCall to extract these masks and put the correct masks into
658  // the tail_call_rms array.
659  for( i=1; i < root->req(); i++ ) {
660    MachReturnNode *m = root->in(i)->as_MachReturn();
661    if( m->ideal_Opcode() == Op_TailCall ) {
662      tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
663      tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
664      break;
665    }
666  }
667
668  // TailJumps have 2 returned values (target & ex_oop), whose masks come
669  // from the usual MachNode/MachOper mechanism.  Find a sample
670  // TailJump to extract these masks and put the correct masks into
671  // the tail_jump_rms array.
672  for( i=1; i < root->req(); i++ ) {
673    MachReturnNode *m = root->in(i)->as_MachReturn();
674    if( m->ideal_Opcode() == Op_TailJump ) {
675      tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
676      tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
677      break;
678    }
679  }
680
681  // Input RegMask array shared by all Halts
682  uint halt_edge_cnt = TypeFunc::Parms;
683  RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
684
685  // Capture the return input masks into each exit flavor
686  for( i=1; i < root->req(); i++ ) {
687    MachReturnNode *exit = root->in(i)->as_MachReturn();
688    switch( exit->ideal_Opcode() ) {
689      case Op_Return   : exit->_in_rms = ret_rms;  break;
690      case Op_Rethrow  : exit->_in_rms = reth_rms; break;
691      case Op_TailCall : exit->_in_rms = tail_call_rms; break;
692      case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
693      case Op_Halt     : exit->_in_rms = halt_rms; break;
694      default          : ShouldNotReachHere();
695    }
696  }
697
698  // Next unused projection number from Start.
699  int proj_cnt = C->tf()->domain()->cnt();
700
701  // Do all the save-on-entry registers.  Make projections from Start for
702  // them, and give them a use at the exit points.  To the allocator, they
703  // look like incoming register arguments.
704  for( i = 0; i < _last_Mach_Reg; i++ ) {
705    if( is_save_on_entry(i) ) {
706
707      // Add the save-on-entry to the mask array
708      ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
709      reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
710      tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
711      tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
712      // Halts need the SOE registers, but only in the stack as debug info.
713      // A just-prior uncommon-trap or deoptimization will use the SOE regs.
714      halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
715
716      Node *mproj;
717
718      // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
719      // into a single RegD.
720      if( (i&1) == 0 &&
721          _register_save_type[i  ] == Op_RegF &&
722          _register_save_type[i+1] == Op_RegF &&
723          is_save_on_entry(i+1) ) {
724        // Add other bit for double
725        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
726        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
727        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
728        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
729        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
730        mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
731        proj_cnt += 2;          // Skip 2 for doubles
732      }
733      else if( (i&1) == 1 &&    // Else check for high half of double
734               _register_save_type[i-1] == Op_RegF &&
735               _register_save_type[i  ] == Op_RegF &&
736               is_save_on_entry(i-1) ) {
737        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
738        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
739        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
740        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
741        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
742        mproj = C->top();
743      }
744      // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
745      // into a single RegL.
746      else if( (i&1) == 0 &&
747          _register_save_type[i  ] == Op_RegI &&
748          _register_save_type[i+1] == Op_RegI &&
749        is_save_on_entry(i+1) ) {
750        // Add other bit for long
751        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
752        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
753        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
754        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
755        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
756        mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
757        proj_cnt += 2;          // Skip 2 for longs
758      }
759      else if( (i&1) == 1 &&    // Else check for high half of long
760               _register_save_type[i-1] == Op_RegI &&
761               _register_save_type[i  ] == Op_RegI &&
762               is_save_on_entry(i-1) ) {
763        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
764        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
765        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
766        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
767        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
768        mproj = C->top();
769      } else {
770        // Make a projection for it off the Start
771        mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
772      }
773
774      ret_edge_cnt ++;
775      reth_edge_cnt ++;
776      tail_call_edge_cnt ++;
777      tail_jump_edge_cnt ++;
778      halt_edge_cnt ++;
779
780      // Add a use of the SOE register to all exit paths
781      for( uint j=1; j < root->req(); j++ )
782        root->in(j)->add_req(mproj);
783    } // End of if a save-on-entry register
784  } // End of for all machine registers
785}
786
787//------------------------------init_spill_mask--------------------------------
788void Matcher::init_spill_mask( Node *ret ) {
789  if( idealreg2regmask[Op_RegI] ) return; // One time only init
790
791  OptoReg::c_frame_pointer = c_frame_pointer();
792  c_frame_ptr_mask = c_frame_pointer();
793#ifdef _LP64
794  // pointers are twice as big
795  c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
796#endif
797
798  // Start at OptoReg::stack0()
799  STACK_ONLY_mask.Clear();
800  OptoReg::Name init = OptoReg::stack2reg(0);
801  // STACK_ONLY_mask is all stack bits
802  OptoReg::Name i;
803  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
804    STACK_ONLY_mask.Insert(i);
805  // Also set the "infinite stack" bit.
806  STACK_ONLY_mask.set_AllStack();
807
808  // Copy the register names over into the shared world
809  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
810    // SharedInfo::regName[i] = regName[i];
811    // Handy RegMasks per machine register
812    mreg2regmask[i].Insert(i);
813  }
814
815  // Grab the Frame Pointer
816  Node *fp  = ret->in(TypeFunc::FramePtr);
817  Node *mem = ret->in(TypeFunc::Memory);
818  const TypePtr* atp = TypePtr::BOTTOM;
819  // Share frame pointer while making spill ops
820  set_shared(fp);
821
822  // Compute generic short-offset Loads
823#ifdef _LP64
824  MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
825#endif
826  MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
827  MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
828  MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
829  MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
830  MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
831  assert(spillI != NULL && spillL != NULL && spillF != NULL &&
832         spillD != NULL && spillP != NULL, "");
833
834  // Get the ADLC notion of the right regmask, for each basic type.
835#ifdef _LP64
836  idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
837#endif
838  idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
839  idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
840  idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
841  idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
842  idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
843
844  // Vector regmasks.
845  if (Matcher::vector_size_supported(T_BYTE,4)) {
846    TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
847    MachNode *spillVectS = match_tree(new (C, 3) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
848    idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
849  }
850  if (Matcher::vector_size_supported(T_FLOAT,2)) {
851    MachNode *spillVectD = match_tree(new (C, 3) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
852    idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
853  }
854  if (Matcher::vector_size_supported(T_FLOAT,4)) {
855    MachNode *spillVectX = match_tree(new (C, 3) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
856    idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
857  }
858  if (Matcher::vector_size_supported(T_FLOAT,8)) {
859    MachNode *spillVectY = match_tree(new (C, 3) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
860    idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
861  }
862}
863
864#ifdef ASSERT
865static void match_alias_type(Compile* C, Node* n, Node* m) {
866  if (!VerifyAliases)  return;  // do not go looking for trouble by default
867  const TypePtr* nat = n->adr_type();
868  const TypePtr* mat = m->adr_type();
869  int nidx = C->get_alias_index(nat);
870  int midx = C->get_alias_index(mat);
871  // Detune the assert for cases like (AndI 0xFF (LoadB p)).
872  if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
873    for (uint i = 1; i < n->req(); i++) {
874      Node* n1 = n->in(i);
875      const TypePtr* n1at = n1->adr_type();
876      if (n1at != NULL) {
877        nat = n1at;
878        nidx = C->get_alias_index(n1at);
879      }
880    }
881  }
882  // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
883  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
884    switch (n->Opcode()) {
885    case Op_PrefetchRead:
886    case Op_PrefetchWrite:
887    case Op_PrefetchAllocation:
888      nidx = Compile::AliasIdxRaw;
889      nat = TypeRawPtr::BOTTOM;
890      break;
891    }
892  }
893  if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
894    switch (n->Opcode()) {
895    case Op_ClearArray:
896      midx = Compile::AliasIdxRaw;
897      mat = TypeRawPtr::BOTTOM;
898      break;
899    }
900  }
901  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
902    switch (n->Opcode()) {
903    case Op_Return:
904    case Op_Rethrow:
905    case Op_Halt:
906    case Op_TailCall:
907    case Op_TailJump:
908      nidx = Compile::AliasIdxBot;
909      nat = TypePtr::BOTTOM;
910      break;
911    }
912  }
913  if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
914    switch (n->Opcode()) {
915    case Op_StrComp:
916    case Op_StrEquals:
917    case Op_StrIndexOf:
918    case Op_AryEq:
919    case Op_MemBarVolatile:
920    case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
921      nidx = Compile::AliasIdxTop;
922      nat = NULL;
923      break;
924    }
925  }
926  if (nidx != midx) {
927    if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
928      tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
929      n->dump();
930      m->dump();
931    }
932    assert(C->subsume_loads() && C->must_alias(nat, midx),
933           "must not lose alias info when matching");
934  }
935}
936#endif
937
938
939//------------------------------MStack-----------------------------------------
940// State and MStack class used in xform() and find_shared() iterative methods.
941enum Node_State { Pre_Visit,  // node has to be pre-visited
942                      Visit,  // visit node
943                 Post_Visit,  // post-visit node
944             Alt_Post_Visit   // alternative post-visit path
945                };
946
947class MStack: public Node_Stack {
948  public:
949    MStack(int size) : Node_Stack(size) { }
950
951    void push(Node *n, Node_State ns) {
952      Node_Stack::push(n, (uint)ns);
953    }
954    void push(Node *n, Node_State ns, Node *parent, int indx) {
955      ++_inode_top;
956      if ((_inode_top + 1) >= _inode_max) grow();
957      _inode_top->node = parent;
958      _inode_top->indx = (uint)indx;
959      ++_inode_top;
960      _inode_top->node = n;
961      _inode_top->indx = (uint)ns;
962    }
963    Node *parent() {
964      pop();
965      return node();
966    }
967    Node_State state() const {
968      return (Node_State)index();
969    }
970    void set_state(Node_State ns) {
971      set_index((uint)ns);
972    }
973};
974
975
976//------------------------------xform------------------------------------------
977// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
978// Node in new-space.  Given a new-space Node, recursively walk his children.
979Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
980Node *Matcher::xform( Node *n, int max_stack ) {
981  // Use one stack to keep both: child's node/state and parent's node/index
982  MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
983  mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
984
985  while (mstack.is_nonempty()) {
986    n = mstack.node();          // Leave node on stack
987    Node_State nstate = mstack.state();
988    if (nstate == Visit) {
989      mstack.set_state(Post_Visit);
990      Node *oldn = n;
991      // Old-space or new-space check
992      if (!C->node_arena()->contains(n)) {
993        // Old space!
994        Node* m;
995        if (has_new_node(n)) {  // Not yet Label/Reduced
996          m = new_node(n);
997        } else {
998          if (!is_dontcare(n)) { // Matcher can match this guy
999            // Calls match special.  They match alone with no children.
1000            // Their children, the incoming arguments, match normally.
1001            m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1002            if (C->failing())  return NULL;
1003            if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1004          } else {                  // Nothing the matcher cares about
1005            if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1006              // Convert to machine-dependent projection
1007              m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1008#ifdef ASSERT
1009              _new2old_map.map(m->_idx, n);
1010#endif
1011              if (m->in(0) != NULL) // m might be top
1012                collect_null_checks(m, n);
1013            } else {                // Else just a regular 'ol guy
1014              m = n->clone();       // So just clone into new-space
1015#ifdef ASSERT
1016              _new2old_map.map(m->_idx, n);
1017#endif
1018              // Def-Use edges will be added incrementally as Uses
1019              // of this node are matched.
1020              assert(m->outcnt() == 0, "no Uses of this clone yet");
1021            }
1022          }
1023
1024          set_new_node(n, m);       // Map old to new
1025          if (_old_node_note_array != NULL) {
1026            Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1027                                                  n->_idx);
1028            C->set_node_notes_at(m->_idx, nn);
1029          }
1030          debug_only(match_alias_type(C, n, m));
1031        }
1032        n = m;    // n is now a new-space node
1033        mstack.set_node(n);
1034      }
1035
1036      // New space!
1037      if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1038
1039      int i;
1040      // Put precedence edges on stack first (match them last).
1041      for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1042        Node *m = oldn->in(i);
1043        if (m == NULL) break;
1044        // set -1 to call add_prec() instead of set_req() during Step1
1045        mstack.push(m, Visit, n, -1);
1046      }
1047
1048      // For constant debug info, I'd rather have unmatched constants.
1049      int cnt = n->req();
1050      JVMState* jvms = n->jvms();
1051      int debug_cnt = jvms ? jvms->debug_start() : cnt;
1052
1053      // Now do only debug info.  Clone constants rather than matching.
1054      // Constants are represented directly in the debug info without
1055      // the need for executable machine instructions.
1056      // Monitor boxes are also represented directly.
1057      for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1058        Node *m = n->in(i);          // Get input
1059        int op = m->Opcode();
1060        assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1061        if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
1062            op == Op_ConF || op == Op_ConD || op == Op_ConL
1063            // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1064            ) {
1065          m = m->clone();
1066#ifdef ASSERT
1067          _new2old_map.map(m->_idx, n);
1068#endif
1069          mstack.push(m, Post_Visit, n, i); // Don't need to visit
1070          mstack.push(m->in(0), Visit, m, 0);
1071        } else {
1072          mstack.push(m, Visit, n, i);
1073        }
1074      }
1075
1076      // And now walk his children, and convert his inputs to new-space.
1077      for( ; i >= 0; --i ) { // For all normal inputs do
1078        Node *m = n->in(i);  // Get input
1079        if(m != NULL)
1080          mstack.push(m, Visit, n, i);
1081      }
1082
1083    }
1084    else if (nstate == Post_Visit) {
1085      // Set xformed input
1086      Node *p = mstack.parent();
1087      if (p != NULL) { // root doesn't have parent
1088        int i = (int)mstack.index();
1089        if (i >= 0)
1090          p->set_req(i, n); // required input
1091        else if (i == -1)
1092          p->add_prec(n);   // precedence input
1093        else
1094          ShouldNotReachHere();
1095      }
1096      mstack.pop(); // remove processed node from stack
1097    }
1098    else {
1099      ShouldNotReachHere();
1100    }
1101  } // while (mstack.is_nonempty())
1102  return n; // Return new-space Node
1103}
1104
1105//------------------------------warp_outgoing_stk_arg------------------------
1106OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1107  // Convert outgoing argument location to a pre-biased stack offset
1108  if (reg->is_stack()) {
1109    OptoReg::Name warped = reg->reg2stack();
1110    // Adjust the stack slot offset to be the register number used
1111    // by the allocator.
1112    warped = OptoReg::add(begin_out_arg_area, warped);
1113    // Keep track of the largest numbered stack slot used for an arg.
1114    // Largest used slot per call-site indicates the amount of stack
1115    // that is killed by the call.
1116    if( warped >= out_arg_limit_per_call )
1117      out_arg_limit_per_call = OptoReg::add(warped,1);
1118    if (!RegMask::can_represent_arg(warped)) {
1119      C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1120      return OptoReg::Bad;
1121    }
1122    return warped;
1123  }
1124  return OptoReg::as_OptoReg(reg);
1125}
1126
1127
1128//------------------------------match_sfpt-------------------------------------
1129// Helper function to match call instructions.  Calls match special.
1130// They match alone with no children.  Their children, the incoming
1131// arguments, match normally.
1132MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1133  MachSafePointNode *msfpt = NULL;
1134  MachCallNode      *mcall = NULL;
1135  uint               cnt;
1136  // Split out case for SafePoint vs Call
1137  CallNode *call;
1138  const TypeTuple *domain;
1139  ciMethod*        method = NULL;
1140  bool             is_method_handle_invoke = false;  // for special kill effects
1141  if( sfpt->is_Call() ) {
1142    call = sfpt->as_Call();
1143    domain = call->tf()->domain();
1144    cnt = domain->cnt();
1145
1146    // Match just the call, nothing else
1147    MachNode *m = match_tree(call);
1148    if (C->failing())  return NULL;
1149    if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1150
1151    // Copy data from the Ideal SafePoint to the machine version
1152    mcall = m->as_MachCall();
1153
1154    mcall->set_tf(         call->tf());
1155    mcall->set_entry_point(call->entry_point());
1156    mcall->set_cnt(        call->cnt());
1157
1158    if( mcall->is_MachCallJava() ) {
1159      MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1160      const CallJavaNode *call_java =  call->as_CallJava();
1161      method = call_java->method();
1162      mcall_java->_method = method;
1163      mcall_java->_bci = call_java->_bci;
1164      mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1165      is_method_handle_invoke = call_java->is_method_handle_invoke();
1166      mcall_java->_method_handle_invoke = is_method_handle_invoke;
1167      if (is_method_handle_invoke) {
1168        C->set_has_method_handle_invokes(true);
1169      }
1170      if( mcall_java->is_MachCallStaticJava() )
1171        mcall_java->as_MachCallStaticJava()->_name =
1172         call_java->as_CallStaticJava()->_name;
1173      if( mcall_java->is_MachCallDynamicJava() )
1174        mcall_java->as_MachCallDynamicJava()->_vtable_index =
1175         call_java->as_CallDynamicJava()->_vtable_index;
1176    }
1177    else if( mcall->is_MachCallRuntime() ) {
1178      mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1179    }
1180    msfpt = mcall;
1181  }
1182  // This is a non-call safepoint
1183  else {
1184    call = NULL;
1185    domain = NULL;
1186    MachNode *mn = match_tree(sfpt);
1187    if (C->failing())  return NULL;
1188    msfpt = mn->as_MachSafePoint();
1189    cnt = TypeFunc::Parms;
1190  }
1191
1192  // Advertise the correct memory effects (for anti-dependence computation).
1193  msfpt->set_adr_type(sfpt->adr_type());
1194
1195  // Allocate a private array of RegMasks.  These RegMasks are not shared.
1196  msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1197  // Empty them all.
1198  memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1199
1200  // Do all the pre-defined non-Empty register masks
1201  msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1202  msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1203
1204  // Place first outgoing argument can possibly be put.
1205  OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1206  assert( is_even(begin_out_arg_area), "" );
1207  // Compute max outgoing register number per call site.
1208  OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1209  // Calls to C may hammer extra stack slots above and beyond any arguments.
1210  // These are usually backing store for register arguments for varargs.
1211  if( call != NULL && call->is_CallRuntime() )
1212    out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1213
1214
1215  // Do the normal argument list (parameters) register masks
1216  int argcnt = cnt - TypeFunc::Parms;
1217  if( argcnt > 0 ) {          // Skip it all if we have no args
1218    BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1219    VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1220    int i;
1221    for( i = 0; i < argcnt; i++ ) {
1222      sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1223    }
1224    // V-call to pick proper calling convention
1225    call->calling_convention( sig_bt, parm_regs, argcnt );
1226
1227#ifdef ASSERT
1228    // Sanity check users' calling convention.  Really handy during
1229    // the initial porting effort.  Fairly expensive otherwise.
1230    { for (int i = 0; i<argcnt; i++) {
1231      if( !parm_regs[i].first()->is_valid() &&
1232          !parm_regs[i].second()->is_valid() ) continue;
1233      VMReg reg1 = parm_regs[i].first();
1234      VMReg reg2 = parm_regs[i].second();
1235      for (int j = 0; j < i; j++) {
1236        if( !parm_regs[j].first()->is_valid() &&
1237            !parm_regs[j].second()->is_valid() ) continue;
1238        VMReg reg3 = parm_regs[j].first();
1239        VMReg reg4 = parm_regs[j].second();
1240        if( !reg1->is_valid() ) {
1241          assert( !reg2->is_valid(), "valid halvsies" );
1242        } else if( !reg3->is_valid() ) {
1243          assert( !reg4->is_valid(), "valid halvsies" );
1244        } else {
1245          assert( reg1 != reg2, "calling conv. must produce distinct regs");
1246          assert( reg1 != reg3, "calling conv. must produce distinct regs");
1247          assert( reg1 != reg4, "calling conv. must produce distinct regs");
1248          assert( reg2 != reg3, "calling conv. must produce distinct regs");
1249          assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1250          assert( reg3 != reg4, "calling conv. must produce distinct regs");
1251        }
1252      }
1253    }
1254    }
1255#endif
1256
1257    // Visit each argument.  Compute its outgoing register mask.
1258    // Return results now can have 2 bits returned.
1259    // Compute max over all outgoing arguments both per call-site
1260    // and over the entire method.
1261    for( i = 0; i < argcnt; i++ ) {
1262      // Address of incoming argument mask to fill in
1263      RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1264      if( !parm_regs[i].first()->is_valid() &&
1265          !parm_regs[i].second()->is_valid() ) {
1266        continue;               // Avoid Halves
1267      }
1268      // Grab first register, adjust stack slots and insert in mask.
1269      OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1270      if (OptoReg::is_valid(reg1))
1271        rm->Insert( reg1 );
1272      // Grab second register (if any), adjust stack slots and insert in mask.
1273      OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1274      if (OptoReg::is_valid(reg2))
1275        rm->Insert( reg2 );
1276    } // End of for all arguments
1277
1278    // Compute number of stack slots needed to restore stack in case of
1279    // Pascal-style argument popping.
1280    mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1281  }
1282
1283  if (is_method_handle_invoke) {
1284    // Kill some extra stack space in case method handles want to do
1285    // a little in-place argument insertion.
1286    // FIXME: Is this still necessary?
1287    int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1288    out_arg_limit_per_call += Method::extra_stack_entries() * regs_per_word;
1289    // Do not update mcall->_argsize because (a) the extra space is not
1290    // pushed as arguments and (b) _argsize is dead (not used anywhere).
1291  }
1292
1293  // Compute the max stack slot killed by any call.  These will not be
1294  // available for debug info, and will be used to adjust FIRST_STACK_mask
1295  // after all call sites have been visited.
1296  if( _out_arg_limit < out_arg_limit_per_call)
1297    _out_arg_limit = out_arg_limit_per_call;
1298
1299  if (mcall) {
1300    // Kill the outgoing argument area, including any non-argument holes and
1301    // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1302    // Since the max-per-method covers the max-per-call-site and debug info
1303    // is excluded on the max-per-method basis, debug info cannot land in
1304    // this killed area.
1305    uint r_cnt = mcall->tf()->range()->cnt();
1306    MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1307    if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1308      C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1309    } else {
1310      for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1311        proj->_rout.Insert(OptoReg::Name(i));
1312    }
1313    if( proj->_rout.is_NotEmpty() )
1314      _proj_list.push(proj);
1315  }
1316  // Transfer the safepoint information from the call to the mcall
1317  // Move the JVMState list
1318  msfpt->set_jvms(sfpt->jvms());
1319  for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1320    jvms->set_map(sfpt);
1321  }
1322
1323  // Debug inputs begin just after the last incoming parameter
1324  assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1325          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1326
1327  // Move the OopMap
1328  msfpt->_oop_map = sfpt->_oop_map;
1329
1330  // Registers killed by the call are set in the local scheduling pass
1331  // of Global Code Motion.
1332  return msfpt;
1333}
1334
1335//---------------------------match_tree----------------------------------------
1336// Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1337// of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1338// making GotoNodes while building the CFG and in init_spill_mask() to identify
1339// a Load's result RegMask for memoization in idealreg2regmask[]
1340MachNode *Matcher::match_tree( const Node *n ) {
1341  assert( n->Opcode() != Op_Phi, "cannot match" );
1342  assert( !n->is_block_start(), "cannot match" );
1343  // Set the mark for all locally allocated State objects.
1344  // When this call returns, the _states_arena arena will be reset
1345  // freeing all State objects.
1346  ResourceMark rm( &_states_arena );
1347
1348  LabelRootDepth = 0;
1349
1350  // StoreNodes require their Memory input to match any LoadNodes
1351  Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1352#ifdef ASSERT
1353  Node* save_mem_node = _mem_node;
1354  _mem_node = n->is_Store() ? (Node*)n : NULL;
1355#endif
1356  // State object for root node of match tree
1357  // Allocate it on _states_arena - stack allocation can cause stack overflow.
1358  State *s = new (&_states_arena) State;
1359  s->_kids[0] = NULL;
1360  s->_kids[1] = NULL;
1361  s->_leaf = (Node*)n;
1362  // Label the input tree, allocating labels from top-level arena
1363  Label_Root( n, s, n->in(0), mem );
1364  if (C->failing())  return NULL;
1365
1366  // The minimum cost match for the whole tree is found at the root State
1367  uint mincost = max_juint;
1368  uint cost = max_juint;
1369  uint i;
1370  for( i = 0; i < NUM_OPERANDS; i++ ) {
1371    if( s->valid(i) &&                // valid entry and
1372        s->_cost[i] < cost &&         // low cost and
1373        s->_rule[i] >= NUM_OPERANDS ) // not an operand
1374      cost = s->_cost[mincost=i];
1375  }
1376  if (mincost == max_juint) {
1377#ifndef PRODUCT
1378    tty->print("No matching rule for:");
1379    s->dump();
1380#endif
1381    Matcher::soft_match_failure();
1382    return NULL;
1383  }
1384  // Reduce input tree based upon the state labels to machine Nodes
1385  MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1386#ifdef ASSERT
1387  _old2new_map.map(n->_idx, m);
1388  _new2old_map.map(m->_idx, (Node*)n);
1389#endif
1390
1391  // Add any Matcher-ignored edges
1392  uint cnt = n->req();
1393  uint start = 1;
1394  if( mem != (Node*)1 ) start = MemNode::Memory+1;
1395  if( n->is_AddP() ) {
1396    assert( mem == (Node*)1, "" );
1397    start = AddPNode::Base+1;
1398  }
1399  for( i = start; i < cnt; i++ ) {
1400    if( !n->match_edge(i) ) {
1401      if( i < m->req() )
1402        m->ins_req( i, n->in(i) );
1403      else
1404        m->add_req( n->in(i) );
1405    }
1406  }
1407
1408  debug_only( _mem_node = save_mem_node; )
1409  return m;
1410}
1411
1412
1413//------------------------------match_into_reg---------------------------------
1414// Choose to either match this Node in a register or part of the current
1415// match tree.  Return true for requiring a register and false for matching
1416// as part of the current match tree.
1417static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1418
1419  const Type *t = m->bottom_type();
1420
1421  if (t->singleton()) {
1422    // Never force constants into registers.  Allow them to match as
1423    // constants or registers.  Copies of the same value will share
1424    // the same register.  See find_shared_node.
1425    return false;
1426  } else {                      // Not a constant
1427    // Stop recursion if they have different Controls.
1428    Node* m_control = m->in(0);
1429    // Control of load's memory can post-dominates load's control.
1430    // So use it since load can't float above its memory.
1431    Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1432    if (control && m_control && control != m_control && control != mem_control) {
1433
1434      // Actually, we can live with the most conservative control we
1435      // find, if it post-dominates the others.  This allows us to
1436      // pick up load/op/store trees where the load can float a little
1437      // above the store.
1438      Node *x = control;
1439      const uint max_scan = 6;  // Arbitrary scan cutoff
1440      uint j;
1441      for (j=0; j<max_scan; j++) {
1442        if (x->is_Region())     // Bail out at merge points
1443          return true;
1444        x = x->in(0);
1445        if (x == m_control)     // Does 'control' post-dominate
1446          break;                // m->in(0)?  If so, we can use it
1447        if (x == mem_control)   // Does 'control' post-dominate
1448          break;                // mem_control?  If so, we can use it
1449      }
1450      if (j == max_scan)        // No post-domination before scan end?
1451        return true;            // Then break the match tree up
1452    }
1453    if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
1454      // These are commonly used in address expressions and can
1455      // efficiently fold into them on X64 in some cases.
1456      return false;
1457    }
1458  }
1459
1460  // Not forceable cloning.  If shared, put it into a register.
1461  return shared;
1462}
1463
1464
1465//------------------------------Instruction Selection--------------------------
1466// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1467// ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1468// things the Matcher does not match (e.g., Memory), and things with different
1469// Controls (hence forced into different blocks).  We pass in the Control
1470// selected for this entire State tree.
1471
1472// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1473// Store and the Load must have identical Memories (as well as identical
1474// pointers).  Since the Matcher does not have anything for Memory (and
1475// does not handle DAGs), I have to match the Memory input myself.  If the
1476// Tree root is a Store, I require all Loads to have the identical memory.
1477Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1478  // Since Label_Root is a recursive function, its possible that we might run
1479  // out of stack space.  See bugs 6272980 & 6227033 for more info.
1480  LabelRootDepth++;
1481  if (LabelRootDepth > MaxLabelRootDepth) {
1482    C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1483    return NULL;
1484  }
1485  uint care = 0;                // Edges matcher cares about
1486  uint cnt = n->req();
1487  uint i = 0;
1488
1489  // Examine children for memory state
1490  // Can only subsume a child into your match-tree if that child's memory state
1491  // is not modified along the path to another input.
1492  // It is unsafe even if the other inputs are separate roots.
1493  Node *input_mem = NULL;
1494  for( i = 1; i < cnt; i++ ) {
1495    if( !n->match_edge(i) ) continue;
1496    Node *m = n->in(i);         // Get ith input
1497    assert( m, "expect non-null children" );
1498    if( m->is_Load() ) {
1499      if( input_mem == NULL ) {
1500        input_mem = m->in(MemNode::Memory);
1501      } else if( input_mem != m->in(MemNode::Memory) ) {
1502        input_mem = NodeSentinel;
1503      }
1504    }
1505  }
1506
1507  for( i = 1; i < cnt; i++ ){// For my children
1508    if( !n->match_edge(i) ) continue;
1509    Node *m = n->in(i);         // Get ith input
1510    // Allocate states out of a private arena
1511    State *s = new (&_states_arena) State;
1512    svec->_kids[care++] = s;
1513    assert( care <= 2, "binary only for now" );
1514
1515    // Recursively label the State tree.
1516    s->_kids[0] = NULL;
1517    s->_kids[1] = NULL;
1518    s->_leaf = m;
1519
1520    // Check for leaves of the State Tree; things that cannot be a part of
1521    // the current tree.  If it finds any, that value is matched as a
1522    // register operand.  If not, then the normal matching is used.
1523    if( match_into_reg(n, m, control, i, is_shared(m)) ||
1524        //
1525        // Stop recursion if this is LoadNode and the root of this tree is a
1526        // StoreNode and the load & store have different memories.
1527        ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1528        // Can NOT include the match of a subtree when its memory state
1529        // is used by any of the other subtrees
1530        (input_mem == NodeSentinel) ) {
1531#ifndef PRODUCT
1532      // Print when we exclude matching due to different memory states at input-loads
1533      if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1534        && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1535        tty->print_cr("invalid input_mem");
1536      }
1537#endif
1538      // Switch to a register-only opcode; this value must be in a register
1539      // and cannot be subsumed as part of a larger instruction.
1540      s->DFA( m->ideal_reg(), m );
1541
1542    } else {
1543      // If match tree has no control and we do, adopt it for entire tree
1544      if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1545        control = m->in(0);         // Pick up control
1546      // Else match as a normal part of the match tree.
1547      control = Label_Root(m,s,control,mem);
1548      if (C->failing()) return NULL;
1549    }
1550  }
1551
1552
1553  // Call DFA to match this node, and return
1554  svec->DFA( n->Opcode(), n );
1555
1556#ifdef ASSERT
1557  uint x;
1558  for( x = 0; x < _LAST_MACH_OPER; x++ )
1559    if( svec->valid(x) )
1560      break;
1561
1562  if (x >= _LAST_MACH_OPER) {
1563    n->dump();
1564    svec->dump();
1565    assert( false, "bad AD file" );
1566  }
1567#endif
1568  return control;
1569}
1570
1571
1572// Con nodes reduced using the same rule can share their MachNode
1573// which reduces the number of copies of a constant in the final
1574// program.  The register allocator is free to split uses later to
1575// split live ranges.
1576MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1577  if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1578
1579  // See if this Con has already been reduced using this rule.
1580  if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1581  MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1582  if (last != NULL && rule == last->rule()) {
1583    // Don't expect control change for DecodeN
1584    if (leaf->is_DecodeN())
1585      return last;
1586    // Get the new space root.
1587    Node* xroot = new_node(C->root());
1588    if (xroot == NULL) {
1589      // This shouldn't happen give the order of matching.
1590      return NULL;
1591    }
1592
1593    // Shared constants need to have their control be root so they
1594    // can be scheduled properly.
1595    Node* control = last->in(0);
1596    if (control != xroot) {
1597      if (control == NULL || control == C->root()) {
1598        last->set_req(0, xroot);
1599      } else {
1600        assert(false, "unexpected control");
1601        return NULL;
1602      }
1603    }
1604    return last;
1605  }
1606  return NULL;
1607}
1608
1609
1610//------------------------------ReduceInst-------------------------------------
1611// Reduce a State tree (with given Control) into a tree of MachNodes.
1612// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1613// complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1614// Each MachNode has a number of complicated MachOper operands; each
1615// MachOper also covers a further tree of Ideal Nodes.
1616
1617// The root of the Ideal match tree is always an instruction, so we enter
1618// the recursion here.  After building the MachNode, we need to recurse
1619// the tree checking for these cases:
1620// (1) Child is an instruction -
1621//     Build the instruction (recursively), add it as an edge.
1622//     Build a simple operand (register) to hold the result of the instruction.
1623// (2) Child is an interior part of an instruction -
1624//     Skip over it (do nothing)
1625// (3) Child is the start of a operand -
1626//     Build the operand, place it inside the instruction
1627//     Call ReduceOper.
1628MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1629  assert( rule >= NUM_OPERANDS, "called with operand rule" );
1630
1631  MachNode* shared_node = find_shared_node(s->_leaf, rule);
1632  if (shared_node != NULL) {
1633    return shared_node;
1634  }
1635
1636  // Build the object to represent this state & prepare for recursive calls
1637  MachNode *mach = s->MachNodeGenerator( rule, C );
1638  mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1639  assert( mach->_opnds[0] != NULL, "Missing result operand" );
1640  Node *leaf = s->_leaf;
1641  // Check for instruction or instruction chain rule
1642  if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1643    assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1644           "duplicating node that's already been matched");
1645    // Instruction
1646    mach->add_req( leaf->in(0) ); // Set initial control
1647    // Reduce interior of complex instruction
1648    ReduceInst_Interior( s, rule, mem, mach, 1 );
1649  } else {
1650    // Instruction chain rules are data-dependent on their inputs
1651    mach->add_req(0);             // Set initial control to none
1652    ReduceInst_Chain_Rule( s, rule, mem, mach );
1653  }
1654
1655  // If a Memory was used, insert a Memory edge
1656  if( mem != (Node*)1 ) {
1657    mach->ins_req(MemNode::Memory,mem);
1658#ifdef ASSERT
1659    // Verify adr type after matching memory operation
1660    const MachOper* oper = mach->memory_operand();
1661    if (oper != NULL && oper != (MachOper*)-1) {
1662      // It has a unique memory operand.  Find corresponding ideal mem node.
1663      Node* m = NULL;
1664      if (leaf->is_Mem()) {
1665        m = leaf;
1666      } else {
1667        m = _mem_node;
1668        assert(m != NULL && m->is_Mem(), "expecting memory node");
1669      }
1670      const Type* mach_at = mach->adr_type();
1671      // DecodeN node consumed by an address may have different type
1672      // then its input. Don't compare types for such case.
1673      if (m->adr_type() != mach_at &&
1674          (m->in(MemNode::Address)->is_DecodeN() ||
1675           m->in(MemNode::Address)->is_AddP() &&
1676           m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1677           m->in(MemNode::Address)->is_AddP() &&
1678           m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1679           m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1680        mach_at = m->adr_type();
1681      }
1682      if (m->adr_type() != mach_at) {
1683        m->dump();
1684        tty->print_cr("mach:");
1685        mach->dump(1);
1686      }
1687      assert(m->adr_type() == mach_at, "matcher should not change adr type");
1688    }
1689#endif
1690  }
1691
1692  // If the _leaf is an AddP, insert the base edge
1693  if( leaf->is_AddP() )
1694    mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1695
1696  uint num_proj = _proj_list.size();
1697
1698  // Perform any 1-to-many expansions required
1699  MachNode *ex = mach->Expand(s,_proj_list, mem);
1700  if( ex != mach ) {
1701    assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1702    if( ex->in(1)->is_Con() )
1703      ex->in(1)->set_req(0, C->root());
1704    // Remove old node from the graph
1705    for( uint i=0; i<mach->req(); i++ ) {
1706      mach->set_req(i,NULL);
1707    }
1708#ifdef ASSERT
1709    _new2old_map.map(ex->_idx, s->_leaf);
1710#endif
1711  }
1712
1713  // PhaseChaitin::fixup_spills will sometimes generate spill code
1714  // via the matcher.  By the time, nodes have been wired into the CFG,
1715  // and any further nodes generated by expand rules will be left hanging
1716  // in space, and will not get emitted as output code.  Catch this.
1717  // Also, catch any new register allocation constraints ("projections")
1718  // generated belatedly during spill code generation.
1719  if (_allocation_started) {
1720    guarantee(ex == mach, "no expand rules during spill generation");
1721    guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1722  }
1723
1724  if (leaf->is_Con() || leaf->is_DecodeN()) {
1725    // Record the con for sharing
1726    _shared_nodes.map(leaf->_idx, ex);
1727  }
1728
1729  return ex;
1730}
1731
1732void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1733  // 'op' is what I am expecting to receive
1734  int op = _leftOp[rule];
1735  // Operand type to catch childs result
1736  // This is what my child will give me.
1737  int opnd_class_instance = s->_rule[op];
1738  // Choose between operand class or not.
1739  // This is what I will receive.
1740  int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1741  // New rule for child.  Chase operand classes to get the actual rule.
1742  int newrule = s->_rule[catch_op];
1743
1744  if( newrule < NUM_OPERANDS ) {
1745    // Chain from operand or operand class, may be output of shared node
1746    assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1747            "Bad AD file: Instruction chain rule must chain from operand");
1748    // Insert operand into array of operands for this instruction
1749    mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1750
1751    ReduceOper( s, newrule, mem, mach );
1752  } else {
1753    // Chain from the result of an instruction
1754    assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1755    mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1756    Node *mem1 = (Node*)1;
1757    debug_only(Node *save_mem_node = _mem_node;)
1758    mach->add_req( ReduceInst(s, newrule, mem1) );
1759    debug_only(_mem_node = save_mem_node;)
1760  }
1761  return;
1762}
1763
1764
1765uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1766  if( s->_leaf->is_Load() ) {
1767    Node *mem2 = s->_leaf->in(MemNode::Memory);
1768    assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1769    debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1770    mem = mem2;
1771  }
1772  if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1773    if( mach->in(0) == NULL )
1774      mach->set_req(0, s->_leaf->in(0));
1775  }
1776
1777  // Now recursively walk the state tree & add operand list.
1778  for( uint i=0; i<2; i++ ) {   // binary tree
1779    State *newstate = s->_kids[i];
1780    if( newstate == NULL ) break;      // Might only have 1 child
1781    // 'op' is what I am expecting to receive
1782    int op;
1783    if( i == 0 ) {
1784      op = _leftOp[rule];
1785    } else {
1786      op = _rightOp[rule];
1787    }
1788    // Operand type to catch childs result
1789    // This is what my child will give me.
1790    int opnd_class_instance = newstate->_rule[op];
1791    // Choose between operand class or not.
1792    // This is what I will receive.
1793    int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1794    // New rule for child.  Chase operand classes to get the actual rule.
1795    int newrule = newstate->_rule[catch_op];
1796
1797    if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1798      // Operand/operandClass
1799      // Insert operand into array of operands for this instruction
1800      mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1801      ReduceOper( newstate, newrule, mem, mach );
1802
1803    } else {                    // Child is internal operand or new instruction
1804      if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1805        // internal operand --> call ReduceInst_Interior
1806        // Interior of complex instruction.  Do nothing but recurse.
1807        num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1808      } else {
1809        // instruction --> call build operand(  ) to catch result
1810        //             --> ReduceInst( newrule )
1811        mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1812        Node *mem1 = (Node*)1;
1813        debug_only(Node *save_mem_node = _mem_node;)
1814        mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1815        debug_only(_mem_node = save_mem_node;)
1816      }
1817    }
1818    assert( mach->_opnds[num_opnds-1], "" );
1819  }
1820  return num_opnds;
1821}
1822
1823// This routine walks the interior of possible complex operands.
1824// At each point we check our children in the match tree:
1825// (1) No children -
1826//     We are a leaf; add _leaf field as an input to the MachNode
1827// (2) Child is an internal operand -
1828//     Skip over it ( do nothing )
1829// (3) Child is an instruction -
1830//     Call ReduceInst recursively and
1831//     and instruction as an input to the MachNode
1832void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1833  assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1834  State *kid = s->_kids[0];
1835  assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1836
1837  // Leaf?  And not subsumed?
1838  if( kid == NULL && !_swallowed[rule] ) {
1839    mach->add_req( s->_leaf );  // Add leaf pointer
1840    return;                     // Bail out
1841  }
1842
1843  if( s->_leaf->is_Load() ) {
1844    assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1845    mem = s->_leaf->in(MemNode::Memory);
1846    debug_only(_mem_node = s->_leaf;)
1847  }
1848  if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1849    if( !mach->in(0) )
1850      mach->set_req(0,s->_leaf->in(0));
1851    else {
1852      assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1853    }
1854  }
1855
1856  for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1857    int newrule;
1858    if( i == 0 )
1859      newrule = kid->_rule[_leftOp[rule]];
1860    else
1861      newrule = kid->_rule[_rightOp[rule]];
1862
1863    if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1864      // Internal operand; recurse but do nothing else
1865      ReduceOper( kid, newrule, mem, mach );
1866
1867    } else {                    // Child is a new instruction
1868      // Reduce the instruction, and add a direct pointer from this
1869      // machine instruction to the newly reduced one.
1870      Node *mem1 = (Node*)1;
1871      debug_only(Node *save_mem_node = _mem_node;)
1872      mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1873      debug_only(_mem_node = save_mem_node;)
1874    }
1875  }
1876}
1877
1878
1879// -------------------------------------------------------------------------
1880// Java-Java calling convention
1881// (what you use when Java calls Java)
1882
1883//------------------------------find_receiver----------------------------------
1884// For a given signature, return the OptoReg for parameter 0.
1885OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1886  VMRegPair regs;
1887  BasicType sig_bt = T_OBJECT;
1888  calling_convention(&sig_bt, &regs, 1, is_outgoing);
1889  // Return argument 0 register.  In the LP64 build pointers
1890  // take 2 registers, but the VM wants only the 'main' name.
1891  return OptoReg::as_OptoReg(regs.first());
1892}
1893
1894// A method-klass-holder may be passed in the inline_cache_reg
1895// and then expanded into the inline_cache_reg and a method_oop register
1896//   defined in ad_<arch>.cpp
1897
1898
1899//------------------------------find_shared------------------------------------
1900// Set bits if Node is shared or otherwise a root
1901void Matcher::find_shared( Node *n ) {
1902  // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1903  MStack mstack(C->unique() * 2);
1904  // Mark nodes as address_visited if they are inputs to an address expression
1905  VectorSet address_visited(Thread::current()->resource_area());
1906  mstack.push(n, Visit);     // Don't need to pre-visit root node
1907  while (mstack.is_nonempty()) {
1908    n = mstack.node();       // Leave node on stack
1909    Node_State nstate = mstack.state();
1910    uint nop = n->Opcode();
1911    if (nstate == Pre_Visit) {
1912      if (address_visited.test(n->_idx)) { // Visited in address already?
1913        // Flag as visited and shared now.
1914        set_visited(n);
1915      }
1916      if (is_visited(n)) {   // Visited already?
1917        // Node is shared and has no reason to clone.  Flag it as shared.
1918        // This causes it to match into a register for the sharing.
1919        set_shared(n);       // Flag as shared and
1920        mstack.pop();        // remove node from stack
1921        continue;
1922      }
1923      nstate = Visit; // Not already visited; so visit now
1924    }
1925    if (nstate == Visit) {
1926      mstack.set_state(Post_Visit);
1927      set_visited(n);   // Flag as visited now
1928      bool mem_op = false;
1929
1930      switch( nop ) {  // Handle some opcodes special
1931      case Op_Phi:             // Treat Phis as shared roots
1932      case Op_Parm:
1933      case Op_Proj:            // All handled specially during matching
1934      case Op_SafePointScalarObject:
1935        set_shared(n);
1936        set_dontcare(n);
1937        break;
1938      case Op_If:
1939      case Op_CountedLoopEnd:
1940        mstack.set_state(Alt_Post_Visit); // Alternative way
1941        // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1942        // with matching cmp/branch in 1 instruction.  The Matcher needs the
1943        // Bool and CmpX side-by-side, because it can only get at constants
1944        // that are at the leaves of Match trees, and the Bool's condition acts
1945        // as a constant here.
1946        mstack.push(n->in(1), Visit);         // Clone the Bool
1947        mstack.push(n->in(0), Pre_Visit);     // Visit control input
1948        continue; // while (mstack.is_nonempty())
1949      case Op_ConvI2D:         // These forms efficiently match with a prior
1950      case Op_ConvI2F:         //   Load but not a following Store
1951        if( n->in(1)->is_Load() &&        // Prior load
1952            n->outcnt() == 1 &&           // Not already shared
1953            n->unique_out()->is_Store() ) // Following store
1954          set_shared(n);       // Force it to be a root
1955        break;
1956      case Op_ReverseBytesI:
1957      case Op_ReverseBytesL:
1958        if( n->in(1)->is_Load() &&        // Prior load
1959            n->outcnt() == 1 )            // Not already shared
1960          set_shared(n);                  // Force it to be a root
1961        break;
1962      case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1963      case Op_IfFalse:
1964      case Op_IfTrue:
1965      case Op_MachProj:
1966      case Op_MergeMem:
1967      case Op_Catch:
1968      case Op_CatchProj:
1969      case Op_CProj:
1970      case Op_JumpProj:
1971      case Op_JProj:
1972      case Op_NeverBranch:
1973        set_dontcare(n);
1974        break;
1975      case Op_Jump:
1976        mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
1977        mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1978        continue;                             // while (mstack.is_nonempty())
1979      case Op_StrComp:
1980      case Op_StrEquals:
1981      case Op_StrIndexOf:
1982      case Op_AryEq:
1983        set_shared(n); // Force result into register (it will be anyways)
1984        break;
1985      case Op_ConP: {  // Convert pointers above the centerline to NUL
1986        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1987        const TypePtr* tp = tn->type()->is_ptr();
1988        if (tp->_ptr == TypePtr::AnyNull) {
1989          tn->set_type(TypePtr::NULL_PTR);
1990        }
1991        break;
1992      }
1993      case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1994        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1995        const TypePtr* tp = tn->type()->make_ptr();
1996        if (tp && tp->_ptr == TypePtr::AnyNull) {
1997          tn->set_type(TypeNarrowOop::NULL_PTR);
1998        }
1999        break;
2000      }
2001      case Op_Binary:         // These are introduced in the Post_Visit state.
2002        ShouldNotReachHere();
2003        break;
2004      case Op_ClearArray:
2005      case Op_SafePoint:
2006        mem_op = true;
2007        break;
2008      default:
2009        if( n->is_Store() ) {
2010          // Do match stores, despite no ideal reg
2011          mem_op = true;
2012          break;
2013        }
2014        if( n->is_Mem() ) { // Loads and LoadStores
2015          mem_op = true;
2016          // Loads must be root of match tree due to prior load conflict
2017          if( C->subsume_loads() == false )
2018            set_shared(n);
2019        }
2020        // Fall into default case
2021        if( !n->ideal_reg() )
2022          set_dontcare(n);  // Unmatchable Nodes
2023      } // end_switch
2024
2025      for(int i = n->req() - 1; i >= 0; --i) { // For my children
2026        Node *m = n->in(i); // Get ith input
2027        if (m == NULL) continue;  // Ignore NULLs
2028        uint mop = m->Opcode();
2029
2030        // Must clone all producers of flags, or we will not match correctly.
2031        // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2032        // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2033        // are also there, so we may match a float-branch to int-flags and
2034        // expect the allocator to haul the flags from the int-side to the
2035        // fp-side.  No can do.
2036        if( _must_clone[mop] ) {
2037          mstack.push(m, Visit);
2038          continue; // for(int i = ...)
2039        }
2040
2041        if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
2042          // Bases used in addresses must be shared but since
2043          // they are shared through a DecodeN they may appear
2044          // to have a single use so force sharing here.
2045          set_shared(m->in(AddPNode::Base)->in(1));
2046        }
2047
2048        // Clone addressing expressions as they are "free" in memory access instructions
2049        if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2050          // Some inputs for address expression are not put on stack
2051          // to avoid marking them as shared and forcing them into register
2052          // if they are used only in address expressions.
2053          // But they should be marked as shared if there are other uses
2054          // besides address expressions.
2055
2056          Node *off = m->in(AddPNode::Offset);
2057          if( off->is_Con() &&
2058              // When there are other uses besides address expressions
2059              // put it on stack and mark as shared.
2060              !is_visited(m) ) {
2061            address_visited.test_set(m->_idx); // Flag as address_visited
2062            Node *adr = m->in(AddPNode::Address);
2063
2064            // Intel, ARM and friends can handle 2 adds in addressing mode
2065            if( clone_shift_expressions && adr->is_AddP() &&
2066                // AtomicAdd is not an addressing expression.
2067                // Cheap to find it by looking for screwy base.
2068                !adr->in(AddPNode::Base)->is_top() &&
2069                // Are there other uses besides address expressions?
2070                !is_visited(adr) ) {
2071              address_visited.set(adr->_idx); // Flag as address_visited
2072              Node *shift = adr->in(AddPNode::Offset);
2073              // Check for shift by small constant as well
2074              if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2075                  shift->in(2)->get_int() <= 3 &&
2076                  // Are there other uses besides address expressions?
2077                  !is_visited(shift) ) {
2078                address_visited.set(shift->_idx); // Flag as address_visited
2079                mstack.push(shift->in(2), Visit);
2080                Node *conv = shift->in(1);
2081#ifdef _LP64
2082                // Allow Matcher to match the rule which bypass
2083                // ConvI2L operation for an array index on LP64
2084                // if the index value is positive.
2085                if( conv->Opcode() == Op_ConvI2L &&
2086                    conv->as_Type()->type()->is_long()->_lo >= 0 &&
2087                    // Are there other uses besides address expressions?
2088                    !is_visited(conv) ) {
2089                  address_visited.set(conv->_idx); // Flag as address_visited
2090                  mstack.push(conv->in(1), Pre_Visit);
2091                } else
2092#endif
2093                mstack.push(conv, Pre_Visit);
2094              } else {
2095                mstack.push(shift, Pre_Visit);
2096              }
2097              mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2098              mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2099            } else {  // Sparc, Alpha, PPC and friends
2100              mstack.push(adr, Pre_Visit);
2101            }
2102
2103            // Clone X+offset as it also folds into most addressing expressions
2104            mstack.push(off, Visit);
2105            mstack.push(m->in(AddPNode::Base), Pre_Visit);
2106            continue; // for(int i = ...)
2107          } // if( off->is_Con() )
2108        }   // if( mem_op &&
2109        mstack.push(m, Pre_Visit);
2110      }     // for(int i = ...)
2111    }
2112    else if (nstate == Alt_Post_Visit) {
2113      mstack.pop(); // Remove node from stack
2114      // We cannot remove the Cmp input from the Bool here, as the Bool may be
2115      // shared and all users of the Bool need to move the Cmp in parallel.
2116      // This leaves both the Bool and the If pointing at the Cmp.  To
2117      // prevent the Matcher from trying to Match the Cmp along both paths
2118      // BoolNode::match_edge always returns a zero.
2119
2120      // We reorder the Op_If in a pre-order manner, so we can visit without
2121      // accidentally sharing the Cmp (the Bool and the If make 2 users).
2122      n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2123    }
2124    else if (nstate == Post_Visit) {
2125      mstack.pop(); // Remove node from stack
2126
2127      // Now hack a few special opcodes
2128      switch( n->Opcode() ) {       // Handle some opcodes special
2129      case Op_StorePConditional:
2130      case Op_StoreIConditional:
2131      case Op_StoreLConditional:
2132      case Op_CompareAndSwapI:
2133      case Op_CompareAndSwapL:
2134      case Op_CompareAndSwapP:
2135      case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2136        Node *newval = n->in(MemNode::ValueIn );
2137        Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2138        Node *pair = new (C, 3) BinaryNode( oldval, newval );
2139        n->set_req(MemNode::ValueIn,pair);
2140        n->del_req(LoadStoreNode::ExpectedIn);
2141        break;
2142      }
2143      case Op_CMoveD:              // Convert trinary to binary-tree
2144      case Op_CMoveF:
2145      case Op_CMoveI:
2146      case Op_CMoveL:
2147      case Op_CMoveN:
2148      case Op_CMoveP: {
2149        // Restructure into a binary tree for Matching.  It's possible that
2150        // we could move this code up next to the graph reshaping for IfNodes
2151        // or vice-versa, but I do not want to debug this for Ladybird.
2152        // 10/2/2000 CNC.
2153        Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2154        n->set_req(1,pair1);
2155        Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2156        n->set_req(2,pair2);
2157        n->del_req(3);
2158        break;
2159      }
2160      case Op_LoopLimit: {
2161        Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(2));
2162        n->set_req(1,pair1);
2163        n->set_req(2,n->in(3));
2164        n->del_req(3);
2165        break;
2166      }
2167      case Op_StrEquals: {
2168        Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2169        n->set_req(2,pair1);
2170        n->set_req(3,n->in(4));
2171        n->del_req(4);
2172        break;
2173      }
2174      case Op_StrComp:
2175      case Op_StrIndexOf: {
2176        Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2177        n->set_req(2,pair1);
2178        Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
2179        n->set_req(3,pair2);
2180        n->del_req(5);
2181        n->del_req(4);
2182        break;
2183      }
2184      default:
2185        break;
2186      }
2187    }
2188    else {
2189      ShouldNotReachHere();
2190    }
2191  } // end of while (mstack.is_nonempty())
2192}
2193
2194#ifdef ASSERT
2195// machine-independent root to machine-dependent root
2196void Matcher::dump_old2new_map() {
2197  _old2new_map.dump();
2198}
2199#endif
2200
2201//---------------------------collect_null_checks-------------------------------
2202// Find null checks in the ideal graph; write a machine-specific node for
2203// it.  Used by later implicit-null-check handling.  Actually collects
2204// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2205// value being tested.
2206void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2207  Node *iff = proj->in(0);
2208  if( iff->Opcode() == Op_If ) {
2209    // During matching If's have Bool & Cmp side-by-side
2210    BoolNode *b = iff->in(1)->as_Bool();
2211    Node *cmp = iff->in(2);
2212    int opc = cmp->Opcode();
2213    if (opc != Op_CmpP && opc != Op_CmpN) return;
2214
2215    const Type* ct = cmp->in(2)->bottom_type();
2216    if (ct == TypePtr::NULL_PTR ||
2217        (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2218
2219      bool push_it = false;
2220      if( proj->Opcode() == Op_IfTrue ) {
2221        extern int all_null_checks_found;
2222        all_null_checks_found++;
2223        if( b->_test._test == BoolTest::ne ) {
2224          push_it = true;
2225        }
2226      } else {
2227        assert( proj->Opcode() == Op_IfFalse, "" );
2228        if( b->_test._test == BoolTest::eq ) {
2229          push_it = true;
2230        }
2231      }
2232      if( push_it ) {
2233        _null_check_tests.push(proj);
2234        Node* val = cmp->in(1);
2235#ifdef _LP64
2236        if (val->bottom_type()->isa_narrowoop() &&
2237            !Matcher::narrow_oop_use_complex_address()) {
2238          //
2239          // Look for DecodeN node which should be pinned to orig_proj.
2240          // On platforms (Sparc) which can not handle 2 adds
2241          // in addressing mode we have to keep a DecodeN node and
2242          // use it to do implicit NULL check in address.
2243          //
2244          // DecodeN node was pinned to non-null path (orig_proj) during
2245          // CastPP transformation in final_graph_reshaping_impl().
2246          //
2247          uint cnt = orig_proj->outcnt();
2248          for (uint i = 0; i < orig_proj->outcnt(); i++) {
2249            Node* d = orig_proj->raw_out(i);
2250            if (d->is_DecodeN() && d->in(1) == val) {
2251              val = d;
2252              val->set_req(0, NULL); // Unpin now.
2253              // Mark this as special case to distinguish from
2254              // a regular case: CmpP(DecodeN, NULL).
2255              val = (Node*)(((intptr_t)val) | 1);
2256              break;
2257            }
2258          }
2259        }
2260#endif
2261        _null_check_tests.push(val);
2262      }
2263    }
2264  }
2265}
2266
2267//---------------------------validate_null_checks------------------------------
2268// Its possible that the value being NULL checked is not the root of a match
2269// tree.  If so, I cannot use the value in an implicit null check.
2270void Matcher::validate_null_checks( ) {
2271  uint cnt = _null_check_tests.size();
2272  for( uint i=0; i < cnt; i+=2 ) {
2273    Node *test = _null_check_tests[i];
2274    Node *val = _null_check_tests[i+1];
2275    bool is_decoden = ((intptr_t)val) & 1;
2276    val = (Node*)(((intptr_t)val) & ~1);
2277    if (has_new_node(val)) {
2278      Node* new_val = new_node(val);
2279      if (is_decoden) {
2280        assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
2281        // Note: new_val may have a control edge if
2282        // the original ideal node DecodeN was matched before
2283        // it was unpinned in Matcher::collect_null_checks().
2284        // Unpin the mach node and mark it.
2285        new_val->set_req(0, NULL);
2286        new_val = (Node*)(((intptr_t)new_val) | 1);
2287      }
2288      // Is a match-tree root, so replace with the matched value
2289      _null_check_tests.map(i+1, new_val);
2290    } else {
2291      // Yank from candidate list
2292      _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2293      _null_check_tests.map(i,_null_check_tests[--cnt]);
2294      _null_check_tests.pop();
2295      _null_check_tests.pop();
2296      i-=2;
2297    }
2298  }
2299}
2300
2301// Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2302// atomic instruction acting as a store_load barrier without any
2303// intervening volatile load, and thus we don't need a barrier here.
2304// We retain the Node to act as a compiler ordering barrier.
2305bool Matcher::post_store_load_barrier(const Node *vmb) {
2306  Compile *C = Compile::current();
2307  assert( vmb->is_MemBar(), "" );
2308  assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2309  const MemBarNode *mem = (const MemBarNode*)vmb;
2310
2311  // Get the Proj node, ctrl, that can be used to iterate forward
2312  Node *ctrl = NULL;
2313  DUIterator_Fast imax, i = mem->fast_outs(imax);
2314  while( true ) {
2315    ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2316    assert( ctrl->is_Proj(), "only projections here" );
2317    ProjNode *proj = (ProjNode*)ctrl;
2318    if( proj->_con == TypeFunc::Control &&
2319        !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2320      break;
2321    i++;
2322  }
2323
2324  for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2325    Node *x = ctrl->fast_out(j);
2326    int xop = x->Opcode();
2327
2328    // We don't need current barrier if we see another or a lock
2329    // before seeing volatile load.
2330    //
2331    // Op_Fastunlock previously appeared in the Op_* list below.
2332    // With the advent of 1-0 lock operations we're no longer guaranteed
2333    // that a monitor exit operation contains a serializing instruction.
2334
2335    if (xop == Op_MemBarVolatile ||
2336        xop == Op_FastLock ||
2337        xop == Op_CompareAndSwapL ||
2338        xop == Op_CompareAndSwapP ||
2339        xop == Op_CompareAndSwapN ||
2340        xop == Op_CompareAndSwapI)
2341      return true;
2342
2343    if (x->is_MemBar()) {
2344      // We must retain this membar if there is an upcoming volatile
2345      // load, which will be preceded by acquire membar.
2346      if (xop == Op_MemBarAcquire)
2347        return false;
2348      // For other kinds of barriers, check by pretending we
2349      // are them, and seeing if we can be removed.
2350      else
2351        return post_store_load_barrier((const MemBarNode*)x);
2352    }
2353
2354    // Delicate code to detect case of an upcoming fastlock block
2355    if( x->is_If() && x->req() > 1 &&
2356        !C->node_arena()->contains(x) ) { // Unmatched old-space only
2357      Node *iff = x;
2358      Node *bol = iff->in(1);
2359      // The iff might be some random subclass of If or bol might be Con-Top
2360      if (!bol->is_Bool())  return false;
2361      assert( bol->req() > 1, "" );
2362      return (bol->in(1)->Opcode() == Op_FastUnlock);
2363    }
2364    // probably not necessary to check for these
2365    if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2366      return false;
2367  }
2368  return false;
2369}
2370
2371//=============================================================================
2372//---------------------------State---------------------------------------------
2373State::State(void) {
2374#ifdef ASSERT
2375  _id = 0;
2376  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2377  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2378  //memset(_cost, -1, sizeof(_cost));
2379  //memset(_rule, -1, sizeof(_rule));
2380#endif
2381  memset(_valid, 0, sizeof(_valid));
2382}
2383
2384#ifdef ASSERT
2385State::~State() {
2386  _id = 99;
2387  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2388  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2389  memset(_cost, -3, sizeof(_cost));
2390  memset(_rule, -3, sizeof(_rule));
2391}
2392#endif
2393
2394#ifndef PRODUCT
2395//---------------------------dump----------------------------------------------
2396void State::dump() {
2397  tty->print("\n");
2398  dump(0);
2399}
2400
2401void State::dump(int depth) {
2402  for( int j = 0; j < depth; j++ )
2403    tty->print("   ");
2404  tty->print("--N: ");
2405  _leaf->dump();
2406  uint i;
2407  for( i = 0; i < _LAST_MACH_OPER; i++ )
2408    // Check for valid entry
2409    if( valid(i) ) {
2410      for( int j = 0; j < depth; j++ )
2411        tty->print("   ");
2412        assert(_cost[i] != max_juint, "cost must be a valid value");
2413        assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2414        tty->print_cr("%s  %d  %s",
2415                      ruleName[i], _cost[i], ruleName[_rule[i]] );
2416      }
2417  tty->print_cr("");
2418
2419  for( i=0; i<2; i++ )
2420    if( _kids[i] )
2421      _kids[i]->dump(depth+1);
2422}
2423#endif
2424