matcher.cpp revision 13244:ebbb31f0437e
10SN/A/*
21169Sjoehw * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
30SN/A * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
40SN/A *
5798Sjoehw * This code is free software; you can redistribute it and/or modify it
6798Sjoehw * under the terms of the GNU General Public License version 2 only, as
7798Sjoehw * published by the Free Software Foundation.
8798Sjoehw *
9798Sjoehw * This code is distributed in the hope that it will be useful, but WITHOUT
10798Sjoehw * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
110SN/A * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
120SN/A * version 2 for more details (a copy is included in the LICENSE file that
130SN/A * accompanied this code).
140SN/A *
150SN/A * You should have received a copy of the GNU General Public License version
160SN/A * 2 along with this work; if not, write to the Free Software Foundation,
170SN/A * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
180SN/A *
190SN/A * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
200SN/A * or visit www.oracle.com if you need additional information or have any
210SN/A * questions.
220SN/A *
230SN/A */
240SN/A
250SN/A#include "precompiled.hpp"
260SN/A#include "memory/allocation.inline.hpp"
270SN/A#include "memory/resourceArea.hpp"
280SN/A#include "opto/ad.hpp"
290SN/A#include "opto/addnode.hpp"
300SN/A#include "opto/callnode.hpp"
310SN/A#include "opto/idealGraphPrinter.hpp"
320SN/A#include "opto/matcher.hpp"
330SN/A#include "opto/memnode.hpp"
340SN/A#include "opto/movenode.hpp"
350SN/A#include "opto/opcodes.hpp"
360SN/A#include "opto/regmask.hpp"
370SN/A#include "opto/rootnode.hpp"
380SN/A#include "opto/runtime.hpp"
390SN/A#include "opto/type.hpp"
400SN/A#include "opto/vectornode.hpp"
410SN/A#include "runtime/os.hpp"
420SN/A#include "runtime/sharedRuntime.hpp"
430SN/A
440SN/AOptoReg::Name OptoReg::c_frame_pointer;
45798Sjoehw
460SN/Aconst RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
470SN/ARegMask Matcher::mreg2regmask[_last_Mach_Reg];
480SN/ARegMask Matcher::STACK_ONLY_mask;
490SN/ARegMask Matcher::c_frame_ptr_mask;
500SN/Aconst uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
510SN/Aconst uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
520SN/A
530SN/A//---------------------------Matcher-------------------------------------------
540SN/AMatcher::Matcher()
550SN/A: PhaseTransform( Phase::Ins_Select ),
560SN/A#ifdef ASSERT
570SN/A  _old2new_map(C->comp_arena()),
580SN/A  _new2old_map(C->comp_arena()),
590SN/A#endif
600SN/A  _shared_nodes(C->comp_arena()),
610SN/A  _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
620SN/A  _swallowed(swallowed),
630SN/A  _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
640SN/A  _end_inst_chain_rule(_END_INST_CHAIN_RULE),
650SN/A  _must_clone(must_clone),
660SN/A  _register_save_policy(register_save_policy),
670SN/A  _c_reg_save_policy(c_reg_save_policy),
680SN/A  _register_save_type(register_save_type),
690SN/A  _ruleName(ruleName),
700SN/A  _allocation_started(false),
710SN/A  _states_arena(Chunk::medium_size),
720SN/A  _visited(&_states_arena),
730SN/A  _shared(&_states_arena),
740SN/A  _dontcare(&_states_arena) {
750SN/A  C->set_matcher(this);
760SN/A
770SN/A  idealreg2spillmask  [Op_RegI] = NULL;
780SN/A  idealreg2spillmask  [Op_RegN] = NULL;
790SN/A  idealreg2spillmask  [Op_RegL] = NULL;
800SN/A  idealreg2spillmask  [Op_RegF] = NULL;
810SN/A  idealreg2spillmask  [Op_RegD] = NULL;
820SN/A  idealreg2spillmask  [Op_RegP] = NULL;
830SN/A  idealreg2spillmask  [Op_VecS] = NULL;
840SN/A  idealreg2spillmask  [Op_VecD] = NULL;
850SN/A  idealreg2spillmask  [Op_VecX] = NULL;
860SN/A  idealreg2spillmask  [Op_VecY] = NULL;
870SN/A  idealreg2spillmask  [Op_VecZ] = NULL;
880SN/A  idealreg2spillmask  [Op_RegFlags] = NULL;
890SN/A
900SN/A  idealreg2debugmask  [Op_RegI] = NULL;
910SN/A  idealreg2debugmask  [Op_RegN] = NULL;
920SN/A  idealreg2debugmask  [Op_RegL] = NULL;
930SN/A  idealreg2debugmask  [Op_RegF] = NULL;
940SN/A  idealreg2debugmask  [Op_RegD] = NULL;
951169Sjoehw  idealreg2debugmask  [Op_RegP] = NULL;
960SN/A  idealreg2debugmask  [Op_VecS] = NULL;
970SN/A  idealreg2debugmask  [Op_VecD] = NULL;
980SN/A  idealreg2debugmask  [Op_VecX] = NULL;
990SN/A  idealreg2debugmask  [Op_VecY] = NULL;
1000SN/A  idealreg2debugmask  [Op_VecZ] = NULL;
1010SN/A  idealreg2debugmask  [Op_RegFlags] = NULL;
1020SN/A
1030SN/A  idealreg2mhdebugmask[Op_RegI] = NULL;
1040SN/A  idealreg2mhdebugmask[Op_RegN] = NULL;
1050SN/A  idealreg2mhdebugmask[Op_RegL] = NULL;
1060SN/A  idealreg2mhdebugmask[Op_RegF] = NULL;
1070SN/A  idealreg2mhdebugmask[Op_RegD] = NULL;
1080SN/A  idealreg2mhdebugmask[Op_RegP] = NULL;
1090SN/A  idealreg2mhdebugmask[Op_VecS] = NULL;
1100SN/A  idealreg2mhdebugmask[Op_VecD] = NULL;
1110SN/A  idealreg2mhdebugmask[Op_VecX] = NULL;
1120SN/A  idealreg2mhdebugmask[Op_VecY] = NULL;
1130SN/A  idealreg2mhdebugmask[Op_VecZ] = NULL;
1140SN/A  idealreg2mhdebugmask[Op_RegFlags] = NULL;
1150SN/A
1160SN/A  debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
1170SN/A}
1180SN/A
1190SN/A//------------------------------warp_incoming_stk_arg------------------------
1200SN/A// This warps a VMReg into an OptoReg::Name
1210SN/AOptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
1220SN/A  OptoReg::Name warped;
1230SN/A  if( reg->is_stack() ) {  // Stack slot argument?
1240SN/A    warped = OptoReg::add(_old_SP, reg->reg2stack() );
1250SN/A    warped = OptoReg::add(warped, C->out_preserve_stack_slots());
1260SN/A    if( warped >= _in_arg_limit )
1270SN/A      _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
1280SN/A    if (!RegMask::can_represent_arg(warped)) {
1290SN/A      // the compiler cannot represent this method's calling sequence
1300SN/A      C->record_method_not_compilable("unsupported incoming calling sequence");
1310SN/A      return OptoReg::Bad;
1320SN/A    }
1330SN/A    return warped;
1340SN/A  }
1350SN/A  return OptoReg::as_OptoReg(reg);
1360SN/A}
1370SN/A
1380SN/A//---------------------------compute_old_SP------------------------------------
1390SN/AOptoReg::Name Compile::compute_old_SP() {
1400SN/A  int fixed    = fixed_slots();
1410SN/A  int preserve = in_preserve_stack_slots();
1420SN/A  return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
1430SN/A}
1440SN/A
1450SN/A
1460SN/A
1470SN/A#ifdef ASSERT
1480SN/Avoid Matcher::verify_new_nodes_only(Node* xroot) {
1490SN/A  // Make sure that the new graph only references new nodes
1500SN/A  ResourceMark rm;
1510SN/A  Unique_Node_List worklist;
1520SN/A  VectorSet visited(Thread::current()->resource_area());
1530SN/A  worklist.push(xroot);
1540SN/A  while (worklist.size() > 0) {
1550SN/A    Node* n = worklist.pop();
1560SN/A    visited <<= n->_idx;
1570SN/A    assert(C->node_arena()->contains(n), "dead node");
1580SN/A    for (uint j = 0; j < n->req(); j++) {
1590SN/A      Node* in = n->in(j);
1600SN/A      if (in != NULL) {
1610SN/A        assert(C->node_arena()->contains(in), "dead node");
1620SN/A        if (!visited.test(in->_idx)) {
1630SN/A          worklist.push(in);
1640SN/A        }
1650SN/A      }
1660SN/A    }
1670SN/A  }
1680SN/A}
1690SN/A#endif
1700SN/A
1710SN/A
1720SN/A//---------------------------match---------------------------------------------
1730SN/Avoid Matcher::match( ) {
1740SN/A  if( MaxLabelRootDepth < 100 ) { // Too small?
1750SN/A    assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
1760SN/A    MaxLabelRootDepth = 100;
1770SN/A  }
1780SN/A  // One-time initialization of some register masks.
1790SN/A  init_spill_mask( C->root()->in(1) );
1800SN/A  _return_addr_mask = return_addr();
1810SN/A#ifdef _LP64
1820SN/A  // Pointers take 2 slots in 64-bit land
1830SN/A  _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
1840SN/A#endif
1850SN/A
1860SN/A  // Map a Java-signature return type into return register-value
1870SN/A  // machine registers for 0, 1 and 2 returned values.
1880SN/A  const TypeTuple *range = C->tf()->range();
1890SN/A  if( range->cnt() > TypeFunc::Parms ) { // If not a void function
1900SN/A    // Get ideal-register return type
1910SN/A    uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
1920SN/A    // Get machine return register
1930SN/A    uint sop = C->start()->Opcode();
1940SN/A    OptoRegPair regs = return_value(ireg, false);
1950SN/A
1960SN/A    // And mask for same
1970SN/A    _return_value_mask = RegMask(regs.first());
1980SN/A    if( OptoReg::is_valid(regs.second()) )
1990SN/A      _return_value_mask.Insert(regs.second());
2000SN/A  }
2010SN/A
2020SN/A  // ---------------
2030SN/A  // Frame Layout
2040SN/A
2050SN/A  // Need the method signature to determine the incoming argument types,
2060SN/A  // because the types determine which registers the incoming arguments are
2070SN/A  // in, and this affects the matched code.
2080SN/A  const TypeTuple *domain = C->tf()->domain();
2090SN/A  uint             argcnt = domain->cnt() - TypeFunc::Parms;
2100SN/A  BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
2110SN/A  VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
2120SN/A  _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
2130SN/A  _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
2140SN/A  uint i;
2150SN/A  for( i = 0; i<argcnt; i++ ) {
2160SN/A    sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
2170SN/A  }
2180SN/A
2190SN/A  // Pass array of ideal registers and length to USER code (from the AD file)
2200SN/A  // that will convert this to an array of register numbers.
2210SN/A  const StartNode *start = C->start();
2220SN/A  start->calling_convention( sig_bt, vm_parm_regs, argcnt );
2230SN/A#ifdef ASSERT
2240SN/A  // Sanity check users' calling convention.  Real handy while trying to
2250SN/A  // get the initial port correct.
2260SN/A  { for (uint i = 0; i<argcnt; i++) {
2270SN/A      if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
2280SN/A        assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
2290SN/A        _parm_regs[i].set_bad();
2300SN/A        continue;
2310SN/A      }
2320SN/A      VMReg parm_reg = vm_parm_regs[i].first();
2330SN/A      assert(parm_reg->is_valid(), "invalid arg?");
2340SN/A      if (parm_reg->is_reg()) {
2350SN/A        OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
2360SN/A        assert(can_be_java_arg(opto_parm_reg) ||
2370SN/A               C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
2380SN/A               opto_parm_reg == inline_cache_reg(),
2390SN/A               "parameters in register must be preserved by runtime stubs");
2400SN/A      }
2410SN/A      for (uint j = 0; j < i; j++) {
2420SN/A        assert(parm_reg != vm_parm_regs[j].first(),
2430SN/A               "calling conv. must produce distinct regs");
2440SN/A      }
2450SN/A    }
2460SN/A  }
2470SN/A#endif
2480SN/A
2490SN/A  // Do some initial frame layout.
2500SN/A
2510SN/A  // Compute the old incoming SP (may be called FP) as
2520SN/A  //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
2530SN/A  _old_SP = C->compute_old_SP();
2540SN/A  assert( is_even(_old_SP), "must be even" );
2550SN/A
2560SN/A  // Compute highest incoming stack argument as
2570SN/A  //   _old_SP + out_preserve_stack_slots + incoming argument size.
2580SN/A  _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
2590SN/A  assert( is_even(_in_arg_limit), "out_preserve must be even" );
2600SN/A  for( i = 0; i < argcnt; i++ ) {
2610SN/A    // Permit args to have no register
2620SN/A    _calling_convention_mask[i].Clear();
2630SN/A    if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
2640SN/A      continue;
2650SN/A    }
2660SN/A    // calling_convention returns stack arguments as a count of
2670SN/A    // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
2680SN/A    // the allocators point of view, taking into account all the
2690SN/A    // preserve area, locks & pad2.
2700SN/A
2710SN/A    OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
2720SN/A    if( OptoReg::is_valid(reg1))
2730SN/A      _calling_convention_mask[i].Insert(reg1);
2740SN/A
2750SN/A    OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
2760SN/A    if( OptoReg::is_valid(reg2))
2770SN/A      _calling_convention_mask[i].Insert(reg2);
2780SN/A
2790SN/A    // Saved biased stack-slot register number
2800SN/A    _parm_regs[i].set_pair(reg2, reg1);
2810SN/A  }
2820SN/A
2830SN/A  // Finally, make sure the incoming arguments take up an even number of
2840SN/A  // words, in case the arguments or locals need to contain doubleword stack
2850SN/A  // slots.  The rest of the system assumes that stack slot pairs (in
2860SN/A  // particular, in the spill area) which look aligned will in fact be
2870SN/A  // aligned relative to the stack pointer in the target machine.  Double
2880SN/A  // stack slots will always be allocated aligned.
2890SN/A  _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
2900SN/A
2910SN/A  // Compute highest outgoing stack argument as
2920SN/A  //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
2930SN/A  _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
2940SN/A  assert( is_even(_out_arg_limit), "out_preserve must be even" );
2950SN/A
2960SN/A  if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
2970SN/A    // the compiler cannot represent this method's calling sequence
2980SN/A    C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
2990SN/A  }
3000SN/A
3010SN/A  if (C->failing())  return;  // bailed out on incoming arg failure
3020SN/A
3030SN/A  // ---------------
3040SN/A  // Collect roots of matcher trees.  Every node for which
3050SN/A  // _shared[_idx] is cleared is guaranteed to not be shared, and thus
3060SN/A  // can be a valid interior of some tree.
3070SN/A  find_shared( C->root() );
3080SN/A  find_shared( C->top() );
3090SN/A
3100SN/A  C->print_method(PHASE_BEFORE_MATCHING);
3110SN/A
3120SN/A  // Create new ideal node ConP #NULL even if it does exist in old space
3130SN/A  // to avoid false sharing if the corresponding mach node is not used.
3140SN/A  // The corresponding mach node is only used in rare cases for derived
3150SN/A  // pointers.
3160SN/A  Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
3170SN/A
3180SN/A  // Swap out to old-space; emptying new-space
3190SN/A  Arena *old = C->node_arena()->move_contents(C->old_arena());
3200SN/A
3210SN/A  // Save debug and profile information for nodes in old space:
3220SN/A  _old_node_note_array = C->node_note_array();
323798Sjoehw  if (_old_node_note_array != NULL) {
3240SN/A    C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
325798Sjoehw                           (C->comp_arena(), _old_node_note_array->length(),
326798Sjoehw                            0, NULL));
3270SN/A  }
3280SN/A
3290SN/A  // Pre-size the new_node table to avoid the need for range checks.
3300SN/A  grow_new_node_array(C->unique());
3310SN/A
3320SN/A  // Reset node counter so MachNodes start with _idx at 0
3330SN/A  int live_nodes = C->live_nodes();
3340SN/A  C->set_unique(0);
3350SN/A  C->reset_dead_node_list();
3360SN/A
3370SN/A  // Recursively match trees from old space into new space.
3380SN/A  // Correct leaves of new-space Nodes; they point to old-space.
3390SN/A  _visited.Clear();             // Clear visit bits for xform call
3400SN/A  C->set_cached_top_node(xform( C->top(), live_nodes ));
3410SN/A  if (!C->failing()) {
3420SN/A    Node* xroot =        xform( C->root(), 1 );
3430SN/A    if (xroot == NULL) {
3440SN/A      Matcher::soft_match_failure();  // recursive matching process failed
3450SN/A      C->record_method_not_compilable("instruction match failed");
3460SN/A    } else {
3470SN/A      // During matching shared constants were attached to C->root()
3480SN/A      // because xroot wasn't available yet, so transfer the uses to
3490SN/A      // the xroot.
3500SN/A      for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
3510SN/A        Node* n = C->root()->fast_out(j);
3520SN/A        if (C->node_arena()->contains(n)) {
3530SN/A          assert(n->in(0) == C->root(), "should be control user");
3540SN/A          n->set_req(0, xroot);
3550SN/A          --j;
3560SN/A          --jmax;
3570SN/A        }
3580SN/A      }
3590SN/A
3600SN/A      // Generate new mach node for ConP #NULL
3610SN/A      assert(new_ideal_null != NULL, "sanity");
3620SN/A      _mach_null = match_tree(new_ideal_null);
3630SN/A      // Don't set control, it will confuse GCM since there are no uses.
3640SN/A      // The control will be set when this node is used first time
3650SN/A      // in find_base_for_derived().
3660SN/A      assert(_mach_null != NULL, "");
3670SN/A
3680SN/A      C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
3690SN/A
3700SN/A#ifdef ASSERT
3710SN/A      verify_new_nodes_only(xroot);
3720SN/A#endif
3730SN/A    }
3740SN/A  }
3750SN/A  if (C->top() == NULL || C->root() == NULL) {
3760SN/A    C->record_method_not_compilable("graph lost"); // %%% cannot happen?
3770SN/A  }
3780SN/A  if (C->failing()) {
3790SN/A    // delete old;
3800SN/A    old->destruct_contents();
3810SN/A    return;
3820SN/A  }
3830SN/A  assert( C->top(), "" );
3840SN/A  assert( C->root(), "" );
3850SN/A  validate_null_checks();
3860SN/A
3870SN/A  // Now smoke old-space
3880SN/A  NOT_DEBUG( old->destruct_contents() );
3890SN/A
3900SN/A  // ------------------------
3910SN/A  // Set up save-on-entry registers
3920SN/A  Fixup_Save_On_Entry( );
3930SN/A}
3940SN/A
3950SN/A
3960SN/A//------------------------------Fixup_Save_On_Entry----------------------------
3970SN/A// The stated purpose of this routine is to take care of save-on-entry
3980SN/A// registers.  However, the overall goal of the Match phase is to convert into
3990SN/A// machine-specific instructions which have RegMasks to guide allocation.
4000SN/A// So what this procedure really does is put a valid RegMask on each input
4010SN/A// to the machine-specific variations of all Return, TailCall and Halt
4020SN/A// instructions.  It also adds edgs to define the save-on-entry values (and of
4030SN/A// course gives them a mask).
4040SN/A
4050SN/Astatic RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
4060SN/A  RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
4070SN/A  // Do all the pre-defined register masks
4080SN/A  rms[TypeFunc::Control  ] = RegMask::Empty;
4090SN/A  rms[TypeFunc::I_O      ] = RegMask::Empty;
4100SN/A  rms[TypeFunc::Memory   ] = RegMask::Empty;
4110SN/A  rms[TypeFunc::ReturnAdr] = ret_adr;
4120SN/A  rms[TypeFunc::FramePtr ] = fp;
4130SN/A  return rms;
4140SN/A}
4150SN/A
4160SN/A//---------------------------init_first_stack_mask-----------------------------
4170SN/A// Create the initial stack mask used by values spilling to the stack.
4180SN/A// Disallow any debug info in outgoing argument areas by setting the
4190SN/A// initial mask accordingly.
4200SN/Avoid Matcher::init_first_stack_mask() {
4210SN/A
4220SN/A  // Allocate storage for spill masks as masks for the appropriate load type.
4230SN/A  RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
4240SN/A
4250SN/A  idealreg2spillmask  [Op_RegN] = &rms[0];
4260SN/A  idealreg2spillmask  [Op_RegI] = &rms[1];
4270SN/A  idealreg2spillmask  [Op_RegL] = &rms[2];
4280SN/A  idealreg2spillmask  [Op_RegF] = &rms[3];
4290SN/A  idealreg2spillmask  [Op_RegD] = &rms[4];
4300SN/A  idealreg2spillmask  [Op_RegP] = &rms[5];
4310SN/A
4320SN/A  idealreg2debugmask  [Op_RegN] = &rms[6];
4330SN/A  idealreg2debugmask  [Op_RegI] = &rms[7];
4340SN/A  idealreg2debugmask  [Op_RegL] = &rms[8];
4350SN/A  idealreg2debugmask  [Op_RegF] = &rms[9];
4360SN/A  idealreg2debugmask  [Op_RegD] = &rms[10];
4370SN/A  idealreg2debugmask  [Op_RegP] = &rms[11];
4380SN/A
4390SN/A  idealreg2mhdebugmask[Op_RegN] = &rms[12];
4400SN/A  idealreg2mhdebugmask[Op_RegI] = &rms[13];
4410SN/A  idealreg2mhdebugmask[Op_RegL] = &rms[14];
4420SN/A  idealreg2mhdebugmask[Op_RegF] = &rms[15];
4430SN/A  idealreg2mhdebugmask[Op_RegD] = &rms[16];
4440SN/A  idealreg2mhdebugmask[Op_RegP] = &rms[17];
4450SN/A
4460SN/A  idealreg2spillmask  [Op_VecS] = &rms[18];
4470SN/A  idealreg2spillmask  [Op_VecD] = &rms[19];
4480SN/A  idealreg2spillmask  [Op_VecX] = &rms[20];
4490SN/A  idealreg2spillmask  [Op_VecY] = &rms[21];
4500SN/A  idealreg2spillmask  [Op_VecZ] = &rms[22];
4510SN/A
4520SN/A  OptoReg::Name i;
4530SN/A
4540SN/A  // At first, start with the empty mask
4550SN/A  C->FIRST_STACK_mask().Clear();
4560SN/A
4570SN/A  // Add in the incoming argument area
4580SN/A  OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
4590SN/A  for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
4600SN/A    C->FIRST_STACK_mask().Insert(i);
4610SN/A  }
4620SN/A  // Add in all bits past the outgoing argument area
4630SN/A  guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
4640SN/A            "must be able to represent all call arguments in reg mask");
4650SN/A  OptoReg::Name init = _out_arg_limit;
4660SN/A  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
4670SN/A    C->FIRST_STACK_mask().Insert(i);
4680SN/A  }
4690SN/A  // Finally, set the "infinite stack" bit.
4700SN/A  C->FIRST_STACK_mask().set_AllStack();
4710SN/A
4720SN/A  // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
4730SN/A  RegMask aligned_stack_mask = C->FIRST_STACK_mask();
4740SN/A  // Keep spill masks aligned.
4750SN/A  aligned_stack_mask.clear_to_pairs();
4760SN/A  assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
4770SN/A
4780SN/A  *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
4790SN/A#ifdef _LP64
4800SN/A  *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
4810SN/A   idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
4820SN/A   idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
4830SN/A#else
4840SN/A   idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
4850SN/A#endif
4860SN/A  *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
4870SN/A   idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
4880SN/A  *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
4890SN/A   idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
4900SN/A  *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
4910SN/A   idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
4920SN/A  *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
4930SN/A   idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
4940SN/A
4950SN/A  if (Matcher::vector_size_supported(T_BYTE,4)) {
4960SN/A    *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
4970SN/A     idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
4980SN/A  }
4990SN/A  if (Matcher::vector_size_supported(T_FLOAT,2)) {
5000SN/A    // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
5010SN/A    // RA guarantees such alignment since it is needed for Double and Long values.
5020SN/A    *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
5030SN/A     idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
5040SN/A  }
5050SN/A  if (Matcher::vector_size_supported(T_FLOAT,4)) {
5060SN/A    // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
5070SN/A    //
5080SN/A    // RA can use input arguments stack slots for spills but until RA
5090SN/A    // we don't know frame size and offset of input arg stack slots.
5100SN/A    //
5110SN/A    // Exclude last input arg stack slots to avoid spilling vectors there
5120SN/A    // otherwise vector spills could stomp over stack slots in caller frame.
5130SN/A    OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
5140SN/A    for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
5150SN/A      aligned_stack_mask.Remove(in);
5160SN/A      in = OptoReg::add(in, -1);
5170SN/A    }
5180SN/A     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
5190SN/A     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
5200SN/A    *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
5210SN/A     idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
5220SN/A  }
5230SN/A  if (Matcher::vector_size_supported(T_FLOAT,8)) {
5240SN/A    // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
5250SN/A    OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
5260SN/A    for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
5270SN/A      aligned_stack_mask.Remove(in);
5280SN/A      in = OptoReg::add(in, -1);
5290SN/A    }
5300SN/A     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
5310SN/A     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
5320SN/A    *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
5330SN/A     idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
5340SN/A  }
5350SN/A  if (Matcher::vector_size_supported(T_FLOAT,16)) {
5360SN/A    // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
5370SN/A    OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
5380SN/A    for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
5390SN/A      aligned_stack_mask.Remove(in);
5400SN/A      in = OptoReg::add(in, -1);
5410SN/A    }
5420SN/A     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
5430SN/A     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
5440SN/A    *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
5450SN/A     idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
5460SN/A  }
5470SN/A   if (UseFPUForSpilling) {
5480SN/A     // This mask logic assumes that the spill operations are
5490SN/A     // symmetric and that the registers involved are the same size.
5500SN/A     // On sparc for instance we may have to use 64 bit moves will
5510SN/A     // kill 2 registers when used with F0-F31.
5520SN/A     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
5530SN/A     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
5540SN/A#ifdef _LP64
5550SN/A     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
5560SN/A     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
5570SN/A     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
5580SN/A     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
5590SN/A#else
5600SN/A     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
5610SN/A#ifdef ARM
5620SN/A     // ARM has support for moving 64bit values between a pair of
5630SN/A     // integer registers and a double register
5640SN/A     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
5650SN/A     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
5660SN/A#endif
5670SN/A#endif
5680SN/A   }
5690SN/A
5700SN/A  // Make up debug masks.  Any spill slot plus callee-save registers.
5710SN/A  // Caller-save registers are assumed to be trashable by the various
5720SN/A  // inline-cache fixup routines.
5730SN/A  *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
5740SN/A  *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
5750SN/A  *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
5760SN/A  *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
5770SN/A  *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
5780SN/A  *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
5790SN/A
5800SN/A  *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
5810SN/A  *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
5820SN/A  *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
5830SN/A  *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
5840SN/A  *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
5850SN/A  *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
5860SN/A
5870SN/A  // Prevent stub compilations from attempting to reference
5880SN/A  // callee-saved registers from debug info
5890SN/A  bool exclude_soe = !Compile::current()->is_method_compilation();
5900SN/A
5910SN/A  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
5920SN/A    // registers the caller has to save do not work
5930SN/A    if( _register_save_policy[i] == 'C' ||
5940SN/A        _register_save_policy[i] == 'A' ||
5950SN/A        (_register_save_policy[i] == 'E' && exclude_soe) ) {
5960SN/A      idealreg2debugmask  [Op_RegN]->Remove(i);
5970SN/A      idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
5980SN/A      idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
5990SN/A      idealreg2debugmask  [Op_RegF]->Remove(i); // masks
6000SN/A      idealreg2debugmask  [Op_RegD]->Remove(i);
6010SN/A      idealreg2debugmask  [Op_RegP]->Remove(i);
6020SN/A
6030SN/A      idealreg2mhdebugmask[Op_RegN]->Remove(i);
6040SN/A      idealreg2mhdebugmask[Op_RegI]->Remove(i);
6050SN/A      idealreg2mhdebugmask[Op_RegL]->Remove(i);
6060SN/A      idealreg2mhdebugmask[Op_RegF]->Remove(i);
6070SN/A      idealreg2mhdebugmask[Op_RegD]->Remove(i);
6080SN/A      idealreg2mhdebugmask[Op_RegP]->Remove(i);
6090SN/A    }
6100SN/A  }
6110SN/A
6120SN/A  // Subtract the register we use to save the SP for MethodHandle
6130SN/A  // invokes to from the debug mask.
6140SN/A  const RegMask save_mask = method_handle_invoke_SP_save_mask();
6150SN/A  idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
6160SN/A  idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
6170SN/A  idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
6180SN/A  idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
6190SN/A  idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
6200SN/A  idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
6210SN/A}
6220SN/A
6230SN/A//---------------------------is_save_on_entry----------------------------------
6240SN/Abool Matcher::is_save_on_entry( int reg ) {
6250SN/A  return
6260SN/A    _register_save_policy[reg] == 'E' ||
6270SN/A    _register_save_policy[reg] == 'A' || // Save-on-entry register?
6280SN/A    // Also save argument registers in the trampolining stubs
6290SN/A    (C->save_argument_registers() && is_spillable_arg(reg));
6300SN/A}
6310SN/A
6320SN/A//---------------------------Fixup_Save_On_Entry-------------------------------
6330SN/Avoid Matcher::Fixup_Save_On_Entry( ) {
6340SN/A  init_first_stack_mask();
6350SN/A
6360SN/A  Node *root = C->root();       // Short name for root
6370SN/A  // Count number of save-on-entry registers.
6380SN/A  uint soe_cnt = number_of_saved_registers();
6390SN/A  uint i;
6400SN/A
6410SN/A  // Find the procedure Start Node
6420SN/A  StartNode *start = C->start();
6430SN/A  assert( start, "Expect a start node" );
6440SN/A
6450SN/A  // Save argument registers in the trampolining stubs
6460SN/A  if( C->save_argument_registers() )
6470SN/A    for( i = 0; i < _last_Mach_Reg; i++ )
6480SN/A      if( is_spillable_arg(i) )
6490SN/A        soe_cnt++;
6500SN/A
6510SN/A  // Input RegMask array shared by all Returns.
6520SN/A  // The type for doubles and longs has a count of 2, but
6530SN/A  // there is only 1 returned value
6540SN/A  uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
6550SN/A  RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
6560SN/A  // Returns have 0 or 1 returned values depending on call signature.
6570SN/A  // Return register is specified by return_value in the AD file.
6580SN/A  if (ret_edge_cnt > TypeFunc::Parms)
6590SN/A    ret_rms[TypeFunc::Parms+0] = _return_value_mask;
6600SN/A
6610SN/A  // Input RegMask array shared by all Rethrows.
6620SN/A  uint reth_edge_cnt = TypeFunc::Parms+1;
6630SN/A  RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
6640SN/A  // Rethrow takes exception oop only, but in the argument 0 slot.
6650SN/A  OptoReg::Name reg = find_receiver(false);
6660SN/A  if (reg >= 0) {
6670SN/A    reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
6680SN/A#ifdef _LP64
6690SN/A    // Need two slots for ptrs in 64-bit land
6700SN/A    reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
6710SN/A#endif
6720SN/A  }
6730SN/A
6740SN/A  // Input RegMask array shared by all TailCalls
6750SN/A  uint tail_call_edge_cnt = TypeFunc::Parms+2;
6760SN/A  RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
6770SN/A
6780SN/A  // Input RegMask array shared by all TailJumps
6790SN/A  uint tail_jump_edge_cnt = TypeFunc::Parms+2;
6800SN/A  RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
6810SN/A
6820SN/A  // TailCalls have 2 returned values (target & moop), whose masks come
6830SN/A  // from the usual MachNode/MachOper mechanism.  Find a sample
6840SN/A  // TailCall to extract these masks and put the correct masks into
6850SN/A  // the tail_call_rms array.
6860SN/A  for( i=1; i < root->req(); i++ ) {
6870SN/A    MachReturnNode *m = root->in(i)->as_MachReturn();
6880SN/A    if( m->ideal_Opcode() == Op_TailCall ) {
6890SN/A      tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
6900SN/A      tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
6910SN/A      break;
6920SN/A    }
6930SN/A  }
6940SN/A
6950SN/A  // TailJumps have 2 returned values (target & ex_oop), whose masks come
6960SN/A  // from the usual MachNode/MachOper mechanism.  Find a sample
6970SN/A  // TailJump to extract these masks and put the correct masks into
6980SN/A  // the tail_jump_rms array.
6990SN/A  for( i=1; i < root->req(); i++ ) {
7000SN/A    MachReturnNode *m = root->in(i)->as_MachReturn();
7010SN/A    if( m->ideal_Opcode() == Op_TailJump ) {
7020SN/A      tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
7030SN/A      tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
7040SN/A      break;
7050SN/A    }
7060SN/A  }
7070SN/A
7080SN/A  // Input RegMask array shared by all Halts
7090SN/A  uint halt_edge_cnt = TypeFunc::Parms;
7100SN/A  RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
7110SN/A
7120SN/A  // Capture the return input masks into each exit flavor
7130SN/A  for( i=1; i < root->req(); i++ ) {
7140SN/A    MachReturnNode *exit = root->in(i)->as_MachReturn();
7150SN/A    switch( exit->ideal_Opcode() ) {
7160SN/A      case Op_Return   : exit->_in_rms = ret_rms;  break;
7170SN/A      case Op_Rethrow  : exit->_in_rms = reth_rms; break;
7180SN/A      case Op_TailCall : exit->_in_rms = tail_call_rms; break;
7190SN/A      case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
7200SN/A      case Op_Halt     : exit->_in_rms = halt_rms; break;
7210SN/A      default          : ShouldNotReachHere();
7220SN/A    }
7230SN/A  }
7240SN/A
7250SN/A  // Next unused projection number from Start.
7260SN/A  int proj_cnt = C->tf()->domain()->cnt();
7270SN/A
7280SN/A  // Do all the save-on-entry registers.  Make projections from Start for
7290SN/A  // them, and give them a use at the exit points.  To the allocator, they
7300SN/A  // look like incoming register arguments.
7310SN/A  for( i = 0; i < _last_Mach_Reg; i++ ) {
7320SN/A    if( is_save_on_entry(i) ) {
7330SN/A
7340SN/A      // Add the save-on-entry to the mask array
7350SN/A      ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
7360SN/A      reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
7370SN/A      tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
7380SN/A      tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
7390SN/A      // Halts need the SOE registers, but only in the stack as debug info.
7400SN/A      // A just-prior uncommon-trap or deoptimization will use the SOE regs.
7410SN/A      halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
7420SN/A
7430SN/A      Node *mproj;
7440SN/A
7450SN/A      // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
7460SN/A      // into a single RegD.
7470SN/A      if( (i&1) == 0 &&
7480SN/A          _register_save_type[i  ] == Op_RegF &&
7490SN/A          _register_save_type[i+1] == Op_RegF &&
7500SN/A          is_save_on_entry(i+1) ) {
7510SN/A        // Add other bit for double
7520SN/A        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
7530SN/A        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
7540SN/A        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
7550SN/A        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
7560SN/A        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
7570SN/A        mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
7580SN/A        proj_cnt += 2;          // Skip 2 for doubles
7590SN/A      }
7600SN/A      else if( (i&1) == 1 &&    // Else check for high half of double
7610SN/A               _register_save_type[i-1] == Op_RegF &&
7620SN/A               _register_save_type[i  ] == Op_RegF &&
7630SN/A               is_save_on_entry(i-1) ) {
7640SN/A        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
7650SN/A        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
7660SN/A        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
7670SN/A        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
7680SN/A        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
7690SN/A        mproj = C->top();
7700SN/A      }
7710SN/A      // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
7720SN/A      // into a single RegL.
7730SN/A      else if( (i&1) == 0 &&
7740SN/A          _register_save_type[i  ] == Op_RegI &&
7750SN/A          _register_save_type[i+1] == Op_RegI &&
7760SN/A        is_save_on_entry(i+1) ) {
7770SN/A        // Add other bit for long
7780SN/A        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
7790SN/A        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
7800SN/A        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
7810SN/A        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
7820SN/A        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
7830SN/A        mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
7840SN/A        proj_cnt += 2;          // Skip 2 for longs
7850SN/A      }
7860SN/A      else if( (i&1) == 1 &&    // Else check for high half of long
7870SN/A               _register_save_type[i-1] == Op_RegI &&
7880SN/A               _register_save_type[i  ] == Op_RegI &&
7890SN/A               is_save_on_entry(i-1) ) {
7900SN/A        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
7910SN/A        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
7920SN/A        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
7930SN/A        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
7940SN/A        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
7950SN/A        mproj = C->top();
7960SN/A      } else {
7970SN/A        // Make a projection for it off the Start
7980SN/A        mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
7990SN/A      }
8000SN/A
8010SN/A      ret_edge_cnt ++;
8020SN/A      reth_edge_cnt ++;
8030SN/A      tail_call_edge_cnt ++;
8040SN/A      tail_jump_edge_cnt ++;
8050SN/A      halt_edge_cnt ++;
8060SN/A
8070SN/A      // Add a use of the SOE register to all exit paths
8080SN/A      for( uint j=1; j < root->req(); j++ )
8090SN/A        root->in(j)->add_req(mproj);
8100SN/A    } // End of if a save-on-entry register
8110SN/A  } // End of for all machine registers
8120SN/A}
8130SN/A
8140SN/A//------------------------------init_spill_mask--------------------------------
8150SN/Avoid Matcher::init_spill_mask( Node *ret ) {
8160SN/A  if( idealreg2regmask[Op_RegI] ) return; // One time only init
8170SN/A
8180SN/A  OptoReg::c_frame_pointer = c_frame_pointer();
8190SN/A  c_frame_ptr_mask = c_frame_pointer();
8200SN/A#ifdef _LP64
8210SN/A  // pointers are twice as big
8220SN/A  c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
8230SN/A#endif
8240SN/A
8250SN/A  // Start at OptoReg::stack0()
8260SN/A  STACK_ONLY_mask.Clear();
8270SN/A  OptoReg::Name init = OptoReg::stack2reg(0);
8280SN/A  // STACK_ONLY_mask is all stack bits
8290SN/A  OptoReg::Name i;
8300SN/A  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
8310SN/A    STACK_ONLY_mask.Insert(i);
8320SN/A  // Also set the "infinite stack" bit.
8330SN/A  STACK_ONLY_mask.set_AllStack();
8340SN/A
8350SN/A  // Copy the register names over into the shared world
8360SN/A  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
8370SN/A    // SharedInfo::regName[i] = regName[i];
8380SN/A    // Handy RegMasks per machine register
8390SN/A    mreg2regmask[i].Insert(i);
8400SN/A  }
8410SN/A
8420SN/A  // Grab the Frame Pointer
8430SN/A  Node *fp  = ret->in(TypeFunc::FramePtr);
8440SN/A  Node *mem = ret->in(TypeFunc::Memory);
8450SN/A  const TypePtr* atp = TypePtr::BOTTOM;
8460SN/A  // Share frame pointer while making spill ops
8470SN/A  set_shared(fp);
8480SN/A
8490SN/A  // Compute generic short-offset Loads
8500SN/A#ifdef _LP64
8510SN/A  MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
8520SN/A#endif
8530SN/A  MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
8540SN/A  MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
8550SN/A  MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
8560SN/A  MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
8570SN/A  MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
8580SN/A  assert(spillI != NULL && spillL != NULL && spillF != NULL &&
8590SN/A         spillD != NULL && spillP != NULL, "");
8600SN/A  // Get the ADLC notion of the right regmask, for each basic type.
8610SN/A#ifdef _LP64
8620SN/A  idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
8630SN/A#endif
8640SN/A  idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
8650SN/A  idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
8660SN/A  idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
8670SN/A  idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
8680SN/A  idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
8690SN/A
8700SN/A  // Vector regmasks.
8710SN/A  if (Matcher::vector_size_supported(T_BYTE,4)) {
8720SN/A    TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
8730SN/A    MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
8740SN/A    idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
8750SN/A  }
8760SN/A  if (Matcher::vector_size_supported(T_FLOAT,2)) {
8770SN/A    MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
8780SN/A    idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
879  }
880  if (Matcher::vector_size_supported(T_FLOAT,4)) {
881    MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
882    idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
883  }
884  if (Matcher::vector_size_supported(T_FLOAT,8)) {
885    MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
886    idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
887  }
888  if (Matcher::vector_size_supported(T_FLOAT,16)) {
889    MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
890    idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask();
891  }
892}
893
894#ifdef ASSERT
895static void match_alias_type(Compile* C, Node* n, Node* m) {
896  if (!VerifyAliases)  return;  // do not go looking for trouble by default
897  const TypePtr* nat = n->adr_type();
898  const TypePtr* mat = m->adr_type();
899  int nidx = C->get_alias_index(nat);
900  int midx = C->get_alias_index(mat);
901  // Detune the assert for cases like (AndI 0xFF (LoadB p)).
902  if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
903    for (uint i = 1; i < n->req(); i++) {
904      Node* n1 = n->in(i);
905      const TypePtr* n1at = n1->adr_type();
906      if (n1at != NULL) {
907        nat = n1at;
908        nidx = C->get_alias_index(n1at);
909      }
910    }
911  }
912  // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
913  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
914    switch (n->Opcode()) {
915    case Op_PrefetchAllocation:
916      nidx = Compile::AliasIdxRaw;
917      nat = TypeRawPtr::BOTTOM;
918      break;
919    }
920  }
921  if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
922    switch (n->Opcode()) {
923    case Op_ClearArray:
924      midx = Compile::AliasIdxRaw;
925      mat = TypeRawPtr::BOTTOM;
926      break;
927    }
928  }
929  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
930    switch (n->Opcode()) {
931    case Op_Return:
932    case Op_Rethrow:
933    case Op_Halt:
934    case Op_TailCall:
935    case Op_TailJump:
936      nidx = Compile::AliasIdxBot;
937      nat = TypePtr::BOTTOM;
938      break;
939    }
940  }
941  if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
942    switch (n->Opcode()) {
943    case Op_StrComp:
944    case Op_StrEquals:
945    case Op_StrIndexOf:
946    case Op_StrIndexOfChar:
947    case Op_AryEq:
948    case Op_HasNegatives:
949    case Op_MemBarVolatile:
950    case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
951    case Op_StrInflatedCopy:
952    case Op_StrCompressedCopy:
953    case Op_OnSpinWait:
954    case Op_EncodeISOArray:
955      nidx = Compile::AliasIdxTop;
956      nat = NULL;
957      break;
958    }
959  }
960  if (nidx != midx) {
961    if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
962      tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
963      n->dump();
964      m->dump();
965    }
966    assert(C->subsume_loads() && C->must_alias(nat, midx),
967           "must not lose alias info when matching");
968  }
969}
970#endif
971
972//------------------------------xform------------------------------------------
973// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
974// Node in new-space.  Given a new-space Node, recursively walk his children.
975Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
976Node *Matcher::xform( Node *n, int max_stack ) {
977  // Use one stack to keep both: child's node/state and parent's node/index
978  MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
979  mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
980  while (mstack.is_nonempty()) {
981    C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
982    if (C->failing()) return NULL;
983    n = mstack.node();          // Leave node on stack
984    Node_State nstate = mstack.state();
985    if (nstate == Visit) {
986      mstack.set_state(Post_Visit);
987      Node *oldn = n;
988      // Old-space or new-space check
989      if (!C->node_arena()->contains(n)) {
990        // Old space!
991        Node* m;
992        if (has_new_node(n)) {  // Not yet Label/Reduced
993          m = new_node(n);
994        } else {
995          if (!is_dontcare(n)) { // Matcher can match this guy
996            // Calls match special.  They match alone with no children.
997            // Their children, the incoming arguments, match normally.
998            m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
999            if (C->failing())  return NULL;
1000            if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1001          } else {                  // Nothing the matcher cares about
1002            if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) {       // Projections?
1003              // Convert to machine-dependent projection
1004              m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1005#ifdef ASSERT
1006              _new2old_map.map(m->_idx, n);
1007#endif
1008              if (m->in(0) != NULL) // m might be top
1009                collect_null_checks(m, n);
1010            } else {                // Else just a regular 'ol guy
1011              m = n->clone();       // So just clone into new-space
1012#ifdef ASSERT
1013              _new2old_map.map(m->_idx, n);
1014#endif
1015              // Def-Use edges will be added incrementally as Uses
1016              // of this node are matched.
1017              assert(m->outcnt() == 0, "no Uses of this clone yet");
1018            }
1019          }
1020
1021          set_new_node(n, m);       // Map old to new
1022          if (_old_node_note_array != NULL) {
1023            Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1024                                                  n->_idx);
1025            C->set_node_notes_at(m->_idx, nn);
1026          }
1027          debug_only(match_alias_type(C, n, m));
1028        }
1029        n = m;    // n is now a new-space node
1030        mstack.set_node(n);
1031      }
1032
1033      // New space!
1034      if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1035
1036      int i;
1037      // Put precedence edges on stack first (match them last).
1038      for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1039        Node *m = oldn->in(i);
1040        if (m == NULL) break;
1041        // set -1 to call add_prec() instead of set_req() during Step1
1042        mstack.push(m, Visit, n, -1);
1043      }
1044
1045      // Handle precedence edges for interior nodes
1046      for (i = n->len()-1; (uint)i >= n->req(); i--) {
1047        Node *m = n->in(i);
1048        if (m == NULL || C->node_arena()->contains(m)) continue;
1049        n->rm_prec(i);
1050        // set -1 to call add_prec() instead of set_req() during Step1
1051        mstack.push(m, Visit, n, -1);
1052      }
1053
1054      // For constant debug info, I'd rather have unmatched constants.
1055      int cnt = n->req();
1056      JVMState* jvms = n->jvms();
1057      int debug_cnt = jvms ? jvms->debug_start() : cnt;
1058
1059      // Now do only debug info.  Clone constants rather than matching.
1060      // Constants are represented directly in the debug info without
1061      // the need for executable machine instructions.
1062      // Monitor boxes are also represented directly.
1063      for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1064        Node *m = n->in(i);          // Get input
1065        int op = m->Opcode();
1066        assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1067        if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1068            op == Op_ConF || op == Op_ConD || op == Op_ConL
1069            // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1070            ) {
1071          m = m->clone();
1072#ifdef ASSERT
1073          _new2old_map.map(m->_idx, n);
1074#endif
1075          mstack.push(m, Post_Visit, n, i); // Don't need to visit
1076          mstack.push(m->in(0), Visit, m, 0);
1077        } else {
1078          mstack.push(m, Visit, n, i);
1079        }
1080      }
1081
1082      // And now walk his children, and convert his inputs to new-space.
1083      for( ; i >= 0; --i ) { // For all normal inputs do
1084        Node *m = n->in(i);  // Get input
1085        if(m != NULL)
1086          mstack.push(m, Visit, n, i);
1087      }
1088
1089    }
1090    else if (nstate == Post_Visit) {
1091      // Set xformed input
1092      Node *p = mstack.parent();
1093      if (p != NULL) { // root doesn't have parent
1094        int i = (int)mstack.index();
1095        if (i >= 0)
1096          p->set_req(i, n); // required input
1097        else if (i == -1)
1098          p->add_prec(n);   // precedence input
1099        else
1100          ShouldNotReachHere();
1101      }
1102      mstack.pop(); // remove processed node from stack
1103    }
1104    else {
1105      ShouldNotReachHere();
1106    }
1107  } // while (mstack.is_nonempty())
1108  return n; // Return new-space Node
1109}
1110
1111//------------------------------warp_outgoing_stk_arg------------------------
1112OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1113  // Convert outgoing argument location to a pre-biased stack offset
1114  if (reg->is_stack()) {
1115    OptoReg::Name warped = reg->reg2stack();
1116    // Adjust the stack slot offset to be the register number used
1117    // by the allocator.
1118    warped = OptoReg::add(begin_out_arg_area, warped);
1119    // Keep track of the largest numbered stack slot used for an arg.
1120    // Largest used slot per call-site indicates the amount of stack
1121    // that is killed by the call.
1122    if( warped >= out_arg_limit_per_call )
1123      out_arg_limit_per_call = OptoReg::add(warped,1);
1124    if (!RegMask::can_represent_arg(warped)) {
1125      C->record_method_not_compilable("unsupported calling sequence");
1126      return OptoReg::Bad;
1127    }
1128    return warped;
1129  }
1130  return OptoReg::as_OptoReg(reg);
1131}
1132
1133
1134//------------------------------match_sfpt-------------------------------------
1135// Helper function to match call instructions.  Calls match special.
1136// They match alone with no children.  Their children, the incoming
1137// arguments, match normally.
1138MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1139  MachSafePointNode *msfpt = NULL;
1140  MachCallNode      *mcall = NULL;
1141  uint               cnt;
1142  // Split out case for SafePoint vs Call
1143  CallNode *call;
1144  const TypeTuple *domain;
1145  ciMethod*        method = NULL;
1146  bool             is_method_handle_invoke = false;  // for special kill effects
1147  if( sfpt->is_Call() ) {
1148    call = sfpt->as_Call();
1149    domain = call->tf()->domain();
1150    cnt = domain->cnt();
1151
1152    // Match just the call, nothing else
1153    MachNode *m = match_tree(call);
1154    if (C->failing())  return NULL;
1155    if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1156
1157    // Copy data from the Ideal SafePoint to the machine version
1158    mcall = m->as_MachCall();
1159
1160    mcall->set_tf(         call->tf());
1161    mcall->set_entry_point(call->entry_point());
1162    mcall->set_cnt(        call->cnt());
1163
1164    if( mcall->is_MachCallJava() ) {
1165      MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1166      const CallJavaNode *call_java =  call->as_CallJava();
1167      method = call_java->method();
1168      mcall_java->_method = method;
1169      mcall_java->_bci = call_java->_bci;
1170      mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1171      is_method_handle_invoke = call_java->is_method_handle_invoke();
1172      mcall_java->_method_handle_invoke = is_method_handle_invoke;
1173      mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1174      if (is_method_handle_invoke) {
1175        C->set_has_method_handle_invokes(true);
1176      }
1177      if( mcall_java->is_MachCallStaticJava() )
1178        mcall_java->as_MachCallStaticJava()->_name =
1179         call_java->as_CallStaticJava()->_name;
1180      if( mcall_java->is_MachCallDynamicJava() )
1181        mcall_java->as_MachCallDynamicJava()->_vtable_index =
1182         call_java->as_CallDynamicJava()->_vtable_index;
1183    }
1184    else if( mcall->is_MachCallRuntime() ) {
1185      mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1186    }
1187    msfpt = mcall;
1188  }
1189  // This is a non-call safepoint
1190  else {
1191    call = NULL;
1192    domain = NULL;
1193    MachNode *mn = match_tree(sfpt);
1194    if (C->failing())  return NULL;
1195    msfpt = mn->as_MachSafePoint();
1196    cnt = TypeFunc::Parms;
1197  }
1198
1199  // Advertise the correct memory effects (for anti-dependence computation).
1200  msfpt->set_adr_type(sfpt->adr_type());
1201
1202  // Allocate a private array of RegMasks.  These RegMasks are not shared.
1203  msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1204  // Empty them all.
1205  memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1206
1207  // Do all the pre-defined non-Empty register masks
1208  msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1209  msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1210
1211  // Place first outgoing argument can possibly be put.
1212  OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1213  assert( is_even(begin_out_arg_area), "" );
1214  // Compute max outgoing register number per call site.
1215  OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1216  // Calls to C may hammer extra stack slots above and beyond any arguments.
1217  // These are usually backing store for register arguments for varargs.
1218  if( call != NULL && call->is_CallRuntime() )
1219    out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1220
1221
1222  // Do the normal argument list (parameters) register masks
1223  int argcnt = cnt - TypeFunc::Parms;
1224  if( argcnt > 0 ) {          // Skip it all if we have no args
1225    BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1226    VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1227    int i;
1228    for( i = 0; i < argcnt; i++ ) {
1229      sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1230    }
1231    // V-call to pick proper calling convention
1232    call->calling_convention( sig_bt, parm_regs, argcnt );
1233
1234#ifdef ASSERT
1235    // Sanity check users' calling convention.  Really handy during
1236    // the initial porting effort.  Fairly expensive otherwise.
1237    { for (int i = 0; i<argcnt; i++) {
1238      if( !parm_regs[i].first()->is_valid() &&
1239          !parm_regs[i].second()->is_valid() ) continue;
1240      VMReg reg1 = parm_regs[i].first();
1241      VMReg reg2 = parm_regs[i].second();
1242      for (int j = 0; j < i; j++) {
1243        if( !parm_regs[j].first()->is_valid() &&
1244            !parm_regs[j].second()->is_valid() ) continue;
1245        VMReg reg3 = parm_regs[j].first();
1246        VMReg reg4 = parm_regs[j].second();
1247        if( !reg1->is_valid() ) {
1248          assert( !reg2->is_valid(), "valid halvsies" );
1249        } else if( !reg3->is_valid() ) {
1250          assert( !reg4->is_valid(), "valid halvsies" );
1251        } else {
1252          assert( reg1 != reg2, "calling conv. must produce distinct regs");
1253          assert( reg1 != reg3, "calling conv. must produce distinct regs");
1254          assert( reg1 != reg4, "calling conv. must produce distinct regs");
1255          assert( reg2 != reg3, "calling conv. must produce distinct regs");
1256          assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1257          assert( reg3 != reg4, "calling conv. must produce distinct regs");
1258        }
1259      }
1260    }
1261    }
1262#endif
1263
1264    // Visit each argument.  Compute its outgoing register mask.
1265    // Return results now can have 2 bits returned.
1266    // Compute max over all outgoing arguments both per call-site
1267    // and over the entire method.
1268    for( i = 0; i < argcnt; i++ ) {
1269      // Address of incoming argument mask to fill in
1270      RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1271      if( !parm_regs[i].first()->is_valid() &&
1272          !parm_regs[i].second()->is_valid() ) {
1273        continue;               // Avoid Halves
1274      }
1275      // Grab first register, adjust stack slots and insert in mask.
1276      OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1277      if (OptoReg::is_valid(reg1))
1278        rm->Insert( reg1 );
1279      // Grab second register (if any), adjust stack slots and insert in mask.
1280      OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1281      if (OptoReg::is_valid(reg2))
1282        rm->Insert( reg2 );
1283    } // End of for all arguments
1284
1285    // Compute number of stack slots needed to restore stack in case of
1286    // Pascal-style argument popping.
1287    mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1288  }
1289
1290  // Compute the max stack slot killed by any call.  These will not be
1291  // available for debug info, and will be used to adjust FIRST_STACK_mask
1292  // after all call sites have been visited.
1293  if( _out_arg_limit < out_arg_limit_per_call)
1294    _out_arg_limit = out_arg_limit_per_call;
1295
1296  if (mcall) {
1297    // Kill the outgoing argument area, including any non-argument holes and
1298    // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1299    // Since the max-per-method covers the max-per-call-site and debug info
1300    // is excluded on the max-per-method basis, debug info cannot land in
1301    // this killed area.
1302    uint r_cnt = mcall->tf()->range()->cnt();
1303    MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1304    if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1305      C->record_method_not_compilable("unsupported outgoing calling sequence");
1306    } else {
1307      for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1308        proj->_rout.Insert(OptoReg::Name(i));
1309    }
1310    if (proj->_rout.is_NotEmpty()) {
1311      push_projection(proj);
1312    }
1313  }
1314  // Transfer the safepoint information from the call to the mcall
1315  // Move the JVMState list
1316  msfpt->set_jvms(sfpt->jvms());
1317  for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1318    jvms->set_map(sfpt);
1319  }
1320
1321  // Debug inputs begin just after the last incoming parameter
1322  assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1323         (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1324
1325  // Move the OopMap
1326  msfpt->_oop_map = sfpt->_oop_map;
1327
1328  // Add additional edges.
1329  if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1330    // For these calls we can not add MachConstantBase in expand(), as the
1331    // ins are not complete then.
1332    msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1333    if (msfpt->jvms() &&
1334        msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1335      // We added an edge before jvms, so we must adapt the position of the ins.
1336      msfpt->jvms()->adapt_position(+1);
1337    }
1338  }
1339
1340  // Registers killed by the call are set in the local scheduling pass
1341  // of Global Code Motion.
1342  return msfpt;
1343}
1344
1345//---------------------------match_tree----------------------------------------
1346// Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1347// of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1348// making GotoNodes while building the CFG and in init_spill_mask() to identify
1349// a Load's result RegMask for memoization in idealreg2regmask[]
1350MachNode *Matcher::match_tree( const Node *n ) {
1351  assert( n->Opcode() != Op_Phi, "cannot match" );
1352  assert( !n->is_block_start(), "cannot match" );
1353  // Set the mark for all locally allocated State objects.
1354  // When this call returns, the _states_arena arena will be reset
1355  // freeing all State objects.
1356  ResourceMark rm( &_states_arena );
1357
1358  LabelRootDepth = 0;
1359
1360  // StoreNodes require their Memory input to match any LoadNodes
1361  Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1362#ifdef ASSERT
1363  Node* save_mem_node = _mem_node;
1364  _mem_node = n->is_Store() ? (Node*)n : NULL;
1365#endif
1366  // State object for root node of match tree
1367  // Allocate it on _states_arena - stack allocation can cause stack overflow.
1368  State *s = new (&_states_arena) State;
1369  s->_kids[0] = NULL;
1370  s->_kids[1] = NULL;
1371  s->_leaf = (Node*)n;
1372  // Label the input tree, allocating labels from top-level arena
1373  Label_Root( n, s, n->in(0), mem );
1374  if (C->failing())  return NULL;
1375
1376  // The minimum cost match for the whole tree is found at the root State
1377  uint mincost = max_juint;
1378  uint cost = max_juint;
1379  uint i;
1380  for( i = 0; i < NUM_OPERANDS; i++ ) {
1381    if( s->valid(i) &&                // valid entry and
1382        s->_cost[i] < cost &&         // low cost and
1383        s->_rule[i] >= NUM_OPERANDS ) // not an operand
1384      cost = s->_cost[mincost=i];
1385  }
1386  if (mincost == max_juint) {
1387#ifndef PRODUCT
1388    tty->print("No matching rule for:");
1389    s->dump();
1390#endif
1391    Matcher::soft_match_failure();
1392    return NULL;
1393  }
1394  // Reduce input tree based upon the state labels to machine Nodes
1395  MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1396#ifdef ASSERT
1397  _old2new_map.map(n->_idx, m);
1398  _new2old_map.map(m->_idx, (Node*)n);
1399#endif
1400
1401  // Add any Matcher-ignored edges
1402  uint cnt = n->req();
1403  uint start = 1;
1404  if( mem != (Node*)1 ) start = MemNode::Memory+1;
1405  if( n->is_AddP() ) {
1406    assert( mem == (Node*)1, "" );
1407    start = AddPNode::Base+1;
1408  }
1409  for( i = start; i < cnt; i++ ) {
1410    if( !n->match_edge(i) ) {
1411      if( i < m->req() )
1412        m->ins_req( i, n->in(i) );
1413      else
1414        m->add_req( n->in(i) );
1415    }
1416  }
1417
1418  debug_only( _mem_node = save_mem_node; )
1419  return m;
1420}
1421
1422
1423//------------------------------match_into_reg---------------------------------
1424// Choose to either match this Node in a register or part of the current
1425// match tree.  Return true for requiring a register and false for matching
1426// as part of the current match tree.
1427static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1428
1429  const Type *t = m->bottom_type();
1430
1431  if (t->singleton()) {
1432    // Never force constants into registers.  Allow them to match as
1433    // constants or registers.  Copies of the same value will share
1434    // the same register.  See find_shared_node.
1435    return false;
1436  } else {                      // Not a constant
1437    // Stop recursion if they have different Controls.
1438    Node* m_control = m->in(0);
1439    // Control of load's memory can post-dominates load's control.
1440    // So use it since load can't float above its memory.
1441    Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1442    if (control && m_control && control != m_control && control != mem_control) {
1443
1444      // Actually, we can live with the most conservative control we
1445      // find, if it post-dominates the others.  This allows us to
1446      // pick up load/op/store trees where the load can float a little
1447      // above the store.
1448      Node *x = control;
1449      const uint max_scan = 6;  // Arbitrary scan cutoff
1450      uint j;
1451      for (j=0; j<max_scan; j++) {
1452        if (x->is_Region())     // Bail out at merge points
1453          return true;
1454        x = x->in(0);
1455        if (x == m_control)     // Does 'control' post-dominate
1456          break;                // m->in(0)?  If so, we can use it
1457        if (x == mem_control)   // Does 'control' post-dominate
1458          break;                // mem_control?  If so, we can use it
1459      }
1460      if (j == max_scan)        // No post-domination before scan end?
1461        return true;            // Then break the match tree up
1462    }
1463    if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1464        (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1465      // These are commonly used in address expressions and can
1466      // efficiently fold into them on X64 in some cases.
1467      return false;
1468    }
1469  }
1470
1471  // Not forceable cloning.  If shared, put it into a register.
1472  return shared;
1473}
1474
1475
1476//------------------------------Instruction Selection--------------------------
1477// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1478// ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1479// things the Matcher does not match (e.g., Memory), and things with different
1480// Controls (hence forced into different blocks).  We pass in the Control
1481// selected for this entire State tree.
1482
1483// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1484// Store and the Load must have identical Memories (as well as identical
1485// pointers).  Since the Matcher does not have anything for Memory (and
1486// does not handle DAGs), I have to match the Memory input myself.  If the
1487// Tree root is a Store, I require all Loads to have the identical memory.
1488Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1489  // Since Label_Root is a recursive function, its possible that we might run
1490  // out of stack space.  See bugs 6272980 & 6227033 for more info.
1491  LabelRootDepth++;
1492  if (LabelRootDepth > MaxLabelRootDepth) {
1493    C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1494    return NULL;
1495  }
1496  uint care = 0;                // Edges matcher cares about
1497  uint cnt = n->req();
1498  uint i = 0;
1499
1500  // Examine children for memory state
1501  // Can only subsume a child into your match-tree if that child's memory state
1502  // is not modified along the path to another input.
1503  // It is unsafe even if the other inputs are separate roots.
1504  Node *input_mem = NULL;
1505  for( i = 1; i < cnt; i++ ) {
1506    if( !n->match_edge(i) ) continue;
1507    Node *m = n->in(i);         // Get ith input
1508    assert( m, "expect non-null children" );
1509    if( m->is_Load() ) {
1510      if( input_mem == NULL ) {
1511        input_mem = m->in(MemNode::Memory);
1512      } else if( input_mem != m->in(MemNode::Memory) ) {
1513        input_mem = NodeSentinel;
1514      }
1515    }
1516  }
1517
1518  for( i = 1; i < cnt; i++ ){// For my children
1519    if( !n->match_edge(i) ) continue;
1520    Node *m = n->in(i);         // Get ith input
1521    // Allocate states out of a private arena
1522    State *s = new (&_states_arena) State;
1523    svec->_kids[care++] = s;
1524    assert( care <= 2, "binary only for now" );
1525
1526    // Recursively label the State tree.
1527    s->_kids[0] = NULL;
1528    s->_kids[1] = NULL;
1529    s->_leaf = m;
1530
1531    // Check for leaves of the State Tree; things that cannot be a part of
1532    // the current tree.  If it finds any, that value is matched as a
1533    // register operand.  If not, then the normal matching is used.
1534    if( match_into_reg(n, m, control, i, is_shared(m)) ||
1535        //
1536        // Stop recursion if this is LoadNode and the root of this tree is a
1537        // StoreNode and the load & store have different memories.
1538        ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1539        // Can NOT include the match of a subtree when its memory state
1540        // is used by any of the other subtrees
1541        (input_mem == NodeSentinel) ) {
1542      // Print when we exclude matching due to different memory states at input-loads
1543      if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1544        && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1545        tty->print_cr("invalid input_mem");
1546      }
1547      // Switch to a register-only opcode; this value must be in a register
1548      // and cannot be subsumed as part of a larger instruction.
1549      s->DFA( m->ideal_reg(), m );
1550
1551    } else {
1552      // If match tree has no control and we do, adopt it for entire tree
1553      if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1554        control = m->in(0);         // Pick up control
1555      // Else match as a normal part of the match tree.
1556      control = Label_Root(m,s,control,mem);
1557      if (C->failing()) return NULL;
1558    }
1559  }
1560
1561
1562  // Call DFA to match this node, and return
1563  svec->DFA( n->Opcode(), n );
1564
1565#ifdef ASSERT
1566  uint x;
1567  for( x = 0; x < _LAST_MACH_OPER; x++ )
1568    if( svec->valid(x) )
1569      break;
1570
1571  if (x >= _LAST_MACH_OPER) {
1572    n->dump();
1573    svec->dump();
1574    assert( false, "bad AD file" );
1575  }
1576#endif
1577  return control;
1578}
1579
1580
1581// Con nodes reduced using the same rule can share their MachNode
1582// which reduces the number of copies of a constant in the final
1583// program.  The register allocator is free to split uses later to
1584// split live ranges.
1585MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1586  if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1587
1588  // See if this Con has already been reduced using this rule.
1589  if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1590  MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1591  if (last != NULL && rule == last->rule()) {
1592    // Don't expect control change for DecodeN
1593    if (leaf->is_DecodeNarrowPtr())
1594      return last;
1595    // Get the new space root.
1596    Node* xroot = new_node(C->root());
1597    if (xroot == NULL) {
1598      // This shouldn't happen give the order of matching.
1599      return NULL;
1600    }
1601
1602    // Shared constants need to have their control be root so they
1603    // can be scheduled properly.
1604    Node* control = last->in(0);
1605    if (control != xroot) {
1606      if (control == NULL || control == C->root()) {
1607        last->set_req(0, xroot);
1608      } else {
1609        assert(false, "unexpected control");
1610        return NULL;
1611      }
1612    }
1613    return last;
1614  }
1615  return NULL;
1616}
1617
1618
1619//------------------------------ReduceInst-------------------------------------
1620// Reduce a State tree (with given Control) into a tree of MachNodes.
1621// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1622// complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1623// Each MachNode has a number of complicated MachOper operands; each
1624// MachOper also covers a further tree of Ideal Nodes.
1625
1626// The root of the Ideal match tree is always an instruction, so we enter
1627// the recursion here.  After building the MachNode, we need to recurse
1628// the tree checking for these cases:
1629// (1) Child is an instruction -
1630//     Build the instruction (recursively), add it as an edge.
1631//     Build a simple operand (register) to hold the result of the instruction.
1632// (2) Child is an interior part of an instruction -
1633//     Skip over it (do nothing)
1634// (3) Child is the start of a operand -
1635//     Build the operand, place it inside the instruction
1636//     Call ReduceOper.
1637MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1638  assert( rule >= NUM_OPERANDS, "called with operand rule" );
1639
1640  MachNode* shared_node = find_shared_node(s->_leaf, rule);
1641  if (shared_node != NULL) {
1642    return shared_node;
1643  }
1644
1645  // Build the object to represent this state & prepare for recursive calls
1646  MachNode *mach = s->MachNodeGenerator(rule);
1647  guarantee(mach != NULL, "Missing MachNode");
1648  mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1649  assert( mach->_opnds[0] != NULL, "Missing result operand" );
1650  Node *leaf = s->_leaf;
1651  // Check for instruction or instruction chain rule
1652  if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1653    assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1654           "duplicating node that's already been matched");
1655    // Instruction
1656    mach->add_req( leaf->in(0) ); // Set initial control
1657    // Reduce interior of complex instruction
1658    ReduceInst_Interior( s, rule, mem, mach, 1 );
1659  } else {
1660    // Instruction chain rules are data-dependent on their inputs
1661    mach->add_req(0);             // Set initial control to none
1662    ReduceInst_Chain_Rule( s, rule, mem, mach );
1663  }
1664
1665  // If a Memory was used, insert a Memory edge
1666  if( mem != (Node*)1 ) {
1667    mach->ins_req(MemNode::Memory,mem);
1668#ifdef ASSERT
1669    // Verify adr type after matching memory operation
1670    const MachOper* oper = mach->memory_operand();
1671    if (oper != NULL && oper != (MachOper*)-1) {
1672      // It has a unique memory operand.  Find corresponding ideal mem node.
1673      Node* m = NULL;
1674      if (leaf->is_Mem()) {
1675        m = leaf;
1676      } else {
1677        m = _mem_node;
1678        assert(m != NULL && m->is_Mem(), "expecting memory node");
1679      }
1680      const Type* mach_at = mach->adr_type();
1681      // DecodeN node consumed by an address may have different type
1682      // then its input. Don't compare types for such case.
1683      if (m->adr_type() != mach_at &&
1684          (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1685           m->in(MemNode::Address)->is_AddP() &&
1686           m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1687           m->in(MemNode::Address)->is_AddP() &&
1688           m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1689           m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1690        mach_at = m->adr_type();
1691      }
1692      if (m->adr_type() != mach_at) {
1693        m->dump();
1694        tty->print_cr("mach:");
1695        mach->dump(1);
1696      }
1697      assert(m->adr_type() == mach_at, "matcher should not change adr type");
1698    }
1699#endif
1700  }
1701
1702  // If the _leaf is an AddP, insert the base edge
1703  if (leaf->is_AddP()) {
1704    mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1705  }
1706
1707  uint number_of_projections_prior = number_of_projections();
1708
1709  // Perform any 1-to-many expansions required
1710  MachNode *ex = mach->Expand(s, _projection_list, mem);
1711  if (ex != mach) {
1712    assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1713    if( ex->in(1)->is_Con() )
1714      ex->in(1)->set_req(0, C->root());
1715    // Remove old node from the graph
1716    for( uint i=0; i<mach->req(); i++ ) {
1717      mach->set_req(i,NULL);
1718    }
1719#ifdef ASSERT
1720    _new2old_map.map(ex->_idx, s->_leaf);
1721#endif
1722  }
1723
1724  // PhaseChaitin::fixup_spills will sometimes generate spill code
1725  // via the matcher.  By the time, nodes have been wired into the CFG,
1726  // and any further nodes generated by expand rules will be left hanging
1727  // in space, and will not get emitted as output code.  Catch this.
1728  // Also, catch any new register allocation constraints ("projections")
1729  // generated belatedly during spill code generation.
1730  if (_allocation_started) {
1731    guarantee(ex == mach, "no expand rules during spill generation");
1732    guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1733  }
1734
1735  if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1736    // Record the con for sharing
1737    _shared_nodes.map(leaf->_idx, ex);
1738  }
1739
1740  return ex;
1741}
1742
1743void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1744  for (uint i = n->req(); i < n->len(); i++) {
1745    if (n->in(i) != NULL) {
1746      mach->add_prec(n->in(i));
1747    }
1748  }
1749}
1750
1751void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1752  // 'op' is what I am expecting to receive
1753  int op = _leftOp[rule];
1754  // Operand type to catch childs result
1755  // This is what my child will give me.
1756  int opnd_class_instance = s->_rule[op];
1757  // Choose between operand class or not.
1758  // This is what I will receive.
1759  int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1760  // New rule for child.  Chase operand classes to get the actual rule.
1761  int newrule = s->_rule[catch_op];
1762
1763  if( newrule < NUM_OPERANDS ) {
1764    // Chain from operand or operand class, may be output of shared node
1765    assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1766            "Bad AD file: Instruction chain rule must chain from operand");
1767    // Insert operand into array of operands for this instruction
1768    mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1769
1770    ReduceOper( s, newrule, mem, mach );
1771  } else {
1772    // Chain from the result of an instruction
1773    assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1774    mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1775    Node *mem1 = (Node*)1;
1776    debug_only(Node *save_mem_node = _mem_node;)
1777    mach->add_req( ReduceInst(s, newrule, mem1) );
1778    debug_only(_mem_node = save_mem_node;)
1779  }
1780  return;
1781}
1782
1783
1784uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1785  handle_precedence_edges(s->_leaf, mach);
1786
1787  if( s->_leaf->is_Load() ) {
1788    Node *mem2 = s->_leaf->in(MemNode::Memory);
1789    assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1790    debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1791    mem = mem2;
1792  }
1793  if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1794    if( mach->in(0) == NULL )
1795      mach->set_req(0, s->_leaf->in(0));
1796  }
1797
1798  // Now recursively walk the state tree & add operand list.
1799  for( uint i=0; i<2; i++ ) {   // binary tree
1800    State *newstate = s->_kids[i];
1801    if( newstate == NULL ) break;      // Might only have 1 child
1802    // 'op' is what I am expecting to receive
1803    int op;
1804    if( i == 0 ) {
1805      op = _leftOp[rule];
1806    } else {
1807      op = _rightOp[rule];
1808    }
1809    // Operand type to catch childs result
1810    // This is what my child will give me.
1811    int opnd_class_instance = newstate->_rule[op];
1812    // Choose between operand class or not.
1813    // This is what I will receive.
1814    int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1815    // New rule for child.  Chase operand classes to get the actual rule.
1816    int newrule = newstate->_rule[catch_op];
1817
1818    if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1819      // Operand/operandClass
1820      // Insert operand into array of operands for this instruction
1821      mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1822      ReduceOper( newstate, newrule, mem, mach );
1823
1824    } else {                    // Child is internal operand or new instruction
1825      if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1826        // internal operand --> call ReduceInst_Interior
1827        // Interior of complex instruction.  Do nothing but recurse.
1828        num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1829      } else {
1830        // instruction --> call build operand(  ) to catch result
1831        //             --> ReduceInst( newrule )
1832        mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1833        Node *mem1 = (Node*)1;
1834        debug_only(Node *save_mem_node = _mem_node;)
1835        mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1836        debug_only(_mem_node = save_mem_node;)
1837      }
1838    }
1839    assert( mach->_opnds[num_opnds-1], "" );
1840  }
1841  return num_opnds;
1842}
1843
1844// This routine walks the interior of possible complex operands.
1845// At each point we check our children in the match tree:
1846// (1) No children -
1847//     We are a leaf; add _leaf field as an input to the MachNode
1848// (2) Child is an internal operand -
1849//     Skip over it ( do nothing )
1850// (3) Child is an instruction -
1851//     Call ReduceInst recursively and
1852//     and instruction as an input to the MachNode
1853void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1854  assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1855  State *kid = s->_kids[0];
1856  assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1857
1858  // Leaf?  And not subsumed?
1859  if( kid == NULL && !_swallowed[rule] ) {
1860    mach->add_req( s->_leaf );  // Add leaf pointer
1861    return;                     // Bail out
1862  }
1863
1864  if( s->_leaf->is_Load() ) {
1865    assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1866    mem = s->_leaf->in(MemNode::Memory);
1867    debug_only(_mem_node = s->_leaf;)
1868  }
1869
1870  handle_precedence_edges(s->_leaf, mach);
1871
1872  if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1873    if( !mach->in(0) )
1874      mach->set_req(0,s->_leaf->in(0));
1875    else {
1876      assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1877    }
1878  }
1879
1880  for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1881    int newrule;
1882    if( i == 0)
1883      newrule = kid->_rule[_leftOp[rule]];
1884    else
1885      newrule = kid->_rule[_rightOp[rule]];
1886
1887    if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1888      // Internal operand; recurse but do nothing else
1889      ReduceOper( kid, newrule, mem, mach );
1890
1891    } else {                    // Child is a new instruction
1892      // Reduce the instruction, and add a direct pointer from this
1893      // machine instruction to the newly reduced one.
1894      Node *mem1 = (Node*)1;
1895      debug_only(Node *save_mem_node = _mem_node;)
1896      mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1897      debug_only(_mem_node = save_mem_node;)
1898    }
1899  }
1900}
1901
1902
1903// -------------------------------------------------------------------------
1904// Java-Java calling convention
1905// (what you use when Java calls Java)
1906
1907//------------------------------find_receiver----------------------------------
1908// For a given signature, return the OptoReg for parameter 0.
1909OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1910  VMRegPair regs;
1911  BasicType sig_bt = T_OBJECT;
1912  calling_convention(&sig_bt, &regs, 1, is_outgoing);
1913  // Return argument 0 register.  In the LP64 build pointers
1914  // take 2 registers, but the VM wants only the 'main' name.
1915  return OptoReg::as_OptoReg(regs.first());
1916}
1917
1918// This function identifies sub-graphs in which a 'load' node is
1919// input to two different nodes, and such that it can be matched
1920// with BMI instructions like blsi, blsr, etc.
1921// Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1922// The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1923// refers to the same node.
1924#ifdef X86
1925// Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1926// This is a temporary solution until we make DAGs expressible in ADL.
1927template<typename ConType>
1928class FusedPatternMatcher {
1929  Node* _op1_node;
1930  Node* _mop_node;
1931  int _con_op;
1932
1933  static int match_next(Node* n, int next_op, int next_op_idx) {
1934    if (n->in(1) == NULL || n->in(2) == NULL) {
1935      return -1;
1936    }
1937
1938    if (next_op_idx == -1) { // n is commutative, try rotations
1939      if (n->in(1)->Opcode() == next_op) {
1940        return 1;
1941      } else if (n->in(2)->Opcode() == next_op) {
1942        return 2;
1943      }
1944    } else {
1945      assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1946      if (n->in(next_op_idx)->Opcode() == next_op) {
1947        return next_op_idx;
1948      }
1949    }
1950    return -1;
1951  }
1952public:
1953  FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1954    _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1955
1956  bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1957             int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1958             typename ConType::NativeType con_value) {
1959    if (_op1_node->Opcode() != op1) {
1960      return false;
1961    }
1962    if (_mop_node->outcnt() > 2) {
1963      return false;
1964    }
1965    op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1966    if (op1_op2_idx == -1) {
1967      return false;
1968    }
1969    // Memory operation must be the other edge
1970    int op1_mop_idx = (op1_op2_idx & 1) + 1;
1971
1972    // Check that the mop node is really what we want
1973    if (_op1_node->in(op1_mop_idx) == _mop_node) {
1974      Node *op2_node = _op1_node->in(op1_op2_idx);
1975      if (op2_node->outcnt() > 1) {
1976        return false;
1977      }
1978      assert(op2_node->Opcode() == op2, "Should be");
1979      op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
1980      if (op2_con_idx == -1) {
1981        return false;
1982      }
1983      // Memory operation must be the other edge
1984      int op2_mop_idx = (op2_con_idx & 1) + 1;
1985      // Check that the memory operation is the same node
1986      if (op2_node->in(op2_mop_idx) == _mop_node) {
1987        // Now check the constant
1988        const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1989        if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1990          return true;
1991        }
1992      }
1993    }
1994    return false;
1995  }
1996};
1997
1998
1999bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2000  if (n != NULL && m != NULL) {
2001    if (m->Opcode() == Op_LoadI) {
2002      FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2003      return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2004             bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2005             bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2006    } else if (m->Opcode() == Op_LoadL) {
2007      FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2008      return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2009             bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2010             bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2011    }
2012  }
2013  return false;
2014}
2015#endif // X86
2016
2017bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2018  Node *off = m->in(AddPNode::Offset);
2019  if (off->is_Con()) {
2020    address_visited.test_set(m->_idx); // Flag as address_visited
2021    mstack.push(m->in(AddPNode::Address), Pre_Visit);
2022    // Clone X+offset as it also folds into most addressing expressions
2023    mstack.push(off, Visit);
2024    mstack.push(m->in(AddPNode::Base), Pre_Visit);
2025    return true;
2026  }
2027  return false;
2028}
2029
2030// A method-klass-holder may be passed in the inline_cache_reg
2031// and then expanded into the inline_cache_reg and a method_oop register
2032//   defined in ad_<arch>.cpp
2033
2034//------------------------------find_shared------------------------------------
2035// Set bits if Node is shared or otherwise a root
2036void Matcher::find_shared( Node *n ) {
2037  // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2038  MStack mstack(C->live_nodes() * 2);
2039  // Mark nodes as address_visited if they are inputs to an address expression
2040  VectorSet address_visited(Thread::current()->resource_area());
2041  mstack.push(n, Visit);     // Don't need to pre-visit root node
2042  while (mstack.is_nonempty()) {
2043    n = mstack.node();       // Leave node on stack
2044    Node_State nstate = mstack.state();
2045    uint nop = n->Opcode();
2046    if (nstate == Pre_Visit) {
2047      if (address_visited.test(n->_idx)) { // Visited in address already?
2048        // Flag as visited and shared now.
2049        set_visited(n);
2050      }
2051      if (is_visited(n)) {   // Visited already?
2052        // Node is shared and has no reason to clone.  Flag it as shared.
2053        // This causes it to match into a register for the sharing.
2054        set_shared(n);       // Flag as shared and
2055        mstack.pop();        // remove node from stack
2056        continue;
2057      }
2058      nstate = Visit; // Not already visited; so visit now
2059    }
2060    if (nstate == Visit) {
2061      mstack.set_state(Post_Visit);
2062      set_visited(n);   // Flag as visited now
2063      bool mem_op = false;
2064
2065      switch( nop ) {  // Handle some opcodes special
2066      case Op_Phi:             // Treat Phis as shared roots
2067      case Op_Parm:
2068      case Op_Proj:            // All handled specially during matching
2069      case Op_SafePointScalarObject:
2070        set_shared(n);
2071        set_dontcare(n);
2072        break;
2073      case Op_If:
2074      case Op_CountedLoopEnd:
2075        mstack.set_state(Alt_Post_Visit); // Alternative way
2076        // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2077        // with matching cmp/branch in 1 instruction.  The Matcher needs the
2078        // Bool and CmpX side-by-side, because it can only get at constants
2079        // that are at the leaves of Match trees, and the Bool's condition acts
2080        // as a constant here.
2081        mstack.push(n->in(1), Visit);         // Clone the Bool
2082        mstack.push(n->in(0), Pre_Visit);     // Visit control input
2083        continue; // while (mstack.is_nonempty())
2084      case Op_ConvI2D:         // These forms efficiently match with a prior
2085      case Op_ConvI2F:         //   Load but not a following Store
2086        if( n->in(1)->is_Load() &&        // Prior load
2087            n->outcnt() == 1 &&           // Not already shared
2088            n->unique_out()->is_Store() ) // Following store
2089          set_shared(n);       // Force it to be a root
2090        break;
2091      case Op_ReverseBytesI:
2092      case Op_ReverseBytesL:
2093        if( n->in(1)->is_Load() &&        // Prior load
2094            n->outcnt() == 1 )            // Not already shared
2095          set_shared(n);                  // Force it to be a root
2096        break;
2097      case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2098      case Op_IfFalse:
2099      case Op_IfTrue:
2100      case Op_MachProj:
2101      case Op_MergeMem:
2102      case Op_Catch:
2103      case Op_CatchProj:
2104      case Op_CProj:
2105      case Op_JumpProj:
2106      case Op_JProj:
2107      case Op_NeverBranch:
2108        set_dontcare(n);
2109        break;
2110      case Op_Jump:
2111        mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2112        mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2113        continue;                             // while (mstack.is_nonempty())
2114      case Op_StrComp:
2115      case Op_StrEquals:
2116      case Op_StrIndexOf:
2117      case Op_StrIndexOfChar:
2118      case Op_AryEq:
2119      case Op_HasNegatives:
2120      case Op_StrInflatedCopy:
2121      case Op_StrCompressedCopy:
2122      case Op_EncodeISOArray:
2123      case Op_FmaD:
2124      case Op_FmaF:
2125      case Op_FmaVD:
2126      case Op_FmaVF:
2127        set_shared(n); // Force result into register (it will be anyways)
2128        break;
2129      case Op_ConP: {  // Convert pointers above the centerline to NUL
2130        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2131        const TypePtr* tp = tn->type()->is_ptr();
2132        if (tp->_ptr == TypePtr::AnyNull) {
2133          tn->set_type(TypePtr::NULL_PTR);
2134        }
2135        break;
2136      }
2137      case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2138        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2139        const TypePtr* tp = tn->type()->make_ptr();
2140        if (tp && tp->_ptr == TypePtr::AnyNull) {
2141          tn->set_type(TypeNarrowOop::NULL_PTR);
2142        }
2143        break;
2144      }
2145      case Op_Binary:         // These are introduced in the Post_Visit state.
2146        ShouldNotReachHere();
2147        break;
2148      case Op_ClearArray:
2149      case Op_SafePoint:
2150        mem_op = true;
2151        break;
2152      default:
2153        if( n->is_Store() ) {
2154          // Do match stores, despite no ideal reg
2155          mem_op = true;
2156          break;
2157        }
2158        if( n->is_Mem() ) { // Loads and LoadStores
2159          mem_op = true;
2160          // Loads must be root of match tree due to prior load conflict
2161          if( C->subsume_loads() == false )
2162            set_shared(n);
2163        }
2164        // Fall into default case
2165        if( !n->ideal_reg() )
2166          set_dontcare(n);  // Unmatchable Nodes
2167      } // end_switch
2168
2169      for(int i = n->req() - 1; i >= 0; --i) { // For my children
2170        Node *m = n->in(i); // Get ith input
2171        if (m == NULL) continue;  // Ignore NULLs
2172        uint mop = m->Opcode();
2173
2174        // Must clone all producers of flags, or we will not match correctly.
2175        // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2176        // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2177        // are also there, so we may match a float-branch to int-flags and
2178        // expect the allocator to haul the flags from the int-side to the
2179        // fp-side.  No can do.
2180        if( _must_clone[mop] ) {
2181          mstack.push(m, Visit);
2182          continue; // for(int i = ...)
2183        }
2184
2185        if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2186          // Bases used in addresses must be shared but since
2187          // they are shared through a DecodeN they may appear
2188          // to have a single use so force sharing here.
2189          set_shared(m->in(AddPNode::Base)->in(1));
2190        }
2191
2192        // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2193#ifdef X86
2194        if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2195          mstack.push(m, Visit);
2196          continue;
2197        }
2198#endif
2199
2200        // Clone addressing expressions as they are "free" in memory access instructions
2201        if (mem_op && i == MemNode::Address && mop == Op_AddP &&
2202            // When there are other uses besides address expressions
2203            // put it on stack and mark as shared.
2204            !is_visited(m)) {
2205          // Some inputs for address expression are not put on stack
2206          // to avoid marking them as shared and forcing them into register
2207          // if they are used only in address expressions.
2208          // But they should be marked as shared if there are other uses
2209          // besides address expressions.
2210
2211          if (clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2212            continue;
2213          }
2214        }   // if( mem_op &&
2215        mstack.push(m, Pre_Visit);
2216      }     // for(int i = ...)
2217    }
2218    else if (nstate == Alt_Post_Visit) {
2219      mstack.pop(); // Remove node from stack
2220      // We cannot remove the Cmp input from the Bool here, as the Bool may be
2221      // shared and all users of the Bool need to move the Cmp in parallel.
2222      // This leaves both the Bool and the If pointing at the Cmp.  To
2223      // prevent the Matcher from trying to Match the Cmp along both paths
2224      // BoolNode::match_edge always returns a zero.
2225
2226      // We reorder the Op_If in a pre-order manner, so we can visit without
2227      // accidentally sharing the Cmp (the Bool and the If make 2 users).
2228      n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2229    }
2230    else if (nstate == Post_Visit) {
2231      mstack.pop(); // Remove node from stack
2232
2233      // Now hack a few special opcodes
2234      switch( n->Opcode() ) {       // Handle some opcodes special
2235      case Op_StorePConditional:
2236      case Op_StoreIConditional:
2237      case Op_StoreLConditional:
2238      case Op_CompareAndExchangeB:
2239      case Op_CompareAndExchangeS:
2240      case Op_CompareAndExchangeI:
2241      case Op_CompareAndExchangeL:
2242      case Op_CompareAndExchangeP:
2243      case Op_CompareAndExchangeN:
2244      case Op_WeakCompareAndSwapB:
2245      case Op_WeakCompareAndSwapS:
2246      case Op_WeakCompareAndSwapI:
2247      case Op_WeakCompareAndSwapL:
2248      case Op_WeakCompareAndSwapP:
2249      case Op_WeakCompareAndSwapN:
2250      case Op_CompareAndSwapB:
2251      case Op_CompareAndSwapS:
2252      case Op_CompareAndSwapI:
2253      case Op_CompareAndSwapL:
2254      case Op_CompareAndSwapP:
2255      case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2256        Node *newval = n->in(MemNode::ValueIn );
2257        Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2258        Node *pair = new BinaryNode( oldval, newval );
2259        n->set_req(MemNode::ValueIn,pair);
2260        n->del_req(LoadStoreConditionalNode::ExpectedIn);
2261        break;
2262      }
2263      case Op_CMoveD:              // Convert trinary to binary-tree
2264      case Op_CMoveF:
2265      case Op_CMoveI:
2266      case Op_CMoveL:
2267      case Op_CMoveN:
2268      case Op_CMoveP:
2269      case Op_CMoveVD:  {
2270        // Restructure into a binary tree for Matching.  It's possible that
2271        // we could move this code up next to the graph reshaping for IfNodes
2272        // or vice-versa, but I do not want to debug this for Ladybird.
2273        // 10/2/2000 CNC.
2274        Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2275        n->set_req(1,pair1);
2276        Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2277        n->set_req(2,pair2);
2278        n->del_req(3);
2279        break;
2280      }
2281      case Op_LoopLimit: {
2282        Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2283        n->set_req(1,pair1);
2284        n->set_req(2,n->in(3));
2285        n->del_req(3);
2286        break;
2287      }
2288      case Op_StrEquals:
2289      case Op_StrIndexOfChar: {
2290        Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2291        n->set_req(2,pair1);
2292        n->set_req(3,n->in(4));
2293        n->del_req(4);
2294        break;
2295      }
2296      case Op_StrComp:
2297      case Op_StrIndexOf: {
2298        Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2299        n->set_req(2,pair1);
2300        Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2301        n->set_req(3,pair2);
2302        n->del_req(5);
2303        n->del_req(4);
2304        break;
2305      }
2306      case Op_StrCompressedCopy:
2307      case Op_StrInflatedCopy:
2308      case Op_EncodeISOArray: {
2309        // Restructure into a binary tree for Matching.
2310        Node* pair = new BinaryNode(n->in(3), n->in(4));
2311        n->set_req(3, pair);
2312        n->del_req(4);
2313        break;
2314      }
2315      case Op_FmaD:
2316      case Op_FmaF:
2317      case Op_FmaVD:
2318      case Op_FmaVF: {
2319        // Restructure into a binary tree for Matching.
2320        Node* pair = new BinaryNode(n->in(1), n->in(2));
2321        n->set_req(2, pair);
2322        n->set_req(1, n->in(3));
2323        n->del_req(3);
2324        break;
2325      }
2326      default:
2327        break;
2328      }
2329    }
2330    else {
2331      ShouldNotReachHere();
2332    }
2333  } // end of while (mstack.is_nonempty())
2334}
2335
2336#ifdef ASSERT
2337// machine-independent root to machine-dependent root
2338void Matcher::dump_old2new_map() {
2339  _old2new_map.dump();
2340}
2341#endif
2342
2343//---------------------------collect_null_checks-------------------------------
2344// Find null checks in the ideal graph; write a machine-specific node for
2345// it.  Used by later implicit-null-check handling.  Actually collects
2346// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2347// value being tested.
2348void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2349  Node *iff = proj->in(0);
2350  if( iff->Opcode() == Op_If ) {
2351    // During matching If's have Bool & Cmp side-by-side
2352    BoolNode *b = iff->in(1)->as_Bool();
2353    Node *cmp = iff->in(2);
2354    int opc = cmp->Opcode();
2355    if (opc != Op_CmpP && opc != Op_CmpN) return;
2356
2357    const Type* ct = cmp->in(2)->bottom_type();
2358    if (ct == TypePtr::NULL_PTR ||
2359        (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2360
2361      bool push_it = false;
2362      if( proj->Opcode() == Op_IfTrue ) {
2363#ifndef PRODUCT
2364        extern int all_null_checks_found;
2365        all_null_checks_found++;
2366#endif
2367        if( b->_test._test == BoolTest::ne ) {
2368          push_it = true;
2369        }
2370      } else {
2371        assert( proj->Opcode() == Op_IfFalse, "" );
2372        if( b->_test._test == BoolTest::eq ) {
2373          push_it = true;
2374        }
2375      }
2376      if( push_it ) {
2377        _null_check_tests.push(proj);
2378        Node* val = cmp->in(1);
2379#ifdef _LP64
2380        if (val->bottom_type()->isa_narrowoop() &&
2381            !Matcher::narrow_oop_use_complex_address()) {
2382          //
2383          // Look for DecodeN node which should be pinned to orig_proj.
2384          // On platforms (Sparc) which can not handle 2 adds
2385          // in addressing mode we have to keep a DecodeN node and
2386          // use it to do implicit NULL check in address.
2387          //
2388          // DecodeN node was pinned to non-null path (orig_proj) during
2389          // CastPP transformation in final_graph_reshaping_impl().
2390          //
2391          uint cnt = orig_proj->outcnt();
2392          for (uint i = 0; i < orig_proj->outcnt(); i++) {
2393            Node* d = orig_proj->raw_out(i);
2394            if (d->is_DecodeN() && d->in(1) == val) {
2395              val = d;
2396              val->set_req(0, NULL); // Unpin now.
2397              // Mark this as special case to distinguish from
2398              // a regular case: CmpP(DecodeN, NULL).
2399              val = (Node*)(((intptr_t)val) | 1);
2400              break;
2401            }
2402          }
2403        }
2404#endif
2405        _null_check_tests.push(val);
2406      }
2407    }
2408  }
2409}
2410
2411//---------------------------validate_null_checks------------------------------
2412// Its possible that the value being NULL checked is not the root of a match
2413// tree.  If so, I cannot use the value in an implicit null check.
2414void Matcher::validate_null_checks( ) {
2415  uint cnt = _null_check_tests.size();
2416  for( uint i=0; i < cnt; i+=2 ) {
2417    Node *test = _null_check_tests[i];
2418    Node *val = _null_check_tests[i+1];
2419    bool is_decoden = ((intptr_t)val) & 1;
2420    val = (Node*)(((intptr_t)val) & ~1);
2421    if (has_new_node(val)) {
2422      Node* new_val = new_node(val);
2423      if (is_decoden) {
2424        assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2425        // Note: new_val may have a control edge if
2426        // the original ideal node DecodeN was matched before
2427        // it was unpinned in Matcher::collect_null_checks().
2428        // Unpin the mach node and mark it.
2429        new_val->set_req(0, NULL);
2430        new_val = (Node*)(((intptr_t)new_val) | 1);
2431      }
2432      // Is a match-tree root, so replace with the matched value
2433      _null_check_tests.map(i+1, new_val);
2434    } else {
2435      // Yank from candidate list
2436      _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2437      _null_check_tests.map(i,_null_check_tests[--cnt]);
2438      _null_check_tests.pop();
2439      _null_check_tests.pop();
2440      i-=2;
2441    }
2442  }
2443}
2444
2445// Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2446// atomic instruction acting as a store_load barrier without any
2447// intervening volatile load, and thus we don't need a barrier here.
2448// We retain the Node to act as a compiler ordering barrier.
2449bool Matcher::post_store_load_barrier(const Node* vmb) {
2450  Compile* C = Compile::current();
2451  assert(vmb->is_MemBar(), "");
2452  assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2453  const MemBarNode* membar = vmb->as_MemBar();
2454
2455  // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2456  Node* ctrl = NULL;
2457  for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2458    Node* p = membar->fast_out(i);
2459    assert(p->is_Proj(), "only projections here");
2460    if ((p->as_Proj()->_con == TypeFunc::Control) &&
2461        !C->node_arena()->contains(p)) { // Unmatched old-space only
2462      ctrl = p;
2463      break;
2464    }
2465  }
2466  assert((ctrl != NULL), "missing control projection");
2467
2468  for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2469    Node *x = ctrl->fast_out(j);
2470    int xop = x->Opcode();
2471
2472    // We don't need current barrier if we see another or a lock
2473    // before seeing volatile load.
2474    //
2475    // Op_Fastunlock previously appeared in the Op_* list below.
2476    // With the advent of 1-0 lock operations we're no longer guaranteed
2477    // that a monitor exit operation contains a serializing instruction.
2478
2479    if (xop == Op_MemBarVolatile ||
2480        xop == Op_CompareAndExchangeB ||
2481        xop == Op_CompareAndExchangeS ||
2482        xop == Op_CompareAndExchangeI ||
2483        xop == Op_CompareAndExchangeL ||
2484        xop == Op_CompareAndExchangeP ||
2485        xop == Op_CompareAndExchangeN ||
2486        xop == Op_WeakCompareAndSwapB ||
2487        xop == Op_WeakCompareAndSwapS ||
2488        xop == Op_WeakCompareAndSwapL ||
2489        xop == Op_WeakCompareAndSwapP ||
2490        xop == Op_WeakCompareAndSwapN ||
2491        xop == Op_WeakCompareAndSwapI ||
2492        xop == Op_CompareAndSwapB ||
2493        xop == Op_CompareAndSwapS ||
2494        xop == Op_CompareAndSwapL ||
2495        xop == Op_CompareAndSwapP ||
2496        xop == Op_CompareAndSwapN ||
2497        xop == Op_CompareAndSwapI) {
2498      return true;
2499    }
2500
2501    // Op_FastLock previously appeared in the Op_* list above.
2502    // With biased locking we're no longer guaranteed that a monitor
2503    // enter operation contains a serializing instruction.
2504    if ((xop == Op_FastLock) && !UseBiasedLocking) {
2505      return true;
2506    }
2507
2508    if (x->is_MemBar()) {
2509      // We must retain this membar if there is an upcoming volatile
2510      // load, which will be followed by acquire membar.
2511      if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2512        return false;
2513      } else {
2514        // For other kinds of barriers, check by pretending we
2515        // are them, and seeing if we can be removed.
2516        return post_store_load_barrier(x->as_MemBar());
2517      }
2518    }
2519
2520    // probably not necessary to check for these
2521    if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2522      return false;
2523    }
2524  }
2525  return false;
2526}
2527
2528// Check whether node n is a branch to an uncommon trap that we could
2529// optimize as test with very high branch costs in case of going to
2530// the uncommon trap. The code must be able to be recompiled to use
2531// a cheaper test.
2532bool Matcher::branches_to_uncommon_trap(const Node *n) {
2533  // Don't do it for natives, adapters, or runtime stubs
2534  Compile *C = Compile::current();
2535  if (!C->is_method_compilation()) return false;
2536
2537  assert(n->is_If(), "You should only call this on if nodes.");
2538  IfNode *ifn = n->as_If();
2539
2540  Node *ifFalse = NULL;
2541  for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2542    if (ifn->fast_out(i)->is_IfFalse()) {
2543      ifFalse = ifn->fast_out(i);
2544      break;
2545    }
2546  }
2547  assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2548
2549  Node *reg = ifFalse;
2550  int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2551               // Alternatively use visited set?  Seems too expensive.
2552  while (reg != NULL && cnt > 0) {
2553    CallNode *call = NULL;
2554    RegionNode *nxt_reg = NULL;
2555    for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2556      Node *o = reg->fast_out(i);
2557      if (o->is_Call()) {
2558        call = o->as_Call();
2559      }
2560      if (o->is_Region()) {
2561        nxt_reg = o->as_Region();
2562      }
2563    }
2564
2565    if (call &&
2566        call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2567      const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2568      if (trtype->isa_int() && trtype->is_int()->is_con()) {
2569        jint tr_con = trtype->is_int()->get_con();
2570        Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2571        Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2572        assert((int)reason < (int)BitsPerInt, "recode bit map");
2573
2574        if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2575            && action != Deoptimization::Action_none) {
2576          // This uncommon trap is sure to recompile, eventually.
2577          // When that happens, C->too_many_traps will prevent
2578          // this transformation from happening again.
2579          return true;
2580        }
2581      }
2582    }
2583
2584    reg = nxt_reg;
2585    cnt--;
2586  }
2587
2588  return false;
2589}
2590
2591//=============================================================================
2592//---------------------------State---------------------------------------------
2593State::State(void) {
2594#ifdef ASSERT
2595  _id = 0;
2596  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2597  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2598  //memset(_cost, -1, sizeof(_cost));
2599  //memset(_rule, -1, sizeof(_rule));
2600#endif
2601  memset(_valid, 0, sizeof(_valid));
2602}
2603
2604#ifdef ASSERT
2605State::~State() {
2606  _id = 99;
2607  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2608  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2609  memset(_cost, -3, sizeof(_cost));
2610  memset(_rule, -3, sizeof(_rule));
2611}
2612#endif
2613
2614#ifndef PRODUCT
2615//---------------------------dump----------------------------------------------
2616void State::dump() {
2617  tty->print("\n");
2618  dump(0);
2619}
2620
2621void State::dump(int depth) {
2622  for( int j = 0; j < depth; j++ )
2623    tty->print("   ");
2624  tty->print("--N: ");
2625  _leaf->dump();
2626  uint i;
2627  for( i = 0; i < _LAST_MACH_OPER; i++ )
2628    // Check for valid entry
2629    if( valid(i) ) {
2630      for( int j = 0; j < depth; j++ )
2631        tty->print("   ");
2632        assert(_cost[i] != max_juint, "cost must be a valid value");
2633        assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2634        tty->print_cr("%s  %d  %s",
2635                      ruleName[i], _cost[i], ruleName[_rule[i]] );
2636      }
2637  tty->cr();
2638
2639  for( i=0; i<2; i++ )
2640    if( _kids[i] )
2641      _kids[i]->dump(depth+1);
2642}
2643#endif
2644