macroArrayCopy.cpp revision 13249:a2753984d2c1
1/*
2 * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "opto/arraycopynode.hpp"
27#include "oops/objArrayKlass.hpp"
28#include "opto/convertnode.hpp"
29#include "opto/graphKit.hpp"
30#include "opto/macro.hpp"
31#include "opto/runtime.hpp"
32#include "utilities/align.hpp"
33
34
35void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) {
36  MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
37  mb->init_req(TypeFunc::Control, *ctrl);
38  mb->init_req(TypeFunc::Memory, *mem);
39  transform_later(mb);
40  *ctrl = new ProjNode(mb,TypeFunc::Control);
41  transform_later(*ctrl);
42  Node* mem_proj = new ProjNode(mb,TypeFunc::Memory);
43  transform_later(mem_proj);
44  *mem = mem_proj;
45}
46
47Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) {
48  uint shift  = exact_log2(type2aelembytes(elembt));
49  uint header = arrayOopDesc::base_offset_in_bytes(elembt);
50  Node* base =  basic_plus_adr(ary, header);
51#ifdef _LP64
52  // see comment in GraphKit::array_element_address
53  int index_max = max_jint - 1;  // array size is max_jint, index is one less
54  const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
55  idx = transform_later( new ConvI2LNode(idx, lidxtype) );
56#endif
57  Node* scale = new LShiftXNode(idx, intcon(shift));
58  transform_later(scale);
59  return basic_plus_adr(ary, base, scale);
60}
61
62Node* PhaseMacroExpand::ConvI2L(Node* offset) {
63  return transform_later(new ConvI2LNode(offset));
64}
65
66Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem,
67                                       const TypeFunc* call_type, address call_addr,
68                                       const char* call_name,
69                                       const TypePtr* adr_type,
70                                       Node* parm0, Node* parm1,
71                                       Node* parm2, Node* parm3,
72                                       Node* parm4, Node* parm5,
73                                       Node* parm6, Node* parm7) {
74  int size = call_type->domain()->cnt();
75  Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
76  call->init_req(TypeFunc::Control, ctrl);
77  call->init_req(TypeFunc::I_O    , top());
78  call->init_req(TypeFunc::Memory , mem);
79  call->init_req(TypeFunc::ReturnAdr, top());
80  call->init_req(TypeFunc::FramePtr, top());
81
82  // Hook each parm in order.  Stop looking at the first NULL.
83  if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
84  if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
85  if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
86  if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
87  if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
88  if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
89  if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
90  if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
91    /* close each nested if ===> */  } } } } } } } }
92  assert(call->in(call->req()-1) != NULL, "must initialize all parms");
93
94  return call;
95}
96
97
98//------------------------------generate_guard---------------------------
99// Helper function for generating guarded fast-slow graph structures.
100// The given 'test', if true, guards a slow path.  If the test fails
101// then a fast path can be taken.  (We generally hope it fails.)
102// In all cases, GraphKit::control() is updated to the fast path.
103// The returned value represents the control for the slow path.
104// The return value is never 'top'; it is either a valid control
105// or NULL if it is obvious that the slow path can never be taken.
106// Also, if region and the slow control are not NULL, the slow edge
107// is appended to the region.
108Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) {
109  if ((*ctrl)->is_top()) {
110    // Already short circuited.
111    return NULL;
112  }
113  // Build an if node and its projections.
114  // If test is true we take the slow path, which we assume is uncommon.
115  if (_igvn.type(test) == TypeInt::ZERO) {
116    // The slow branch is never taken.  No need to build this guard.
117    return NULL;
118  }
119
120  IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN);
121  transform_later(iff);
122
123  Node* if_slow = new IfTrueNode(iff);
124  transform_later(if_slow);
125
126  if (region != NULL) {
127    region->add_req(if_slow);
128  }
129
130  Node* if_fast = new IfFalseNode(iff);
131  transform_later(if_fast);
132
133  *ctrl = if_fast;
134
135  return if_slow;
136}
137
138inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) {
139  return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3));
140}
141
142void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) {
143  if ((*ctrl)->is_top())
144    return;                // already stopped
145  if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
146    return;                // index is already adequately typed
147  Node* cmp_lt = new CmpINode(index, intcon(0));
148  transform_later(cmp_lt);
149  Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
150  transform_later(bol_lt);
151  generate_guard(ctrl, bol_lt, region, PROB_MIN);
152}
153
154void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) {
155  if ((*ctrl)->is_top())
156    return;                // already stopped
157  bool zero_offset = _igvn.type(offset) == TypeInt::ZERO;
158  if (zero_offset && subseq_length->eqv_uncast(array_length))
159    return;                // common case of whole-array copy
160  Node* last = subseq_length;
161  if (!zero_offset) {            // last += offset
162    last = new AddINode(last, offset);
163    transform_later(last);
164  }
165  Node* cmp_lt = new CmpUNode(array_length, last);
166  transform_later(cmp_lt);
167  Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
168  transform_later(bol_lt);
169  generate_guard(ctrl, bol_lt, region, PROB_MIN);
170}
171
172Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) {
173  if ((*ctrl)->is_top())  return NULL;
174
175  if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
176    return NULL;                // index is already adequately typed
177  Node* cmp_le = new CmpINode(index, intcon(0));
178  transform_later(cmp_le);
179  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
180  Node* bol_le = new BoolNode(cmp_le, le_or_eq);
181  transform_later(bol_le);
182  Node* is_notp = generate_guard(ctrl, bol_le, NULL, PROB_MIN);
183
184  return is_notp;
185}
186
187void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) {
188  transform_later(call);
189
190  *ctrl = new ProjNode(call,TypeFunc::Control);
191  transform_later(*ctrl);
192  Node* newmem = new ProjNode(call, TypeFunc::Memory);
193  transform_later(newmem);
194
195  uint alias_idx = C->get_alias_index(adr_type);
196  if (alias_idx != Compile::AliasIdxBot) {
197    *mem = MergeMemNode::make(*mem);
198    (*mem)->set_memory_at(alias_idx, newmem);
199  } else {
200    *mem = MergeMemNode::make(newmem);
201  }
202  transform_later(*mem);
203}
204
205address PhaseMacroExpand::basictype2arraycopy(BasicType t,
206                                              Node* src_offset,
207                                              Node* dest_offset,
208                                              bool disjoint_bases,
209                                              const char* &name,
210                                              bool dest_uninitialized) {
211  const TypeInt* src_offset_inttype  = _igvn.find_int_type(src_offset);;
212  const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset);;
213
214  bool aligned = false;
215  bool disjoint = disjoint_bases;
216
217  // if the offsets are the same, we can treat the memory regions as
218  // disjoint, because either the memory regions are in different arrays,
219  // or they are identical (which we can treat as disjoint.)  We can also
220  // treat a copy with a destination index  less that the source index
221  // as disjoint since a low->high copy will work correctly in this case.
222  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
223      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
224    // both indices are constants
225    int s_offs = src_offset_inttype->get_con();
226    int d_offs = dest_offset_inttype->get_con();
227    int element_size = type2aelembytes(t);
228    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
229              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
230    if (s_offs >= d_offs)  disjoint = true;
231  } else if (src_offset == dest_offset && src_offset != NULL) {
232    // This can occur if the offsets are identical non-constants.
233    disjoint = true;
234  }
235
236  return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
237}
238
239#define XTOP LP64_ONLY(COMMA top())
240
241// Generate an optimized call to arraycopy.
242// Caller must guard against non-arrays.
243// Caller must determine a common array basic-type for both arrays.
244// Caller must validate offsets against array bounds.
245// The slow_region has already collected guard failure paths
246// (such as out of bounds length or non-conformable array types).
247// The generated code has this shape, in general:
248//
249//     if (length == 0)  return   // via zero_path
250//     slowval = -1
251//     if (types unknown) {
252//       slowval = call generic copy loop
253//       if (slowval == 0)  return  // via checked_path
254//     } else if (indexes in bounds) {
255//       if ((is object array) && !(array type check)) {
256//         slowval = call checked copy loop
257//         if (slowval == 0)  return  // via checked_path
258//       } else {
259//         call bulk copy loop
260//         return  // via fast_path
261//       }
262//     }
263//     // adjust params for remaining work:
264//     if (slowval != -1) {
265//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
266//     }
267//   slow_region:
268//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
269//     return  // via slow_call_path
270//
271// This routine is used from several intrinsics:  System.arraycopy,
272// Object.clone (the array subcase), and Arrays.copyOf[Range].
273//
274Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc,
275                                           Node** ctrl, MergeMemNode* mem, Node** io,
276                                           const TypePtr* adr_type,
277                                           BasicType basic_elem_type,
278                                           Node* src,  Node* src_offset,
279                                           Node* dest, Node* dest_offset,
280                                           Node* copy_length,
281                                           bool disjoint_bases,
282                                           bool length_never_negative,
283                                           RegionNode* slow_region) {
284  if (slow_region == NULL) {
285    slow_region = new RegionNode(1);
286    transform_later(slow_region);
287  }
288
289  Node* original_dest      = dest;
290  bool  dest_uninitialized = false;
291
292  // See if this is the initialization of a newly-allocated array.
293  // If so, we will take responsibility here for initializing it to zero.
294  // (Note:  Because tightly_coupled_allocation performs checks on the
295  // out-edges of the dest, we need to avoid making derived pointers
296  // from it until we have checked its uses.)
297  if (ReduceBulkZeroing
298      && !(UseTLAB && ZeroTLAB) // pointless if already zeroed
299      && basic_elem_type != T_CONFLICT // avoid corner case
300      && !src->eqv_uncast(dest)
301      && alloc != NULL
302      && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
303      && alloc->maybe_set_complete(&_igvn)) {
304    // "You break it, you buy it."
305    InitializeNode* init = alloc->initialization();
306    assert(init->is_complete(), "we just did this");
307    init->set_complete_with_arraycopy();
308    assert(dest->is_CheckCastPP(), "sanity");
309    assert(dest->in(0)->in(0) == init, "dest pinned");
310    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
311    // From this point on, every exit path is responsible for
312    // initializing any non-copied parts of the object to zero.
313    // Also, if this flag is set we make sure that arraycopy interacts properly
314    // with G1, eliding pre-barriers. See CR 6627983.
315    dest_uninitialized = true;
316  } else {
317    // No zeroing elimination here.
318    alloc             = NULL;
319    //original_dest   = dest;
320    //dest_uninitialized = false;
321  }
322
323  uint alias_idx = C->get_alias_index(adr_type);
324
325  // Results are placed here:
326  enum { fast_path        = 1,  // normal void-returning assembly stub
327         checked_path     = 2,  // special assembly stub with cleanup
328         slow_call_path   = 3,  // something went wrong; call the VM
329         zero_path        = 4,  // bypass when length of copy is zero
330         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
331         PATH_LIMIT       = 6
332  };
333  RegionNode* result_region = new RegionNode(PATH_LIMIT);
334  PhiNode*    result_i_o    = new PhiNode(result_region, Type::ABIO);
335  PhiNode*    result_memory = new PhiNode(result_region, Type::MEMORY, adr_type);
336  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
337  transform_later(result_region);
338  transform_later(result_i_o);
339  transform_later(result_memory);
340
341  // The slow_control path:
342  Node* slow_control;
343  Node* slow_i_o = *io;
344  Node* slow_mem = mem->memory_at(alias_idx);
345  DEBUG_ONLY(slow_control = (Node*) badAddress);
346
347  // Checked control path:
348  Node* checked_control = top();
349  Node* checked_mem     = NULL;
350  Node* checked_i_o     = NULL;
351  Node* checked_value   = NULL;
352
353  if (basic_elem_type == T_CONFLICT) {
354    assert(!dest_uninitialized, "");
355    Node* cv = generate_generic_arraycopy(ctrl, &mem,
356                                          adr_type,
357                                          src, src_offset, dest, dest_offset,
358                                          copy_length, dest_uninitialized);
359    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
360    checked_control = *ctrl;
361    checked_i_o     = *io;
362    checked_mem     = mem->memory_at(alias_idx);
363    checked_value   = cv;
364    *ctrl = top();
365  }
366
367  Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative);
368  if (not_pos != NULL) {
369    Node* local_ctrl = not_pos, *local_io = *io;
370    MergeMemNode* local_mem = MergeMemNode::make(mem);
371    transform_later(local_mem);
372
373    // (6) length must not be negative.
374    if (!length_never_negative) {
375      generate_negative_guard(&local_ctrl, copy_length, slow_region);
376    }
377
378    // copy_length is 0.
379    if (dest_uninitialized) {
380      assert(!local_ctrl->is_top(), "no ctrl?");
381      Node* dest_length = alloc->in(AllocateNode::ALength);
382      if (copy_length->eqv_uncast(dest_length)
383          || _igvn.find_int_con(dest_length, 1) <= 0) {
384        // There is no zeroing to do. No need for a secondary raw memory barrier.
385      } else {
386        // Clear the whole thing since there are no source elements to copy.
387        generate_clear_array(local_ctrl, local_mem,
388                             adr_type, dest, basic_elem_type,
389                             intcon(0), NULL,
390                             alloc->in(AllocateNode::AllocSize));
391        // Use a secondary InitializeNode as raw memory barrier.
392        // Currently it is needed only on this path since other
393        // paths have stub or runtime calls as raw memory barriers.
394        MemBarNode* mb = MemBarNode::make(C, Op_Initialize,
395                                          Compile::AliasIdxRaw,
396                                          top());
397        transform_later(mb);
398        mb->set_req(TypeFunc::Control,local_ctrl);
399        mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw));
400        local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control));
401        local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory)));
402
403        InitializeNode* init = mb->as_Initialize();
404        init->set_complete(&_igvn);  // (there is no corresponding AllocateNode)
405      }
406    }
407
408    // Present the results of the fast call.
409    result_region->init_req(zero_path, local_ctrl);
410    result_i_o   ->init_req(zero_path, local_io);
411    result_memory->init_req(zero_path, local_mem->memory_at(alias_idx));
412  }
413
414  if (!(*ctrl)->is_top() && dest_uninitialized) {
415    // We have to initialize the *uncopied* part of the array to zero.
416    // The copy destination is the slice dest[off..off+len].  The other slices
417    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
418    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
419    Node* dest_length = alloc->in(AllocateNode::ALength);
420    Node* dest_tail   = transform_later( new AddINode(dest_offset, copy_length));
421
422    // If there is a head section that needs zeroing, do it now.
423    if (_igvn.find_int_con(dest_offset, -1) != 0) {
424      generate_clear_array(*ctrl, mem,
425                           adr_type, dest, basic_elem_type,
426                           intcon(0), dest_offset,
427                           NULL);
428    }
429
430    // Next, perform a dynamic check on the tail length.
431    // It is often zero, and we can win big if we prove this.
432    // There are two wins:  Avoid generating the ClearArray
433    // with its attendant messy index arithmetic, and upgrade
434    // the copy to a more hardware-friendly word size of 64 bits.
435    Node* tail_ctl = NULL;
436    if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) {
437      Node* cmp_lt   = transform_later( new CmpINode(dest_tail, dest_length) );
438      Node* bol_lt   = transform_later( new BoolNode(cmp_lt, BoolTest::lt) );
439      tail_ctl = generate_slow_guard(ctrl, bol_lt, NULL);
440      assert(tail_ctl != NULL || !(*ctrl)->is_top(), "must be an outcome");
441    }
442
443    // At this point, let's assume there is no tail.
444    if (!(*ctrl)->is_top() && alloc != NULL && basic_elem_type != T_OBJECT) {
445      // There is no tail.  Try an upgrade to a 64-bit copy.
446      bool didit = false;
447      {
448        Node* local_ctrl = *ctrl, *local_io = *io;
449        MergeMemNode* local_mem = MergeMemNode::make(mem);
450        transform_later(local_mem);
451
452        didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io,
453                                         adr_type, basic_elem_type, alloc,
454                                         src, src_offset, dest, dest_offset,
455                                         dest_size, dest_uninitialized);
456        if (didit) {
457          // Present the results of the block-copying fast call.
458          result_region->init_req(bcopy_path, local_ctrl);
459          result_i_o   ->init_req(bcopy_path, local_io);
460          result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx));
461        }
462      }
463      if (didit) {
464        *ctrl = top();     // no regular fast path
465      }
466    }
467
468    // Clear the tail, if any.
469    if (tail_ctl != NULL) {
470      Node* notail_ctl = (*ctrl)->is_top() ? NULL : *ctrl;
471      *ctrl = tail_ctl;
472      if (notail_ctl == NULL) {
473        generate_clear_array(*ctrl, mem,
474                             adr_type, dest, basic_elem_type,
475                             dest_tail, NULL,
476                             dest_size);
477      } else {
478        // Make a local merge.
479        Node* done_ctl = transform_later(new RegionNode(3));
480        Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type));
481        done_ctl->init_req(1, notail_ctl);
482        done_mem->init_req(1, mem->memory_at(alias_idx));
483        generate_clear_array(*ctrl, mem,
484                             adr_type, dest, basic_elem_type,
485                             dest_tail, NULL,
486                             dest_size);
487        done_ctl->init_req(2, *ctrl);
488        done_mem->init_req(2, mem->memory_at(alias_idx));
489        *ctrl = done_ctl;
490        mem->set_memory_at(alias_idx, done_mem);
491      }
492    }
493  }
494
495  BasicType copy_type = basic_elem_type;
496  assert(basic_elem_type != T_ARRAY, "caller must fix this");
497  if (!(*ctrl)->is_top() && copy_type == T_OBJECT) {
498    // If src and dest have compatible element types, we can copy bits.
499    // Types S[] and D[] are compatible if D is a supertype of S.
500    //
501    // If they are not, we will use checked_oop_disjoint_arraycopy,
502    // which performs a fast optimistic per-oop check, and backs off
503    // further to JVM_ArrayCopy on the first per-oop check that fails.
504    // (Actually, we don't move raw bits only; the GC requires card marks.)
505
506    // We don't need a subtype check for validated copies and Object[].clone()
507    bool skip_subtype_check = ac->is_arraycopy_validated() || ac->is_copyof_validated() ||
508                              ac->is_copyofrange_validated() || ac->is_cloneoop();
509    if (!skip_subtype_check) {
510      // Get the klass* for both src and dest
511      Node* src_klass  = ac->in(ArrayCopyNode::SrcKlass);
512      Node* dest_klass = ac->in(ArrayCopyNode::DestKlass);
513
514      assert(src_klass != NULL && dest_klass != NULL, "should have klasses");
515
516      // Generate the subtype check.
517      // This might fold up statically, or then again it might not.
518      //
519      // Non-static example:  Copying List<String>.elements to a new String[].
520      // The backing store for a List<String> is always an Object[],
521      // but its elements are always type String, if the generic types
522      // are correct at the source level.
523      //
524      // Test S[] against D[], not S against D, because (probably)
525      // the secondary supertype cache is less busy for S[] than S.
526      // This usually only matters when D is an interface.
527      Node* not_subtype_ctrl = Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, &_igvn);
528      // Plug failing path into checked_oop_disjoint_arraycopy
529      if (not_subtype_ctrl != top()) {
530        Node* local_ctrl = not_subtype_ctrl;
531        MergeMemNode* local_mem = MergeMemNode::make(mem);
532        transform_later(local_mem);
533
534        // (At this point we can assume disjoint_bases, since types differ.)
535        int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
536        Node* p1 = basic_plus_adr(dest_klass, ek_offset);
537        Node* n1 = LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), p1, TypeRawPtr::BOTTOM);
538        Node* dest_elem_klass = transform_later(n1);
539        Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem,
540                                                adr_type,
541                                                dest_elem_klass,
542                                                src, src_offset, dest, dest_offset,
543                                                ConvI2X(copy_length), dest_uninitialized);
544        if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
545        checked_control = local_ctrl;
546        checked_i_o     = *io;
547        checked_mem     = local_mem->memory_at(alias_idx);
548        checked_value   = cv;
549      }
550    }
551    // At this point we know we do not need type checks on oop stores.
552
553    // Let's see if we need card marks:
554    if (alloc != NULL && GraphKit::use_ReduceInitialCardMarks()) {
555      // If we do not need card marks, copy using the jint or jlong stub.
556      copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
557      assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
558             "sizes agree");
559    }
560  }
561
562  if (!(*ctrl)->is_top()) {
563    // Generate the fast path, if possible.
564    Node* local_ctrl = *ctrl;
565    MergeMemNode* local_mem = MergeMemNode::make(mem);
566    transform_later(local_mem);
567
568    generate_unchecked_arraycopy(&local_ctrl, &local_mem,
569                                 adr_type, copy_type, disjoint_bases,
570                                 src, src_offset, dest, dest_offset,
571                                 ConvI2X(copy_length), dest_uninitialized);
572
573    // Present the results of the fast call.
574    result_region->init_req(fast_path, local_ctrl);
575    result_i_o   ->init_req(fast_path, *io);
576    result_memory->init_req(fast_path, local_mem->memory_at(alias_idx));
577  }
578
579  // Here are all the slow paths up to this point, in one bundle:
580  assert(slow_region != NULL, "allocated on entry");
581  slow_control = slow_region;
582  DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
583
584  *ctrl = checked_control;
585  if (!(*ctrl)->is_top()) {
586    // Clean up after the checked call.
587    // The returned value is either 0 or -1^K,
588    // where K = number of partially transferred array elements.
589    Node* cmp = new CmpINode(checked_value, intcon(0));
590    transform_later(cmp);
591    Node* bol = new BoolNode(cmp, BoolTest::eq);
592    transform_later(bol);
593    IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN);
594    transform_later(iff);
595
596    // If it is 0, we are done, so transfer to the end.
597    Node* checks_done = new IfTrueNode(iff);
598    transform_later(checks_done);
599    result_region->init_req(checked_path, checks_done);
600    result_i_o   ->init_req(checked_path, checked_i_o);
601    result_memory->init_req(checked_path, checked_mem);
602
603    // If it is not zero, merge into the slow call.
604    *ctrl = new IfFalseNode(iff);
605    transform_later(*ctrl);
606    RegionNode* slow_reg2 = new RegionNode(3);
607    PhiNode*    slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO);
608    PhiNode*    slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type);
609    transform_later(slow_reg2);
610    transform_later(slow_i_o2);
611    transform_later(slow_mem2);
612    slow_reg2  ->init_req(1, slow_control);
613    slow_i_o2  ->init_req(1, slow_i_o);
614    slow_mem2  ->init_req(1, slow_mem);
615    slow_reg2  ->init_req(2, *ctrl);
616    slow_i_o2  ->init_req(2, checked_i_o);
617    slow_mem2  ->init_req(2, checked_mem);
618
619    slow_control = slow_reg2;
620    slow_i_o     = slow_i_o2;
621    slow_mem     = slow_mem2;
622
623    if (alloc != NULL) {
624      // We'll restart from the very beginning, after zeroing the whole thing.
625      // This can cause double writes, but that's OK since dest is brand new.
626      // So we ignore the low 31 bits of the value returned from the stub.
627    } else {
628      // We must continue the copy exactly where it failed, or else
629      // another thread might see the wrong number of writes to dest.
630      Node* checked_offset = new XorINode(checked_value, intcon(-1));
631      Node* slow_offset    = new PhiNode(slow_reg2, TypeInt::INT);
632      transform_later(checked_offset);
633      transform_later(slow_offset);
634      slow_offset->init_req(1, intcon(0));
635      slow_offset->init_req(2, checked_offset);
636
637      // Adjust the arguments by the conditionally incoming offset.
638      Node* src_off_plus  = new AddINode(src_offset,  slow_offset);
639      transform_later(src_off_plus);
640      Node* dest_off_plus = new AddINode(dest_offset, slow_offset);
641      transform_later(dest_off_plus);
642      Node* length_minus  = new SubINode(copy_length, slow_offset);
643      transform_later(length_minus);
644
645      // Tweak the node variables to adjust the code produced below:
646      src_offset  = src_off_plus;
647      dest_offset = dest_off_plus;
648      copy_length = length_minus;
649    }
650  }
651  *ctrl = slow_control;
652  if (!(*ctrl)->is_top()) {
653    Node* local_ctrl = *ctrl, *local_io = slow_i_o;
654    MergeMemNode* local_mem = MergeMemNode::make(mem);
655    transform_later(local_mem);
656
657    // Generate the slow path, if needed.
658    local_mem->set_memory_at(alias_idx, slow_mem);
659
660    if (dest_uninitialized) {
661      generate_clear_array(local_ctrl, local_mem,
662                           adr_type, dest, basic_elem_type,
663                           intcon(0), NULL,
664                           alloc->in(AllocateNode::AllocSize));
665    }
666
667    local_mem = generate_slow_arraycopy(ac,
668                                        &local_ctrl, local_mem, &local_io,
669                                        adr_type,
670                                        src, src_offset, dest, dest_offset,
671                                        copy_length, /*dest_uninitialized*/false);
672
673    result_region->init_req(slow_call_path, local_ctrl);
674    result_i_o   ->init_req(slow_call_path, local_io);
675    result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx));
676  } else {
677    ShouldNotReachHere(); // no call to generate_slow_arraycopy:
678                          // projections were not extracted
679  }
680
681  // Remove unused edges.
682  for (uint i = 1; i < result_region->req(); i++) {
683    if (result_region->in(i) == NULL) {
684      result_region->init_req(i, top());
685    }
686  }
687
688  // Finished; return the combined state.
689  *ctrl = result_region;
690  *io = result_i_o;
691  mem->set_memory_at(alias_idx, result_memory);
692
693  // mem no longer guaranteed to stay a MergeMemNode
694  Node* out_mem = mem;
695  DEBUG_ONLY(mem = NULL);
696
697  // The memory edges above are precise in order to model effects around
698  // array copies accurately to allow value numbering of field loads around
699  // arraycopy.  Such field loads, both before and after, are common in Java
700  // collections and similar classes involving header/array data structures.
701  //
702  // But with low number of register or when some registers are used or killed
703  // by arraycopy calls it causes registers spilling on stack. See 6544710.
704  // The next memory barrier is added to avoid it. If the arraycopy can be
705  // optimized away (which it can, sometimes) then we can manually remove
706  // the membar also.
707  //
708  // Do not let reads from the cloned object float above the arraycopy.
709  if (alloc != NULL && !alloc->initialization()->does_not_escape()) {
710    // Do not let stores that initialize this object be reordered with
711    // a subsequent store that would make this object accessible by
712    // other threads.
713    insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore);
714  } else if (InsertMemBarAfterArraycopy) {
715    insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder);
716  }
717
718  _igvn.replace_node(_memproj_fallthrough, out_mem);
719  _igvn.replace_node(_ioproj_fallthrough, *io);
720  _igvn.replace_node(_fallthroughcatchproj, *ctrl);
721
722#ifdef ASSERT
723  const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr();
724  if (dest_t->is_known_instance()) {
725    ArrayCopyNode* ac = NULL;
726    assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost");
727    assert(ac == NULL, "no arraycopy anymore");
728  }
729#endif
730
731  return out_mem;
732}
733
734// Helper for initialization of arrays, creating a ClearArray.
735// It writes zero bits in [start..end), within the body of an array object.
736// The memory effects are all chained onto the 'adr_type' alias category.
737//
738// Since the object is otherwise uninitialized, we are free
739// to put a little "slop" around the edges of the cleared area,
740// as long as it does not go back into the array's header,
741// or beyond the array end within the heap.
742//
743// The lower edge can be rounded down to the nearest jint and the
744// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
745//
746// Arguments:
747//   adr_type           memory slice where writes are generated
748//   dest               oop of the destination array
749//   basic_elem_type    element type of the destination
750//   slice_idx          array index of first element to store
751//   slice_len          number of elements to store (or NULL)
752//   dest_size          total size in bytes of the array object
753//
754// Exactly one of slice_len or dest_size must be non-NULL.
755// If dest_size is non-NULL, zeroing extends to the end of the object.
756// If slice_len is non-NULL, the slice_idx value must be a constant.
757void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem,
758                                            const TypePtr* adr_type,
759                                            Node* dest,
760                                            BasicType basic_elem_type,
761                                            Node* slice_idx,
762                                            Node* slice_len,
763                                            Node* dest_size) {
764  // one or the other but not both of slice_len and dest_size:
765  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
766  if (slice_len == NULL)  slice_len = top();
767  if (dest_size == NULL)  dest_size = top();
768
769  uint alias_idx = C->get_alias_index(adr_type);
770
771  // operate on this memory slice:
772  Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on
773
774  // scaling and rounding of indexes:
775  int scale = exact_log2(type2aelembytes(basic_elem_type));
776  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
777  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
778  int bump_bit  = (-1 << scale) & BytesPerInt;
779
780  // determine constant starts and ends
781  const intptr_t BIG_NEG = -128;
782  assert(BIG_NEG + 2*abase < 0, "neg enough");
783  intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG);
784  intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG);
785  if (slice_len_con == 0) {
786    return;                     // nothing to do here
787  }
788  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
789  intptr_t end_con   = _igvn.find_intptr_t_con(dest_size, -1);
790  if (slice_idx_con >= 0 && slice_len_con >= 0) {
791    assert(end_con < 0, "not two cons");
792    end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale),
793                       BytesPerLong);
794  }
795
796  if (start_con >= 0 && end_con >= 0) {
797    // Constant start and end.  Simple.
798    mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
799                                       start_con, end_con, &_igvn);
800  } else if (start_con >= 0 && dest_size != top()) {
801    // Constant start, pre-rounded end after the tail of the array.
802    Node* end = dest_size;
803    mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
804                                       start_con, end, &_igvn);
805  } else if (start_con >= 0 && slice_len != top()) {
806    // Constant start, non-constant end.  End needs rounding up.
807    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
808    intptr_t end_base  = abase + (slice_idx_con << scale);
809    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
810    Node*    end       = ConvI2X(slice_len);
811    if (scale != 0)
812      end = transform_later(new LShiftXNode(end, intcon(scale) ));
813    end_base += end_round;
814    end = transform_later(new AddXNode(end, MakeConX(end_base)) );
815    end = transform_later(new AndXNode(end, MakeConX(~end_round)) );
816    mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
817                                       start_con, end, &_igvn);
818  } else if (start_con < 0 && dest_size != top()) {
819    // Non-constant start, pre-rounded end after the tail of the array.
820    // This is almost certainly a "round-to-end" operation.
821    Node* start = slice_idx;
822    start = ConvI2X(start);
823    if (scale != 0)
824      start = transform_later(new LShiftXNode( start, intcon(scale) ));
825    start = transform_later(new AddXNode(start, MakeConX(abase)) );
826    if ((bump_bit | clear_low) != 0) {
827      int to_clear = (bump_bit | clear_low);
828      // Align up mod 8, then store a jint zero unconditionally
829      // just before the mod-8 boundary.
830      if (((abase + bump_bit) & ~to_clear) - bump_bit
831          < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
832        bump_bit = 0;
833        assert((abase & to_clear) == 0, "array base must be long-aligned");
834      } else {
835        // Bump 'start' up to (or past) the next jint boundary:
836        start = transform_later( new AddXNode(start, MakeConX(bump_bit)) );
837        assert((abase & clear_low) == 0, "array base must be int-aligned");
838      }
839      // Round bumped 'start' down to jlong boundary in body of array.
840      start = transform_later(new AndXNode(start, MakeConX(~to_clear)) );
841      if (bump_bit != 0) {
842        // Store a zero to the immediately preceding jint:
843        Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) );
844        Node* p1 = basic_plus_adr(dest, x1);
845        mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
846        mem = transform_later(mem);
847      }
848    }
849    Node* end = dest_size; // pre-rounded
850    mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
851                                       start, end, &_igvn);
852  } else {
853    // Non-constant start, unrounded non-constant end.
854    // (Nobody zeroes a random midsection of an array using this routine.)
855    ShouldNotReachHere();       // fix caller
856  }
857
858  // Done.
859  merge_mem->set_memory_at(alias_idx, mem);
860}
861
862bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io,
863                                                const TypePtr* adr_type,
864                                                BasicType basic_elem_type,
865                                                AllocateNode* alloc,
866                                                Node* src,  Node* src_offset,
867                                                Node* dest, Node* dest_offset,
868                                                Node* dest_size, bool dest_uninitialized) {
869  // See if there is an advantage from block transfer.
870  int scale = exact_log2(type2aelembytes(basic_elem_type));
871  if (scale >= LogBytesPerLong)
872    return false;               // it is already a block transfer
873
874  // Look at the alignment of the starting offsets.
875  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
876
877  intptr_t src_off_con  = (intptr_t) _igvn.find_int_con(src_offset, -1);
878  intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1);
879  if (src_off_con < 0 || dest_off_con < 0) {
880    // At present, we can only understand constants.
881    return false;
882  }
883
884  intptr_t src_off  = abase + (src_off_con  << scale);
885  intptr_t dest_off = abase + (dest_off_con << scale);
886
887  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
888    // Non-aligned; too bad.
889    // One more chance:  Pick off an initial 32-bit word.
890    // This is a common case, since abase can be odd mod 8.
891    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
892        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
893      Node* sptr = basic_plus_adr(src,  src_off);
894      Node* dptr = basic_plus_adr(dest, dest_off);
895      uint alias_idx = C->get_alias_index(adr_type);
896      bool is_mismatched = (basic_elem_type != T_INT);
897      Node* sval = transform_later(
898          LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), sptr, adr_type,
899                         TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest,
900                         false /*unaligned*/, is_mismatched));
901      Node* st = transform_later(
902          StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), dptr, adr_type,
903                          sval, T_INT, MemNode::unordered));
904      (*mem)->set_memory_at(alias_idx, st);
905      src_off += BytesPerInt;
906      dest_off += BytesPerInt;
907    } else {
908      return false;
909    }
910  }
911  assert(src_off % BytesPerLong == 0, "");
912  assert(dest_off % BytesPerLong == 0, "");
913
914  // Do this copy by giant steps.
915  Node* sptr  = basic_plus_adr(src,  src_off);
916  Node* dptr  = basic_plus_adr(dest, dest_off);
917  Node* countx = dest_size;
918  countx = transform_later(new SubXNode(countx, MakeConX(dest_off)));
919  countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong)));
920
921  bool disjoint_bases = true;   // since alloc != NULL
922  generate_unchecked_arraycopy(ctrl, mem,
923                               adr_type, T_LONG, disjoint_bases,
924                               sptr, NULL, dptr, NULL, countx, dest_uninitialized);
925
926  return true;
927}
928
929// Helper function; generates code for the slow case.
930// We make a call to a runtime method which emulates the native method,
931// but without the native wrapper overhead.
932MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac,
933                                                        Node** ctrl, Node* mem, Node** io,
934                                                        const TypePtr* adr_type,
935                                                        Node* src,  Node* src_offset,
936                                                        Node* dest, Node* dest_offset,
937                                                        Node* copy_length, bool dest_uninitialized) {
938  assert(!dest_uninitialized, "Invariant");
939
940  const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type();
941  CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(),
942                                          "slow_arraycopy",
943                                          ac->jvms()->bci(), TypePtr::BOTTOM);
944
945  call->init_req(TypeFunc::Control, *ctrl);
946  call->init_req(TypeFunc::I_O    , *io);
947  call->init_req(TypeFunc::Memory , mem);
948  call->init_req(TypeFunc::ReturnAdr, top());
949  call->init_req(TypeFunc::FramePtr, top());
950  call->init_req(TypeFunc::Parms+0, src);
951  call->init_req(TypeFunc::Parms+1, src_offset);
952  call->init_req(TypeFunc::Parms+2, dest);
953  call->init_req(TypeFunc::Parms+3, dest_offset);
954  call->init_req(TypeFunc::Parms+4, copy_length);
955  copy_call_debug_info(ac, call);
956
957  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
958  _igvn.replace_node(ac, call);
959  transform_later(call);
960
961  extract_call_projections(call);
962  *ctrl = _fallthroughcatchproj->clone();
963  transform_later(*ctrl);
964
965  Node* m = _memproj_fallthrough->clone();
966  transform_later(m);
967
968  uint alias_idx = C->get_alias_index(adr_type);
969  MergeMemNode* out_mem;
970  if (alias_idx != Compile::AliasIdxBot) {
971    out_mem = MergeMemNode::make(mem);
972    out_mem->set_memory_at(alias_idx, m);
973  } else {
974    out_mem = MergeMemNode::make(m);
975  }
976  transform_later(out_mem);
977
978  *io = _ioproj_fallthrough->clone();
979  transform_later(*io);
980
981  return out_mem;
982}
983
984// Helper function; generates code for cases requiring runtime checks.
985Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem,
986                                                     const TypePtr* adr_type,
987                                                     Node* dest_elem_klass,
988                                                     Node* src,  Node* src_offset,
989                                                     Node* dest, Node* dest_offset,
990                                                     Node* copy_length, bool dest_uninitialized) {
991  if ((*ctrl)->is_top())  return NULL;
992
993  address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
994  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
995    return NULL;
996  }
997
998  // Pick out the parameters required to perform a store-check
999  // for the target array.  This is an optimistic check.  It will
1000  // look in each non-null element's class, at the desired klass's
1001  // super_check_offset, for the desired klass.
1002  int sco_offset = in_bytes(Klass::super_check_offset_offset());
1003  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
1004  Node* n3 = new LoadINode(NULL, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
1005  Node* check_offset = ConvI2X(transform_later(n3));
1006  Node* check_value  = dest_elem_klass;
1007
1008  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
1009  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
1010
1011  const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type();
1012  Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type,
1013                              src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value);
1014
1015  finish_arraycopy_call(call, ctrl, mem, adr_type);
1016
1017  Node* proj =  new ProjNode(call, TypeFunc::Parms);
1018  transform_later(proj);
1019
1020  return proj;
1021}
1022
1023// Helper function; generates code for cases requiring runtime checks.
1024Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem,
1025                                                   const TypePtr* adr_type,
1026                                                   Node* src,  Node* src_offset,
1027                                                   Node* dest, Node* dest_offset,
1028                                                   Node* copy_length, bool dest_uninitialized) {
1029  if ((*ctrl)->is_top()) return NULL;
1030  assert(!dest_uninitialized, "Invariant");
1031
1032  address copyfunc_addr = StubRoutines::generic_arraycopy();
1033  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
1034    return NULL;
1035  }
1036
1037  const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type();
1038  Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type,
1039                              src, src_offset, dest, dest_offset, copy_length);
1040
1041  finish_arraycopy_call(call, ctrl, mem, adr_type);
1042
1043  Node* proj =  new ProjNode(call, TypeFunc::Parms);
1044  transform_later(proj);
1045
1046  return proj;
1047}
1048
1049// Helper function; generates the fast out-of-line call to an arraycopy stub.
1050void PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem,
1051                                                    const TypePtr* adr_type,
1052                                                    BasicType basic_elem_type,
1053                                                    bool disjoint_bases,
1054                                                    Node* src,  Node* src_offset,
1055                                                    Node* dest, Node* dest_offset,
1056                                                    Node* copy_length, bool dest_uninitialized) {
1057  if ((*ctrl)->is_top()) return;
1058
1059  Node* src_start  = src;
1060  Node* dest_start = dest;
1061  if (src_offset != NULL || dest_offset != NULL) {
1062    src_start =  array_element_address(src, src_offset, basic_elem_type);
1063    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
1064  }
1065
1066  // Figure out which arraycopy runtime method to call.
1067  const char* copyfunc_name = "arraycopy";
1068  address     copyfunc_addr =
1069      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
1070                          disjoint_bases, copyfunc_name, dest_uninitialized);
1071
1072  const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
1073  Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type,
1074                              src_start, dest_start, copy_length XTOP);
1075
1076  finish_arraycopy_call(call, ctrl, mem, adr_type);
1077}
1078
1079void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) {
1080  Node* ctrl = ac->in(TypeFunc::Control);
1081  Node* io = ac->in(TypeFunc::I_O);
1082  Node* src = ac->in(ArrayCopyNode::Src);
1083  Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
1084  Node* dest = ac->in(ArrayCopyNode::Dest);
1085  Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
1086  Node* length = ac->in(ArrayCopyNode::Length);
1087  MergeMemNode* merge_mem = NULL;
1088
1089  if (ac->is_clonebasic()) {
1090    assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null");
1091    Node* mem = ac->in(TypeFunc::Memory);
1092    const char* copyfunc_name = "arraycopy";
1093    address     copyfunc_addr =
1094      basictype2arraycopy(T_LONG, NULL, NULL,
1095                          true, copyfunc_name, true);
1096
1097    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
1098    const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
1099
1100    Node* call = make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, src, dest, length XTOP);
1101    transform_later(call);
1102
1103    _igvn.replace_node(ac, call);
1104    return;
1105  } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_cloneoop()) {
1106    Node* mem = ac->in(TypeFunc::Memory);
1107    merge_mem = MergeMemNode::make(mem);
1108    transform_later(merge_mem);
1109
1110    RegionNode* slow_region = new RegionNode(1);
1111    transform_later(slow_region);
1112
1113    AllocateArrayNode* alloc = NULL;
1114    if (ac->is_alloc_tightly_coupled()) {
1115      alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
1116      assert(alloc != NULL, "expect alloc");
1117    }
1118
1119    const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot);
1120    if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1121      adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1122    }
1123    if (ac->_src_type != ac->_dest_type) {
1124      adr_type = TypeRawPtr::BOTTOM;
1125    }
1126    generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1127                       adr_type, T_OBJECT,
1128                       src, src_offset, dest, dest_offset, length,
1129                       true, !ac->is_copyofrange());
1130
1131    return;
1132  }
1133
1134  AllocateArrayNode* alloc = NULL;
1135  if (ac->is_alloc_tightly_coupled()) {
1136    alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
1137    assert(alloc != NULL, "expect alloc");
1138  }
1139
1140  assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy");
1141
1142  // Compile time checks.  If any of these checks cannot be verified at compile time,
1143  // we do not make a fast path for this call.  Instead, we let the call remain as it
1144  // is.  The checks we choose to mandate at compile time are:
1145  //
1146  // (1) src and dest are arrays.
1147  const Type* src_type = src->Value(&_igvn);
1148  const Type* dest_type = dest->Value(&_igvn);
1149  const TypeAryPtr* top_src = src_type->isa_aryptr();
1150  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
1151
1152  BasicType src_elem = T_CONFLICT;
1153  BasicType dest_elem = T_CONFLICT;
1154
1155  if (top_dest != NULL && top_dest->klass() != NULL) {
1156    dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
1157  }
1158  if (top_src != NULL && top_src->klass() != NULL) {
1159    src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
1160  }
1161  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
1162  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
1163
1164  if (ac->is_arraycopy_validated() &&
1165      dest_elem != T_CONFLICT &&
1166      src_elem == T_CONFLICT) {
1167    src_elem = dest_elem;
1168  }
1169
1170  if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) {
1171    // Conservatively insert a memory barrier on all memory slices.
1172    // Do not let writes into the source float below the arraycopy.
1173    {
1174      Node* mem = ac->in(TypeFunc::Memory);
1175      insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1176
1177      merge_mem = MergeMemNode::make(mem);
1178      transform_later(merge_mem);
1179    }
1180
1181    // Call StubRoutines::generic_arraycopy stub.
1182    Node* mem = generate_arraycopy(ac, NULL, &ctrl, merge_mem, &io,
1183                                   TypeRawPtr::BOTTOM, T_CONFLICT,
1184                                   src, src_offset, dest, dest_offset, length,
1185                                   // If a  negative length guard was generated for the ArrayCopyNode,
1186                                   // the length of the array can never be negative.
1187                                   false, ac->has_negative_length_guard());
1188
1189    // Do not let reads from the destination float above the arraycopy.
1190    // Since we cannot type the arrays, we don't know which slices
1191    // might be affected.  We could restrict this barrier only to those
1192    // memory slices which pertain to array elements--but don't bother.
1193    if (!InsertMemBarAfterArraycopy) {
1194      // (If InsertMemBarAfterArraycopy, there is already one in place.)
1195      insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1196    }
1197    return;
1198  }
1199
1200  assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types");
1201
1202  // (2) src and dest arrays must have elements of the same BasicType
1203  // Figure out the size and type of the elements we will be copying.
1204  if (src_elem != dest_elem || dest_elem == T_VOID) {
1205    // The component types are not the same or are not recognized.  Punt.
1206    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
1207    {
1208      Node* mem = ac->in(TypeFunc::Memory);
1209      merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false);
1210    }
1211
1212    _igvn.replace_node(_memproj_fallthrough, merge_mem);
1213    _igvn.replace_node(_ioproj_fallthrough, io);
1214    _igvn.replace_node(_fallthroughcatchproj, ctrl);
1215    return;
1216  }
1217
1218  //---------------------------------------------------------------------------
1219  // We will make a fast path for this call to arraycopy.
1220
1221  // We have the following tests left to perform:
1222  //
1223  // (3) src and dest must not be null.
1224  // (4) src_offset must not be negative.
1225  // (5) dest_offset must not be negative.
1226  // (6) length must not be negative.
1227  // (7) src_offset + length must not exceed length of src.
1228  // (8) dest_offset + length must not exceed length of dest.
1229  // (9) each element of an oop array must be assignable
1230
1231  {
1232    Node* mem = ac->in(TypeFunc::Memory);
1233    merge_mem = MergeMemNode::make(mem);
1234    transform_later(merge_mem);
1235  }
1236
1237  RegionNode* slow_region = new RegionNode(1);
1238  transform_later(slow_region);
1239
1240  if (!ac->is_arraycopy_validated()) {
1241    // (3) operands must not be null
1242    // We currently perform our null checks with the null_check routine.
1243    // This means that the null exceptions will be reported in the caller
1244    // rather than (correctly) reported inside of the native arraycopy call.
1245    // This should be corrected, given time.  We do our null check with the
1246    // stack pointer restored.
1247    // null checks done library_call.cpp
1248
1249    // (4) src_offset must not be negative.
1250    generate_negative_guard(&ctrl, src_offset, slow_region);
1251
1252    // (5) dest_offset must not be negative.
1253    generate_negative_guard(&ctrl, dest_offset, slow_region);
1254
1255    // (6) length must not be negative (moved to generate_arraycopy()).
1256    // generate_negative_guard(length, slow_region);
1257
1258    // (7) src_offset + length must not exceed length of src.
1259    Node* alen = ac->in(ArrayCopyNode::SrcLen);
1260    assert(alen != NULL, "need src len");
1261    generate_limit_guard(&ctrl,
1262                         src_offset, length,
1263                         alen,
1264                         slow_region);
1265
1266    // (8) dest_offset + length must not exceed length of dest.
1267    alen = ac->in(ArrayCopyNode::DestLen);
1268    assert(alen != NULL, "need dest len");
1269    generate_limit_guard(&ctrl,
1270                         dest_offset, length,
1271                         alen,
1272                         slow_region);
1273
1274    // (9) each element of an oop array must be assignable
1275    // The generate_arraycopy subroutine checks this.
1276  }
1277  // This is where the memory effects are placed:
1278  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
1279  if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1280    adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1281  }
1282  if (ac->_src_type != ac->_dest_type) {
1283    adr_type = TypeRawPtr::BOTTOM;
1284  }
1285
1286  generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1287                     adr_type, dest_elem,
1288                     src, src_offset, dest, dest_offset, length,
1289                     // If a  negative length guard was generated for the ArrayCopyNode,
1290                     // the length of the array can never be negative.
1291                     false, ac->has_negative_length_guard(), slow_region);
1292}
1293