macro.cpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "libadt/vectset.hpp"
28#include "opto/addnode.hpp"
29#include "opto/callnode.hpp"
30#include "opto/cfgnode.hpp"
31#include "opto/compile.hpp"
32#include "opto/connode.hpp"
33#include "opto/locknode.hpp"
34#include "opto/loopnode.hpp"
35#include "opto/macro.hpp"
36#include "opto/memnode.hpp"
37#include "opto/node.hpp"
38#include "opto/phaseX.hpp"
39#include "opto/rootnode.hpp"
40#include "opto/runtime.hpp"
41#include "opto/subnode.hpp"
42#include "opto/type.hpp"
43#include "runtime/sharedRuntime.hpp"
44
45
46//
47// Replace any references to "oldref" in inputs to "use" with "newref".
48// Returns the number of replacements made.
49//
50int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
51  int nreplacements = 0;
52  uint req = use->req();
53  for (uint j = 0; j < use->len(); j++) {
54    Node *uin = use->in(j);
55    if (uin == oldref) {
56      if (j < req)
57        use->set_req(j, newref);
58      else
59        use->set_prec(j, newref);
60      nreplacements++;
61    } else if (j >= req && uin == NULL) {
62      break;
63    }
64  }
65  return nreplacements;
66}
67
68void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
69  // Copy debug information and adjust JVMState information
70  uint old_dbg_start = oldcall->tf()->domain()->cnt();
71  uint new_dbg_start = newcall->tf()->domain()->cnt();
72  int jvms_adj  = new_dbg_start - old_dbg_start;
73  assert (new_dbg_start == newcall->req(), "argument count mismatch");
74
75  // SafePointScalarObject node could be referenced several times in debug info.
76  // Use Dict to record cloned nodes.
77  Dict* sosn_map = new Dict(cmpkey,hashkey);
78  for (uint i = old_dbg_start; i < oldcall->req(); i++) {
79    Node* old_in = oldcall->in(i);
80    // Clone old SafePointScalarObjectNodes, adjusting their field contents.
81    if (old_in != NULL && old_in->is_SafePointScalarObject()) {
82      SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
83      uint old_unique = C->unique();
84      Node* new_in = old_sosn->clone(sosn_map);
85      if (old_unique != C->unique()) { // New node?
86        new_in->set_req(0, C->root()); // reset control edge
87        new_in = transform_later(new_in); // Register new node.
88      }
89      old_in = new_in;
90    }
91    newcall->add_req(old_in);
92  }
93
94  newcall->set_jvms(oldcall->jvms());
95  for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
96    jvms->set_map(newcall);
97    jvms->set_locoff(jvms->locoff()+jvms_adj);
98    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
99    jvms->set_monoff(jvms->monoff()+jvms_adj);
100    jvms->set_scloff(jvms->scloff()+jvms_adj);
101    jvms->set_endoff(jvms->endoff()+jvms_adj);
102  }
103}
104
105Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
106  Node* cmp;
107  if (mask != 0) {
108    Node* and_node = transform_later(new (C) AndXNode(word, MakeConX(mask)));
109    cmp = transform_later(new (C) CmpXNode(and_node, MakeConX(bits)));
110  } else {
111    cmp = word;
112  }
113  Node* bol = transform_later(new (C) BoolNode(cmp, BoolTest::ne));
114  IfNode* iff = new (C) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
115  transform_later(iff);
116
117  // Fast path taken.
118  Node *fast_taken = transform_later( new (C) IfFalseNode(iff) );
119
120  // Fast path not-taken, i.e. slow path
121  Node *slow_taken = transform_later( new (C) IfTrueNode(iff) );
122
123  if (return_fast_path) {
124    region->init_req(edge, slow_taken); // Capture slow-control
125    return fast_taken;
126  } else {
127    region->init_req(edge, fast_taken); // Capture fast-control
128    return slow_taken;
129  }
130}
131
132//--------------------copy_predefined_input_for_runtime_call--------------------
133void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
134  // Set fixed predefined input arguments
135  call->init_req( TypeFunc::Control, ctrl );
136  call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
137  call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
138  call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
139  call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
140}
141
142//------------------------------make_slow_call---------------------------------
143CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
144
145  // Slow-path call
146 CallNode *call = leaf_name
147   ? (CallNode*)new (C) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
148   : (CallNode*)new (C) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
149
150  // Slow path call has no side-effects, uses few values
151  copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
152  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
153  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
154  copy_call_debug_info(oldcall, call);
155  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
156  _igvn.replace_node(oldcall, call);
157  transform_later(call);
158
159  return call;
160}
161
162void PhaseMacroExpand::extract_call_projections(CallNode *call) {
163  _fallthroughproj = NULL;
164  _fallthroughcatchproj = NULL;
165  _ioproj_fallthrough = NULL;
166  _ioproj_catchall = NULL;
167  _catchallcatchproj = NULL;
168  _memproj_fallthrough = NULL;
169  _memproj_catchall = NULL;
170  _resproj = NULL;
171  for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
172    ProjNode *pn = call->fast_out(i)->as_Proj();
173    switch (pn->_con) {
174      case TypeFunc::Control:
175      {
176        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
177        _fallthroughproj = pn;
178        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
179        const Node *cn = pn->fast_out(j);
180        if (cn->is_Catch()) {
181          ProjNode *cpn = NULL;
182          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
183            cpn = cn->fast_out(k)->as_Proj();
184            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
185            if (cpn->_con == CatchProjNode::fall_through_index)
186              _fallthroughcatchproj = cpn;
187            else {
188              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
189              _catchallcatchproj = cpn;
190            }
191          }
192        }
193        break;
194      }
195      case TypeFunc::I_O:
196        if (pn->_is_io_use)
197          _ioproj_catchall = pn;
198        else
199          _ioproj_fallthrough = pn;
200        break;
201      case TypeFunc::Memory:
202        if (pn->_is_io_use)
203          _memproj_catchall = pn;
204        else
205          _memproj_fallthrough = pn;
206        break;
207      case TypeFunc::Parms:
208        _resproj = pn;
209        break;
210      default:
211        assert(false, "unexpected projection from allocation node.");
212    }
213  }
214
215}
216
217// Eliminate a card mark sequence.  p2x is a ConvP2XNode
218void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
219  assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
220  if (!UseG1GC) {
221    // vanilla/CMS post barrier
222    Node *shift = p2x->unique_out();
223    Node *addp = shift->unique_out();
224    for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
225      Node *mem = addp->last_out(j);
226      if (UseCondCardMark && mem->is_Load()) {
227        assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
228        // The load is checking if the card has been written so
229        // replace it with zero to fold the test.
230        _igvn.replace_node(mem, intcon(0));
231        continue;
232      }
233      assert(mem->is_Store(), "store required");
234      _igvn.replace_node(mem, mem->in(MemNode::Memory));
235    }
236  } else {
237    // G1 pre/post barriers
238    assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
239    // It could be only one user, URShift node, in Object.clone() instrinsic
240    // but the new allocation is passed to arraycopy stub and it could not
241    // be scalar replaced. So we don't check the case.
242
243    // An other case of only one user (Xor) is when the value check for NULL
244    // in G1 post barrier is folded after CCP so the code which used URShift
245    // is removed.
246
247    // Take Region node before eliminating post barrier since it also
248    // eliminates CastP2X node when it has only one user.
249    Node* this_region = p2x->in(0);
250    assert(this_region != NULL, "");
251
252    // Remove G1 post barrier.
253
254    // Search for CastP2X->Xor->URShift->Cmp path which
255    // checks if the store done to a different from the value's region.
256    // And replace Cmp with #0 (false) to collapse G1 post barrier.
257    Node* xorx = NULL;
258    for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
259      Node* u = p2x->fast_out(i);
260      if (u->Opcode() == Op_XorX) {
261        xorx = u;
262        break;
263      }
264    }
265    assert(xorx != NULL, "missing G1 post barrier");
266    Node* shift = xorx->unique_out();
267    Node* cmpx = shift->unique_out();
268    assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
269    cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
270    "missing region check in G1 post barrier");
271    _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
272
273    // Remove G1 pre barrier.
274
275    // Search "if (marking != 0)" check and set it to "false".
276    // There is no G1 pre barrier if previous stored value is NULL
277    // (for example, after initialization).
278    if (this_region->is_Region() && this_region->req() == 3) {
279      int ind = 1;
280      if (!this_region->in(ind)->is_IfFalse()) {
281        ind = 2;
282      }
283      if (this_region->in(ind)->is_IfFalse()) {
284        Node* bol = this_region->in(ind)->in(0)->in(1);
285        assert(bol->is_Bool(), "");
286        cmpx = bol->in(1);
287        if (bol->as_Bool()->_test._test == BoolTest::ne &&
288            cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
289            cmpx->in(1)->is_Load()) {
290          Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
291          const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
292                                              PtrQueue::byte_offset_of_active());
293          if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
294              adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
295              adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
296            _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
297          }
298        }
299      }
300    }
301    // Now CastP2X can be removed since it is used only on dead path
302    // which currently still alive until igvn optimize it.
303    assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
304    _igvn.replace_node(p2x, top());
305  }
306}
307
308// Search for a memory operation for the specified memory slice.
309static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
310  Node *orig_mem = mem;
311  Node *alloc_mem = alloc->in(TypeFunc::Memory);
312  const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
313  while (true) {
314    if (mem == alloc_mem || mem == start_mem ) {
315      return mem;  // hit one of our sentinels
316    } else if (mem->is_MergeMem()) {
317      mem = mem->as_MergeMem()->memory_at(alias_idx);
318    } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
319      Node *in = mem->in(0);
320      // we can safely skip over safepoints, calls, locks and membars because we
321      // already know that the object is safe to eliminate.
322      if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
323        return in;
324      } else if (in->is_Call()) {
325        CallNode *call = in->as_Call();
326        if (!call->may_modify(tinst, phase)) {
327          mem = call->in(TypeFunc::Memory);
328        }
329        mem = in->in(TypeFunc::Memory);
330      } else if (in->is_MemBar()) {
331        mem = in->in(TypeFunc::Memory);
332      } else {
333        assert(false, "unexpected projection");
334      }
335    } else if (mem->is_Store()) {
336      const TypePtr* atype = mem->as_Store()->adr_type();
337      int adr_idx = Compile::current()->get_alias_index(atype);
338      if (adr_idx == alias_idx) {
339        assert(atype->isa_oopptr(), "address type must be oopptr");
340        int adr_offset = atype->offset();
341        uint adr_iid = atype->is_oopptr()->instance_id();
342        // Array elements references have the same alias_idx
343        // but different offset and different instance_id.
344        if (adr_offset == offset && adr_iid == alloc->_idx)
345          return mem;
346      } else {
347        assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
348      }
349      mem = mem->in(MemNode::Memory);
350    } else if (mem->is_ClearArray()) {
351      if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
352        // Can not bypass initialization of the instance
353        // we are looking.
354        debug_only(intptr_t offset;)
355        assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
356        InitializeNode* init = alloc->as_Allocate()->initialization();
357        // We are looking for stored value, return Initialize node
358        // or memory edge from Allocate node.
359        if (init != NULL)
360          return init;
361        else
362          return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
363      }
364      // Otherwise skip it (the call updated 'mem' value).
365    } else if (mem->Opcode() == Op_SCMemProj) {
366      mem = mem->in(0);
367      Node* adr = NULL;
368      if (mem->is_LoadStore()) {
369        adr = mem->in(MemNode::Address);
370      } else {
371        assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
372        adr = mem->in(3); // Destination array
373      }
374      const TypePtr* atype = adr->bottom_type()->is_ptr();
375      int adr_idx = Compile::current()->get_alias_index(atype);
376      if (adr_idx == alias_idx) {
377        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
378        return NULL;
379      }
380      mem = mem->in(MemNode::Memory);
381    } else {
382      return mem;
383    }
384    assert(mem != orig_mem, "dead memory loop");
385  }
386}
387
388//
389// Given a Memory Phi, compute a value Phi containing the values from stores
390// on the input paths.
391// Note: this function is recursive, its depth is limied by the "level" argument
392// Returns the computed Phi, or NULL if it cannot compute it.
393Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
394  assert(mem->is_Phi(), "sanity");
395  int alias_idx = C->get_alias_index(adr_t);
396  int offset = adr_t->offset();
397  int instance_id = adr_t->instance_id();
398
399  // Check if an appropriate value phi already exists.
400  Node* region = mem->in(0);
401  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
402    Node* phi = region->fast_out(k);
403    if (phi->is_Phi() && phi != mem &&
404        phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
405      return phi;
406    }
407  }
408  // Check if an appropriate new value phi already exists.
409  Node* new_phi = value_phis->find(mem->_idx);
410  if (new_phi != NULL)
411    return new_phi;
412
413  if (level <= 0) {
414    return NULL; // Give up: phi tree too deep
415  }
416  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
417  Node *alloc_mem = alloc->in(TypeFunc::Memory);
418
419  uint length = mem->req();
420  GrowableArray <Node *> values(length, length, NULL, false);
421
422  // create a new Phi for the value
423  PhiNode *phi = new (C) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
424  transform_later(phi);
425  value_phis->push(phi, mem->_idx);
426
427  for (uint j = 1; j < length; j++) {
428    Node *in = mem->in(j);
429    if (in == NULL || in->is_top()) {
430      values.at_put(j, in);
431    } else  {
432      Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
433      if (val == start_mem || val == alloc_mem) {
434        // hit a sentinel, return appropriate 0 value
435        values.at_put(j, _igvn.zerocon(ft));
436        continue;
437      }
438      if (val->is_Initialize()) {
439        val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
440      }
441      if (val == NULL) {
442        return NULL;  // can't find a value on this path
443      }
444      if (val == mem) {
445        values.at_put(j, mem);
446      } else if (val->is_Store()) {
447        values.at_put(j, val->in(MemNode::ValueIn));
448      } else if(val->is_Proj() && val->in(0) == alloc) {
449        values.at_put(j, _igvn.zerocon(ft));
450      } else if (val->is_Phi()) {
451        val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
452        if (val == NULL) {
453          return NULL;
454        }
455        values.at_put(j, val);
456      } else if (val->Opcode() == Op_SCMemProj) {
457        assert(val->in(0)->is_LoadStore() || val->in(0)->Opcode() == Op_EncodeISOArray, "sanity");
458        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
459        return NULL;
460      } else {
461#ifdef ASSERT
462        val->dump();
463        assert(false, "unknown node on this path");
464#endif
465        return NULL;  // unknown node on this path
466      }
467    }
468  }
469  // Set Phi's inputs
470  for (uint j = 1; j < length; j++) {
471    if (values.at(j) == mem) {
472      phi->init_req(j, phi);
473    } else {
474      phi->init_req(j, values.at(j));
475    }
476  }
477  return phi;
478}
479
480// Search the last value stored into the object's field.
481Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
482  assert(adr_t->is_known_instance_field(), "instance required");
483  int instance_id = adr_t->instance_id();
484  assert((uint)instance_id == alloc->_idx, "wrong allocation");
485
486  int alias_idx = C->get_alias_index(adr_t);
487  int offset = adr_t->offset();
488  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
489  Node *alloc_ctrl = alloc->in(TypeFunc::Control);
490  Node *alloc_mem = alloc->in(TypeFunc::Memory);
491  Arena *a = Thread::current()->resource_area();
492  VectorSet visited(a);
493
494
495  bool done = sfpt_mem == alloc_mem;
496  Node *mem = sfpt_mem;
497  while (!done) {
498    if (visited.test_set(mem->_idx)) {
499      return NULL;  // found a loop, give up
500    }
501    mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
502    if (mem == start_mem || mem == alloc_mem) {
503      done = true;  // hit a sentinel, return appropriate 0 value
504    } else if (mem->is_Initialize()) {
505      mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
506      if (mem == NULL) {
507        done = true; // Something go wrong.
508      } else if (mem->is_Store()) {
509        const TypePtr* atype = mem->as_Store()->adr_type();
510        assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
511        done = true;
512      }
513    } else if (mem->is_Store()) {
514      const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
515      assert(atype != NULL, "address type must be oopptr");
516      assert(C->get_alias_index(atype) == alias_idx &&
517             atype->is_known_instance_field() && atype->offset() == offset &&
518             atype->instance_id() == instance_id, "store is correct memory slice");
519      done = true;
520    } else if (mem->is_Phi()) {
521      // try to find a phi's unique input
522      Node *unique_input = NULL;
523      Node *top = C->top();
524      for (uint i = 1; i < mem->req(); i++) {
525        Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
526        if (n == NULL || n == top || n == mem) {
527          continue;
528        } else if (unique_input == NULL) {
529          unique_input = n;
530        } else if (unique_input != n) {
531          unique_input = top;
532          break;
533        }
534      }
535      if (unique_input != NULL && unique_input != top) {
536        mem = unique_input;
537      } else {
538        done = true;
539      }
540    } else {
541      assert(false, "unexpected node");
542    }
543  }
544  if (mem != NULL) {
545    if (mem == start_mem || mem == alloc_mem) {
546      // hit a sentinel, return appropriate 0 value
547      return _igvn.zerocon(ft);
548    } else if (mem->is_Store()) {
549      return mem->in(MemNode::ValueIn);
550    } else if (mem->is_Phi()) {
551      // attempt to produce a Phi reflecting the values on the input paths of the Phi
552      Node_Stack value_phis(a, 8);
553      Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
554      if (phi != NULL) {
555        return phi;
556      } else {
557        // Kill all new Phis
558        while(value_phis.is_nonempty()) {
559          Node* n = value_phis.node();
560          _igvn.replace_node(n, C->top());
561          value_phis.pop();
562        }
563      }
564    }
565  }
566  // Something go wrong.
567  return NULL;
568}
569
570// Check the possibility of scalar replacement.
571bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
572  //  Scan the uses of the allocation to check for anything that would
573  //  prevent us from eliminating it.
574  NOT_PRODUCT( const char* fail_eliminate = NULL; )
575  DEBUG_ONLY( Node* disq_node = NULL; )
576  bool  can_eliminate = true;
577
578  Node* res = alloc->result_cast();
579  const TypeOopPtr* res_type = NULL;
580  if (res == NULL) {
581    // All users were eliminated.
582  } else if (!res->is_CheckCastPP()) {
583    NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
584    can_eliminate = false;
585  } else {
586    res_type = _igvn.type(res)->isa_oopptr();
587    if (res_type == NULL) {
588      NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
589      can_eliminate = false;
590    } else if (res_type->isa_aryptr()) {
591      int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
592      if (length < 0) {
593        NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
594        can_eliminate = false;
595      }
596    }
597  }
598
599  if (can_eliminate && res != NULL) {
600    for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
601                               j < jmax && can_eliminate; j++) {
602      Node* use = res->fast_out(j);
603
604      if (use->is_AddP()) {
605        const TypePtr* addp_type = _igvn.type(use)->is_ptr();
606        int offset = addp_type->offset();
607
608        if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
609          NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
610          can_eliminate = false;
611          break;
612        }
613        for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
614                                   k < kmax && can_eliminate; k++) {
615          Node* n = use->fast_out(k);
616          if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
617            DEBUG_ONLY(disq_node = n;)
618            if (n->is_Load() || n->is_LoadStore()) {
619              NOT_PRODUCT(fail_eliminate = "Field load";)
620            } else {
621              NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
622            }
623            can_eliminate = false;
624          }
625        }
626      } else if (use->is_SafePoint()) {
627        SafePointNode* sfpt = use->as_SafePoint();
628        if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
629          // Object is passed as argument.
630          DEBUG_ONLY(disq_node = use;)
631          NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
632          can_eliminate = false;
633        }
634        Node* sfptMem = sfpt->memory();
635        if (sfptMem == NULL || sfptMem->is_top()) {
636          DEBUG_ONLY(disq_node = use;)
637          NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
638          can_eliminate = false;
639        } else {
640          safepoints.append_if_missing(sfpt);
641        }
642      } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
643        if (use->is_Phi()) {
644          if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
645            NOT_PRODUCT(fail_eliminate = "Object is return value";)
646          } else {
647            NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
648          }
649          DEBUG_ONLY(disq_node = use;)
650        } else {
651          if (use->Opcode() == Op_Return) {
652            NOT_PRODUCT(fail_eliminate = "Object is return value";)
653          }else {
654            NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
655          }
656          DEBUG_ONLY(disq_node = use;)
657        }
658        can_eliminate = false;
659      }
660    }
661  }
662
663#ifndef PRODUCT
664  if (PrintEliminateAllocations) {
665    if (can_eliminate) {
666      tty->print("Scalar ");
667      if (res == NULL)
668        alloc->dump();
669      else
670        res->dump();
671    } else if (alloc->_is_scalar_replaceable) {
672      tty->print("NotScalar (%s)", fail_eliminate);
673      if (res == NULL)
674        alloc->dump();
675      else
676        res->dump();
677#ifdef ASSERT
678      if (disq_node != NULL) {
679          tty->print("  >>>> ");
680          disq_node->dump();
681      }
682#endif /*ASSERT*/
683    }
684  }
685#endif
686  return can_eliminate;
687}
688
689// Do scalar replacement.
690bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
691  GrowableArray <SafePointNode *> safepoints_done;
692
693  ciKlass* klass = NULL;
694  ciInstanceKlass* iklass = NULL;
695  int nfields = 0;
696  int array_base;
697  int element_size;
698  BasicType basic_elem_type;
699  ciType* elem_type;
700
701  Node* res = alloc->result_cast();
702  const TypeOopPtr* res_type = NULL;
703  if (res != NULL) { // Could be NULL when there are no users
704    res_type = _igvn.type(res)->isa_oopptr();
705  }
706
707  if (res != NULL) {
708    klass = res_type->klass();
709    if (res_type->isa_instptr()) {
710      // find the fields of the class which will be needed for safepoint debug information
711      assert(klass->is_instance_klass(), "must be an instance klass.");
712      iklass = klass->as_instance_klass();
713      nfields = iklass->nof_nonstatic_fields();
714    } else {
715      // find the array's elements which will be needed for safepoint debug information
716      nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
717      assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
718      elem_type = klass->as_array_klass()->element_type();
719      basic_elem_type = elem_type->basic_type();
720      array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
721      element_size = type2aelembytes(basic_elem_type);
722    }
723  }
724  //
725  // Process the safepoint uses
726  //
727  while (safepoints.length() > 0) {
728    SafePointNode* sfpt = safepoints.pop();
729    Node* mem = sfpt->memory();
730    assert(sfpt->jvms() != NULL, "missed JVMS");
731    // Fields of scalar objs are referenced only at the end
732    // of regular debuginfo at the last (youngest) JVMS.
733    // Record relative start index.
734    uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
735    SafePointScalarObjectNode* sobj = new (C) SafePointScalarObjectNode(res_type,
736#ifdef ASSERT
737                                                 alloc,
738#endif
739                                                 first_ind, nfields);
740    sobj->init_req(0, C->root());
741    transform_later(sobj);
742
743    // Scan object's fields adding an input to the safepoint for each field.
744    for (int j = 0; j < nfields; j++) {
745      intptr_t offset;
746      ciField* field = NULL;
747      if (iklass != NULL) {
748        field = iklass->nonstatic_field_at(j);
749        offset = field->offset();
750        elem_type = field->type();
751        basic_elem_type = field->layout_type();
752      } else {
753        offset = array_base + j * (intptr_t)element_size;
754      }
755
756      const Type *field_type;
757      // The next code is taken from Parse::do_get_xxx().
758      if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
759        if (!elem_type->is_loaded()) {
760          field_type = TypeInstPtr::BOTTOM;
761        } else if (field != NULL && field->is_constant() && field->is_static()) {
762          // This can happen if the constant oop is non-perm.
763          ciObject* con = field->constant_value().as_object();
764          // Do not "join" in the previous type; it doesn't add value,
765          // and may yield a vacuous result if the field is of interface type.
766          field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
767          assert(field_type != NULL, "field singleton type must be consistent");
768        } else {
769          field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
770        }
771        if (UseCompressedOops) {
772          field_type = field_type->make_narrowoop();
773          basic_elem_type = T_NARROWOOP;
774        }
775      } else {
776        field_type = Type::get_const_basic_type(basic_elem_type);
777      }
778
779      const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
780
781      Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
782      if (field_val == NULL) {
783        // We weren't able to find a value for this field,
784        // give up on eliminating this allocation.
785
786        // Remove any extra entries we added to the safepoint.
787        uint last = sfpt->req() - 1;
788        for (int k = 0;  k < j; k++) {
789          sfpt->del_req(last--);
790        }
791        // rollback processed safepoints
792        while (safepoints_done.length() > 0) {
793          SafePointNode* sfpt_done = safepoints_done.pop();
794          // remove any extra entries we added to the safepoint
795          last = sfpt_done->req() - 1;
796          for (int k = 0;  k < nfields; k++) {
797            sfpt_done->del_req(last--);
798          }
799          JVMState *jvms = sfpt_done->jvms();
800          jvms->set_endoff(sfpt_done->req());
801          // Now make a pass over the debug information replacing any references
802          // to SafePointScalarObjectNode with the allocated object.
803          int start = jvms->debug_start();
804          int end   = jvms->debug_end();
805          for (int i = start; i < end; i++) {
806            if (sfpt_done->in(i)->is_SafePointScalarObject()) {
807              SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
808              if (scobj->first_index(jvms) == sfpt_done->req() &&
809                  scobj->n_fields() == (uint)nfields) {
810                assert(scobj->alloc() == alloc, "sanity");
811                sfpt_done->set_req(i, res);
812              }
813            }
814          }
815        }
816#ifndef PRODUCT
817        if (PrintEliminateAllocations) {
818          if (field != NULL) {
819            tty->print("=== At SafePoint node %d can't find value of Field: ",
820                       sfpt->_idx);
821            field->print();
822            int field_idx = C->get_alias_index(field_addr_type);
823            tty->print(" (alias_idx=%d)", field_idx);
824          } else { // Array's element
825            tty->print("=== At SafePoint node %d can't find value of array element [%d]",
826                       sfpt->_idx, j);
827          }
828          tty->print(", which prevents elimination of: ");
829          if (res == NULL)
830            alloc->dump();
831          else
832            res->dump();
833        }
834#endif
835        return false;
836      }
837      if (UseCompressedOops && field_type->isa_narrowoop()) {
838        // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
839        // to be able scalar replace the allocation.
840        if (field_val->is_EncodeP()) {
841          field_val = field_val->in(1);
842        } else {
843          field_val = transform_later(new (C) DecodeNNode(field_val, field_val->get_ptr_type()));
844        }
845      }
846      sfpt->add_req(field_val);
847    }
848    JVMState *jvms = sfpt->jvms();
849    jvms->set_endoff(sfpt->req());
850    // Now make a pass over the debug information replacing any references
851    // to the allocated object with "sobj"
852    int start = jvms->debug_start();
853    int end   = jvms->debug_end();
854    sfpt->replace_edges_in_range(res, sobj, start, end);
855    safepoints_done.append_if_missing(sfpt); // keep it for rollback
856  }
857  return true;
858}
859
860// Process users of eliminated allocation.
861void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
862  Node* res = alloc->result_cast();
863  if (res != NULL) {
864    for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
865      Node *use = res->last_out(j);
866      uint oc1 = res->outcnt();
867
868      if (use->is_AddP()) {
869        for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
870          Node *n = use->last_out(k);
871          uint oc2 = use->outcnt();
872          if (n->is_Store()) {
873#ifdef ASSERT
874            // Verify that there is no dependent MemBarVolatile nodes,
875            // they should be removed during IGVN, see MemBarNode::Ideal().
876            for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
877                                       p < pmax; p++) {
878              Node* mb = n->fast_out(p);
879              assert(mb->is_Initialize() || !mb->is_MemBar() ||
880                     mb->req() <= MemBarNode::Precedent ||
881                     mb->in(MemBarNode::Precedent) != n,
882                     "MemBarVolatile should be eliminated for non-escaping object");
883            }
884#endif
885            _igvn.replace_node(n, n->in(MemNode::Memory));
886          } else {
887            eliminate_card_mark(n);
888          }
889          k -= (oc2 - use->outcnt());
890        }
891      } else {
892        eliminate_card_mark(use);
893      }
894      j -= (oc1 - res->outcnt());
895    }
896    assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
897    _igvn.remove_dead_node(res);
898  }
899
900  //
901  // Process other users of allocation's projections
902  //
903  if (_resproj != NULL && _resproj->outcnt() != 0) {
904    // First disconnect stores captured by Initialize node.
905    // If Initialize node is eliminated first in the following code,
906    // it will kill such stores and DUIterator_Last will assert.
907    for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
908      Node *use = _resproj->fast_out(j);
909      if (use->is_AddP()) {
910        // raw memory addresses used only by the initialization
911        _igvn.replace_node(use, C->top());
912        --j; --jmax;
913      }
914    }
915    for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
916      Node *use = _resproj->last_out(j);
917      uint oc1 = _resproj->outcnt();
918      if (use->is_Initialize()) {
919        // Eliminate Initialize node.
920        InitializeNode *init = use->as_Initialize();
921        assert(init->outcnt() <= 2, "only a control and memory projection expected");
922        Node *ctrl_proj = init->proj_out(TypeFunc::Control);
923        if (ctrl_proj != NULL) {
924           assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
925          _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
926        }
927        Node *mem_proj = init->proj_out(TypeFunc::Memory);
928        if (mem_proj != NULL) {
929          Node *mem = init->in(TypeFunc::Memory);
930#ifdef ASSERT
931          if (mem->is_MergeMem()) {
932            assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
933          } else {
934            assert(mem == _memproj_fallthrough, "allocation memory projection");
935          }
936#endif
937          _igvn.replace_node(mem_proj, mem);
938        }
939      } else  {
940        assert(false, "only Initialize or AddP expected");
941      }
942      j -= (oc1 - _resproj->outcnt());
943    }
944  }
945  if (_fallthroughcatchproj != NULL) {
946    _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
947  }
948  if (_memproj_fallthrough != NULL) {
949    _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
950  }
951  if (_memproj_catchall != NULL) {
952    _igvn.replace_node(_memproj_catchall, C->top());
953  }
954  if (_ioproj_fallthrough != NULL) {
955    _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
956  }
957  if (_ioproj_catchall != NULL) {
958    _igvn.replace_node(_ioproj_catchall, C->top());
959  }
960  if (_catchallcatchproj != NULL) {
961    _igvn.replace_node(_catchallcatchproj, C->top());
962  }
963}
964
965bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
966  if (!EliminateAllocations || !alloc->_is_non_escaping) {
967    return false;
968  }
969  Node* klass = alloc->in(AllocateNode::KlassNode);
970  const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
971  Node* res = alloc->result_cast();
972  // Eliminate boxing allocations which are not used
973  // regardless scalar replacable status.
974  bool boxing_alloc = C->eliminate_boxing() &&
975                      tklass->klass()->is_instance_klass()  &&
976                      tklass->klass()->as_instance_klass()->is_box_klass();
977  if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
978    return false;
979  }
980
981  extract_call_projections(alloc);
982
983  GrowableArray <SafePointNode *> safepoints;
984  if (!can_eliminate_allocation(alloc, safepoints)) {
985    return false;
986  }
987
988  if (!alloc->_is_scalar_replaceable) {
989    assert(res == NULL, "sanity");
990    // We can only eliminate allocation if all debug info references
991    // are already replaced with SafePointScalarObject because
992    // we can't search for a fields value without instance_id.
993    if (safepoints.length() > 0) {
994      return false;
995    }
996  }
997
998  if (!scalar_replacement(alloc, safepoints)) {
999    return false;
1000  }
1001
1002  CompileLog* log = C->log();
1003  if (log != NULL) {
1004    log->head("eliminate_allocation type='%d'",
1005              log->identify(tklass->klass()));
1006    JVMState* p = alloc->jvms();
1007    while (p != NULL) {
1008      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1009      p = p->caller();
1010    }
1011    log->tail("eliminate_allocation");
1012  }
1013
1014  process_users_of_allocation(alloc);
1015
1016#ifndef PRODUCT
1017  if (PrintEliminateAllocations) {
1018    if (alloc->is_AllocateArray())
1019      tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1020    else
1021      tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1022  }
1023#endif
1024
1025  return true;
1026}
1027
1028bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1029  // EA should remove all uses of non-escaping boxing node.
1030  if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
1031    return false;
1032  }
1033
1034  extract_call_projections(boxing);
1035
1036  const TypeTuple* r = boxing->tf()->range();
1037  assert(r->cnt() > TypeFunc::Parms, "sanity");
1038  const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1039  assert(t != NULL, "sanity");
1040
1041  CompileLog* log = C->log();
1042  if (log != NULL) {
1043    log->head("eliminate_boxing type='%d'",
1044              log->identify(t->klass()));
1045    JVMState* p = boxing->jvms();
1046    while (p != NULL) {
1047      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1048      p = p->caller();
1049    }
1050    log->tail("eliminate_boxing");
1051  }
1052
1053  process_users_of_allocation(boxing);
1054
1055#ifndef PRODUCT
1056  if (PrintEliminateAllocations) {
1057    tty->print("++++ Eliminated: %d ", boxing->_idx);
1058    boxing->method()->print_short_name(tty);
1059    tty->cr();
1060  }
1061#endif
1062
1063  return true;
1064}
1065
1066//---------------------------set_eden_pointers-------------------------
1067void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1068  if (UseTLAB) {                // Private allocation: load from TLS
1069    Node* thread = transform_later(new (C) ThreadLocalNode());
1070    int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1071    int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1072    eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1073    eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1074  } else {                      // Shared allocation: load from globals
1075    CollectedHeap* ch = Universe::heap();
1076    address top_adr = (address)ch->top_addr();
1077    address end_adr = (address)ch->end_addr();
1078    eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1079    eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1080  }
1081}
1082
1083
1084Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1085  Node* adr = basic_plus_adr(base, offset);
1086  const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1087  Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
1088  transform_later(value);
1089  return value;
1090}
1091
1092
1093Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1094  Node* adr = basic_plus_adr(base, offset);
1095  mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
1096  transform_later(mem);
1097  return mem;
1098}
1099
1100//=============================================================================
1101//
1102//                              A L L O C A T I O N
1103//
1104// Allocation attempts to be fast in the case of frequent small objects.
1105// It breaks down like this:
1106//
1107// 1) Size in doublewords is computed.  This is a constant for objects and
1108// variable for most arrays.  Doubleword units are used to avoid size
1109// overflow of huge doubleword arrays.  We need doublewords in the end for
1110// rounding.
1111//
1112// 2) Size is checked for being 'too large'.  Too-large allocations will go
1113// the slow path into the VM.  The slow path can throw any required
1114// exceptions, and does all the special checks for very large arrays.  The
1115// size test can constant-fold away for objects.  For objects with
1116// finalizers it constant-folds the otherway: you always go slow with
1117// finalizers.
1118//
1119// 3) If NOT using TLABs, this is the contended loop-back point.
1120// Load-Locked the heap top.  If using TLABs normal-load the heap top.
1121//
1122// 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1123// NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1124// "size*8" we always enter the VM, where "largish" is a constant picked small
1125// enough that there's always space between the eden max and 4Gig (old space is
1126// there so it's quite large) and large enough that the cost of entering the VM
1127// is dwarfed by the cost to initialize the space.
1128//
1129// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1130// down.  If contended, repeat at step 3.  If using TLABs normal-store
1131// adjusted heap top back down; there is no contention.
1132//
1133// 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1134// fields.
1135//
1136// 7) Merge with the slow-path; cast the raw memory pointer to the correct
1137// oop flavor.
1138//
1139//=============================================================================
1140// FastAllocateSizeLimit value is in DOUBLEWORDS.
1141// Allocations bigger than this always go the slow route.
1142// This value must be small enough that allocation attempts that need to
1143// trigger exceptions go the slow route.  Also, it must be small enough so
1144// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1145//=============================================================================j//
1146// %%% Here is an old comment from parseHelper.cpp; is it outdated?
1147// The allocator will coalesce int->oop copies away.  See comment in
1148// coalesce.cpp about how this works.  It depends critically on the exact
1149// code shape produced here, so if you are changing this code shape
1150// make sure the GC info for the heap-top is correct in and around the
1151// slow-path call.
1152//
1153
1154void PhaseMacroExpand::expand_allocate_common(
1155            AllocateNode* alloc, // allocation node to be expanded
1156            Node* length,  // array length for an array allocation
1157            const TypeFunc* slow_call_type, // Type of slow call
1158            address slow_call_address  // Address of slow call
1159    )
1160{
1161
1162  Node* ctrl = alloc->in(TypeFunc::Control);
1163  Node* mem  = alloc->in(TypeFunc::Memory);
1164  Node* i_o  = alloc->in(TypeFunc::I_O);
1165  Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1166  Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1167  Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1168
1169  assert(ctrl != NULL, "must have control");
1170  // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1171  // they will not be used if "always_slow" is set
1172  enum { slow_result_path = 1, fast_result_path = 2 };
1173  Node *result_region;
1174  Node *result_phi_rawmem;
1175  Node *result_phi_rawoop;
1176  Node *result_phi_i_o;
1177
1178  // The initial slow comparison is a size check, the comparison
1179  // we want to do is a BoolTest::gt
1180  bool always_slow = false;
1181  int tv = _igvn.find_int_con(initial_slow_test, -1);
1182  if (tv >= 0) {
1183    always_slow = (tv == 1);
1184    initial_slow_test = NULL;
1185  } else {
1186    initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1187  }
1188
1189  if (C->env()->dtrace_alloc_probes() ||
1190      !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
1191                   (UseConcMarkSweepGC && CMSIncrementalMode))) {
1192    // Force slow-path allocation
1193    always_slow = true;
1194    initial_slow_test = NULL;
1195  }
1196
1197
1198  enum { too_big_or_final_path = 1, need_gc_path = 2 };
1199  Node *slow_region = NULL;
1200  Node *toobig_false = ctrl;
1201
1202  assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1203  // generate the initial test if necessary
1204  if (initial_slow_test != NULL ) {
1205    slow_region = new (C) RegionNode(3);
1206
1207    // Now make the initial failure test.  Usually a too-big test but
1208    // might be a TRUE for finalizers or a fancy class check for
1209    // newInstance0.
1210    IfNode *toobig_iff = new (C) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1211    transform_later(toobig_iff);
1212    // Plug the failing-too-big test into the slow-path region
1213    Node *toobig_true = new (C) IfTrueNode( toobig_iff );
1214    transform_later(toobig_true);
1215    slow_region    ->init_req( too_big_or_final_path, toobig_true );
1216    toobig_false = new (C) IfFalseNode( toobig_iff );
1217    transform_later(toobig_false);
1218  } else {         // No initial test, just fall into next case
1219    toobig_false = ctrl;
1220    debug_only(slow_region = NodeSentinel);
1221  }
1222
1223  Node *slow_mem = mem;  // save the current memory state for slow path
1224  // generate the fast allocation code unless we know that the initial test will always go slow
1225  if (!always_slow) {
1226    // Fast path modifies only raw memory.
1227    if (mem->is_MergeMem()) {
1228      mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1229    }
1230
1231    Node* eden_top_adr;
1232    Node* eden_end_adr;
1233
1234    set_eden_pointers(eden_top_adr, eden_end_adr);
1235
1236    // Load Eden::end.  Loop invariant and hoisted.
1237    //
1238    // Note: We set the control input on "eden_end" and "old_eden_top" when using
1239    //       a TLAB to work around a bug where these values were being moved across
1240    //       a safepoint.  These are not oops, so they cannot be include in the oop
1241    //       map, but they can be changed by a GC.   The proper way to fix this would
1242    //       be to set the raw memory state when generating a  SafepointNode.  However
1243    //       this will require extensive changes to the loop optimization in order to
1244    //       prevent a degradation of the optimization.
1245    //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1246    Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1247
1248    // allocate the Region and Phi nodes for the result
1249    result_region = new (C) RegionNode(3);
1250    result_phi_rawmem = new (C) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1251    result_phi_rawoop = new (C) PhiNode(result_region, TypeRawPtr::BOTTOM);
1252    result_phi_i_o    = new (C) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1253
1254    // We need a Region for the loop-back contended case.
1255    enum { fall_in_path = 1, contended_loopback_path = 2 };
1256    Node *contended_region;
1257    Node *contended_phi_rawmem;
1258    if (UseTLAB) {
1259      contended_region = toobig_false;
1260      contended_phi_rawmem = mem;
1261    } else {
1262      contended_region = new (C) RegionNode(3);
1263      contended_phi_rawmem = new (C) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1264      // Now handle the passing-too-big test.  We fall into the contended
1265      // loop-back merge point.
1266      contended_region    ->init_req(fall_in_path, toobig_false);
1267      contended_phi_rawmem->init_req(fall_in_path, mem);
1268      transform_later(contended_region);
1269      transform_later(contended_phi_rawmem);
1270    }
1271
1272    // Load(-locked) the heap top.
1273    // See note above concerning the control input when using a TLAB
1274    Node *old_eden_top = UseTLAB
1275      ? new (C) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
1276      : new (C) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
1277
1278    transform_later(old_eden_top);
1279    // Add to heap top to get a new heap top
1280    Node *new_eden_top = new (C) AddPNode(top(), old_eden_top, size_in_bytes);
1281    transform_later(new_eden_top);
1282    // Check for needing a GC; compare against heap end
1283    Node *needgc_cmp = new (C) CmpPNode(new_eden_top, eden_end);
1284    transform_later(needgc_cmp);
1285    Node *needgc_bol = new (C) BoolNode(needgc_cmp, BoolTest::ge);
1286    transform_later(needgc_bol);
1287    IfNode *needgc_iff = new (C) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1288    transform_later(needgc_iff);
1289
1290    // Plug the failing-heap-space-need-gc test into the slow-path region
1291    Node *needgc_true = new (C) IfTrueNode(needgc_iff);
1292    transform_later(needgc_true);
1293    if (initial_slow_test) {
1294      slow_region->init_req(need_gc_path, needgc_true);
1295      // This completes all paths into the slow merge point
1296      transform_later(slow_region);
1297    } else {                      // No initial slow path needed!
1298      // Just fall from the need-GC path straight into the VM call.
1299      slow_region = needgc_true;
1300    }
1301    // No need for a GC.  Setup for the Store-Conditional
1302    Node *needgc_false = new (C) IfFalseNode(needgc_iff);
1303    transform_later(needgc_false);
1304
1305    // Grab regular I/O before optional prefetch may change it.
1306    // Slow-path does no I/O so just set it to the original I/O.
1307    result_phi_i_o->init_req(slow_result_path, i_o);
1308
1309    i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1310                              old_eden_top, new_eden_top, length);
1311
1312    // Name successful fast-path variables
1313    Node* fast_oop = old_eden_top;
1314    Node* fast_oop_ctrl;
1315    Node* fast_oop_rawmem;
1316
1317    // Store (-conditional) the modified eden top back down.
1318    // StorePConditional produces flags for a test PLUS a modified raw
1319    // memory state.
1320    if (UseTLAB) {
1321      Node* store_eden_top =
1322        new (C) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1323                              TypeRawPtr::BOTTOM, new_eden_top);
1324      transform_later(store_eden_top);
1325      fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1326      fast_oop_rawmem = store_eden_top;
1327    } else {
1328      Node* store_eden_top =
1329        new (C) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1330                                         new_eden_top, fast_oop/*old_eden_top*/);
1331      transform_later(store_eden_top);
1332      Node *contention_check = new (C) BoolNode(store_eden_top, BoolTest::ne);
1333      transform_later(contention_check);
1334      store_eden_top = new (C) SCMemProjNode(store_eden_top);
1335      transform_later(store_eden_top);
1336
1337      // If not using TLABs, check to see if there was contention.
1338      IfNode *contention_iff = new (C) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1339      transform_later(contention_iff);
1340      Node *contention_true = new (C) IfTrueNode(contention_iff);
1341      transform_later(contention_true);
1342      // If contention, loopback and try again.
1343      contended_region->init_req(contended_loopback_path, contention_true);
1344      contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1345
1346      // Fast-path succeeded with no contention!
1347      Node *contention_false = new (C) IfFalseNode(contention_iff);
1348      transform_later(contention_false);
1349      fast_oop_ctrl = contention_false;
1350
1351      // Bump total allocated bytes for this thread
1352      Node* thread = new (C) ThreadLocalNode();
1353      transform_later(thread);
1354      Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1355                                             in_bytes(JavaThread::allocated_bytes_offset()));
1356      Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1357                                    0, TypeLong::LONG, T_LONG);
1358#ifdef _LP64
1359      Node* alloc_size = size_in_bytes;
1360#else
1361      Node* alloc_size = new (C) ConvI2LNode(size_in_bytes);
1362      transform_later(alloc_size);
1363#endif
1364      Node* new_alloc_bytes = new (C) AddLNode(alloc_bytes, alloc_size);
1365      transform_later(new_alloc_bytes);
1366      fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1367                                   0, new_alloc_bytes, T_LONG);
1368    }
1369
1370    InitializeNode* init = alloc->initialization();
1371    fast_oop_rawmem = initialize_object(alloc,
1372                                        fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1373                                        klass_node, length, size_in_bytes);
1374
1375    // If initialization is performed by an array copy, any required
1376    // MemBarStoreStore was already added. If the object does not
1377    // escape no need for a MemBarStoreStore. Otherwise we need a
1378    // MemBarStoreStore so that stores that initialize this object
1379    // can't be reordered with a subsequent store that makes this
1380    // object accessible by other threads.
1381    if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
1382      if (init == NULL || init->req() < InitializeNode::RawStores) {
1383        // No InitializeNode or no stores captured by zeroing
1384        // elimination. Simply add the MemBarStoreStore after object
1385        // initialization.
1386        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1387        transform_later(mb);
1388
1389        mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1390        mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1391        fast_oop_ctrl = new (C) ProjNode(mb,TypeFunc::Control);
1392        transform_later(fast_oop_ctrl);
1393        fast_oop_rawmem = new (C) ProjNode(mb,TypeFunc::Memory);
1394        transform_later(fast_oop_rawmem);
1395      } else {
1396        // Add the MemBarStoreStore after the InitializeNode so that
1397        // all stores performing the initialization that were moved
1398        // before the InitializeNode happen before the storestore
1399        // barrier.
1400
1401        Node* init_ctrl = init->proj_out(TypeFunc::Control);
1402        Node* init_mem = init->proj_out(TypeFunc::Memory);
1403
1404        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1405        transform_later(mb);
1406
1407        Node* ctrl = new (C) ProjNode(init,TypeFunc::Control);
1408        transform_later(ctrl);
1409        Node* mem = new (C) ProjNode(init,TypeFunc::Memory);
1410        transform_later(mem);
1411
1412        // The MemBarStoreStore depends on control and memory coming
1413        // from the InitializeNode
1414        mb->init_req(TypeFunc::Memory, mem);
1415        mb->init_req(TypeFunc::Control, ctrl);
1416
1417        ctrl = new (C) ProjNode(mb,TypeFunc::Control);
1418        transform_later(ctrl);
1419        mem = new (C) ProjNode(mb,TypeFunc::Memory);
1420        transform_later(mem);
1421
1422        // All nodes that depended on the InitializeNode for control
1423        // and memory must now depend on the MemBarNode that itself
1424        // depends on the InitializeNode
1425        _igvn.replace_node(init_ctrl, ctrl);
1426        _igvn.replace_node(init_mem, mem);
1427      }
1428    }
1429
1430    if (C->env()->dtrace_extended_probes()) {
1431      // Slow-path call
1432      int size = TypeFunc::Parms + 2;
1433      CallLeafNode *call = new (C) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1434                                                CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1435                                                "dtrace_object_alloc",
1436                                                TypeRawPtr::BOTTOM);
1437
1438      // Get base of thread-local storage area
1439      Node* thread = new (C) ThreadLocalNode();
1440      transform_later(thread);
1441
1442      call->init_req(TypeFunc::Parms+0, thread);
1443      call->init_req(TypeFunc::Parms+1, fast_oop);
1444      call->init_req(TypeFunc::Control, fast_oop_ctrl);
1445      call->init_req(TypeFunc::I_O    , top()); // does no i/o
1446      call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1447      call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1448      call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1449      transform_later(call);
1450      fast_oop_ctrl = new (C) ProjNode(call,TypeFunc::Control);
1451      transform_later(fast_oop_ctrl);
1452      fast_oop_rawmem = new (C) ProjNode(call,TypeFunc::Memory);
1453      transform_later(fast_oop_rawmem);
1454    }
1455
1456    // Plug in the successful fast-path into the result merge point
1457    result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1458    result_phi_rawoop->init_req(fast_result_path, fast_oop);
1459    result_phi_i_o   ->init_req(fast_result_path, i_o);
1460    result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1461  } else {
1462    slow_region = ctrl;
1463    result_phi_i_o = i_o; // Rename it to use in the following code.
1464  }
1465
1466  // Generate slow-path call
1467  CallNode *call = new (C) CallStaticJavaNode(slow_call_type, slow_call_address,
1468                               OptoRuntime::stub_name(slow_call_address),
1469                               alloc->jvms()->bci(),
1470                               TypePtr::BOTTOM);
1471  call->init_req( TypeFunc::Control, slow_region );
1472  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1473  call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1474  call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1475  call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1476
1477  call->init_req(TypeFunc::Parms+0, klass_node);
1478  if (length != NULL) {
1479    call->init_req(TypeFunc::Parms+1, length);
1480  }
1481
1482  // Copy debug information and adjust JVMState information, then replace
1483  // allocate node with the call
1484  copy_call_debug_info((CallNode *) alloc,  call);
1485  if (!always_slow) {
1486    call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1487  } else {
1488    // Hook i_o projection to avoid its elimination during allocation
1489    // replacement (when only a slow call is generated).
1490    call->set_req(TypeFunc::I_O, result_phi_i_o);
1491  }
1492  _igvn.replace_node(alloc, call);
1493  transform_later(call);
1494
1495  // Identify the output projections from the allocate node and
1496  // adjust any references to them.
1497  // The control and io projections look like:
1498  //
1499  //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1500  //  Allocate                   Catch
1501  //        ^---Proj(io) <-------+   ^---CatchProj(io)
1502  //
1503  //  We are interested in the CatchProj nodes.
1504  //
1505  extract_call_projections(call);
1506
1507  // An allocate node has separate memory projections for the uses on
1508  // the control and i_o paths. Replace the control memory projection with
1509  // result_phi_rawmem (unless we are only generating a slow call when
1510  // both memory projections are combined)
1511  if (!always_slow && _memproj_fallthrough != NULL) {
1512    for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1513      Node *use = _memproj_fallthrough->fast_out(i);
1514      _igvn.rehash_node_delayed(use);
1515      imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1516      // back up iterator
1517      --i;
1518    }
1519  }
1520  // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1521  // _memproj_catchall so we end up with a call that has only 1 memory projection.
1522  if (_memproj_catchall != NULL ) {
1523    if (_memproj_fallthrough == NULL) {
1524      _memproj_fallthrough = new (C) ProjNode(call, TypeFunc::Memory);
1525      transform_later(_memproj_fallthrough);
1526    }
1527    for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1528      Node *use = _memproj_catchall->fast_out(i);
1529      _igvn.rehash_node_delayed(use);
1530      imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1531      // back up iterator
1532      --i;
1533    }
1534    assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1535    _igvn.remove_dead_node(_memproj_catchall);
1536  }
1537
1538  // An allocate node has separate i_o projections for the uses on the control
1539  // and i_o paths. Always replace the control i_o projection with result i_o
1540  // otherwise incoming i_o become dead when only a slow call is generated
1541  // (it is different from memory projections where both projections are
1542  // combined in such case).
1543  if (_ioproj_fallthrough != NULL) {
1544    for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1545      Node *use = _ioproj_fallthrough->fast_out(i);
1546      _igvn.rehash_node_delayed(use);
1547      imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1548      // back up iterator
1549      --i;
1550    }
1551  }
1552  // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1553  // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1554  if (_ioproj_catchall != NULL ) {
1555    if (_ioproj_fallthrough == NULL) {
1556      _ioproj_fallthrough = new (C) ProjNode(call, TypeFunc::I_O);
1557      transform_later(_ioproj_fallthrough);
1558    }
1559    for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1560      Node *use = _ioproj_catchall->fast_out(i);
1561      _igvn.rehash_node_delayed(use);
1562      imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1563      // back up iterator
1564      --i;
1565    }
1566    assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1567    _igvn.remove_dead_node(_ioproj_catchall);
1568  }
1569
1570  // if we generated only a slow call, we are done
1571  if (always_slow) {
1572    // Now we can unhook i_o.
1573    if (result_phi_i_o->outcnt() > 1) {
1574      call->set_req(TypeFunc::I_O, top());
1575    } else {
1576      assert(result_phi_i_o->unique_ctrl_out() == call, "");
1577      // Case of new array with negative size known during compilation.
1578      // AllocateArrayNode::Ideal() optimization disconnect unreachable
1579      // following code since call to runtime will throw exception.
1580      // As result there will be no users of i_o after the call.
1581      // Leave i_o attached to this call to avoid problems in preceding graph.
1582    }
1583    return;
1584  }
1585
1586
1587  if (_fallthroughcatchproj != NULL) {
1588    ctrl = _fallthroughcatchproj->clone();
1589    transform_later(ctrl);
1590    _igvn.replace_node(_fallthroughcatchproj, result_region);
1591  } else {
1592    ctrl = top();
1593  }
1594  Node *slow_result;
1595  if (_resproj == NULL) {
1596    // no uses of the allocation result
1597    slow_result = top();
1598  } else {
1599    slow_result = _resproj->clone();
1600    transform_later(slow_result);
1601    _igvn.replace_node(_resproj, result_phi_rawoop);
1602  }
1603
1604  // Plug slow-path into result merge point
1605  result_region    ->init_req( slow_result_path, ctrl );
1606  result_phi_rawoop->init_req( slow_result_path, slow_result);
1607  result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1608  transform_later(result_region);
1609  transform_later(result_phi_rawoop);
1610  transform_later(result_phi_rawmem);
1611  transform_later(result_phi_i_o);
1612  // This completes all paths into the result merge point
1613}
1614
1615
1616// Helper for PhaseMacroExpand::expand_allocate_common.
1617// Initializes the newly-allocated storage.
1618Node*
1619PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1620                                    Node* control, Node* rawmem, Node* object,
1621                                    Node* klass_node, Node* length,
1622                                    Node* size_in_bytes) {
1623  InitializeNode* init = alloc->initialization();
1624  // Store the klass & mark bits
1625  Node* mark_node = NULL;
1626  // For now only enable fast locking for non-array types
1627  if (UseBiasedLocking && (length == NULL)) {
1628    mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1629  } else {
1630    mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1631  }
1632  rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1633
1634  rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1635  int header_size = alloc->minimum_header_size();  // conservatively small
1636
1637  // Array length
1638  if (length != NULL) {         // Arrays need length field
1639    rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1640    // conservatively small header size:
1641    header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1642    ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1643    if (k->is_array_klass())    // we know the exact header size in most cases:
1644      header_size = Klass::layout_helper_header_size(k->layout_helper());
1645  }
1646
1647  // Clear the object body, if necessary.
1648  if (init == NULL) {
1649    // The init has somehow disappeared; be cautious and clear everything.
1650    //
1651    // This can happen if a node is allocated but an uncommon trap occurs
1652    // immediately.  In this case, the Initialize gets associated with the
1653    // trap, and may be placed in a different (outer) loop, if the Allocate
1654    // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1655    // there can be two Allocates to one Initialize.  The answer in all these
1656    // edge cases is safety first.  It is always safe to clear immediately
1657    // within an Allocate, and then (maybe or maybe not) clear some more later.
1658    if (!ZeroTLAB)
1659      rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1660                                            header_size, size_in_bytes,
1661                                            &_igvn);
1662  } else {
1663    if (!init->is_complete()) {
1664      // Try to win by zeroing only what the init does not store.
1665      // We can also try to do some peephole optimizations,
1666      // such as combining some adjacent subword stores.
1667      rawmem = init->complete_stores(control, rawmem, object,
1668                                     header_size, size_in_bytes, &_igvn);
1669    }
1670    // We have no more use for this link, since the AllocateNode goes away:
1671    init->set_req(InitializeNode::RawAddress, top());
1672    // (If we keep the link, it just confuses the register allocator,
1673    // who thinks he sees a real use of the address by the membar.)
1674  }
1675
1676  return rawmem;
1677}
1678
1679// Generate prefetch instructions for next allocations.
1680Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1681                                        Node*& contended_phi_rawmem,
1682                                        Node* old_eden_top, Node* new_eden_top,
1683                                        Node* length) {
1684   enum { fall_in_path = 1, pf_path = 2 };
1685   if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1686      // Generate prefetch allocation with watermark check.
1687      // As an allocation hits the watermark, we will prefetch starting
1688      // at a "distance" away from watermark.
1689
1690      Node *pf_region = new (C) RegionNode(3);
1691      Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
1692                                                TypeRawPtr::BOTTOM );
1693      // I/O is used for Prefetch
1694      Node *pf_phi_abio = new (C) PhiNode( pf_region, Type::ABIO );
1695
1696      Node *thread = new (C) ThreadLocalNode();
1697      transform_later(thread);
1698
1699      Node *eden_pf_adr = new (C) AddPNode( top()/*not oop*/, thread,
1700                   _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1701      transform_later(eden_pf_adr);
1702
1703      Node *old_pf_wm = new (C) LoadPNode( needgc_false,
1704                                   contended_phi_rawmem, eden_pf_adr,
1705                                   TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1706      transform_later(old_pf_wm);
1707
1708      // check against new_eden_top
1709      Node *need_pf_cmp = new (C) CmpPNode( new_eden_top, old_pf_wm );
1710      transform_later(need_pf_cmp);
1711      Node *need_pf_bol = new (C) BoolNode( need_pf_cmp, BoolTest::ge );
1712      transform_later(need_pf_bol);
1713      IfNode *need_pf_iff = new (C) IfNode( needgc_false, need_pf_bol,
1714                                       PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1715      transform_later(need_pf_iff);
1716
1717      // true node, add prefetchdistance
1718      Node *need_pf_true = new (C) IfTrueNode( need_pf_iff );
1719      transform_later(need_pf_true);
1720
1721      Node *need_pf_false = new (C) IfFalseNode( need_pf_iff );
1722      transform_later(need_pf_false);
1723
1724      Node *new_pf_wmt = new (C) AddPNode( top(), old_pf_wm,
1725                                    _igvn.MakeConX(AllocatePrefetchDistance) );
1726      transform_later(new_pf_wmt );
1727      new_pf_wmt->set_req(0, need_pf_true);
1728
1729      Node *store_new_wmt = new (C) StorePNode( need_pf_true,
1730                                       contended_phi_rawmem, eden_pf_adr,
1731                                       TypeRawPtr::BOTTOM, new_pf_wmt );
1732      transform_later(store_new_wmt);
1733
1734      // adding prefetches
1735      pf_phi_abio->init_req( fall_in_path, i_o );
1736
1737      Node *prefetch_adr;
1738      Node *prefetch;
1739      uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1740      uint step_size = AllocatePrefetchStepSize;
1741      uint distance = 0;
1742
1743      for ( uint i = 0; i < lines; i++ ) {
1744        prefetch_adr = new (C) AddPNode( old_pf_wm, new_pf_wmt,
1745                                            _igvn.MakeConX(distance) );
1746        transform_later(prefetch_adr);
1747        prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
1748        transform_later(prefetch);
1749        distance += step_size;
1750        i_o = prefetch;
1751      }
1752      pf_phi_abio->set_req( pf_path, i_o );
1753
1754      pf_region->init_req( fall_in_path, need_pf_false );
1755      pf_region->init_req( pf_path, need_pf_true );
1756
1757      pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1758      pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1759
1760      transform_later(pf_region);
1761      transform_later(pf_phi_rawmem);
1762      transform_later(pf_phi_abio);
1763
1764      needgc_false = pf_region;
1765      contended_phi_rawmem = pf_phi_rawmem;
1766      i_o = pf_phi_abio;
1767   } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1768      // Insert a prefetch for each allocation.
1769      // This code is used for Sparc with BIS.
1770      Node *pf_region = new (C) RegionNode(3);
1771      Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
1772                                             TypeRawPtr::BOTTOM );
1773
1774      // Generate several prefetch instructions.
1775      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1776      uint step_size = AllocatePrefetchStepSize;
1777      uint distance = AllocatePrefetchDistance;
1778
1779      // Next cache address.
1780      Node *cache_adr = new (C) AddPNode(old_eden_top, old_eden_top,
1781                                            _igvn.MakeConX(distance));
1782      transform_later(cache_adr);
1783      cache_adr = new (C) CastP2XNode(needgc_false, cache_adr);
1784      transform_later(cache_adr);
1785      Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1786      cache_adr = new (C) AndXNode(cache_adr, mask);
1787      transform_later(cache_adr);
1788      cache_adr = new (C) CastX2PNode(cache_adr);
1789      transform_later(cache_adr);
1790
1791      // Prefetch
1792      Node *prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1793      prefetch->set_req(0, needgc_false);
1794      transform_later(prefetch);
1795      contended_phi_rawmem = prefetch;
1796      Node *prefetch_adr;
1797      distance = step_size;
1798      for ( uint i = 1; i < lines; i++ ) {
1799        prefetch_adr = new (C) AddPNode( cache_adr, cache_adr,
1800                                            _igvn.MakeConX(distance) );
1801        transform_later(prefetch_adr);
1802        prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1803        transform_later(prefetch);
1804        distance += step_size;
1805        contended_phi_rawmem = prefetch;
1806      }
1807   } else if( AllocatePrefetchStyle > 0 ) {
1808      // Insert a prefetch for each allocation only on the fast-path
1809      Node *prefetch_adr;
1810      Node *prefetch;
1811      // Generate several prefetch instructions.
1812      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1813      uint step_size = AllocatePrefetchStepSize;
1814      uint distance = AllocatePrefetchDistance;
1815      for ( uint i = 0; i < lines; i++ ) {
1816        prefetch_adr = new (C) AddPNode( old_eden_top, new_eden_top,
1817                                            _igvn.MakeConX(distance) );
1818        transform_later(prefetch_adr);
1819        prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
1820        // Do not let it float too high, since if eden_top == eden_end,
1821        // both might be null.
1822        if( i == 0 ) { // Set control for first prefetch, next follows it
1823          prefetch->init_req(0, needgc_false);
1824        }
1825        transform_later(prefetch);
1826        distance += step_size;
1827        i_o = prefetch;
1828      }
1829   }
1830   return i_o;
1831}
1832
1833
1834void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1835  expand_allocate_common(alloc, NULL,
1836                         OptoRuntime::new_instance_Type(),
1837                         OptoRuntime::new_instance_Java());
1838}
1839
1840void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1841  Node* length = alloc->in(AllocateNode::ALength);
1842  InitializeNode* init = alloc->initialization();
1843  Node* klass_node = alloc->in(AllocateNode::KlassNode);
1844  ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1845  address slow_call_address;  // Address of slow call
1846  if (init != NULL && init->is_complete_with_arraycopy() &&
1847      k->is_type_array_klass()) {
1848    // Don't zero type array during slow allocation in VM since
1849    // it will be initialized later by arraycopy in compiled code.
1850    slow_call_address = OptoRuntime::new_array_nozero_Java();
1851  } else {
1852    slow_call_address = OptoRuntime::new_array_Java();
1853  }
1854  expand_allocate_common(alloc, length,
1855                         OptoRuntime::new_array_Type(),
1856                         slow_call_address);
1857}
1858
1859//-------------------mark_eliminated_box----------------------------------
1860//
1861// During EA obj may point to several objects but after few ideal graph
1862// transformations (CCP) it may point to only one non escaping object
1863// (but still using phi), corresponding locks and unlocks will be marked
1864// for elimination. Later obj could be replaced with a new node (new phi)
1865// and which does not have escape information. And later after some graph
1866// reshape other locks and unlocks (which were not marked for elimination
1867// before) are connected to this new obj (phi) but they still will not be
1868// marked for elimination since new obj has no escape information.
1869// Mark all associated (same box and obj) lock and unlock nodes for
1870// elimination if some of them marked already.
1871void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1872  if (oldbox->as_BoxLock()->is_eliminated())
1873    return; // This BoxLock node was processed already.
1874
1875  // New implementation (EliminateNestedLocks) has separate BoxLock
1876  // node for each locked region so mark all associated locks/unlocks as
1877  // eliminated even if different objects are referenced in one locked region
1878  // (for example, OSR compilation of nested loop inside locked scope).
1879  if (EliminateNestedLocks ||
1880      oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
1881    // Box is used only in one lock region. Mark this box as eliminated.
1882    _igvn.hash_delete(oldbox);
1883    oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
1884    _igvn.hash_insert(oldbox);
1885
1886    for (uint i = 0; i < oldbox->outcnt(); i++) {
1887      Node* u = oldbox->raw_out(i);
1888      if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
1889        AbstractLockNode* alock = u->as_AbstractLock();
1890        // Check lock's box since box could be referenced by Lock's debug info.
1891        if (alock->box_node() == oldbox) {
1892          // Mark eliminated all related locks and unlocks.
1893          alock->set_non_esc_obj();
1894        }
1895      }
1896    }
1897    return;
1898  }
1899
1900  // Create new "eliminated" BoxLock node and use it in monitor debug info
1901  // instead of oldbox for the same object.
1902  BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1903
1904  // Note: BoxLock node is marked eliminated only here and it is used
1905  // to indicate that all associated lock and unlock nodes are marked
1906  // for elimination.
1907  newbox->set_eliminated();
1908  transform_later(newbox);
1909
1910  // Replace old box node with new box for all users of the same object.
1911  for (uint i = 0; i < oldbox->outcnt();) {
1912    bool next_edge = true;
1913
1914    Node* u = oldbox->raw_out(i);
1915    if (u->is_AbstractLock()) {
1916      AbstractLockNode* alock = u->as_AbstractLock();
1917      if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
1918        // Replace Box and mark eliminated all related locks and unlocks.
1919        alock->set_non_esc_obj();
1920        _igvn.rehash_node_delayed(alock);
1921        alock->set_box_node(newbox);
1922        next_edge = false;
1923      }
1924    }
1925    if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
1926      FastLockNode* flock = u->as_FastLock();
1927      assert(flock->box_node() == oldbox, "sanity");
1928      _igvn.rehash_node_delayed(flock);
1929      flock->set_box_node(newbox);
1930      next_edge = false;
1931    }
1932
1933    // Replace old box in monitor debug info.
1934    if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1935      SafePointNode* sfn = u->as_SafePoint();
1936      JVMState* youngest_jvms = sfn->jvms();
1937      int max_depth = youngest_jvms->depth();
1938      for (int depth = 1; depth <= max_depth; depth++) {
1939        JVMState* jvms = youngest_jvms->of_depth(depth);
1940        int num_mon  = jvms->nof_monitors();
1941        // Loop over monitors
1942        for (int idx = 0; idx < num_mon; idx++) {
1943          Node* obj_node = sfn->monitor_obj(jvms, idx);
1944          Node* box_node = sfn->monitor_box(jvms, idx);
1945          if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
1946            int j = jvms->monitor_box_offset(idx);
1947            _igvn.replace_input_of(u, j, newbox);
1948            next_edge = false;
1949          }
1950        }
1951      }
1952    }
1953    if (next_edge) i++;
1954  }
1955}
1956
1957//-----------------------mark_eliminated_locking_nodes-----------------------
1958void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
1959  if (EliminateNestedLocks) {
1960    if (alock->is_nested()) {
1961       assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
1962       return;
1963    } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
1964      // Only Lock node has JVMState needed here.
1965      if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
1966        // Mark eliminated related nested locks and unlocks.
1967        Node* obj = alock->obj_node();
1968        BoxLockNode* box_node = alock->box_node()->as_BoxLock();
1969        assert(!box_node->is_eliminated(), "should not be marked yet");
1970        // Note: BoxLock node is marked eliminated only here
1971        // and it is used to indicate that all associated lock
1972        // and unlock nodes are marked for elimination.
1973        box_node->set_eliminated(); // Box's hash is always NO_HASH here
1974        for (uint i = 0; i < box_node->outcnt(); i++) {
1975          Node* u = box_node->raw_out(i);
1976          if (u->is_AbstractLock()) {
1977            alock = u->as_AbstractLock();
1978            if (alock->box_node() == box_node) {
1979              // Verify that this Box is referenced only by related locks.
1980              assert(alock->obj_node()->eqv_uncast(obj), "");
1981              // Mark all related locks and unlocks.
1982              alock->set_nested();
1983            }
1984          }
1985        }
1986      }
1987      return;
1988    }
1989    // Process locks for non escaping object
1990    assert(alock->is_non_esc_obj(), "");
1991  } // EliminateNestedLocks
1992
1993  if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
1994    // Look for all locks of this object and mark them and
1995    // corresponding BoxLock nodes as eliminated.
1996    Node* obj = alock->obj_node();
1997    for (uint j = 0; j < obj->outcnt(); j++) {
1998      Node* o = obj->raw_out(j);
1999      if (o->is_AbstractLock() &&
2000          o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2001        alock = o->as_AbstractLock();
2002        Node* box = alock->box_node();
2003        // Replace old box node with new eliminated box for all users
2004        // of the same object and mark related locks as eliminated.
2005        mark_eliminated_box(box, obj);
2006      }
2007    }
2008  }
2009}
2010
2011// we have determined that this lock/unlock can be eliminated, we simply
2012// eliminate the node without expanding it.
2013//
2014// Note:  The membar's associated with the lock/unlock are currently not
2015//        eliminated.  This should be investigated as a future enhancement.
2016//
2017bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2018
2019  if (!alock->is_eliminated()) {
2020    return false;
2021  }
2022#ifdef ASSERT
2023  if (!alock->is_coarsened()) {
2024    // Check that new "eliminated" BoxLock node is created.
2025    BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2026    assert(oldbox->is_eliminated(), "should be done already");
2027  }
2028#endif
2029  CompileLog* log = C->log();
2030  if (log != NULL) {
2031    log->head("eliminate_lock lock='%d'",
2032              alock->is_Lock());
2033    JVMState* p = alock->jvms();
2034    while (p != NULL) {
2035      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2036      p = p->caller();
2037    }
2038    log->tail("eliminate_lock");
2039  }
2040
2041  #ifndef PRODUCT
2042  if (PrintEliminateLocks) {
2043    if (alock->is_Lock()) {
2044      tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2045    } else {
2046      tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2047    }
2048  }
2049  #endif
2050
2051  Node* mem  = alock->in(TypeFunc::Memory);
2052  Node* ctrl = alock->in(TypeFunc::Control);
2053
2054  extract_call_projections(alock);
2055  // There are 2 projections from the lock.  The lock node will
2056  // be deleted when its last use is subsumed below.
2057  assert(alock->outcnt() == 2 &&
2058         _fallthroughproj != NULL &&
2059         _memproj_fallthrough != NULL,
2060         "Unexpected projections from Lock/Unlock");
2061
2062  Node* fallthroughproj = _fallthroughproj;
2063  Node* memproj_fallthrough = _memproj_fallthrough;
2064
2065  // The memory projection from a lock/unlock is RawMem
2066  // The input to a Lock is merged memory, so extract its RawMem input
2067  // (unless the MergeMem has been optimized away.)
2068  if (alock->is_Lock()) {
2069    // Seach for MemBarAcquireLock node and delete it also.
2070    MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2071    assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2072    Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2073    Node* memproj = membar->proj_out(TypeFunc::Memory);
2074    _igvn.replace_node(ctrlproj, fallthroughproj);
2075    _igvn.replace_node(memproj, memproj_fallthrough);
2076
2077    // Delete FastLock node also if this Lock node is unique user
2078    // (a loop peeling may clone a Lock node).
2079    Node* flock = alock->as_Lock()->fastlock_node();
2080    if (flock->outcnt() == 1) {
2081      assert(flock->unique_out() == alock, "sanity");
2082      _igvn.replace_node(flock, top());
2083    }
2084  }
2085
2086  // Seach for MemBarReleaseLock node and delete it also.
2087  if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
2088      ctrl->in(0)->is_MemBar()) {
2089    MemBarNode* membar = ctrl->in(0)->as_MemBar();
2090    assert(membar->Opcode() == Op_MemBarReleaseLock &&
2091           mem->is_Proj() && membar == mem->in(0), "");
2092    _igvn.replace_node(fallthroughproj, ctrl);
2093    _igvn.replace_node(memproj_fallthrough, mem);
2094    fallthroughproj = ctrl;
2095    memproj_fallthrough = mem;
2096    ctrl = membar->in(TypeFunc::Control);
2097    mem  = membar->in(TypeFunc::Memory);
2098  }
2099
2100  _igvn.replace_node(fallthroughproj, ctrl);
2101  _igvn.replace_node(memproj_fallthrough, mem);
2102  return true;
2103}
2104
2105
2106//------------------------------expand_lock_node----------------------
2107void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2108
2109  Node* ctrl = lock->in(TypeFunc::Control);
2110  Node* mem = lock->in(TypeFunc::Memory);
2111  Node* obj = lock->obj_node();
2112  Node* box = lock->box_node();
2113  Node* flock = lock->fastlock_node();
2114
2115  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2116
2117  // Make the merge point
2118  Node *region;
2119  Node *mem_phi;
2120  Node *slow_path;
2121
2122  if (UseOptoBiasInlining) {
2123    /*
2124     *  See the full description in MacroAssembler::biased_locking_enter().
2125     *
2126     *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2127     *    // The object is biased.
2128     *    proto_node = klass->prototype_header;
2129     *    o_node = thread | proto_node;
2130     *    x_node = o_node ^ mark_word;
2131     *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2132     *      // Done.
2133     *    } else {
2134     *      if( (x_node & biased_lock_mask) != 0 ) {
2135     *        // The klass's prototype header is no longer biased.
2136     *        cas(&mark_word, mark_word, proto_node)
2137     *        goto cas_lock;
2138     *      } else {
2139     *        // The klass's prototype header is still biased.
2140     *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2141     *          old = mark_word;
2142     *          new = o_node;
2143     *        } else {
2144     *          // Different thread or anonymous biased.
2145     *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2146     *          new = thread | old;
2147     *        }
2148     *        // Try to rebias.
2149     *        if( cas(&mark_word, old, new) == 0 ) {
2150     *          // Done.
2151     *        } else {
2152     *          goto slow_path; // Failed.
2153     *        }
2154     *      }
2155     *    }
2156     *  } else {
2157     *    // The object is not biased.
2158     *    cas_lock:
2159     *    if( FastLock(obj) == 0 ) {
2160     *      // Done.
2161     *    } else {
2162     *      slow_path:
2163     *      OptoRuntime::complete_monitor_locking_Java(obj);
2164     *    }
2165     *  }
2166     */
2167
2168    region  = new (C) RegionNode(5);
2169    // create a Phi for the memory state
2170    mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2171
2172    Node* fast_lock_region  = new (C) RegionNode(3);
2173    Node* fast_lock_mem_phi = new (C) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2174
2175    // First, check mark word for the biased lock pattern.
2176    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2177
2178    // Get fast path - mark word has the biased lock pattern.
2179    ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2180                         markOopDesc::biased_lock_mask_in_place,
2181                         markOopDesc::biased_lock_pattern, true);
2182    // fast_lock_region->in(1) is set to slow path.
2183    fast_lock_mem_phi->init_req(1, mem);
2184
2185    // Now check that the lock is biased to the current thread and has
2186    // the same epoch and bias as Klass::_prototype_header.
2187
2188    // Special-case a fresh allocation to avoid building nodes:
2189    Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2190    if (klass_node == NULL) {
2191      Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2192      klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
2193#ifdef _LP64
2194      if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2195        assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2196        klass_node->in(1)->init_req(0, ctrl);
2197      } else
2198#endif
2199      klass_node->init_req(0, ctrl);
2200    }
2201    Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2202
2203    Node* thread = transform_later(new (C) ThreadLocalNode());
2204    Node* cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
2205    Node* o_node = transform_later(new (C) OrXNode(cast_thread, proto_node));
2206    Node* x_node = transform_later(new (C) XorXNode(o_node, mark_node));
2207
2208    // Get slow path - mark word does NOT match the value.
2209    Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2210                                      (~markOopDesc::age_mask_in_place), 0);
2211    // region->in(3) is set to fast path - the object is biased to the current thread.
2212    mem_phi->init_req(3, mem);
2213
2214
2215    // Mark word does NOT match the value (thread | Klass::_prototype_header).
2216
2217
2218    // First, check biased pattern.
2219    // Get fast path - _prototype_header has the same biased lock pattern.
2220    ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2221                          markOopDesc::biased_lock_mask_in_place, 0, true);
2222
2223    not_biased_ctrl = fast_lock_region->in(2); // Slow path
2224    // fast_lock_region->in(2) - the prototype header is no longer biased
2225    // and we have to revoke the bias on this object.
2226    // We are going to try to reset the mark of this object to the prototype
2227    // value and fall through to the CAS-based locking scheme.
2228    Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2229    Node* cas = new (C) StoreXConditionalNode(not_biased_ctrl, mem, adr,
2230                                              proto_node, mark_node);
2231    transform_later(cas);
2232    Node* proj = transform_later( new (C) SCMemProjNode(cas));
2233    fast_lock_mem_phi->init_req(2, proj);
2234
2235
2236    // Second, check epoch bits.
2237    Node* rebiased_region  = new (C) RegionNode(3);
2238    Node* old_phi = new (C) PhiNode( rebiased_region, TypeX_X);
2239    Node* new_phi = new (C) PhiNode( rebiased_region, TypeX_X);
2240
2241    // Get slow path - mark word does NOT match epoch bits.
2242    Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2243                                      markOopDesc::epoch_mask_in_place, 0);
2244    // The epoch of the current bias is not valid, attempt to rebias the object
2245    // toward the current thread.
2246    rebiased_region->init_req(2, epoch_ctrl);
2247    old_phi->init_req(2, mark_node);
2248    new_phi->init_req(2, o_node);
2249
2250    // rebiased_region->in(1) is set to fast path.
2251    // The epoch of the current bias is still valid but we know
2252    // nothing about the owner; it might be set or it might be clear.
2253    Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2254                             markOopDesc::age_mask_in_place |
2255                             markOopDesc::epoch_mask_in_place);
2256    Node* old = transform_later(new (C) AndXNode(mark_node, cmask));
2257    cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
2258    Node* new_mark = transform_later(new (C) OrXNode(cast_thread, old));
2259    old_phi->init_req(1, old);
2260    new_phi->init_req(1, new_mark);
2261
2262    transform_later(rebiased_region);
2263    transform_later(old_phi);
2264    transform_later(new_phi);
2265
2266    // Try to acquire the bias of the object using an atomic operation.
2267    // If this fails we will go in to the runtime to revoke the object's bias.
2268    cas = new (C) StoreXConditionalNode(rebiased_region, mem, adr,
2269                                           new_phi, old_phi);
2270    transform_later(cas);
2271    proj = transform_later( new (C) SCMemProjNode(cas));
2272
2273    // Get slow path - Failed to CAS.
2274    not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2275    mem_phi->init_req(4, proj);
2276    // region->in(4) is set to fast path - the object is rebiased to the current thread.
2277
2278    // Failed to CAS.
2279    slow_path  = new (C) RegionNode(3);
2280    Node *slow_mem = new (C) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2281
2282    slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2283    slow_mem->init_req(1, proj);
2284
2285    // Call CAS-based locking scheme (FastLock node).
2286
2287    transform_later(fast_lock_region);
2288    transform_later(fast_lock_mem_phi);
2289
2290    // Get slow path - FastLock failed to lock the object.
2291    ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2292    mem_phi->init_req(2, fast_lock_mem_phi);
2293    // region->in(2) is set to fast path - the object is locked to the current thread.
2294
2295    slow_path->init_req(2, ctrl); // Capture slow-control
2296    slow_mem->init_req(2, fast_lock_mem_phi);
2297
2298    transform_later(slow_path);
2299    transform_later(slow_mem);
2300    // Reset lock's memory edge.
2301    lock->set_req(TypeFunc::Memory, slow_mem);
2302
2303  } else {
2304    region  = new (C) RegionNode(3);
2305    // create a Phi for the memory state
2306    mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2307
2308    // Optimize test; set region slot 2
2309    slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2310    mem_phi->init_req(2, mem);
2311  }
2312
2313  // Make slow path call
2314  CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
2315
2316  extract_call_projections(call);
2317
2318  // Slow path can only throw asynchronous exceptions, which are always
2319  // de-opted.  So the compiler thinks the slow-call can never throw an
2320  // exception.  If it DOES throw an exception we would need the debug
2321  // info removed first (since if it throws there is no monitor).
2322  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2323           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2324
2325  // Capture slow path
2326  // disconnect fall-through projection from call and create a new one
2327  // hook up users of fall-through projection to region
2328  Node *slow_ctrl = _fallthroughproj->clone();
2329  transform_later(slow_ctrl);
2330  _igvn.hash_delete(_fallthroughproj);
2331  _fallthroughproj->disconnect_inputs(NULL, C);
2332  region->init_req(1, slow_ctrl);
2333  // region inputs are now complete
2334  transform_later(region);
2335  _igvn.replace_node(_fallthroughproj, region);
2336
2337  Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
2338  mem_phi->init_req(1, memproj );
2339  transform_later(mem_phi);
2340  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2341}
2342
2343//------------------------------expand_unlock_node----------------------
2344void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2345
2346  Node* ctrl = unlock->in(TypeFunc::Control);
2347  Node* mem = unlock->in(TypeFunc::Memory);
2348  Node* obj = unlock->obj_node();
2349  Node* box = unlock->box_node();
2350
2351  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2352
2353  // No need for a null check on unlock
2354
2355  // Make the merge point
2356  Node *region;
2357  Node *mem_phi;
2358
2359  if (UseOptoBiasInlining) {
2360    // Check for biased locking unlock case, which is a no-op.
2361    // See the full description in MacroAssembler::biased_locking_exit().
2362    region  = new (C) RegionNode(4);
2363    // create a Phi for the memory state
2364    mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2365    mem_phi->init_req(3, mem);
2366
2367    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2368    ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2369                         markOopDesc::biased_lock_mask_in_place,
2370                         markOopDesc::biased_lock_pattern);
2371  } else {
2372    region  = new (C) RegionNode(3);
2373    // create a Phi for the memory state
2374    mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2375  }
2376
2377  FastUnlockNode *funlock = new (C) FastUnlockNode( ctrl, obj, box );
2378  funlock = transform_later( funlock )->as_FastUnlock();
2379  // Optimize test; set region slot 2
2380  Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2381
2382  CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
2383
2384  extract_call_projections(call);
2385
2386  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2387           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2388
2389  // No exceptions for unlocking
2390  // Capture slow path
2391  // disconnect fall-through projection from call and create a new one
2392  // hook up users of fall-through projection to region
2393  Node *slow_ctrl = _fallthroughproj->clone();
2394  transform_later(slow_ctrl);
2395  _igvn.hash_delete(_fallthroughproj);
2396  _fallthroughproj->disconnect_inputs(NULL, C);
2397  region->init_req(1, slow_ctrl);
2398  // region inputs are now complete
2399  transform_later(region);
2400  _igvn.replace_node(_fallthroughproj, region);
2401
2402  Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
2403  mem_phi->init_req(1, memproj );
2404  mem_phi->init_req(2, mem);
2405  transform_later(mem_phi);
2406  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2407}
2408
2409//---------------------------eliminate_macro_nodes----------------------
2410// Eliminate scalar replaced allocations and associated locks.
2411void PhaseMacroExpand::eliminate_macro_nodes() {
2412  if (C->macro_count() == 0)
2413    return;
2414
2415  // First, attempt to eliminate locks
2416  int cnt = C->macro_count();
2417  for (int i=0; i < cnt; i++) {
2418    Node *n = C->macro_node(i);
2419    if (n->is_AbstractLock()) { // Lock and Unlock nodes
2420      // Before elimination mark all associated (same box and obj)
2421      // lock and unlock nodes.
2422      mark_eliminated_locking_nodes(n->as_AbstractLock());
2423    }
2424  }
2425  bool progress = true;
2426  while (progress) {
2427    progress = false;
2428    for (int i = C->macro_count(); i > 0; i--) {
2429      Node * n = C->macro_node(i-1);
2430      bool success = false;
2431      debug_only(int old_macro_count = C->macro_count(););
2432      if (n->is_AbstractLock()) {
2433        success = eliminate_locking_node(n->as_AbstractLock());
2434      }
2435      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2436      progress = progress || success;
2437    }
2438  }
2439  // Next, attempt to eliminate allocations
2440  progress = true;
2441  while (progress) {
2442    progress = false;
2443    for (int i = C->macro_count(); i > 0; i--) {
2444      Node * n = C->macro_node(i-1);
2445      bool success = false;
2446      debug_only(int old_macro_count = C->macro_count(););
2447      switch (n->class_id()) {
2448      case Node::Class_Allocate:
2449      case Node::Class_AllocateArray:
2450        success = eliminate_allocate_node(n->as_Allocate());
2451        break;
2452      case Node::Class_CallStaticJava:
2453        success = eliminate_boxing_node(n->as_CallStaticJava());
2454        break;
2455      case Node::Class_Lock:
2456      case Node::Class_Unlock:
2457        assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2458        break;
2459      default:
2460        assert(n->Opcode() == Op_LoopLimit ||
2461               n->Opcode() == Op_Opaque1   ||
2462               n->Opcode() == Op_Opaque2, "unknown node type in macro list");
2463      }
2464      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2465      progress = progress || success;
2466    }
2467  }
2468}
2469
2470//------------------------------expand_macro_nodes----------------------
2471//  Returns true if a failure occurred.
2472bool PhaseMacroExpand::expand_macro_nodes() {
2473  // Last attempt to eliminate macro nodes.
2474  eliminate_macro_nodes();
2475
2476  // Make sure expansion will not cause node limit to be exceeded.
2477  // Worst case is a macro node gets expanded into about 50 nodes.
2478  // Allow 50% more for optimization.
2479  if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2480    return true;
2481
2482  // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2483  bool progress = true;
2484  while (progress) {
2485    progress = false;
2486    for (int i = C->macro_count(); i > 0; i--) {
2487      Node * n = C->macro_node(i-1);
2488      bool success = false;
2489      debug_only(int old_macro_count = C->macro_count(););
2490      if (n->Opcode() == Op_LoopLimit) {
2491        // Remove it from macro list and put on IGVN worklist to optimize.
2492        C->remove_macro_node(n);
2493        _igvn._worklist.push(n);
2494        success = true;
2495      } else if (n->Opcode() == Op_CallStaticJava) {
2496        // Remove it from macro list and put on IGVN worklist to optimize.
2497        C->remove_macro_node(n);
2498        _igvn._worklist.push(n);
2499        success = true;
2500      } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2501        _igvn.replace_node(n, n->in(1));
2502        success = true;
2503      }
2504      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2505      progress = progress || success;
2506    }
2507  }
2508
2509  // expand "macro" nodes
2510  // nodes are removed from the macro list as they are processed
2511  while (C->macro_count() > 0) {
2512    int macro_count = C->macro_count();
2513    Node * n = C->macro_node(macro_count-1);
2514    assert(n->is_macro(), "only macro nodes expected here");
2515    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2516      // node is unreachable, so don't try to expand it
2517      C->remove_macro_node(n);
2518      continue;
2519    }
2520    switch (n->class_id()) {
2521    case Node::Class_Allocate:
2522      expand_allocate(n->as_Allocate());
2523      break;
2524    case Node::Class_AllocateArray:
2525      expand_allocate_array(n->as_AllocateArray());
2526      break;
2527    case Node::Class_Lock:
2528      expand_lock_node(n->as_Lock());
2529      break;
2530    case Node::Class_Unlock:
2531      expand_unlock_node(n->as_Unlock());
2532      break;
2533    default:
2534      assert(false, "unknown node type in macro list");
2535    }
2536    assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2537    if (C->failing())  return true;
2538  }
2539
2540  _igvn.set_delay_transform(false);
2541  _igvn.optimize();
2542  if (C->failing())  return true;
2543  return false;
2544}
2545