macro.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "libadt/vectset.hpp"
28#include "opto/addnode.hpp"
29#include "opto/callnode.hpp"
30#include "opto/cfgnode.hpp"
31#include "opto/compile.hpp"
32#include "opto/connode.hpp"
33#include "opto/locknode.hpp"
34#include "opto/loopnode.hpp"
35#include "opto/macro.hpp"
36#include "opto/memnode.hpp"
37#include "opto/node.hpp"
38#include "opto/phaseX.hpp"
39#include "opto/rootnode.hpp"
40#include "opto/runtime.hpp"
41#include "opto/subnode.hpp"
42#include "opto/type.hpp"
43#include "runtime/sharedRuntime.hpp"
44
45
46//
47// Replace any references to "oldref" in inputs to "use" with "newref".
48// Returns the number of replacements made.
49//
50int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
51  int nreplacements = 0;
52  uint req = use->req();
53  for (uint j = 0; j < use->len(); j++) {
54    Node *uin = use->in(j);
55    if (uin == oldref) {
56      if (j < req)
57        use->set_req(j, newref);
58      else
59        use->set_prec(j, newref);
60      nreplacements++;
61    } else if (j >= req && uin == NULL) {
62      break;
63    }
64  }
65  return nreplacements;
66}
67
68void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
69  // Copy debug information and adjust JVMState information
70  uint old_dbg_start = oldcall->tf()->domain()->cnt();
71  uint new_dbg_start = newcall->tf()->domain()->cnt();
72  int jvms_adj  = new_dbg_start - old_dbg_start;
73  assert (new_dbg_start == newcall->req(), "argument count mismatch");
74
75  Dict* sosn_map = new Dict(cmpkey,hashkey);
76  for (uint i = old_dbg_start; i < oldcall->req(); i++) {
77    Node* old_in = oldcall->in(i);
78    // Clone old SafePointScalarObjectNodes, adjusting their field contents.
79    if (old_in != NULL && old_in->is_SafePointScalarObject()) {
80      SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
81      uint old_unique = C->unique();
82      Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
83      if (old_unique != C->unique()) {
84        new_in->set_req(0, C->root()); // reset control edge
85        new_in = transform_later(new_in); // Register new node.
86      }
87      old_in = new_in;
88    }
89    newcall->add_req(old_in);
90  }
91
92  newcall->set_jvms(oldcall->jvms());
93  for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
94    jvms->set_map(newcall);
95    jvms->set_locoff(jvms->locoff()+jvms_adj);
96    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
97    jvms->set_monoff(jvms->monoff()+jvms_adj);
98    jvms->set_scloff(jvms->scloff()+jvms_adj);
99    jvms->set_endoff(jvms->endoff()+jvms_adj);
100  }
101}
102
103Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
104  Node* cmp;
105  if (mask != 0) {
106    Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
107    cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
108  } else {
109    cmp = word;
110  }
111  Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
112  IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
113  transform_later(iff);
114
115  // Fast path taken.
116  Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
117
118  // Fast path not-taken, i.e. slow path
119  Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
120
121  if (return_fast_path) {
122    region->init_req(edge, slow_taken); // Capture slow-control
123    return fast_taken;
124  } else {
125    region->init_req(edge, fast_taken); // Capture fast-control
126    return slow_taken;
127  }
128}
129
130//--------------------copy_predefined_input_for_runtime_call--------------------
131void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
132  // Set fixed predefined input arguments
133  call->init_req( TypeFunc::Control, ctrl );
134  call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
135  call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
136  call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
137  call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
138}
139
140//------------------------------make_slow_call---------------------------------
141CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
142
143  // Slow-path call
144  int size = slow_call_type->domain()->cnt();
145 CallNode *call = leaf_name
146   ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
147   : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
148
149  // Slow path call has no side-effects, uses few values
150  copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
151  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
152  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
153  copy_call_debug_info(oldcall, call);
154  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
155  _igvn.replace_node(oldcall, call);
156  transform_later(call);
157
158  return call;
159}
160
161void PhaseMacroExpand::extract_call_projections(CallNode *call) {
162  _fallthroughproj = NULL;
163  _fallthroughcatchproj = NULL;
164  _ioproj_fallthrough = NULL;
165  _ioproj_catchall = NULL;
166  _catchallcatchproj = NULL;
167  _memproj_fallthrough = NULL;
168  _memproj_catchall = NULL;
169  _resproj = NULL;
170  for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
171    ProjNode *pn = call->fast_out(i)->as_Proj();
172    switch (pn->_con) {
173      case TypeFunc::Control:
174      {
175        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
176        _fallthroughproj = pn;
177        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
178        const Node *cn = pn->fast_out(j);
179        if (cn->is_Catch()) {
180          ProjNode *cpn = NULL;
181          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
182            cpn = cn->fast_out(k)->as_Proj();
183            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
184            if (cpn->_con == CatchProjNode::fall_through_index)
185              _fallthroughcatchproj = cpn;
186            else {
187              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
188              _catchallcatchproj = cpn;
189            }
190          }
191        }
192        break;
193      }
194      case TypeFunc::I_O:
195        if (pn->_is_io_use)
196          _ioproj_catchall = pn;
197        else
198          _ioproj_fallthrough = pn;
199        break;
200      case TypeFunc::Memory:
201        if (pn->_is_io_use)
202          _memproj_catchall = pn;
203        else
204          _memproj_fallthrough = pn;
205        break;
206      case TypeFunc::Parms:
207        _resproj = pn;
208        break;
209      default:
210        assert(false, "unexpected projection from allocation node.");
211    }
212  }
213
214}
215
216// Eliminate a card mark sequence.  p2x is a ConvP2XNode
217void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
218  assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
219  if (!UseG1GC) {
220    // vanilla/CMS post barrier
221    Node *shift = p2x->unique_out();
222    Node *addp = shift->unique_out();
223    for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
224      Node *mem = addp->last_out(j);
225      if (UseCondCardMark && mem->is_Load()) {
226        assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
227        // The load is checking if the card has been written so
228        // replace it with zero to fold the test.
229        _igvn.replace_node(mem, intcon(0));
230        continue;
231      }
232      assert(mem->is_Store(), "store required");
233      _igvn.replace_node(mem, mem->in(MemNode::Memory));
234    }
235  } else {
236    // G1 pre/post barriers
237    assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
238    // It could be only one user, URShift node, in Object.clone() instrinsic
239    // but the new allocation is passed to arraycopy stub and it could not
240    // be scalar replaced. So we don't check the case.
241
242    // An other case of only one user (Xor) is when the value check for NULL
243    // in G1 post barrier is folded after CCP so the code which used URShift
244    // is removed.
245
246    // Take Region node before eliminating post barrier since it also
247    // eliminates CastP2X node when it has only one user.
248    Node* this_region = p2x->in(0);
249    assert(this_region != NULL, "");
250
251    // Remove G1 post barrier.
252
253    // Search for CastP2X->Xor->URShift->Cmp path which
254    // checks if the store done to a different from the value's region.
255    // And replace Cmp with #0 (false) to collapse G1 post barrier.
256    Node* xorx = NULL;
257    for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
258      Node* u = p2x->fast_out(i);
259      if (u->Opcode() == Op_XorX) {
260        xorx = u;
261        break;
262      }
263    }
264    assert(xorx != NULL, "missing G1 post barrier");
265    Node* shift = xorx->unique_out();
266    Node* cmpx = shift->unique_out();
267    assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
268    cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
269    "missing region check in G1 post barrier");
270    _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
271
272    // Remove G1 pre barrier.
273
274    // Search "if (marking != 0)" check and set it to "false".
275    // There is no G1 pre barrier if previous stored value is NULL
276    // (for example, after initialization).
277    if (this_region->is_Region() && this_region->req() == 3) {
278      int ind = 1;
279      if (!this_region->in(ind)->is_IfFalse()) {
280        ind = 2;
281      }
282      if (this_region->in(ind)->is_IfFalse()) {
283        Node* bol = this_region->in(ind)->in(0)->in(1);
284        assert(bol->is_Bool(), "");
285        cmpx = bol->in(1);
286        if (bol->as_Bool()->_test._test == BoolTest::ne &&
287            cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
288            cmpx->in(1)->is_Load()) {
289          Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
290          const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
291                                              PtrQueue::byte_offset_of_active());
292          if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
293              adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
294              adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
295            _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
296          }
297        }
298      }
299    }
300    // Now CastP2X can be removed since it is used only on dead path
301    // which currently still alive until igvn optimize it.
302    assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
303    _igvn.replace_node(p2x, top());
304  }
305}
306
307// Search for a memory operation for the specified memory slice.
308static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
309  Node *orig_mem = mem;
310  Node *alloc_mem = alloc->in(TypeFunc::Memory);
311  const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
312  while (true) {
313    if (mem == alloc_mem || mem == start_mem ) {
314      return mem;  // hit one of our sentinels
315    } else if (mem->is_MergeMem()) {
316      mem = mem->as_MergeMem()->memory_at(alias_idx);
317    } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
318      Node *in = mem->in(0);
319      // we can safely skip over safepoints, calls, locks and membars because we
320      // already know that the object is safe to eliminate.
321      if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
322        return in;
323      } else if (in->is_Call()) {
324        CallNode *call = in->as_Call();
325        if (!call->may_modify(tinst, phase)) {
326          mem = call->in(TypeFunc::Memory);
327        }
328        mem = in->in(TypeFunc::Memory);
329      } else if (in->is_MemBar()) {
330        mem = in->in(TypeFunc::Memory);
331      } else {
332        assert(false, "unexpected projection");
333      }
334    } else if (mem->is_Store()) {
335      const TypePtr* atype = mem->as_Store()->adr_type();
336      int adr_idx = Compile::current()->get_alias_index(atype);
337      if (adr_idx == alias_idx) {
338        assert(atype->isa_oopptr(), "address type must be oopptr");
339        int adr_offset = atype->offset();
340        uint adr_iid = atype->is_oopptr()->instance_id();
341        // Array elements references have the same alias_idx
342        // but different offset and different instance_id.
343        if (adr_offset == offset && adr_iid == alloc->_idx)
344          return mem;
345      } else {
346        assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
347      }
348      mem = mem->in(MemNode::Memory);
349    } else if (mem->is_ClearArray()) {
350      if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
351        // Can not bypass initialization of the instance
352        // we are looking.
353        debug_only(intptr_t offset;)
354        assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
355        InitializeNode* init = alloc->as_Allocate()->initialization();
356        // We are looking for stored value, return Initialize node
357        // or memory edge from Allocate node.
358        if (init != NULL)
359          return init;
360        else
361          return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
362      }
363      // Otherwise skip it (the call updated 'mem' value).
364    } else if (mem->Opcode() == Op_SCMemProj) {
365      assert(mem->in(0)->is_LoadStore(), "sanity");
366      const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
367      int adr_idx = Compile::current()->get_alias_index(atype);
368      if (adr_idx == alias_idx) {
369        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
370        return NULL;
371      }
372      mem = mem->in(0)->in(MemNode::Memory);
373    } else {
374      return mem;
375    }
376    assert(mem != orig_mem, "dead memory loop");
377  }
378}
379
380//
381// Given a Memory Phi, compute a value Phi containing the values from stores
382// on the input paths.
383// Note: this function is recursive, its depth is limied by the "level" argument
384// Returns the computed Phi, or NULL if it cannot compute it.
385Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
386  assert(mem->is_Phi(), "sanity");
387  int alias_idx = C->get_alias_index(adr_t);
388  int offset = adr_t->offset();
389  int instance_id = adr_t->instance_id();
390
391  // Check if an appropriate value phi already exists.
392  Node* region = mem->in(0);
393  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
394    Node* phi = region->fast_out(k);
395    if (phi->is_Phi() && phi != mem &&
396        phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
397      return phi;
398    }
399  }
400  // Check if an appropriate new value phi already exists.
401  Node* new_phi = value_phis->find(mem->_idx);
402  if (new_phi != NULL)
403    return new_phi;
404
405  if (level <= 0) {
406    return NULL; // Give up: phi tree too deep
407  }
408  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
409  Node *alloc_mem = alloc->in(TypeFunc::Memory);
410
411  uint length = mem->req();
412  GrowableArray <Node *> values(length, length, NULL, false);
413
414  // create a new Phi for the value
415  PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
416  transform_later(phi);
417  value_phis->push(phi, mem->_idx);
418
419  for (uint j = 1; j < length; j++) {
420    Node *in = mem->in(j);
421    if (in == NULL || in->is_top()) {
422      values.at_put(j, in);
423    } else  {
424      Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
425      if (val == start_mem || val == alloc_mem) {
426        // hit a sentinel, return appropriate 0 value
427        values.at_put(j, _igvn.zerocon(ft));
428        continue;
429      }
430      if (val->is_Initialize()) {
431        val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
432      }
433      if (val == NULL) {
434        return NULL;  // can't find a value on this path
435      }
436      if (val == mem) {
437        values.at_put(j, mem);
438      } else if (val->is_Store()) {
439        values.at_put(j, val->in(MemNode::ValueIn));
440      } else if(val->is_Proj() && val->in(0) == alloc) {
441        values.at_put(j, _igvn.zerocon(ft));
442      } else if (val->is_Phi()) {
443        val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
444        if (val == NULL) {
445          return NULL;
446        }
447        values.at_put(j, val);
448      } else if (val->Opcode() == Op_SCMemProj) {
449        assert(val->in(0)->is_LoadStore(), "sanity");
450        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
451        return NULL;
452      } else {
453#ifdef ASSERT
454        val->dump();
455        assert(false, "unknown node on this path");
456#endif
457        return NULL;  // unknown node on this path
458      }
459    }
460  }
461  // Set Phi's inputs
462  for (uint j = 1; j < length; j++) {
463    if (values.at(j) == mem) {
464      phi->init_req(j, phi);
465    } else {
466      phi->init_req(j, values.at(j));
467    }
468  }
469  return phi;
470}
471
472// Search the last value stored into the object's field.
473Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
474  assert(adr_t->is_known_instance_field(), "instance required");
475  int instance_id = adr_t->instance_id();
476  assert((uint)instance_id == alloc->_idx, "wrong allocation");
477
478  int alias_idx = C->get_alias_index(adr_t);
479  int offset = adr_t->offset();
480  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
481  Node *alloc_ctrl = alloc->in(TypeFunc::Control);
482  Node *alloc_mem = alloc->in(TypeFunc::Memory);
483  Arena *a = Thread::current()->resource_area();
484  VectorSet visited(a);
485
486
487  bool done = sfpt_mem == alloc_mem;
488  Node *mem = sfpt_mem;
489  while (!done) {
490    if (visited.test_set(mem->_idx)) {
491      return NULL;  // found a loop, give up
492    }
493    mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
494    if (mem == start_mem || mem == alloc_mem) {
495      done = true;  // hit a sentinel, return appropriate 0 value
496    } else if (mem->is_Initialize()) {
497      mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
498      if (mem == NULL) {
499        done = true; // Something go wrong.
500      } else if (mem->is_Store()) {
501        const TypePtr* atype = mem->as_Store()->adr_type();
502        assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
503        done = true;
504      }
505    } else if (mem->is_Store()) {
506      const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
507      assert(atype != NULL, "address type must be oopptr");
508      assert(C->get_alias_index(atype) == alias_idx &&
509             atype->is_known_instance_field() && atype->offset() == offset &&
510             atype->instance_id() == instance_id, "store is correct memory slice");
511      done = true;
512    } else if (mem->is_Phi()) {
513      // try to find a phi's unique input
514      Node *unique_input = NULL;
515      Node *top = C->top();
516      for (uint i = 1; i < mem->req(); i++) {
517        Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
518        if (n == NULL || n == top || n == mem) {
519          continue;
520        } else if (unique_input == NULL) {
521          unique_input = n;
522        } else if (unique_input != n) {
523          unique_input = top;
524          break;
525        }
526      }
527      if (unique_input != NULL && unique_input != top) {
528        mem = unique_input;
529      } else {
530        done = true;
531      }
532    } else {
533      assert(false, "unexpected node");
534    }
535  }
536  if (mem != NULL) {
537    if (mem == start_mem || mem == alloc_mem) {
538      // hit a sentinel, return appropriate 0 value
539      return _igvn.zerocon(ft);
540    } else if (mem->is_Store()) {
541      return mem->in(MemNode::ValueIn);
542    } else if (mem->is_Phi()) {
543      // attempt to produce a Phi reflecting the values on the input paths of the Phi
544      Node_Stack value_phis(a, 8);
545      Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
546      if (phi != NULL) {
547        return phi;
548      } else {
549        // Kill all new Phis
550        while(value_phis.is_nonempty()) {
551          Node* n = value_phis.node();
552          _igvn.replace_node(n, C->top());
553          value_phis.pop();
554        }
555      }
556    }
557  }
558  // Something go wrong.
559  return NULL;
560}
561
562// Check the possibility of scalar replacement.
563bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
564  //  Scan the uses of the allocation to check for anything that would
565  //  prevent us from eliminating it.
566  NOT_PRODUCT( const char* fail_eliminate = NULL; )
567  DEBUG_ONLY( Node* disq_node = NULL; )
568  bool  can_eliminate = true;
569
570  Node* res = alloc->result_cast();
571  const TypeOopPtr* res_type = NULL;
572  if (res == NULL) {
573    // All users were eliminated.
574  } else if (!res->is_CheckCastPP()) {
575    NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
576    can_eliminate = false;
577  } else {
578    res_type = _igvn.type(res)->isa_oopptr();
579    if (res_type == NULL) {
580      NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
581      can_eliminate = false;
582    } else if (res_type->isa_aryptr()) {
583      int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
584      if (length < 0) {
585        NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
586        can_eliminate = false;
587      }
588    }
589  }
590
591  if (can_eliminate && res != NULL) {
592    for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
593                               j < jmax && can_eliminate; j++) {
594      Node* use = res->fast_out(j);
595
596      if (use->is_AddP()) {
597        const TypePtr* addp_type = _igvn.type(use)->is_ptr();
598        int offset = addp_type->offset();
599
600        if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
601          NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
602          can_eliminate = false;
603          break;
604        }
605        for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
606                                   k < kmax && can_eliminate; k++) {
607          Node* n = use->fast_out(k);
608          if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
609            DEBUG_ONLY(disq_node = n;)
610            if (n->is_Load() || n->is_LoadStore()) {
611              NOT_PRODUCT(fail_eliminate = "Field load";)
612            } else {
613              NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
614            }
615            can_eliminate = false;
616          }
617        }
618      } else if (use->is_SafePoint()) {
619        SafePointNode* sfpt = use->as_SafePoint();
620        if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
621          // Object is passed as argument.
622          DEBUG_ONLY(disq_node = use;)
623          NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
624          can_eliminate = false;
625        }
626        Node* sfptMem = sfpt->memory();
627        if (sfptMem == NULL || sfptMem->is_top()) {
628          DEBUG_ONLY(disq_node = use;)
629          NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
630          can_eliminate = false;
631        } else {
632          safepoints.append_if_missing(sfpt);
633        }
634      } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
635        if (use->is_Phi()) {
636          if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
637            NOT_PRODUCT(fail_eliminate = "Object is return value";)
638          } else {
639            NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
640          }
641          DEBUG_ONLY(disq_node = use;)
642        } else {
643          if (use->Opcode() == Op_Return) {
644            NOT_PRODUCT(fail_eliminate = "Object is return value";)
645          }else {
646            NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
647          }
648          DEBUG_ONLY(disq_node = use;)
649        }
650        can_eliminate = false;
651      }
652    }
653  }
654
655#ifndef PRODUCT
656  if (PrintEliminateAllocations) {
657    if (can_eliminate) {
658      tty->print("Scalar ");
659      if (res == NULL)
660        alloc->dump();
661      else
662        res->dump();
663    } else {
664      tty->print("NotScalar (%s)", fail_eliminate);
665      if (res == NULL)
666        alloc->dump();
667      else
668        res->dump();
669#ifdef ASSERT
670      if (disq_node != NULL) {
671          tty->print("  >>>> ");
672          disq_node->dump();
673      }
674#endif /*ASSERT*/
675    }
676  }
677#endif
678  return can_eliminate;
679}
680
681// Do scalar replacement.
682bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
683  GrowableArray <SafePointNode *> safepoints_done;
684
685  ciKlass* klass = NULL;
686  ciInstanceKlass* iklass = NULL;
687  int nfields = 0;
688  int array_base;
689  int element_size;
690  BasicType basic_elem_type;
691  ciType* elem_type;
692
693  Node* res = alloc->result_cast();
694  const TypeOopPtr* res_type = NULL;
695  if (res != NULL) { // Could be NULL when there are no users
696    res_type = _igvn.type(res)->isa_oopptr();
697  }
698
699  if (res != NULL) {
700    klass = res_type->klass();
701    if (res_type->isa_instptr()) {
702      // find the fields of the class which will be needed for safepoint debug information
703      assert(klass->is_instance_klass(), "must be an instance klass.");
704      iklass = klass->as_instance_klass();
705      nfields = iklass->nof_nonstatic_fields();
706    } else {
707      // find the array's elements which will be needed for safepoint debug information
708      nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
709      assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
710      elem_type = klass->as_array_klass()->element_type();
711      basic_elem_type = elem_type->basic_type();
712      array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
713      element_size = type2aelembytes(basic_elem_type);
714    }
715  }
716  //
717  // Process the safepoint uses
718  //
719  while (safepoints.length() > 0) {
720    SafePointNode* sfpt = safepoints.pop();
721    Node* mem = sfpt->memory();
722    uint first_ind = sfpt->req();
723    SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
724#ifdef ASSERT
725                                                 alloc,
726#endif
727                                                 first_ind, nfields);
728    sobj->init_req(0, C->root());
729    transform_later(sobj);
730
731    // Scan object's fields adding an input to the safepoint for each field.
732    for (int j = 0; j < nfields; j++) {
733      intptr_t offset;
734      ciField* field = NULL;
735      if (iklass != NULL) {
736        field = iklass->nonstatic_field_at(j);
737        offset = field->offset();
738        elem_type = field->type();
739        basic_elem_type = field->layout_type();
740      } else {
741        offset = array_base + j * (intptr_t)element_size;
742      }
743
744      const Type *field_type;
745      // The next code is taken from Parse::do_get_xxx().
746      if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
747        if (!elem_type->is_loaded()) {
748          field_type = TypeInstPtr::BOTTOM;
749        } else if (field != NULL && field->is_constant() && field->is_static()) {
750          // This can happen if the constant oop is non-perm.
751          ciObject* con = field->constant_value().as_object();
752          // Do not "join" in the previous type; it doesn't add value,
753          // and may yield a vacuous result if the field is of interface type.
754          field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
755          assert(field_type != NULL, "field singleton type must be consistent");
756        } else {
757          field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
758        }
759        if (UseCompressedOops) {
760          field_type = field_type->make_narrowoop();
761          basic_elem_type = T_NARROWOOP;
762        }
763      } else {
764        field_type = Type::get_const_basic_type(basic_elem_type);
765      }
766
767      const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
768
769      Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
770      if (field_val == NULL) {
771        // We weren't able to find a value for this field,
772        // give up on eliminating this allocation.
773
774        // Remove any extra entries we added to the safepoint.
775        uint last = sfpt->req() - 1;
776        for (int k = 0;  k < j; k++) {
777          sfpt->del_req(last--);
778        }
779        // rollback processed safepoints
780        while (safepoints_done.length() > 0) {
781          SafePointNode* sfpt_done = safepoints_done.pop();
782          // remove any extra entries we added to the safepoint
783          last = sfpt_done->req() - 1;
784          for (int k = 0;  k < nfields; k++) {
785            sfpt_done->del_req(last--);
786          }
787          JVMState *jvms = sfpt_done->jvms();
788          jvms->set_endoff(sfpt_done->req());
789          // Now make a pass over the debug information replacing any references
790          // to SafePointScalarObjectNode with the allocated object.
791          int start = jvms->debug_start();
792          int end   = jvms->debug_end();
793          for (int i = start; i < end; i++) {
794            if (sfpt_done->in(i)->is_SafePointScalarObject()) {
795              SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
796              if (scobj->first_index() == sfpt_done->req() &&
797                  scobj->n_fields() == (uint)nfields) {
798                assert(scobj->alloc() == alloc, "sanity");
799                sfpt_done->set_req(i, res);
800              }
801            }
802          }
803        }
804#ifndef PRODUCT
805        if (PrintEliminateAllocations) {
806          if (field != NULL) {
807            tty->print("=== At SafePoint node %d can't find value of Field: ",
808                       sfpt->_idx);
809            field->print();
810            int field_idx = C->get_alias_index(field_addr_type);
811            tty->print(" (alias_idx=%d)", field_idx);
812          } else { // Array's element
813            tty->print("=== At SafePoint node %d can't find value of array element [%d]",
814                       sfpt->_idx, j);
815          }
816          tty->print(", which prevents elimination of: ");
817          if (res == NULL)
818            alloc->dump();
819          else
820            res->dump();
821        }
822#endif
823        return false;
824      }
825      if (UseCompressedOops && field_type->isa_narrowoop()) {
826        // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
827        // to be able scalar replace the allocation.
828        if (field_val->is_EncodeP()) {
829          field_val = field_val->in(1);
830        } else {
831          field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
832        }
833      }
834      sfpt->add_req(field_val);
835    }
836    JVMState *jvms = sfpt->jvms();
837    jvms->set_endoff(sfpt->req());
838    // Now make a pass over the debug information replacing any references
839    // to the allocated object with "sobj"
840    int start = jvms->debug_start();
841    int end   = jvms->debug_end();
842    for (int i = start; i < end; i++) {
843      if (sfpt->in(i) == res) {
844        sfpt->set_req(i, sobj);
845      }
846    }
847    safepoints_done.append_if_missing(sfpt); // keep it for rollback
848  }
849  return true;
850}
851
852// Process users of eliminated allocation.
853void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
854  Node* res = alloc->result_cast();
855  if (res != NULL) {
856    for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
857      Node *use = res->last_out(j);
858      uint oc1 = res->outcnt();
859
860      if (use->is_AddP()) {
861        for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
862          Node *n = use->last_out(k);
863          uint oc2 = use->outcnt();
864          if (n->is_Store()) {
865#ifdef ASSERT
866            // Verify that there is no dependent MemBarVolatile nodes,
867            // they should be removed during IGVN, see MemBarNode::Ideal().
868            for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
869                                       p < pmax; p++) {
870              Node* mb = n->fast_out(p);
871              assert(mb->is_Initialize() || !mb->is_MemBar() ||
872                     mb->req() <= MemBarNode::Precedent ||
873                     mb->in(MemBarNode::Precedent) != n,
874                     "MemBarVolatile should be eliminated for non-escaping object");
875            }
876#endif
877            _igvn.replace_node(n, n->in(MemNode::Memory));
878          } else {
879            eliminate_card_mark(n);
880          }
881          k -= (oc2 - use->outcnt());
882        }
883      } else {
884        eliminate_card_mark(use);
885      }
886      j -= (oc1 - res->outcnt());
887    }
888    assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
889    _igvn.remove_dead_node(res);
890  }
891
892  //
893  // Process other users of allocation's projections
894  //
895  if (_resproj != NULL && _resproj->outcnt() != 0) {
896    for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
897      Node *use = _resproj->last_out(j);
898      uint oc1 = _resproj->outcnt();
899      if (use->is_Initialize()) {
900        // Eliminate Initialize node.
901        InitializeNode *init = use->as_Initialize();
902        assert(init->outcnt() <= 2, "only a control and memory projection expected");
903        Node *ctrl_proj = init->proj_out(TypeFunc::Control);
904        if (ctrl_proj != NULL) {
905           assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
906          _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
907        }
908        Node *mem_proj = init->proj_out(TypeFunc::Memory);
909        if (mem_proj != NULL) {
910          Node *mem = init->in(TypeFunc::Memory);
911#ifdef ASSERT
912          if (mem->is_MergeMem()) {
913            assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
914          } else {
915            assert(mem == _memproj_fallthrough, "allocation memory projection");
916          }
917#endif
918          _igvn.replace_node(mem_proj, mem);
919        }
920      } else if (use->is_AddP()) {
921        // raw memory addresses used only by the initialization
922        _igvn.replace_node(use, C->top());
923      } else  {
924        assert(false, "only Initialize or AddP expected");
925      }
926      j -= (oc1 - _resproj->outcnt());
927    }
928  }
929  if (_fallthroughcatchproj != NULL) {
930    _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
931  }
932  if (_memproj_fallthrough != NULL) {
933    _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
934  }
935  if (_memproj_catchall != NULL) {
936    _igvn.replace_node(_memproj_catchall, C->top());
937  }
938  if (_ioproj_fallthrough != NULL) {
939    _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
940  }
941  if (_ioproj_catchall != NULL) {
942    _igvn.replace_node(_ioproj_catchall, C->top());
943  }
944  if (_catchallcatchproj != NULL) {
945    _igvn.replace_node(_catchallcatchproj, C->top());
946  }
947}
948
949bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
950
951  if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
952    return false;
953  }
954
955  extract_call_projections(alloc);
956
957  GrowableArray <SafePointNode *> safepoints;
958  if (!can_eliminate_allocation(alloc, safepoints)) {
959    return false;
960  }
961
962  if (!scalar_replacement(alloc, safepoints)) {
963    return false;
964  }
965
966  CompileLog* log = C->log();
967  if (log != NULL) {
968    Node* klass = alloc->in(AllocateNode::KlassNode);
969    const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
970    log->head("eliminate_allocation type='%d'",
971              log->identify(tklass->klass()));
972    JVMState* p = alloc->jvms();
973    while (p != NULL) {
974      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
975      p = p->caller();
976    }
977    log->tail("eliminate_allocation");
978  }
979
980  process_users_of_allocation(alloc);
981
982#ifndef PRODUCT
983  if (PrintEliminateAllocations) {
984    if (alloc->is_AllocateArray())
985      tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
986    else
987      tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
988  }
989#endif
990
991  return true;
992}
993
994
995//---------------------------set_eden_pointers-------------------------
996void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
997  if (UseTLAB) {                // Private allocation: load from TLS
998    Node* thread = transform_later(new (C, 1) ThreadLocalNode());
999    int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1000    int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1001    eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1002    eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1003  } else {                      // Shared allocation: load from globals
1004    CollectedHeap* ch = Universe::heap();
1005    address top_adr = (address)ch->top_addr();
1006    address end_adr = (address)ch->end_addr();
1007    eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1008    eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1009  }
1010}
1011
1012
1013Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1014  Node* adr = basic_plus_adr(base, offset);
1015  const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1016  Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
1017  transform_later(value);
1018  return value;
1019}
1020
1021
1022Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1023  Node* adr = basic_plus_adr(base, offset);
1024  mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
1025  transform_later(mem);
1026  return mem;
1027}
1028
1029//=============================================================================
1030//
1031//                              A L L O C A T I O N
1032//
1033// Allocation attempts to be fast in the case of frequent small objects.
1034// It breaks down like this:
1035//
1036// 1) Size in doublewords is computed.  This is a constant for objects and
1037// variable for most arrays.  Doubleword units are used to avoid size
1038// overflow of huge doubleword arrays.  We need doublewords in the end for
1039// rounding.
1040//
1041// 2) Size is checked for being 'too large'.  Too-large allocations will go
1042// the slow path into the VM.  The slow path can throw any required
1043// exceptions, and does all the special checks for very large arrays.  The
1044// size test can constant-fold away for objects.  For objects with
1045// finalizers it constant-folds the otherway: you always go slow with
1046// finalizers.
1047//
1048// 3) If NOT using TLABs, this is the contended loop-back point.
1049// Load-Locked the heap top.  If using TLABs normal-load the heap top.
1050//
1051// 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1052// NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1053// "size*8" we always enter the VM, where "largish" is a constant picked small
1054// enough that there's always space between the eden max and 4Gig (old space is
1055// there so it's quite large) and large enough that the cost of entering the VM
1056// is dwarfed by the cost to initialize the space.
1057//
1058// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1059// down.  If contended, repeat at step 3.  If using TLABs normal-store
1060// adjusted heap top back down; there is no contention.
1061//
1062// 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1063// fields.
1064//
1065// 7) Merge with the slow-path; cast the raw memory pointer to the correct
1066// oop flavor.
1067//
1068//=============================================================================
1069// FastAllocateSizeLimit value is in DOUBLEWORDS.
1070// Allocations bigger than this always go the slow route.
1071// This value must be small enough that allocation attempts that need to
1072// trigger exceptions go the slow route.  Also, it must be small enough so
1073// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1074//=============================================================================j//
1075// %%% Here is an old comment from parseHelper.cpp; is it outdated?
1076// The allocator will coalesce int->oop copies away.  See comment in
1077// coalesce.cpp about how this works.  It depends critically on the exact
1078// code shape produced here, so if you are changing this code shape
1079// make sure the GC info for the heap-top is correct in and around the
1080// slow-path call.
1081//
1082
1083void PhaseMacroExpand::expand_allocate_common(
1084            AllocateNode* alloc, // allocation node to be expanded
1085            Node* length,  // array length for an array allocation
1086            const TypeFunc* slow_call_type, // Type of slow call
1087            address slow_call_address  // Address of slow call
1088    )
1089{
1090
1091  Node* ctrl = alloc->in(TypeFunc::Control);
1092  Node* mem  = alloc->in(TypeFunc::Memory);
1093  Node* i_o  = alloc->in(TypeFunc::I_O);
1094  Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1095  Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1096  Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1097
1098  Node* storestore = alloc->storestore();
1099  if (storestore != NULL) {
1100    // Break this link that is no longer useful and confuses register allocation
1101    storestore->set_req(MemBarNode::Precedent, top());
1102  }
1103
1104  assert(ctrl != NULL, "must have control");
1105  // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1106  // they will not be used if "always_slow" is set
1107  enum { slow_result_path = 1, fast_result_path = 2 };
1108  Node *result_region;
1109  Node *result_phi_rawmem;
1110  Node *result_phi_rawoop;
1111  Node *result_phi_i_o;
1112
1113  // The initial slow comparison is a size check, the comparison
1114  // we want to do is a BoolTest::gt
1115  bool always_slow = false;
1116  int tv = _igvn.find_int_con(initial_slow_test, -1);
1117  if (tv >= 0) {
1118    always_slow = (tv == 1);
1119    initial_slow_test = NULL;
1120  } else {
1121    initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1122  }
1123
1124  if (C->env()->dtrace_alloc_probes() ||
1125      !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
1126                   (UseConcMarkSweepGC && CMSIncrementalMode))) {
1127    // Force slow-path allocation
1128    always_slow = true;
1129    initial_slow_test = NULL;
1130  }
1131
1132
1133  enum { too_big_or_final_path = 1, need_gc_path = 2 };
1134  Node *slow_region = NULL;
1135  Node *toobig_false = ctrl;
1136
1137  assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1138  // generate the initial test if necessary
1139  if (initial_slow_test != NULL ) {
1140    slow_region = new (C, 3) RegionNode(3);
1141
1142    // Now make the initial failure test.  Usually a too-big test but
1143    // might be a TRUE for finalizers or a fancy class check for
1144    // newInstance0.
1145    IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1146    transform_later(toobig_iff);
1147    // Plug the failing-too-big test into the slow-path region
1148    Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1149    transform_later(toobig_true);
1150    slow_region    ->init_req( too_big_or_final_path, toobig_true );
1151    toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1152    transform_later(toobig_false);
1153  } else {         // No initial test, just fall into next case
1154    toobig_false = ctrl;
1155    debug_only(slow_region = NodeSentinel);
1156  }
1157
1158  Node *slow_mem = mem;  // save the current memory state for slow path
1159  // generate the fast allocation code unless we know that the initial test will always go slow
1160  if (!always_slow) {
1161    // Fast path modifies only raw memory.
1162    if (mem->is_MergeMem()) {
1163      mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1164    }
1165
1166    Node* eden_top_adr;
1167    Node* eden_end_adr;
1168
1169    set_eden_pointers(eden_top_adr, eden_end_adr);
1170
1171    // Load Eden::end.  Loop invariant and hoisted.
1172    //
1173    // Note: We set the control input on "eden_end" and "old_eden_top" when using
1174    //       a TLAB to work around a bug where these values were being moved across
1175    //       a safepoint.  These are not oops, so they cannot be include in the oop
1176    //       map, but they can be changed by a GC.   The proper way to fix this would
1177    //       be to set the raw memory state when generating a  SafepointNode.  However
1178    //       this will require extensive changes to the loop optimization in order to
1179    //       prevent a degradation of the optimization.
1180    //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1181    Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1182
1183    // allocate the Region and Phi nodes for the result
1184    result_region = new (C, 3) RegionNode(3);
1185    result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1186    result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
1187    result_phi_i_o    = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1188
1189    // We need a Region for the loop-back contended case.
1190    enum { fall_in_path = 1, contended_loopback_path = 2 };
1191    Node *contended_region;
1192    Node *contended_phi_rawmem;
1193    if (UseTLAB) {
1194      contended_region = toobig_false;
1195      contended_phi_rawmem = mem;
1196    } else {
1197      contended_region = new (C, 3) RegionNode(3);
1198      contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1199      // Now handle the passing-too-big test.  We fall into the contended
1200      // loop-back merge point.
1201      contended_region    ->init_req(fall_in_path, toobig_false);
1202      contended_phi_rawmem->init_req(fall_in_path, mem);
1203      transform_later(contended_region);
1204      transform_later(contended_phi_rawmem);
1205    }
1206
1207    // Load(-locked) the heap top.
1208    // See note above concerning the control input when using a TLAB
1209    Node *old_eden_top = UseTLAB
1210      ? new (C, 3) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
1211      : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
1212
1213    transform_later(old_eden_top);
1214    // Add to heap top to get a new heap top
1215    Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
1216    transform_later(new_eden_top);
1217    // Check for needing a GC; compare against heap end
1218    Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
1219    transform_later(needgc_cmp);
1220    Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
1221    transform_later(needgc_bol);
1222    IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1223    transform_later(needgc_iff);
1224
1225    // Plug the failing-heap-space-need-gc test into the slow-path region
1226    Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
1227    transform_later(needgc_true);
1228    if (initial_slow_test) {
1229      slow_region->init_req(need_gc_path, needgc_true);
1230      // This completes all paths into the slow merge point
1231      transform_later(slow_region);
1232    } else {                      // No initial slow path needed!
1233      // Just fall from the need-GC path straight into the VM call.
1234      slow_region = needgc_true;
1235    }
1236    // No need for a GC.  Setup for the Store-Conditional
1237    Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
1238    transform_later(needgc_false);
1239
1240    // Grab regular I/O before optional prefetch may change it.
1241    // Slow-path does no I/O so just set it to the original I/O.
1242    result_phi_i_o->init_req(slow_result_path, i_o);
1243
1244    i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1245                              old_eden_top, new_eden_top, length);
1246
1247    // Name successful fast-path variables
1248    Node* fast_oop = old_eden_top;
1249    Node* fast_oop_ctrl;
1250    Node* fast_oop_rawmem;
1251
1252    // Store (-conditional) the modified eden top back down.
1253    // StorePConditional produces flags for a test PLUS a modified raw
1254    // memory state.
1255    if (UseTLAB) {
1256      Node* store_eden_top =
1257        new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1258                              TypeRawPtr::BOTTOM, new_eden_top);
1259      transform_later(store_eden_top);
1260      fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1261      fast_oop_rawmem = store_eden_top;
1262    } else {
1263      Node* store_eden_top =
1264        new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1265                                         new_eden_top, fast_oop/*old_eden_top*/);
1266      transform_later(store_eden_top);
1267      Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
1268      transform_later(contention_check);
1269      store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
1270      transform_later(store_eden_top);
1271
1272      // If not using TLABs, check to see if there was contention.
1273      IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1274      transform_later(contention_iff);
1275      Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
1276      transform_later(contention_true);
1277      // If contention, loopback and try again.
1278      contended_region->init_req(contended_loopback_path, contention_true);
1279      contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1280
1281      // Fast-path succeeded with no contention!
1282      Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
1283      transform_later(contention_false);
1284      fast_oop_ctrl = contention_false;
1285
1286      // Bump total allocated bytes for this thread
1287      Node* thread = new (C, 1) ThreadLocalNode();
1288      transform_later(thread);
1289      Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1290                                             in_bytes(JavaThread::allocated_bytes_offset()));
1291      Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1292                                    0, TypeLong::LONG, T_LONG);
1293#ifdef _LP64
1294      Node* alloc_size = size_in_bytes;
1295#else
1296      Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
1297      transform_later(alloc_size);
1298#endif
1299      Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
1300      transform_later(new_alloc_bytes);
1301      fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1302                                   0, new_alloc_bytes, T_LONG);
1303    }
1304
1305    InitializeNode* init = alloc->initialization();
1306    fast_oop_rawmem = initialize_object(alloc,
1307                                        fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1308                                        klass_node, length, size_in_bytes);
1309
1310    // If initialization is performed by an array copy, any required
1311    // MemBarStoreStore was already added. If the object does not
1312    // escape no need for a MemBarStoreStore. Otherwise we need a
1313    // MemBarStoreStore so that stores that initialize this object
1314    // can't be reordered with a subsequent store that makes this
1315    // object accessible by other threads.
1316    if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
1317      if (init == NULL || init->req() < InitializeNode::RawStores) {
1318        // No InitializeNode or no stores captured by zeroing
1319        // elimination. Simply add the MemBarStoreStore after object
1320        // initialization.
1321        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot, fast_oop_rawmem);
1322        transform_later(mb);
1323
1324        mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1325        mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1326        fast_oop_ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
1327        transform_later(fast_oop_ctrl);
1328        fast_oop_rawmem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
1329        transform_later(fast_oop_rawmem);
1330      } else {
1331        // Add the MemBarStoreStore after the InitializeNode so that
1332        // all stores performing the initialization that were moved
1333        // before the InitializeNode happen before the storestore
1334        // barrier.
1335
1336        Node* init_ctrl = init->proj_out(TypeFunc::Control);
1337        Node* init_mem = init->proj_out(TypeFunc::Memory);
1338
1339        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1340        transform_later(mb);
1341
1342        Node* ctrl = new (C, 1) ProjNode(init,TypeFunc::Control);
1343        transform_later(ctrl);
1344        Node* mem = new (C, 1) ProjNode(init,TypeFunc::Memory);
1345        transform_later(mem);
1346
1347        // The MemBarStoreStore depends on control and memory coming
1348        // from the InitializeNode
1349        mb->init_req(TypeFunc::Memory, mem);
1350        mb->init_req(TypeFunc::Control, ctrl);
1351
1352        ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
1353        transform_later(ctrl);
1354        mem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
1355        transform_later(mem);
1356
1357        // All nodes that depended on the InitializeNode for control
1358        // and memory must now depend on the MemBarNode that itself
1359        // depends on the InitializeNode
1360        _igvn.replace_node(init_ctrl, ctrl);
1361        _igvn.replace_node(init_mem, mem);
1362      }
1363    }
1364
1365    if (C->env()->dtrace_extended_probes()) {
1366      // Slow-path call
1367      int size = TypeFunc::Parms + 2;
1368      CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1369                                                      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1370                                                      "dtrace_object_alloc",
1371                                                      TypeRawPtr::BOTTOM);
1372
1373      // Get base of thread-local storage area
1374      Node* thread = new (C, 1) ThreadLocalNode();
1375      transform_later(thread);
1376
1377      call->init_req(TypeFunc::Parms+0, thread);
1378      call->init_req(TypeFunc::Parms+1, fast_oop);
1379      call->init_req(TypeFunc::Control, fast_oop_ctrl);
1380      call->init_req(TypeFunc::I_O    , top()); // does no i/o
1381      call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1382      call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1383      call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1384      transform_later(call);
1385      fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
1386      transform_later(fast_oop_ctrl);
1387      fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
1388      transform_later(fast_oop_rawmem);
1389    }
1390
1391    // Plug in the successful fast-path into the result merge point
1392    result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1393    result_phi_rawoop->init_req(fast_result_path, fast_oop);
1394    result_phi_i_o   ->init_req(fast_result_path, i_o);
1395    result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1396  } else {
1397    slow_region = ctrl;
1398    result_phi_i_o = i_o; // Rename it to use in the following code.
1399  }
1400
1401  // Generate slow-path call
1402  CallNode *call = new (C, slow_call_type->domain()->cnt())
1403    CallStaticJavaNode(slow_call_type, slow_call_address,
1404                       OptoRuntime::stub_name(slow_call_address),
1405                       alloc->jvms()->bci(),
1406                       TypePtr::BOTTOM);
1407  call->init_req( TypeFunc::Control, slow_region );
1408  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1409  call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1410  call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1411  call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1412
1413  call->init_req(TypeFunc::Parms+0, klass_node);
1414  if (length != NULL) {
1415    call->init_req(TypeFunc::Parms+1, length);
1416  }
1417
1418  // Copy debug information and adjust JVMState information, then replace
1419  // allocate node with the call
1420  copy_call_debug_info((CallNode *) alloc,  call);
1421  if (!always_slow) {
1422    call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1423  } else {
1424    // Hook i_o projection to avoid its elimination during allocation
1425    // replacement (when only a slow call is generated).
1426    call->set_req(TypeFunc::I_O, result_phi_i_o);
1427  }
1428  _igvn.replace_node(alloc, call);
1429  transform_later(call);
1430
1431  // Identify the output projections from the allocate node and
1432  // adjust any references to them.
1433  // The control and io projections look like:
1434  //
1435  //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1436  //  Allocate                   Catch
1437  //        ^---Proj(io) <-------+   ^---CatchProj(io)
1438  //
1439  //  We are interested in the CatchProj nodes.
1440  //
1441  extract_call_projections(call);
1442
1443  // An allocate node has separate memory projections for the uses on
1444  // the control and i_o paths. Replace the control memory projection with
1445  // result_phi_rawmem (unless we are only generating a slow call when
1446  // both memory projections are combined)
1447  if (!always_slow && _memproj_fallthrough != NULL) {
1448    for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1449      Node *use = _memproj_fallthrough->fast_out(i);
1450      _igvn.rehash_node_delayed(use);
1451      imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1452      // back up iterator
1453      --i;
1454    }
1455  }
1456  // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1457  // _memproj_catchall so we end up with a call that has only 1 memory projection.
1458  if (_memproj_catchall != NULL ) {
1459    if (_memproj_fallthrough == NULL) {
1460      _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
1461      transform_later(_memproj_fallthrough);
1462    }
1463    for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1464      Node *use = _memproj_catchall->fast_out(i);
1465      _igvn.rehash_node_delayed(use);
1466      imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1467      // back up iterator
1468      --i;
1469    }
1470    assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1471    _igvn.remove_dead_node(_memproj_catchall);
1472  }
1473
1474  // An allocate node has separate i_o projections for the uses on the control
1475  // and i_o paths. Always replace the control i_o projection with result i_o
1476  // otherwise incoming i_o become dead when only a slow call is generated
1477  // (it is different from memory projections where both projections are
1478  // combined in such case).
1479  if (_ioproj_fallthrough != NULL) {
1480    for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1481      Node *use = _ioproj_fallthrough->fast_out(i);
1482      _igvn.rehash_node_delayed(use);
1483      imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1484      // back up iterator
1485      --i;
1486    }
1487  }
1488  // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1489  // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1490  if (_ioproj_catchall != NULL ) {
1491    if (_ioproj_fallthrough == NULL) {
1492      _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
1493      transform_later(_ioproj_fallthrough);
1494    }
1495    for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1496      Node *use = _ioproj_catchall->fast_out(i);
1497      _igvn.rehash_node_delayed(use);
1498      imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1499      // back up iterator
1500      --i;
1501    }
1502    assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1503    _igvn.remove_dead_node(_ioproj_catchall);
1504  }
1505
1506  // if we generated only a slow call, we are done
1507  if (always_slow) {
1508    // Now we can unhook i_o.
1509    if (result_phi_i_o->outcnt() > 1) {
1510      call->set_req(TypeFunc::I_O, top());
1511    } else {
1512      assert(result_phi_i_o->unique_ctrl_out() == call, "");
1513      // Case of new array with negative size known during compilation.
1514      // AllocateArrayNode::Ideal() optimization disconnect unreachable
1515      // following code since call to runtime will throw exception.
1516      // As result there will be no users of i_o after the call.
1517      // Leave i_o attached to this call to avoid problems in preceding graph.
1518    }
1519    return;
1520  }
1521
1522
1523  if (_fallthroughcatchproj != NULL) {
1524    ctrl = _fallthroughcatchproj->clone();
1525    transform_later(ctrl);
1526    _igvn.replace_node(_fallthroughcatchproj, result_region);
1527  } else {
1528    ctrl = top();
1529  }
1530  Node *slow_result;
1531  if (_resproj == NULL) {
1532    // no uses of the allocation result
1533    slow_result = top();
1534  } else {
1535    slow_result = _resproj->clone();
1536    transform_later(slow_result);
1537    _igvn.replace_node(_resproj, result_phi_rawoop);
1538  }
1539
1540  // Plug slow-path into result merge point
1541  result_region    ->init_req( slow_result_path, ctrl );
1542  result_phi_rawoop->init_req( slow_result_path, slow_result);
1543  result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1544  transform_later(result_region);
1545  transform_later(result_phi_rawoop);
1546  transform_later(result_phi_rawmem);
1547  transform_later(result_phi_i_o);
1548  // This completes all paths into the result merge point
1549}
1550
1551
1552// Helper for PhaseMacroExpand::expand_allocate_common.
1553// Initializes the newly-allocated storage.
1554Node*
1555PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1556                                    Node* control, Node* rawmem, Node* object,
1557                                    Node* klass_node, Node* length,
1558                                    Node* size_in_bytes) {
1559  InitializeNode* init = alloc->initialization();
1560  // Store the klass & mark bits
1561  Node* mark_node = NULL;
1562  // For now only enable fast locking for non-array types
1563  if (UseBiasedLocking && (length == NULL)) {
1564    mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1565  } else {
1566    mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1567  }
1568  rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1569
1570  rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1571  int header_size = alloc->minimum_header_size();  // conservatively small
1572
1573  // Array length
1574  if (length != NULL) {         // Arrays need length field
1575    rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1576    // conservatively small header size:
1577    header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1578    ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1579    if (k->is_array_klass())    // we know the exact header size in most cases:
1580      header_size = Klass::layout_helper_header_size(k->layout_helper());
1581  }
1582
1583  // Clear the object body, if necessary.
1584  if (init == NULL) {
1585    // The init has somehow disappeared; be cautious and clear everything.
1586    //
1587    // This can happen if a node is allocated but an uncommon trap occurs
1588    // immediately.  In this case, the Initialize gets associated with the
1589    // trap, and may be placed in a different (outer) loop, if the Allocate
1590    // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1591    // there can be two Allocates to one Initialize.  The answer in all these
1592    // edge cases is safety first.  It is always safe to clear immediately
1593    // within an Allocate, and then (maybe or maybe not) clear some more later.
1594    if (!ZeroTLAB)
1595      rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1596                                            header_size, size_in_bytes,
1597                                            &_igvn);
1598  } else {
1599    if (!init->is_complete()) {
1600      // Try to win by zeroing only what the init does not store.
1601      // We can also try to do some peephole optimizations,
1602      // such as combining some adjacent subword stores.
1603      rawmem = init->complete_stores(control, rawmem, object,
1604                                     header_size, size_in_bytes, &_igvn);
1605    }
1606    // We have no more use for this link, since the AllocateNode goes away:
1607    init->set_req(InitializeNode::RawAddress, top());
1608    // (If we keep the link, it just confuses the register allocator,
1609    // who thinks he sees a real use of the address by the membar.)
1610  }
1611
1612  return rawmem;
1613}
1614
1615// Generate prefetch instructions for next allocations.
1616Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1617                                        Node*& contended_phi_rawmem,
1618                                        Node* old_eden_top, Node* new_eden_top,
1619                                        Node* length) {
1620   enum { fall_in_path = 1, pf_path = 2 };
1621   if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1622      // Generate prefetch allocation with watermark check.
1623      // As an allocation hits the watermark, we will prefetch starting
1624      // at a "distance" away from watermark.
1625
1626      Node *pf_region = new (C, 3) RegionNode(3);
1627      Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1628                                                TypeRawPtr::BOTTOM );
1629      // I/O is used for Prefetch
1630      Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
1631
1632      Node *thread = new (C, 1) ThreadLocalNode();
1633      transform_later(thread);
1634
1635      Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
1636                   _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1637      transform_later(eden_pf_adr);
1638
1639      Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
1640                                   contended_phi_rawmem, eden_pf_adr,
1641                                   TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1642      transform_later(old_pf_wm);
1643
1644      // check against new_eden_top
1645      Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
1646      transform_later(need_pf_cmp);
1647      Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
1648      transform_later(need_pf_bol);
1649      IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
1650                                       PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1651      transform_later(need_pf_iff);
1652
1653      // true node, add prefetchdistance
1654      Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
1655      transform_later(need_pf_true);
1656
1657      Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
1658      transform_later(need_pf_false);
1659
1660      Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
1661                                    _igvn.MakeConX(AllocatePrefetchDistance) );
1662      transform_later(new_pf_wmt );
1663      new_pf_wmt->set_req(0, need_pf_true);
1664
1665      Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
1666                                       contended_phi_rawmem, eden_pf_adr,
1667                                       TypeRawPtr::BOTTOM, new_pf_wmt );
1668      transform_later(store_new_wmt);
1669
1670      // adding prefetches
1671      pf_phi_abio->init_req( fall_in_path, i_o );
1672
1673      Node *prefetch_adr;
1674      Node *prefetch;
1675      uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1676      uint step_size = AllocatePrefetchStepSize;
1677      uint distance = 0;
1678
1679      for ( uint i = 0; i < lines; i++ ) {
1680        prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
1681                                            _igvn.MakeConX(distance) );
1682        transform_later(prefetch_adr);
1683        prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
1684        transform_later(prefetch);
1685        distance += step_size;
1686        i_o = prefetch;
1687      }
1688      pf_phi_abio->set_req( pf_path, i_o );
1689
1690      pf_region->init_req( fall_in_path, need_pf_false );
1691      pf_region->init_req( pf_path, need_pf_true );
1692
1693      pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1694      pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1695
1696      transform_later(pf_region);
1697      transform_later(pf_phi_rawmem);
1698      transform_later(pf_phi_abio);
1699
1700      needgc_false = pf_region;
1701      contended_phi_rawmem = pf_phi_rawmem;
1702      i_o = pf_phi_abio;
1703   } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1704      // Insert a prefetch for each allocation.
1705      // This code is used for Sparc with BIS.
1706      Node *pf_region = new (C, 3) RegionNode(3);
1707      Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1708                                                TypeRawPtr::BOTTOM );
1709
1710      // Generate several prefetch instructions.
1711      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1712      uint step_size = AllocatePrefetchStepSize;
1713      uint distance = AllocatePrefetchDistance;
1714
1715      // Next cache address.
1716      Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
1717                                            _igvn.MakeConX(distance));
1718      transform_later(cache_adr);
1719      cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
1720      transform_later(cache_adr);
1721      Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1722      cache_adr = new (C, 3) AndXNode(cache_adr, mask);
1723      transform_later(cache_adr);
1724      cache_adr = new (C, 2) CastX2PNode(cache_adr);
1725      transform_later(cache_adr);
1726
1727      // Prefetch
1728      Node *prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1729      prefetch->set_req(0, needgc_false);
1730      transform_later(prefetch);
1731      contended_phi_rawmem = prefetch;
1732      Node *prefetch_adr;
1733      distance = step_size;
1734      for ( uint i = 1; i < lines; i++ ) {
1735        prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
1736                                            _igvn.MakeConX(distance) );
1737        transform_later(prefetch_adr);
1738        prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1739        transform_later(prefetch);
1740        distance += step_size;
1741        contended_phi_rawmem = prefetch;
1742      }
1743   } else if( AllocatePrefetchStyle > 0 ) {
1744      // Insert a prefetch for each allocation only on the fast-path
1745      Node *prefetch_adr;
1746      Node *prefetch;
1747      // Generate several prefetch instructions.
1748      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1749      uint step_size = AllocatePrefetchStepSize;
1750      uint distance = AllocatePrefetchDistance;
1751      for ( uint i = 0; i < lines; i++ ) {
1752        prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
1753                                            _igvn.MakeConX(distance) );
1754        transform_later(prefetch_adr);
1755        prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
1756        // Do not let it float too high, since if eden_top == eden_end,
1757        // both might be null.
1758        if( i == 0 ) { // Set control for first prefetch, next follows it
1759          prefetch->init_req(0, needgc_false);
1760        }
1761        transform_later(prefetch);
1762        distance += step_size;
1763        i_o = prefetch;
1764      }
1765   }
1766   return i_o;
1767}
1768
1769
1770void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1771  expand_allocate_common(alloc, NULL,
1772                         OptoRuntime::new_instance_Type(),
1773                         OptoRuntime::new_instance_Java());
1774}
1775
1776void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1777  Node* length = alloc->in(AllocateNode::ALength);
1778  InitializeNode* init = alloc->initialization();
1779  Node* klass_node = alloc->in(AllocateNode::KlassNode);
1780  ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1781  address slow_call_address;  // Address of slow call
1782  if (init != NULL && init->is_complete_with_arraycopy() &&
1783      k->is_type_array_klass()) {
1784    // Don't zero type array during slow allocation in VM since
1785    // it will be initialized later by arraycopy in compiled code.
1786    slow_call_address = OptoRuntime::new_array_nozero_Java();
1787  } else {
1788    slow_call_address = OptoRuntime::new_array_Java();
1789  }
1790  expand_allocate_common(alloc, length,
1791                         OptoRuntime::new_array_Type(),
1792                         slow_call_address);
1793}
1794
1795//-------------------mark_eliminated_box----------------------------------
1796//
1797// During EA obj may point to several objects but after few ideal graph
1798// transformations (CCP) it may point to only one non escaping object
1799// (but still using phi), corresponding locks and unlocks will be marked
1800// for elimination. Later obj could be replaced with a new node (new phi)
1801// and which does not have escape information. And later after some graph
1802// reshape other locks and unlocks (which were not marked for elimination
1803// before) are connected to this new obj (phi) but they still will not be
1804// marked for elimination since new obj has no escape information.
1805// Mark all associated (same box and obj) lock and unlock nodes for
1806// elimination if some of them marked already.
1807void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1808  if (oldbox->as_BoxLock()->is_eliminated())
1809    return; // This BoxLock node was processed already.
1810
1811  // New implementation (EliminateNestedLocks) has separate BoxLock
1812  // node for each locked region so mark all associated locks/unlocks as
1813  // eliminated even if different objects are referenced in one locked region
1814  // (for example, OSR compilation of nested loop inside locked scope).
1815  if (EliminateNestedLocks ||
1816      oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
1817    // Box is used only in one lock region. Mark this box as eliminated.
1818    _igvn.hash_delete(oldbox);
1819    oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
1820    _igvn.hash_insert(oldbox);
1821
1822    for (uint i = 0; i < oldbox->outcnt(); i++) {
1823      Node* u = oldbox->raw_out(i);
1824      if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
1825        AbstractLockNode* alock = u->as_AbstractLock();
1826        // Check lock's box since box could be referenced by Lock's debug info.
1827        if (alock->box_node() == oldbox) {
1828          // Mark eliminated all related locks and unlocks.
1829          alock->set_non_esc_obj();
1830        }
1831      }
1832    }
1833    return;
1834  }
1835
1836  // Create new "eliminated" BoxLock node and use it in monitor debug info
1837  // instead of oldbox for the same object.
1838  BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1839
1840  // Note: BoxLock node is marked eliminated only here and it is used
1841  // to indicate that all associated lock and unlock nodes are marked
1842  // for elimination.
1843  newbox->set_eliminated();
1844  transform_later(newbox);
1845
1846  // Replace old box node with new box for all users of the same object.
1847  for (uint i = 0; i < oldbox->outcnt();) {
1848    bool next_edge = true;
1849
1850    Node* u = oldbox->raw_out(i);
1851    if (u->is_AbstractLock()) {
1852      AbstractLockNode* alock = u->as_AbstractLock();
1853      if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
1854        // Replace Box and mark eliminated all related locks and unlocks.
1855        alock->set_non_esc_obj();
1856        _igvn.rehash_node_delayed(alock);
1857        alock->set_box_node(newbox);
1858        next_edge = false;
1859      }
1860    }
1861    if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
1862      FastLockNode* flock = u->as_FastLock();
1863      assert(flock->box_node() == oldbox, "sanity");
1864      _igvn.rehash_node_delayed(flock);
1865      flock->set_box_node(newbox);
1866      next_edge = false;
1867    }
1868
1869    // Replace old box in monitor debug info.
1870    if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1871      SafePointNode* sfn = u->as_SafePoint();
1872      JVMState* youngest_jvms = sfn->jvms();
1873      int max_depth = youngest_jvms->depth();
1874      for (int depth = 1; depth <= max_depth; depth++) {
1875        JVMState* jvms = youngest_jvms->of_depth(depth);
1876        int num_mon  = jvms->nof_monitors();
1877        // Loop over monitors
1878        for (int idx = 0; idx < num_mon; idx++) {
1879          Node* obj_node = sfn->monitor_obj(jvms, idx);
1880          Node* box_node = sfn->monitor_box(jvms, idx);
1881          if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
1882            int j = jvms->monitor_box_offset(idx);
1883            _igvn.replace_input_of(u, j, newbox);
1884            next_edge = false;
1885          }
1886        }
1887      }
1888    }
1889    if (next_edge) i++;
1890  }
1891}
1892
1893//-----------------------mark_eliminated_locking_nodes-----------------------
1894void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
1895  if (EliminateNestedLocks) {
1896    if (alock->is_nested()) {
1897       assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
1898       return;
1899    } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
1900      // Only Lock node has JVMState needed here.
1901      if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
1902        // Mark eliminated related nested locks and unlocks.
1903        Node* obj = alock->obj_node();
1904        BoxLockNode* box_node = alock->box_node()->as_BoxLock();
1905        assert(!box_node->is_eliminated(), "should not be marked yet");
1906        // Note: BoxLock node is marked eliminated only here
1907        // and it is used to indicate that all associated lock
1908        // and unlock nodes are marked for elimination.
1909        box_node->set_eliminated(); // Box's hash is always NO_HASH here
1910        for (uint i = 0; i < box_node->outcnt(); i++) {
1911          Node* u = box_node->raw_out(i);
1912          if (u->is_AbstractLock()) {
1913            alock = u->as_AbstractLock();
1914            if (alock->box_node() == box_node) {
1915              // Verify that this Box is referenced only by related locks.
1916              assert(alock->obj_node()->eqv_uncast(obj), "");
1917              // Mark all related locks and unlocks.
1918              alock->set_nested();
1919            }
1920          }
1921        }
1922      }
1923      return;
1924    }
1925    // Process locks for non escaping object
1926    assert(alock->is_non_esc_obj(), "");
1927  } // EliminateNestedLocks
1928
1929  if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
1930    // Look for all locks of this object and mark them and
1931    // corresponding BoxLock nodes as eliminated.
1932    Node* obj = alock->obj_node();
1933    for (uint j = 0; j < obj->outcnt(); j++) {
1934      Node* o = obj->raw_out(j);
1935      if (o->is_AbstractLock() &&
1936          o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
1937        alock = o->as_AbstractLock();
1938        Node* box = alock->box_node();
1939        // Replace old box node with new eliminated box for all users
1940        // of the same object and mark related locks as eliminated.
1941        mark_eliminated_box(box, obj);
1942      }
1943    }
1944  }
1945}
1946
1947// we have determined that this lock/unlock can be eliminated, we simply
1948// eliminate the node without expanding it.
1949//
1950// Note:  The membar's associated with the lock/unlock are currently not
1951//        eliminated.  This should be investigated as a future enhancement.
1952//
1953bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1954
1955  if (!alock->is_eliminated()) {
1956    return false;
1957  }
1958#ifdef ASSERT
1959  if (!alock->is_coarsened()) {
1960    // Check that new "eliminated" BoxLock node is created.
1961    BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1962    assert(oldbox->is_eliminated(), "should be done already");
1963  }
1964#endif
1965  CompileLog* log = C->log();
1966  if (log != NULL) {
1967    log->head("eliminate_lock lock='%d'",
1968              alock->is_Lock());
1969    JVMState* p = alock->jvms();
1970    while (p != NULL) {
1971      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1972      p = p->caller();
1973    }
1974    log->tail("eliminate_lock");
1975  }
1976
1977  #ifndef PRODUCT
1978  if (PrintEliminateLocks) {
1979    if (alock->is_Lock()) {
1980      tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
1981    } else {
1982      tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
1983    }
1984  }
1985  #endif
1986
1987  Node* mem  = alock->in(TypeFunc::Memory);
1988  Node* ctrl = alock->in(TypeFunc::Control);
1989
1990  extract_call_projections(alock);
1991  // There are 2 projections from the lock.  The lock node will
1992  // be deleted when its last use is subsumed below.
1993  assert(alock->outcnt() == 2 &&
1994         _fallthroughproj != NULL &&
1995         _memproj_fallthrough != NULL,
1996         "Unexpected projections from Lock/Unlock");
1997
1998  Node* fallthroughproj = _fallthroughproj;
1999  Node* memproj_fallthrough = _memproj_fallthrough;
2000
2001  // The memory projection from a lock/unlock is RawMem
2002  // The input to a Lock is merged memory, so extract its RawMem input
2003  // (unless the MergeMem has been optimized away.)
2004  if (alock->is_Lock()) {
2005    // Seach for MemBarAcquireLock node and delete it also.
2006    MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2007    assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2008    Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2009    Node* memproj = membar->proj_out(TypeFunc::Memory);
2010    _igvn.replace_node(ctrlproj, fallthroughproj);
2011    _igvn.replace_node(memproj, memproj_fallthrough);
2012
2013    // Delete FastLock node also if this Lock node is unique user
2014    // (a loop peeling may clone a Lock node).
2015    Node* flock = alock->as_Lock()->fastlock_node();
2016    if (flock->outcnt() == 1) {
2017      assert(flock->unique_out() == alock, "sanity");
2018      _igvn.replace_node(flock, top());
2019    }
2020  }
2021
2022  // Seach for MemBarReleaseLock node and delete it also.
2023  if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
2024      ctrl->in(0)->is_MemBar()) {
2025    MemBarNode* membar = ctrl->in(0)->as_MemBar();
2026    assert(membar->Opcode() == Op_MemBarReleaseLock &&
2027           mem->is_Proj() && membar == mem->in(0), "");
2028    _igvn.replace_node(fallthroughproj, ctrl);
2029    _igvn.replace_node(memproj_fallthrough, mem);
2030    fallthroughproj = ctrl;
2031    memproj_fallthrough = mem;
2032    ctrl = membar->in(TypeFunc::Control);
2033    mem  = membar->in(TypeFunc::Memory);
2034  }
2035
2036  _igvn.replace_node(fallthroughproj, ctrl);
2037  _igvn.replace_node(memproj_fallthrough, mem);
2038  return true;
2039}
2040
2041
2042//------------------------------expand_lock_node----------------------
2043void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2044
2045  Node* ctrl = lock->in(TypeFunc::Control);
2046  Node* mem = lock->in(TypeFunc::Memory);
2047  Node* obj = lock->obj_node();
2048  Node* box = lock->box_node();
2049  Node* flock = lock->fastlock_node();
2050
2051  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2052
2053  // Make the merge point
2054  Node *region;
2055  Node *mem_phi;
2056  Node *slow_path;
2057
2058  if (UseOptoBiasInlining) {
2059    /*
2060     *  See the full description in MacroAssembler::biased_locking_enter().
2061     *
2062     *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2063     *    // The object is biased.
2064     *    proto_node = klass->prototype_header;
2065     *    o_node = thread | proto_node;
2066     *    x_node = o_node ^ mark_word;
2067     *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2068     *      // Done.
2069     *    } else {
2070     *      if( (x_node & biased_lock_mask) != 0 ) {
2071     *        // The klass's prototype header is no longer biased.
2072     *        cas(&mark_word, mark_word, proto_node)
2073     *        goto cas_lock;
2074     *      } else {
2075     *        // The klass's prototype header is still biased.
2076     *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2077     *          old = mark_word;
2078     *          new = o_node;
2079     *        } else {
2080     *          // Different thread or anonymous biased.
2081     *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2082     *          new = thread | old;
2083     *        }
2084     *        // Try to rebias.
2085     *        if( cas(&mark_word, old, new) == 0 ) {
2086     *          // Done.
2087     *        } else {
2088     *          goto slow_path; // Failed.
2089     *        }
2090     *      }
2091     *    }
2092     *  } else {
2093     *    // The object is not biased.
2094     *    cas_lock:
2095     *    if( FastLock(obj) == 0 ) {
2096     *      // Done.
2097     *    } else {
2098     *      slow_path:
2099     *      OptoRuntime::complete_monitor_locking_Java(obj);
2100     *    }
2101     *  }
2102     */
2103
2104    region  = new (C, 5) RegionNode(5);
2105    // create a Phi for the memory state
2106    mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2107
2108    Node* fast_lock_region  = new (C, 3) RegionNode(3);
2109    Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2110
2111    // First, check mark word for the biased lock pattern.
2112    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2113
2114    // Get fast path - mark word has the biased lock pattern.
2115    ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2116                         markOopDesc::biased_lock_mask_in_place,
2117                         markOopDesc::biased_lock_pattern, true);
2118    // fast_lock_region->in(1) is set to slow path.
2119    fast_lock_mem_phi->init_req(1, mem);
2120
2121    // Now check that the lock is biased to the current thread and has
2122    // the same epoch and bias as Klass::_prototype_header.
2123
2124    // Special-case a fresh allocation to avoid building nodes:
2125    Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2126    if (klass_node == NULL) {
2127      Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2128      klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
2129#ifdef _LP64
2130      if (UseCompressedOops && klass_node->is_DecodeN()) {
2131        assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2132        klass_node->in(1)->init_req(0, ctrl);
2133      } else
2134#endif
2135      klass_node->init_req(0, ctrl);
2136    }
2137    Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2138
2139    Node* thread = transform_later(new (C, 1) ThreadLocalNode());
2140    Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
2141    Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
2142    Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
2143
2144    // Get slow path - mark word does NOT match the value.
2145    Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2146                                      (~markOopDesc::age_mask_in_place), 0);
2147    // region->in(3) is set to fast path - the object is biased to the current thread.
2148    mem_phi->init_req(3, mem);
2149
2150
2151    // Mark word does NOT match the value (thread | Klass::_prototype_header).
2152
2153
2154    // First, check biased pattern.
2155    // Get fast path - _prototype_header has the same biased lock pattern.
2156    ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2157                          markOopDesc::biased_lock_mask_in_place, 0, true);
2158
2159    not_biased_ctrl = fast_lock_region->in(2); // Slow path
2160    // fast_lock_region->in(2) - the prototype header is no longer biased
2161    // and we have to revoke the bias on this object.
2162    // We are going to try to reset the mark of this object to the prototype
2163    // value and fall through to the CAS-based locking scheme.
2164    Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2165    Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
2166                                                 proto_node, mark_node);
2167    transform_later(cas);
2168    Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
2169    fast_lock_mem_phi->init_req(2, proj);
2170
2171
2172    // Second, check epoch bits.
2173    Node* rebiased_region  = new (C, 3) RegionNode(3);
2174    Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
2175    Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
2176
2177    // Get slow path - mark word does NOT match epoch bits.
2178    Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2179                                      markOopDesc::epoch_mask_in_place, 0);
2180    // The epoch of the current bias is not valid, attempt to rebias the object
2181    // toward the current thread.
2182    rebiased_region->init_req(2, epoch_ctrl);
2183    old_phi->init_req(2, mark_node);
2184    new_phi->init_req(2, o_node);
2185
2186    // rebiased_region->in(1) is set to fast path.
2187    // The epoch of the current bias is still valid but we know
2188    // nothing about the owner; it might be set or it might be clear.
2189    Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2190                             markOopDesc::age_mask_in_place |
2191                             markOopDesc::epoch_mask_in_place);
2192    Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
2193    cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
2194    Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
2195    old_phi->init_req(1, old);
2196    new_phi->init_req(1, new_mark);
2197
2198    transform_later(rebiased_region);
2199    transform_later(old_phi);
2200    transform_later(new_phi);
2201
2202    // Try to acquire the bias of the object using an atomic operation.
2203    // If this fails we will go in to the runtime to revoke the object's bias.
2204    cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
2205                                           new_phi, old_phi);
2206    transform_later(cas);
2207    proj = transform_later( new (C, 1) SCMemProjNode(cas));
2208
2209    // Get slow path - Failed to CAS.
2210    not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2211    mem_phi->init_req(4, proj);
2212    // region->in(4) is set to fast path - the object is rebiased to the current thread.
2213
2214    // Failed to CAS.
2215    slow_path  = new (C, 3) RegionNode(3);
2216    Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2217
2218    slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2219    slow_mem->init_req(1, proj);
2220
2221    // Call CAS-based locking scheme (FastLock node).
2222
2223    transform_later(fast_lock_region);
2224    transform_later(fast_lock_mem_phi);
2225
2226    // Get slow path - FastLock failed to lock the object.
2227    ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2228    mem_phi->init_req(2, fast_lock_mem_phi);
2229    // region->in(2) is set to fast path - the object is locked to the current thread.
2230
2231    slow_path->init_req(2, ctrl); // Capture slow-control
2232    slow_mem->init_req(2, fast_lock_mem_phi);
2233
2234    transform_later(slow_path);
2235    transform_later(slow_mem);
2236    // Reset lock's memory edge.
2237    lock->set_req(TypeFunc::Memory, slow_mem);
2238
2239  } else {
2240    region  = new (C, 3) RegionNode(3);
2241    // create a Phi for the memory state
2242    mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2243
2244    // Optimize test; set region slot 2
2245    slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2246    mem_phi->init_req(2, mem);
2247  }
2248
2249  // Make slow path call
2250  CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
2251
2252  extract_call_projections(call);
2253
2254  // Slow path can only throw asynchronous exceptions, which are always
2255  // de-opted.  So the compiler thinks the slow-call can never throw an
2256  // exception.  If it DOES throw an exception we would need the debug
2257  // info removed first (since if it throws there is no monitor).
2258  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2259           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2260
2261  // Capture slow path
2262  // disconnect fall-through projection from call and create a new one
2263  // hook up users of fall-through projection to region
2264  Node *slow_ctrl = _fallthroughproj->clone();
2265  transform_later(slow_ctrl);
2266  _igvn.hash_delete(_fallthroughproj);
2267  _fallthroughproj->disconnect_inputs(NULL);
2268  region->init_req(1, slow_ctrl);
2269  // region inputs are now complete
2270  transform_later(region);
2271  _igvn.replace_node(_fallthroughproj, region);
2272
2273  Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2274  mem_phi->init_req(1, memproj );
2275  transform_later(mem_phi);
2276  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2277}
2278
2279//------------------------------expand_unlock_node----------------------
2280void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2281
2282  Node* ctrl = unlock->in(TypeFunc::Control);
2283  Node* mem = unlock->in(TypeFunc::Memory);
2284  Node* obj = unlock->obj_node();
2285  Node* box = unlock->box_node();
2286
2287  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2288
2289  // No need for a null check on unlock
2290
2291  // Make the merge point
2292  Node *region;
2293  Node *mem_phi;
2294
2295  if (UseOptoBiasInlining) {
2296    // Check for biased locking unlock case, which is a no-op.
2297    // See the full description in MacroAssembler::biased_locking_exit().
2298    region  = new (C, 4) RegionNode(4);
2299    // create a Phi for the memory state
2300    mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2301    mem_phi->init_req(3, mem);
2302
2303    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2304    ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2305                         markOopDesc::biased_lock_mask_in_place,
2306                         markOopDesc::biased_lock_pattern);
2307  } else {
2308    region  = new (C, 3) RegionNode(3);
2309    // create a Phi for the memory state
2310    mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2311  }
2312
2313  FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
2314  funlock = transform_later( funlock )->as_FastUnlock();
2315  // Optimize test; set region slot 2
2316  Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2317
2318  CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
2319
2320  extract_call_projections(call);
2321
2322  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2323           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2324
2325  // No exceptions for unlocking
2326  // Capture slow path
2327  // disconnect fall-through projection from call and create a new one
2328  // hook up users of fall-through projection to region
2329  Node *slow_ctrl = _fallthroughproj->clone();
2330  transform_later(slow_ctrl);
2331  _igvn.hash_delete(_fallthroughproj);
2332  _fallthroughproj->disconnect_inputs(NULL);
2333  region->init_req(1, slow_ctrl);
2334  // region inputs are now complete
2335  transform_later(region);
2336  _igvn.replace_node(_fallthroughproj, region);
2337
2338  Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2339  mem_phi->init_req(1, memproj );
2340  mem_phi->init_req(2, mem);
2341  transform_later(mem_phi);
2342  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2343}
2344
2345//---------------------------eliminate_macro_nodes----------------------
2346// Eliminate scalar replaced allocations and associated locks.
2347void PhaseMacroExpand::eliminate_macro_nodes() {
2348  if (C->macro_count() == 0)
2349    return;
2350
2351  // First, attempt to eliminate locks
2352  int cnt = C->macro_count();
2353  for (int i=0; i < cnt; i++) {
2354    Node *n = C->macro_node(i);
2355    if (n->is_AbstractLock()) { // Lock and Unlock nodes
2356      // Before elimination mark all associated (same box and obj)
2357      // lock and unlock nodes.
2358      mark_eliminated_locking_nodes(n->as_AbstractLock());
2359    }
2360  }
2361  bool progress = true;
2362  while (progress) {
2363    progress = false;
2364    for (int i = C->macro_count(); i > 0; i--) {
2365      Node * n = C->macro_node(i-1);
2366      bool success = false;
2367      debug_only(int old_macro_count = C->macro_count(););
2368      if (n->is_AbstractLock()) {
2369        success = eliminate_locking_node(n->as_AbstractLock());
2370      }
2371      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2372      progress = progress || success;
2373    }
2374  }
2375  // Next, attempt to eliminate allocations
2376  progress = true;
2377  while (progress) {
2378    progress = false;
2379    for (int i = C->macro_count(); i > 0; i--) {
2380      Node * n = C->macro_node(i-1);
2381      bool success = false;
2382      debug_only(int old_macro_count = C->macro_count(););
2383      switch (n->class_id()) {
2384      case Node::Class_Allocate:
2385      case Node::Class_AllocateArray:
2386        success = eliminate_allocate_node(n->as_Allocate());
2387        break;
2388      case Node::Class_Lock:
2389      case Node::Class_Unlock:
2390        assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2391        break;
2392      default:
2393        assert(n->Opcode() == Op_LoopLimit ||
2394               n->Opcode() == Op_Opaque1   ||
2395               n->Opcode() == Op_Opaque2, "unknown node type in macro list");
2396      }
2397      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2398      progress = progress || success;
2399    }
2400  }
2401}
2402
2403//------------------------------expand_macro_nodes----------------------
2404//  Returns true if a failure occurred.
2405bool PhaseMacroExpand::expand_macro_nodes() {
2406  // Last attempt to eliminate macro nodes.
2407  eliminate_macro_nodes();
2408
2409  // Make sure expansion will not cause node limit to be exceeded.
2410  // Worst case is a macro node gets expanded into about 50 nodes.
2411  // Allow 50% more for optimization.
2412  if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2413    return true;
2414
2415  // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2416  bool progress = true;
2417  while (progress) {
2418    progress = false;
2419    for (int i = C->macro_count(); i > 0; i--) {
2420      Node * n = C->macro_node(i-1);
2421      bool success = false;
2422      debug_only(int old_macro_count = C->macro_count(););
2423      if (n->Opcode() == Op_LoopLimit) {
2424        // Remove it from macro list and put on IGVN worklist to optimize.
2425        C->remove_macro_node(n);
2426        _igvn._worklist.push(n);
2427        success = true;
2428      } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2429        _igvn.replace_node(n, n->in(1));
2430        success = true;
2431      }
2432      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2433      progress = progress || success;
2434    }
2435  }
2436
2437  // expand "macro" nodes
2438  // nodes are removed from the macro list as they are processed
2439  while (C->macro_count() > 0) {
2440    int macro_count = C->macro_count();
2441    Node * n = C->macro_node(macro_count-1);
2442    assert(n->is_macro(), "only macro nodes expected here");
2443    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2444      // node is unreachable, so don't try to expand it
2445      C->remove_macro_node(n);
2446      continue;
2447    }
2448    switch (n->class_id()) {
2449    case Node::Class_Allocate:
2450      expand_allocate(n->as_Allocate());
2451      break;
2452    case Node::Class_AllocateArray:
2453      expand_allocate_array(n->as_AllocateArray());
2454      break;
2455    case Node::Class_Lock:
2456      expand_lock_node(n->as_Lock());
2457      break;
2458    case Node::Class_Unlock:
2459      expand_unlock_node(n->as_Unlock());
2460      break;
2461    default:
2462      assert(false, "unknown node type in macro list");
2463    }
2464    assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2465    if (C->failing())  return true;
2466  }
2467
2468  _igvn.set_delay_transform(false);
2469  _igvn.optimize();
2470  if (C->failing())  return true;
2471  return false;
2472}
2473