macro.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "libadt/vectset.hpp"
28#include "opto/addnode.hpp"
29#include "opto/callnode.hpp"
30#include "opto/cfgnode.hpp"
31#include "opto/compile.hpp"
32#include "opto/connode.hpp"
33#include "opto/locknode.hpp"
34#include "opto/loopnode.hpp"
35#include "opto/macro.hpp"
36#include "opto/memnode.hpp"
37#include "opto/node.hpp"
38#include "opto/phaseX.hpp"
39#include "opto/rootnode.hpp"
40#include "opto/runtime.hpp"
41#include "opto/subnode.hpp"
42#include "opto/type.hpp"
43#include "runtime/sharedRuntime.hpp"
44
45
46//
47// Replace any references to "oldref" in inputs to "use" with "newref".
48// Returns the number of replacements made.
49//
50int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
51  int nreplacements = 0;
52  uint req = use->req();
53  for (uint j = 0; j < use->len(); j++) {
54    Node *uin = use->in(j);
55    if (uin == oldref) {
56      if (j < req)
57        use->set_req(j, newref);
58      else
59        use->set_prec(j, newref);
60      nreplacements++;
61    } else if (j >= req && uin == NULL) {
62      break;
63    }
64  }
65  return nreplacements;
66}
67
68void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
69  // Copy debug information and adjust JVMState information
70  uint old_dbg_start = oldcall->tf()->domain()->cnt();
71  uint new_dbg_start = newcall->tf()->domain()->cnt();
72  int jvms_adj  = new_dbg_start - old_dbg_start;
73  assert (new_dbg_start == newcall->req(), "argument count mismatch");
74
75  Dict* sosn_map = new Dict(cmpkey,hashkey);
76  for (uint i = old_dbg_start; i < oldcall->req(); i++) {
77    Node* old_in = oldcall->in(i);
78    // Clone old SafePointScalarObjectNodes, adjusting their field contents.
79    if (old_in != NULL && old_in->is_SafePointScalarObject()) {
80      SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
81      uint old_unique = C->unique();
82      Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
83      if (old_unique != C->unique()) {
84        new_in->set_req(0, newcall->in(0)); // reset control edge
85        new_in = transform_later(new_in); // Register new node.
86      }
87      old_in = new_in;
88    }
89    newcall->add_req(old_in);
90  }
91
92  newcall->set_jvms(oldcall->jvms());
93  for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
94    jvms->set_map(newcall);
95    jvms->set_locoff(jvms->locoff()+jvms_adj);
96    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
97    jvms->set_monoff(jvms->monoff()+jvms_adj);
98    jvms->set_scloff(jvms->scloff()+jvms_adj);
99    jvms->set_endoff(jvms->endoff()+jvms_adj);
100  }
101}
102
103Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
104  Node* cmp;
105  if (mask != 0) {
106    Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
107    cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
108  } else {
109    cmp = word;
110  }
111  Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
112  IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
113  transform_later(iff);
114
115  // Fast path taken.
116  Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
117
118  // Fast path not-taken, i.e. slow path
119  Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
120
121  if (return_fast_path) {
122    region->init_req(edge, slow_taken); // Capture slow-control
123    return fast_taken;
124  } else {
125    region->init_req(edge, fast_taken); // Capture fast-control
126    return slow_taken;
127  }
128}
129
130//--------------------copy_predefined_input_for_runtime_call--------------------
131void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
132  // Set fixed predefined input arguments
133  call->init_req( TypeFunc::Control, ctrl );
134  call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
135  call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
136  call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
137  call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
138}
139
140//------------------------------make_slow_call---------------------------------
141CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
142
143  // Slow-path call
144  int size = slow_call_type->domain()->cnt();
145 CallNode *call = leaf_name
146   ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
147   : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
148
149  // Slow path call has no side-effects, uses few values
150  copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
151  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
152  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
153  copy_call_debug_info(oldcall, call);
154  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
155  _igvn.replace_node(oldcall, call);
156  transform_later(call);
157
158  return call;
159}
160
161void PhaseMacroExpand::extract_call_projections(CallNode *call) {
162  _fallthroughproj = NULL;
163  _fallthroughcatchproj = NULL;
164  _ioproj_fallthrough = NULL;
165  _ioproj_catchall = NULL;
166  _catchallcatchproj = NULL;
167  _memproj_fallthrough = NULL;
168  _memproj_catchall = NULL;
169  _resproj = NULL;
170  for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
171    ProjNode *pn = call->fast_out(i)->as_Proj();
172    switch (pn->_con) {
173      case TypeFunc::Control:
174      {
175        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
176        _fallthroughproj = pn;
177        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
178        const Node *cn = pn->fast_out(j);
179        if (cn->is_Catch()) {
180          ProjNode *cpn = NULL;
181          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
182            cpn = cn->fast_out(k)->as_Proj();
183            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
184            if (cpn->_con == CatchProjNode::fall_through_index)
185              _fallthroughcatchproj = cpn;
186            else {
187              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
188              _catchallcatchproj = cpn;
189            }
190          }
191        }
192        break;
193      }
194      case TypeFunc::I_O:
195        if (pn->_is_io_use)
196          _ioproj_catchall = pn;
197        else
198          _ioproj_fallthrough = pn;
199        break;
200      case TypeFunc::Memory:
201        if (pn->_is_io_use)
202          _memproj_catchall = pn;
203        else
204          _memproj_fallthrough = pn;
205        break;
206      case TypeFunc::Parms:
207        _resproj = pn;
208        break;
209      default:
210        assert(false, "unexpected projection from allocation node.");
211    }
212  }
213
214}
215
216// Eliminate a card mark sequence.  p2x is a ConvP2XNode
217void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
218  assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
219  if (!UseG1GC) {
220    // vanilla/CMS post barrier
221    Node *shift = p2x->unique_out();
222    Node *addp = shift->unique_out();
223    for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
224      Node *st = addp->last_out(j);
225      assert(st->is_Store(), "store required");
226      _igvn.replace_node(st, st->in(MemNode::Memory));
227    }
228  } else {
229    // G1 pre/post barriers
230    assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
231    // It could be only one user, URShift node, in Object.clone() instrinsic
232    // but the new allocation is passed to arraycopy stub and it could not
233    // be scalar replaced. So we don't check the case.
234
235    // Remove G1 post barrier.
236
237    // Search for CastP2X->Xor->URShift->Cmp path which
238    // checks if the store done to a different from the value's region.
239    // And replace Cmp with #0 (false) to collapse G1 post barrier.
240    Node* xorx = NULL;
241    for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
242      Node* u = p2x->fast_out(i);
243      if (u->Opcode() == Op_XorX) {
244        xorx = u;
245        break;
246      }
247    }
248    assert(xorx != NULL, "missing G1 post barrier");
249    Node* shift = xorx->unique_out();
250    Node* cmpx = shift->unique_out();
251    assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
252    cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
253    "missing region check in G1 post barrier");
254    _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
255
256    // Remove G1 pre barrier.
257
258    // Search "if (marking != 0)" check and set it to "false".
259    Node* this_region = p2x->in(0);
260    assert(this_region != NULL, "");
261    // There is no G1 pre barrier if previous stored value is NULL
262    // (for example, after initialization).
263    if (this_region->is_Region() && this_region->req() == 3) {
264      int ind = 1;
265      if (!this_region->in(ind)->is_IfFalse()) {
266        ind = 2;
267      }
268      if (this_region->in(ind)->is_IfFalse()) {
269        Node* bol = this_region->in(ind)->in(0)->in(1);
270        assert(bol->is_Bool(), "");
271        cmpx = bol->in(1);
272        if (bol->as_Bool()->_test._test == BoolTest::ne &&
273            cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
274            cmpx->in(1)->is_Load()) {
275          Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
276          const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
277                                              PtrQueue::byte_offset_of_active());
278          if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
279              adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
280              adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
281            _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
282          }
283        }
284      }
285    }
286    // Now CastP2X can be removed since it is used only on dead path
287    // which currently still alive until igvn optimize it.
288    assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
289    _igvn.replace_node(p2x, top());
290  }
291}
292
293// Search for a memory operation for the specified memory slice.
294static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
295  Node *orig_mem = mem;
296  Node *alloc_mem = alloc->in(TypeFunc::Memory);
297  const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
298  while (true) {
299    if (mem == alloc_mem || mem == start_mem ) {
300      return mem;  // hit one of our sentinels
301    } else if (mem->is_MergeMem()) {
302      mem = mem->as_MergeMem()->memory_at(alias_idx);
303    } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
304      Node *in = mem->in(0);
305      // we can safely skip over safepoints, calls, locks and membars because we
306      // already know that the object is safe to eliminate.
307      if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
308        return in;
309      } else if (in->is_Call()) {
310        CallNode *call = in->as_Call();
311        if (!call->may_modify(tinst, phase)) {
312          mem = call->in(TypeFunc::Memory);
313        }
314        mem = in->in(TypeFunc::Memory);
315      } else if (in->is_MemBar()) {
316        mem = in->in(TypeFunc::Memory);
317      } else {
318        assert(false, "unexpected projection");
319      }
320    } else if (mem->is_Store()) {
321      const TypePtr* atype = mem->as_Store()->adr_type();
322      int adr_idx = Compile::current()->get_alias_index(atype);
323      if (adr_idx == alias_idx) {
324        assert(atype->isa_oopptr(), "address type must be oopptr");
325        int adr_offset = atype->offset();
326        uint adr_iid = atype->is_oopptr()->instance_id();
327        // Array elements references have the same alias_idx
328        // but different offset and different instance_id.
329        if (adr_offset == offset && adr_iid == alloc->_idx)
330          return mem;
331      } else {
332        assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
333      }
334      mem = mem->in(MemNode::Memory);
335    } else if (mem->is_ClearArray()) {
336      if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
337        // Can not bypass initialization of the instance
338        // we are looking.
339        debug_only(intptr_t offset;)
340        assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
341        InitializeNode* init = alloc->as_Allocate()->initialization();
342        // We are looking for stored value, return Initialize node
343        // or memory edge from Allocate node.
344        if (init != NULL)
345          return init;
346        else
347          return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
348      }
349      // Otherwise skip it (the call updated 'mem' value).
350    } else if (mem->Opcode() == Op_SCMemProj) {
351      assert(mem->in(0)->is_LoadStore(), "sanity");
352      const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
353      int adr_idx = Compile::current()->get_alias_index(atype);
354      if (adr_idx == alias_idx) {
355        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
356        return NULL;
357      }
358      mem = mem->in(0)->in(MemNode::Memory);
359    } else {
360      return mem;
361    }
362    assert(mem != orig_mem, "dead memory loop");
363  }
364}
365
366//
367// Given a Memory Phi, compute a value Phi containing the values from stores
368// on the input paths.
369// Note: this function is recursive, its depth is limied by the "level" argument
370// Returns the computed Phi, or NULL if it cannot compute it.
371Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
372  assert(mem->is_Phi(), "sanity");
373  int alias_idx = C->get_alias_index(adr_t);
374  int offset = adr_t->offset();
375  int instance_id = adr_t->instance_id();
376
377  // Check if an appropriate value phi already exists.
378  Node* region = mem->in(0);
379  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
380    Node* phi = region->fast_out(k);
381    if (phi->is_Phi() && phi != mem &&
382        phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
383      return phi;
384    }
385  }
386  // Check if an appropriate new value phi already exists.
387  Node* new_phi = NULL;
388  uint size = value_phis->size();
389  for (uint i=0; i < size; i++) {
390    if ( mem->_idx == value_phis->index_at(i) ) {
391      return value_phis->node_at(i);
392    }
393  }
394
395  if (level <= 0) {
396    return NULL; // Give up: phi tree too deep
397  }
398  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
399  Node *alloc_mem = alloc->in(TypeFunc::Memory);
400
401  uint length = mem->req();
402  GrowableArray <Node *> values(length, length, NULL);
403
404  // create a new Phi for the value
405  PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
406  transform_later(phi);
407  value_phis->push(phi, mem->_idx);
408
409  for (uint j = 1; j < length; j++) {
410    Node *in = mem->in(j);
411    if (in == NULL || in->is_top()) {
412      values.at_put(j, in);
413    } else  {
414      Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
415      if (val == start_mem || val == alloc_mem) {
416        // hit a sentinel, return appropriate 0 value
417        values.at_put(j, _igvn.zerocon(ft));
418        continue;
419      }
420      if (val->is_Initialize()) {
421        val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
422      }
423      if (val == NULL) {
424        return NULL;  // can't find a value on this path
425      }
426      if (val == mem) {
427        values.at_put(j, mem);
428      } else if (val->is_Store()) {
429        values.at_put(j, val->in(MemNode::ValueIn));
430      } else if(val->is_Proj() && val->in(0) == alloc) {
431        values.at_put(j, _igvn.zerocon(ft));
432      } else if (val->is_Phi()) {
433        val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
434        if (val == NULL) {
435          return NULL;
436        }
437        values.at_put(j, val);
438      } else if (val->Opcode() == Op_SCMemProj) {
439        assert(val->in(0)->is_LoadStore(), "sanity");
440        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
441        return NULL;
442      } else {
443#ifdef ASSERT
444        val->dump();
445        assert(false, "unknown node on this path");
446#endif
447        return NULL;  // unknown node on this path
448      }
449    }
450  }
451  // Set Phi's inputs
452  for (uint j = 1; j < length; j++) {
453    if (values.at(j) == mem) {
454      phi->init_req(j, phi);
455    } else {
456      phi->init_req(j, values.at(j));
457    }
458  }
459  return phi;
460}
461
462// Search the last value stored into the object's field.
463Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
464  assert(adr_t->is_known_instance_field(), "instance required");
465  int instance_id = adr_t->instance_id();
466  assert((uint)instance_id == alloc->_idx, "wrong allocation");
467
468  int alias_idx = C->get_alias_index(adr_t);
469  int offset = adr_t->offset();
470  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
471  Node *alloc_ctrl = alloc->in(TypeFunc::Control);
472  Node *alloc_mem = alloc->in(TypeFunc::Memory);
473  Arena *a = Thread::current()->resource_area();
474  VectorSet visited(a);
475
476
477  bool done = sfpt_mem == alloc_mem;
478  Node *mem = sfpt_mem;
479  while (!done) {
480    if (visited.test_set(mem->_idx)) {
481      return NULL;  // found a loop, give up
482    }
483    mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
484    if (mem == start_mem || mem == alloc_mem) {
485      done = true;  // hit a sentinel, return appropriate 0 value
486    } else if (mem->is_Initialize()) {
487      mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
488      if (mem == NULL) {
489        done = true; // Something go wrong.
490      } else if (mem->is_Store()) {
491        const TypePtr* atype = mem->as_Store()->adr_type();
492        assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
493        done = true;
494      }
495    } else if (mem->is_Store()) {
496      const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
497      assert(atype != NULL, "address type must be oopptr");
498      assert(C->get_alias_index(atype) == alias_idx &&
499             atype->is_known_instance_field() && atype->offset() == offset &&
500             atype->instance_id() == instance_id, "store is correct memory slice");
501      done = true;
502    } else if (mem->is_Phi()) {
503      // try to find a phi's unique input
504      Node *unique_input = NULL;
505      Node *top = C->top();
506      for (uint i = 1; i < mem->req(); i++) {
507        Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
508        if (n == NULL || n == top || n == mem) {
509          continue;
510        } else if (unique_input == NULL) {
511          unique_input = n;
512        } else if (unique_input != n) {
513          unique_input = top;
514          break;
515        }
516      }
517      if (unique_input != NULL && unique_input != top) {
518        mem = unique_input;
519      } else {
520        done = true;
521      }
522    } else {
523      assert(false, "unexpected node");
524    }
525  }
526  if (mem != NULL) {
527    if (mem == start_mem || mem == alloc_mem) {
528      // hit a sentinel, return appropriate 0 value
529      return _igvn.zerocon(ft);
530    } else if (mem->is_Store()) {
531      return mem->in(MemNode::ValueIn);
532    } else if (mem->is_Phi()) {
533      // attempt to produce a Phi reflecting the values on the input paths of the Phi
534      Node_Stack value_phis(a, 8);
535      Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
536      if (phi != NULL) {
537        return phi;
538      } else {
539        // Kill all new Phis
540        while(value_phis.is_nonempty()) {
541          Node* n = value_phis.node();
542          _igvn.replace_node(n, C->top());
543          value_phis.pop();
544        }
545      }
546    }
547  }
548  // Something go wrong.
549  return NULL;
550}
551
552// Check the possibility of scalar replacement.
553bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
554  //  Scan the uses of the allocation to check for anything that would
555  //  prevent us from eliminating it.
556  NOT_PRODUCT( const char* fail_eliminate = NULL; )
557  DEBUG_ONLY( Node* disq_node = NULL; )
558  bool  can_eliminate = true;
559
560  Node* res = alloc->result_cast();
561  const TypeOopPtr* res_type = NULL;
562  if (res == NULL) {
563    // All users were eliminated.
564  } else if (!res->is_CheckCastPP()) {
565    alloc->_is_scalar_replaceable = false;  // don't try again
566    NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
567    can_eliminate = false;
568  } else {
569    res_type = _igvn.type(res)->isa_oopptr();
570    if (res_type == NULL) {
571      NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
572      can_eliminate = false;
573    } else if (res_type->isa_aryptr()) {
574      int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
575      if (length < 0) {
576        NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
577        can_eliminate = false;
578      }
579    }
580  }
581
582  if (can_eliminate && res != NULL) {
583    for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
584                               j < jmax && can_eliminate; j++) {
585      Node* use = res->fast_out(j);
586
587      if (use->is_AddP()) {
588        const TypePtr* addp_type = _igvn.type(use)->is_ptr();
589        int offset = addp_type->offset();
590
591        if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
592          NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
593          can_eliminate = false;
594          break;
595        }
596        for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
597                                   k < kmax && can_eliminate; k++) {
598          Node* n = use->fast_out(k);
599          if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
600            DEBUG_ONLY(disq_node = n;)
601            if (n->is_Load() || n->is_LoadStore()) {
602              NOT_PRODUCT(fail_eliminate = "Field load";)
603            } else {
604              NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
605            }
606            can_eliminate = false;
607          }
608        }
609      } else if (use->is_SafePoint()) {
610        SafePointNode* sfpt = use->as_SafePoint();
611        if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
612          // Object is passed as argument.
613          DEBUG_ONLY(disq_node = use;)
614          NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
615          can_eliminate = false;
616        }
617        Node* sfptMem = sfpt->memory();
618        if (sfptMem == NULL || sfptMem->is_top()) {
619          DEBUG_ONLY(disq_node = use;)
620          NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
621          can_eliminate = false;
622        } else {
623          safepoints.append_if_missing(sfpt);
624        }
625      } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
626        if (use->is_Phi()) {
627          if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
628            NOT_PRODUCT(fail_eliminate = "Object is return value";)
629          } else {
630            NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
631          }
632          DEBUG_ONLY(disq_node = use;)
633        } else {
634          if (use->Opcode() == Op_Return) {
635            NOT_PRODUCT(fail_eliminate = "Object is return value";)
636          }else {
637            NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
638          }
639          DEBUG_ONLY(disq_node = use;)
640        }
641        can_eliminate = false;
642      }
643    }
644  }
645
646#ifndef PRODUCT
647  if (PrintEliminateAllocations) {
648    if (can_eliminate) {
649      tty->print("Scalar ");
650      if (res == NULL)
651        alloc->dump();
652      else
653        res->dump();
654    } else {
655      tty->print("NotScalar (%s)", fail_eliminate);
656      if (res == NULL)
657        alloc->dump();
658      else
659        res->dump();
660#ifdef ASSERT
661      if (disq_node != NULL) {
662          tty->print("  >>>> ");
663          disq_node->dump();
664      }
665#endif /*ASSERT*/
666    }
667  }
668#endif
669  return can_eliminate;
670}
671
672// Do scalar replacement.
673bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
674  GrowableArray <SafePointNode *> safepoints_done;
675
676  ciKlass* klass = NULL;
677  ciInstanceKlass* iklass = NULL;
678  int nfields = 0;
679  int array_base;
680  int element_size;
681  BasicType basic_elem_type;
682  ciType* elem_type;
683
684  Node* res = alloc->result_cast();
685  const TypeOopPtr* res_type = NULL;
686  if (res != NULL) { // Could be NULL when there are no users
687    res_type = _igvn.type(res)->isa_oopptr();
688  }
689
690  if (res != NULL) {
691    klass = res_type->klass();
692    if (res_type->isa_instptr()) {
693      // find the fields of the class which will be needed for safepoint debug information
694      assert(klass->is_instance_klass(), "must be an instance klass.");
695      iklass = klass->as_instance_klass();
696      nfields = iklass->nof_nonstatic_fields();
697    } else {
698      // find the array's elements which will be needed for safepoint debug information
699      nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
700      assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
701      elem_type = klass->as_array_klass()->element_type();
702      basic_elem_type = elem_type->basic_type();
703      array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
704      element_size = type2aelembytes(basic_elem_type);
705    }
706  }
707  //
708  // Process the safepoint uses
709  //
710  while (safepoints.length() > 0) {
711    SafePointNode* sfpt = safepoints.pop();
712    Node* mem = sfpt->memory();
713    uint first_ind = sfpt->req();
714    SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
715#ifdef ASSERT
716                                                 alloc,
717#endif
718                                                 first_ind, nfields);
719    sobj->init_req(0, sfpt->in(TypeFunc::Control));
720    transform_later(sobj);
721
722    // Scan object's fields adding an input to the safepoint for each field.
723    for (int j = 0; j < nfields; j++) {
724      intptr_t offset;
725      ciField* field = NULL;
726      if (iklass != NULL) {
727        field = iklass->nonstatic_field_at(j);
728        offset = field->offset();
729        elem_type = field->type();
730        basic_elem_type = field->layout_type();
731      } else {
732        offset = array_base + j * (intptr_t)element_size;
733      }
734
735      const Type *field_type;
736      // The next code is taken from Parse::do_get_xxx().
737      if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
738        if (!elem_type->is_loaded()) {
739          field_type = TypeInstPtr::BOTTOM;
740        } else if (field != NULL && field->is_constant() && field->is_static()) {
741          // This can happen if the constant oop is non-perm.
742          ciObject* con = field->constant_value().as_object();
743          // Do not "join" in the previous type; it doesn't add value,
744          // and may yield a vacuous result if the field is of interface type.
745          field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
746          assert(field_type != NULL, "field singleton type must be consistent");
747        } else {
748          field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
749        }
750        if (UseCompressedOops) {
751          field_type = field_type->make_narrowoop();
752          basic_elem_type = T_NARROWOOP;
753        }
754      } else {
755        field_type = Type::get_const_basic_type(basic_elem_type);
756      }
757
758      const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
759
760      Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
761      if (field_val == NULL) {
762        // we weren't able to find a value for this field,
763        // give up on eliminating this allocation
764        alloc->_is_scalar_replaceable = false;  // don't try again
765        // remove any extra entries we added to the safepoint
766        uint last = sfpt->req() - 1;
767        for (int k = 0;  k < j; k++) {
768          sfpt->del_req(last--);
769        }
770        // rollback processed safepoints
771        while (safepoints_done.length() > 0) {
772          SafePointNode* sfpt_done = safepoints_done.pop();
773          // remove any extra entries we added to the safepoint
774          last = sfpt_done->req() - 1;
775          for (int k = 0;  k < nfields; k++) {
776            sfpt_done->del_req(last--);
777          }
778          JVMState *jvms = sfpt_done->jvms();
779          jvms->set_endoff(sfpt_done->req());
780          // Now make a pass over the debug information replacing any references
781          // to SafePointScalarObjectNode with the allocated object.
782          int start = jvms->debug_start();
783          int end   = jvms->debug_end();
784          for (int i = start; i < end; i++) {
785            if (sfpt_done->in(i)->is_SafePointScalarObject()) {
786              SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
787              if (scobj->first_index() == sfpt_done->req() &&
788                  scobj->n_fields() == (uint)nfields) {
789                assert(scobj->alloc() == alloc, "sanity");
790                sfpt_done->set_req(i, res);
791              }
792            }
793          }
794        }
795#ifndef PRODUCT
796        if (PrintEliminateAllocations) {
797          if (field != NULL) {
798            tty->print("=== At SafePoint node %d can't find value of Field: ",
799                       sfpt->_idx);
800            field->print();
801            int field_idx = C->get_alias_index(field_addr_type);
802            tty->print(" (alias_idx=%d)", field_idx);
803          } else { // Array's element
804            tty->print("=== At SafePoint node %d can't find value of array element [%d]",
805                       sfpt->_idx, j);
806          }
807          tty->print(", which prevents elimination of: ");
808          if (res == NULL)
809            alloc->dump();
810          else
811            res->dump();
812        }
813#endif
814        return false;
815      }
816      if (UseCompressedOops && field_type->isa_narrowoop()) {
817        // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
818        // to be able scalar replace the allocation.
819        if (field_val->is_EncodeP()) {
820          field_val = field_val->in(1);
821        } else {
822          field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
823        }
824      }
825      sfpt->add_req(field_val);
826    }
827    JVMState *jvms = sfpt->jvms();
828    jvms->set_endoff(sfpt->req());
829    // Now make a pass over the debug information replacing any references
830    // to the allocated object with "sobj"
831    int start = jvms->debug_start();
832    int end   = jvms->debug_end();
833    for (int i = start; i < end; i++) {
834      if (sfpt->in(i) == res) {
835        sfpt->set_req(i, sobj);
836      }
837    }
838    safepoints_done.append_if_missing(sfpt); // keep it for rollback
839  }
840  return true;
841}
842
843// Process users of eliminated allocation.
844void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
845  Node* res = alloc->result_cast();
846  if (res != NULL) {
847    for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
848      Node *use = res->last_out(j);
849      uint oc1 = res->outcnt();
850
851      if (use->is_AddP()) {
852        for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
853          Node *n = use->last_out(k);
854          uint oc2 = use->outcnt();
855          if (n->is_Store()) {
856#ifdef ASSERT
857            // Verify that there is no dependent MemBarVolatile nodes,
858            // they should be removed during IGVN, see MemBarNode::Ideal().
859            for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
860                                       p < pmax; p++) {
861              Node* mb = n->fast_out(p);
862              assert(mb->is_Initialize() || !mb->is_MemBar() ||
863                     mb->req() <= MemBarNode::Precedent ||
864                     mb->in(MemBarNode::Precedent) != n,
865                     "MemBarVolatile should be eliminated for non-escaping object");
866            }
867#endif
868            _igvn.replace_node(n, n->in(MemNode::Memory));
869          } else {
870            eliminate_card_mark(n);
871          }
872          k -= (oc2 - use->outcnt());
873        }
874      } else {
875        eliminate_card_mark(use);
876      }
877      j -= (oc1 - res->outcnt());
878    }
879    assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
880    _igvn.remove_dead_node(res);
881  }
882
883  //
884  // Process other users of allocation's projections
885  //
886  if (_resproj != NULL && _resproj->outcnt() != 0) {
887    for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
888      Node *use = _resproj->last_out(j);
889      uint oc1 = _resproj->outcnt();
890      if (use->is_Initialize()) {
891        // Eliminate Initialize node.
892        InitializeNode *init = use->as_Initialize();
893        assert(init->outcnt() <= 2, "only a control and memory projection expected");
894        Node *ctrl_proj = init->proj_out(TypeFunc::Control);
895        if (ctrl_proj != NULL) {
896           assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
897          _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
898        }
899        Node *mem_proj = init->proj_out(TypeFunc::Memory);
900        if (mem_proj != NULL) {
901          Node *mem = init->in(TypeFunc::Memory);
902#ifdef ASSERT
903          if (mem->is_MergeMem()) {
904            assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
905          } else {
906            assert(mem == _memproj_fallthrough, "allocation memory projection");
907          }
908#endif
909          _igvn.replace_node(mem_proj, mem);
910        }
911      } else if (use->is_AddP()) {
912        // raw memory addresses used only by the initialization
913        _igvn.replace_node(use, C->top());
914      } else  {
915        assert(false, "only Initialize or AddP expected");
916      }
917      j -= (oc1 - _resproj->outcnt());
918    }
919  }
920  if (_fallthroughcatchproj != NULL) {
921    _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
922  }
923  if (_memproj_fallthrough != NULL) {
924    _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
925  }
926  if (_memproj_catchall != NULL) {
927    _igvn.replace_node(_memproj_catchall, C->top());
928  }
929  if (_ioproj_fallthrough != NULL) {
930    _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
931  }
932  if (_ioproj_catchall != NULL) {
933    _igvn.replace_node(_ioproj_catchall, C->top());
934  }
935  if (_catchallcatchproj != NULL) {
936    _igvn.replace_node(_catchallcatchproj, C->top());
937  }
938}
939
940bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
941
942  if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
943    return false;
944  }
945
946  extract_call_projections(alloc);
947
948  GrowableArray <SafePointNode *> safepoints;
949  if (!can_eliminate_allocation(alloc, safepoints)) {
950    return false;
951  }
952
953  if (!scalar_replacement(alloc, safepoints)) {
954    return false;
955  }
956
957  CompileLog* log = C->log();
958  if (log != NULL) {
959    Node* klass = alloc->in(AllocateNode::KlassNode);
960    const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
961    log->head("eliminate_allocation type='%d'",
962              log->identify(tklass->klass()));
963    JVMState* p = alloc->jvms();
964    while (p != NULL) {
965      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
966      p = p->caller();
967    }
968    log->tail("eliminate_allocation");
969  }
970
971  process_users_of_allocation(alloc);
972
973#ifndef PRODUCT
974  if (PrintEliminateAllocations) {
975    if (alloc->is_AllocateArray())
976      tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
977    else
978      tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
979  }
980#endif
981
982  return true;
983}
984
985
986//---------------------------set_eden_pointers-------------------------
987void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
988  if (UseTLAB) {                // Private allocation: load from TLS
989    Node* thread = transform_later(new (C, 1) ThreadLocalNode());
990    int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
991    int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
992    eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
993    eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
994  } else {                      // Shared allocation: load from globals
995    CollectedHeap* ch = Universe::heap();
996    address top_adr = (address)ch->top_addr();
997    address end_adr = (address)ch->end_addr();
998    eden_top_adr = makecon(TypeRawPtr::make(top_adr));
999    eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1000  }
1001}
1002
1003
1004Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1005  Node* adr = basic_plus_adr(base, offset);
1006  const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1007  Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
1008  transform_later(value);
1009  return value;
1010}
1011
1012
1013Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1014  Node* adr = basic_plus_adr(base, offset);
1015  mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
1016  transform_later(mem);
1017  return mem;
1018}
1019
1020//=============================================================================
1021//
1022//                              A L L O C A T I O N
1023//
1024// Allocation attempts to be fast in the case of frequent small objects.
1025// It breaks down like this:
1026//
1027// 1) Size in doublewords is computed.  This is a constant for objects and
1028// variable for most arrays.  Doubleword units are used to avoid size
1029// overflow of huge doubleword arrays.  We need doublewords in the end for
1030// rounding.
1031//
1032// 2) Size is checked for being 'too large'.  Too-large allocations will go
1033// the slow path into the VM.  The slow path can throw any required
1034// exceptions, and does all the special checks for very large arrays.  The
1035// size test can constant-fold away for objects.  For objects with
1036// finalizers it constant-folds the otherway: you always go slow with
1037// finalizers.
1038//
1039// 3) If NOT using TLABs, this is the contended loop-back point.
1040// Load-Locked the heap top.  If using TLABs normal-load the heap top.
1041//
1042// 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1043// NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1044// "size*8" we always enter the VM, where "largish" is a constant picked small
1045// enough that there's always space between the eden max and 4Gig (old space is
1046// there so it's quite large) and large enough that the cost of entering the VM
1047// is dwarfed by the cost to initialize the space.
1048//
1049// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1050// down.  If contended, repeat at step 3.  If using TLABs normal-store
1051// adjusted heap top back down; there is no contention.
1052//
1053// 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1054// fields.
1055//
1056// 7) Merge with the slow-path; cast the raw memory pointer to the correct
1057// oop flavor.
1058//
1059//=============================================================================
1060// FastAllocateSizeLimit value is in DOUBLEWORDS.
1061// Allocations bigger than this always go the slow route.
1062// This value must be small enough that allocation attempts that need to
1063// trigger exceptions go the slow route.  Also, it must be small enough so
1064// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1065//=============================================================================j//
1066// %%% Here is an old comment from parseHelper.cpp; is it outdated?
1067// The allocator will coalesce int->oop copies away.  See comment in
1068// coalesce.cpp about how this works.  It depends critically on the exact
1069// code shape produced here, so if you are changing this code shape
1070// make sure the GC info for the heap-top is correct in and around the
1071// slow-path call.
1072//
1073
1074void PhaseMacroExpand::expand_allocate_common(
1075            AllocateNode* alloc, // allocation node to be expanded
1076            Node* length,  // array length for an array allocation
1077            const TypeFunc* slow_call_type, // Type of slow call
1078            address slow_call_address  // Address of slow call
1079    )
1080{
1081
1082  Node* ctrl = alloc->in(TypeFunc::Control);
1083  Node* mem  = alloc->in(TypeFunc::Memory);
1084  Node* i_o  = alloc->in(TypeFunc::I_O);
1085  Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1086  Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1087  Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1088
1089  assert(ctrl != NULL, "must have control");
1090  // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1091  // they will not be used if "always_slow" is set
1092  enum { slow_result_path = 1, fast_result_path = 2 };
1093  Node *result_region;
1094  Node *result_phi_rawmem;
1095  Node *result_phi_rawoop;
1096  Node *result_phi_i_o;
1097
1098  // The initial slow comparison is a size check, the comparison
1099  // we want to do is a BoolTest::gt
1100  bool always_slow = false;
1101  int tv = _igvn.find_int_con(initial_slow_test, -1);
1102  if (tv >= 0) {
1103    always_slow = (tv == 1);
1104    initial_slow_test = NULL;
1105  } else {
1106    initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1107  }
1108
1109  if (C->env()->dtrace_alloc_probes() ||
1110      !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
1111                   (UseConcMarkSweepGC && CMSIncrementalMode))) {
1112    // Force slow-path allocation
1113    always_slow = true;
1114    initial_slow_test = NULL;
1115  }
1116
1117
1118  enum { too_big_or_final_path = 1, need_gc_path = 2 };
1119  Node *slow_region = NULL;
1120  Node *toobig_false = ctrl;
1121
1122  assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1123  // generate the initial test if necessary
1124  if (initial_slow_test != NULL ) {
1125    slow_region = new (C, 3) RegionNode(3);
1126
1127    // Now make the initial failure test.  Usually a too-big test but
1128    // might be a TRUE for finalizers or a fancy class check for
1129    // newInstance0.
1130    IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1131    transform_later(toobig_iff);
1132    // Plug the failing-too-big test into the slow-path region
1133    Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1134    transform_later(toobig_true);
1135    slow_region    ->init_req( too_big_or_final_path, toobig_true );
1136    toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1137    transform_later(toobig_false);
1138  } else {         // No initial test, just fall into next case
1139    toobig_false = ctrl;
1140    debug_only(slow_region = NodeSentinel);
1141  }
1142
1143  Node *slow_mem = mem;  // save the current memory state for slow path
1144  // generate the fast allocation code unless we know that the initial test will always go slow
1145  if (!always_slow) {
1146    // Fast path modifies only raw memory.
1147    if (mem->is_MergeMem()) {
1148      mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1149    }
1150
1151    Node* eden_top_adr;
1152    Node* eden_end_adr;
1153
1154    set_eden_pointers(eden_top_adr, eden_end_adr);
1155
1156    // Load Eden::end.  Loop invariant and hoisted.
1157    //
1158    // Note: We set the control input on "eden_end" and "old_eden_top" when using
1159    //       a TLAB to work around a bug where these values were being moved across
1160    //       a safepoint.  These are not oops, so they cannot be include in the oop
1161    //       map, but the can be changed by a GC.   The proper way to fix this would
1162    //       be to set the raw memory state when generating a  SafepointNode.  However
1163    //       this will require extensive changes to the loop optimization in order to
1164    //       prevent a degradation of the optimization.
1165    //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1166    Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1167
1168    // allocate the Region and Phi nodes for the result
1169    result_region = new (C, 3) RegionNode(3);
1170    result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
1171    result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
1172    result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
1173
1174    // We need a Region for the loop-back contended case.
1175    enum { fall_in_path = 1, contended_loopback_path = 2 };
1176    Node *contended_region;
1177    Node *contended_phi_rawmem;
1178    if( UseTLAB ) {
1179      contended_region = toobig_false;
1180      contended_phi_rawmem = mem;
1181    } else {
1182      contended_region = new (C, 3) RegionNode(3);
1183      contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1184      // Now handle the passing-too-big test.  We fall into the contended
1185      // loop-back merge point.
1186      contended_region    ->init_req( fall_in_path, toobig_false );
1187      contended_phi_rawmem->init_req( fall_in_path, mem );
1188      transform_later(contended_region);
1189      transform_later(contended_phi_rawmem);
1190    }
1191
1192    // Load(-locked) the heap top.
1193    // See note above concerning the control input when using a TLAB
1194    Node *old_eden_top = UseTLAB
1195      ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
1196      : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
1197
1198    transform_later(old_eden_top);
1199    // Add to heap top to get a new heap top
1200    Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
1201    transform_later(new_eden_top);
1202    // Check for needing a GC; compare against heap end
1203    Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
1204    transform_later(needgc_cmp);
1205    Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
1206    transform_later(needgc_bol);
1207    IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1208    transform_later(needgc_iff);
1209
1210    // Plug the failing-heap-space-need-gc test into the slow-path region
1211    Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
1212    transform_later(needgc_true);
1213    if( initial_slow_test ) {
1214      slow_region    ->init_req( need_gc_path, needgc_true );
1215      // This completes all paths into the slow merge point
1216      transform_later(slow_region);
1217    } else {                      // No initial slow path needed!
1218      // Just fall from the need-GC path straight into the VM call.
1219      slow_region    = needgc_true;
1220    }
1221    // No need for a GC.  Setup for the Store-Conditional
1222    Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
1223    transform_later(needgc_false);
1224
1225    // Grab regular I/O before optional prefetch may change it.
1226    // Slow-path does no I/O so just set it to the original I/O.
1227    result_phi_i_o->init_req( slow_result_path, i_o );
1228
1229    i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1230                              old_eden_top, new_eden_top, length);
1231
1232    // Store (-conditional) the modified eden top back down.
1233    // StorePConditional produces flags for a test PLUS a modified raw
1234    // memory state.
1235    Node *store_eden_top;
1236    Node *fast_oop_ctrl;
1237    if( UseTLAB ) {
1238      store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
1239      transform_later(store_eden_top);
1240      fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1241    } else {
1242      store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
1243      transform_later(store_eden_top);
1244      Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
1245      transform_later(contention_check);
1246      store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
1247      transform_later(store_eden_top);
1248
1249      // If not using TLABs, check to see if there was contention.
1250      IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
1251      transform_later(contention_iff);
1252      Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
1253      transform_later(contention_true);
1254      // If contention, loopback and try again.
1255      contended_region->init_req( contended_loopback_path, contention_true );
1256      contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
1257
1258      // Fast-path succeeded with no contention!
1259      Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
1260      transform_later(contention_false);
1261      fast_oop_ctrl = contention_false;
1262    }
1263
1264    // Rename successful fast-path variables to make meaning more obvious
1265    Node* fast_oop        = old_eden_top;
1266    Node* fast_oop_rawmem = store_eden_top;
1267    fast_oop_rawmem = initialize_object(alloc,
1268                                        fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1269                                        klass_node, length, size_in_bytes);
1270
1271    if (C->env()->dtrace_extended_probes()) {
1272      // Slow-path call
1273      int size = TypeFunc::Parms + 2;
1274      CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1275                                                      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1276                                                      "dtrace_object_alloc",
1277                                                      TypeRawPtr::BOTTOM);
1278
1279      // Get base of thread-local storage area
1280      Node* thread = new (C, 1) ThreadLocalNode();
1281      transform_later(thread);
1282
1283      call->init_req(TypeFunc::Parms+0, thread);
1284      call->init_req(TypeFunc::Parms+1, fast_oop);
1285      call->init_req( TypeFunc::Control, fast_oop_ctrl );
1286      call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
1287      call->init_req( TypeFunc::Memory , fast_oop_rawmem );
1288      call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1289      call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1290      transform_later(call);
1291      fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
1292      transform_later(fast_oop_ctrl);
1293      fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
1294      transform_later(fast_oop_rawmem);
1295    }
1296
1297    // Plug in the successful fast-path into the result merge point
1298    result_region    ->init_req( fast_result_path, fast_oop_ctrl );
1299    result_phi_rawoop->init_req( fast_result_path, fast_oop );
1300    result_phi_i_o   ->init_req( fast_result_path, i_o );
1301    result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
1302  } else {
1303    slow_region = ctrl;
1304  }
1305
1306  // Generate slow-path call
1307  CallNode *call = new (C, slow_call_type->domain()->cnt())
1308    CallStaticJavaNode(slow_call_type, slow_call_address,
1309                       OptoRuntime::stub_name(slow_call_address),
1310                       alloc->jvms()->bci(),
1311                       TypePtr::BOTTOM);
1312  call->init_req( TypeFunc::Control, slow_region );
1313  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1314  call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1315  call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1316  call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1317
1318  call->init_req(TypeFunc::Parms+0, klass_node);
1319  if (length != NULL) {
1320    call->init_req(TypeFunc::Parms+1, length);
1321  }
1322
1323  // Copy debug information and adjust JVMState information, then replace
1324  // allocate node with the call
1325  copy_call_debug_info((CallNode *) alloc,  call);
1326  if (!always_slow) {
1327    call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1328  }
1329  _igvn.replace_node(alloc, call);
1330  transform_later(call);
1331
1332  // Identify the output projections from the allocate node and
1333  // adjust any references to them.
1334  // The control and io projections look like:
1335  //
1336  //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1337  //  Allocate                   Catch
1338  //        ^---Proj(io) <-------+   ^---CatchProj(io)
1339  //
1340  //  We are interested in the CatchProj nodes.
1341  //
1342  extract_call_projections(call);
1343
1344  // An allocate node has separate memory projections for the uses on the control and i_o paths
1345  // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
1346  if (!always_slow && _memproj_fallthrough != NULL) {
1347    for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1348      Node *use = _memproj_fallthrough->fast_out(i);
1349      _igvn.hash_delete(use);
1350      imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1351      _igvn._worklist.push(use);
1352      // back up iterator
1353      --i;
1354    }
1355  }
1356  // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
1357  // we end up with a call that has only 1 memory projection
1358  if (_memproj_catchall != NULL ) {
1359    if (_memproj_fallthrough == NULL) {
1360      _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
1361      transform_later(_memproj_fallthrough);
1362    }
1363    for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1364      Node *use = _memproj_catchall->fast_out(i);
1365      _igvn.hash_delete(use);
1366      imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1367      _igvn._worklist.push(use);
1368      // back up iterator
1369      --i;
1370    }
1371  }
1372
1373  // An allocate node has separate i_o projections for the uses on the control and i_o paths
1374  // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
1375  if (_ioproj_fallthrough == NULL) {
1376    _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
1377    transform_later(_ioproj_fallthrough);
1378  } else if (!always_slow) {
1379    for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1380      Node *use = _ioproj_fallthrough->fast_out(i);
1381
1382      _igvn.hash_delete(use);
1383      imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1384      _igvn._worklist.push(use);
1385      // back up iterator
1386      --i;
1387    }
1388  }
1389  // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
1390  // we end up with a call that has only 1 control projection
1391  if (_ioproj_catchall != NULL ) {
1392    for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1393      Node *use = _ioproj_catchall->fast_out(i);
1394      _igvn.hash_delete(use);
1395      imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1396      _igvn._worklist.push(use);
1397      // back up iterator
1398      --i;
1399    }
1400  }
1401
1402  // if we generated only a slow call, we are done
1403  if (always_slow)
1404    return;
1405
1406
1407  if (_fallthroughcatchproj != NULL) {
1408    ctrl = _fallthroughcatchproj->clone();
1409    transform_later(ctrl);
1410    _igvn.replace_node(_fallthroughcatchproj, result_region);
1411  } else {
1412    ctrl = top();
1413  }
1414  Node *slow_result;
1415  if (_resproj == NULL) {
1416    // no uses of the allocation result
1417    slow_result = top();
1418  } else {
1419    slow_result = _resproj->clone();
1420    transform_later(slow_result);
1421    _igvn.replace_node(_resproj, result_phi_rawoop);
1422  }
1423
1424  // Plug slow-path into result merge point
1425  result_region    ->init_req( slow_result_path, ctrl );
1426  result_phi_rawoop->init_req( slow_result_path, slow_result);
1427  result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1428  transform_later(result_region);
1429  transform_later(result_phi_rawoop);
1430  transform_later(result_phi_rawmem);
1431  transform_later(result_phi_i_o);
1432  // This completes all paths into the result merge point
1433}
1434
1435
1436// Helper for PhaseMacroExpand::expand_allocate_common.
1437// Initializes the newly-allocated storage.
1438Node*
1439PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1440                                    Node* control, Node* rawmem, Node* object,
1441                                    Node* klass_node, Node* length,
1442                                    Node* size_in_bytes) {
1443  InitializeNode* init = alloc->initialization();
1444  // Store the klass & mark bits
1445  Node* mark_node = NULL;
1446  // For now only enable fast locking for non-array types
1447  if (UseBiasedLocking && (length == NULL)) {
1448    mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
1449  } else {
1450    mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1451  }
1452  rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1453
1454  rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
1455  int header_size = alloc->minimum_header_size();  // conservatively small
1456
1457  // Array length
1458  if (length != NULL) {         // Arrays need length field
1459    rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1460    // conservatively small header size:
1461    header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1462    ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1463    if (k->is_array_klass())    // we know the exact header size in most cases:
1464      header_size = Klass::layout_helper_header_size(k->layout_helper());
1465  }
1466
1467  // Clear the object body, if necessary.
1468  if (init == NULL) {
1469    // The init has somehow disappeared; be cautious and clear everything.
1470    //
1471    // This can happen if a node is allocated but an uncommon trap occurs
1472    // immediately.  In this case, the Initialize gets associated with the
1473    // trap, and may be placed in a different (outer) loop, if the Allocate
1474    // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1475    // there can be two Allocates to one Initialize.  The answer in all these
1476    // edge cases is safety first.  It is always safe to clear immediately
1477    // within an Allocate, and then (maybe or maybe not) clear some more later.
1478    if (!ZeroTLAB)
1479      rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1480                                            header_size, size_in_bytes,
1481                                            &_igvn);
1482  } else {
1483    if (!init->is_complete()) {
1484      // Try to win by zeroing only what the init does not store.
1485      // We can also try to do some peephole optimizations,
1486      // such as combining some adjacent subword stores.
1487      rawmem = init->complete_stores(control, rawmem, object,
1488                                     header_size, size_in_bytes, &_igvn);
1489    }
1490    // We have no more use for this link, since the AllocateNode goes away:
1491    init->set_req(InitializeNode::RawAddress, top());
1492    // (If we keep the link, it just confuses the register allocator,
1493    // who thinks he sees a real use of the address by the membar.)
1494  }
1495
1496  return rawmem;
1497}
1498
1499// Generate prefetch instructions for next allocations.
1500Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1501                                        Node*& contended_phi_rawmem,
1502                                        Node* old_eden_top, Node* new_eden_top,
1503                                        Node* length) {
1504   enum { fall_in_path = 1, pf_path = 2 };
1505   if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1506      // Generate prefetch allocation with watermark check.
1507      // As an allocation hits the watermark, we will prefetch starting
1508      // at a "distance" away from watermark.
1509
1510      Node *pf_region = new (C, 3) RegionNode(3);
1511      Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1512                                                TypeRawPtr::BOTTOM );
1513      // I/O is used for Prefetch
1514      Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
1515
1516      Node *thread = new (C, 1) ThreadLocalNode();
1517      transform_later(thread);
1518
1519      Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
1520                   _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1521      transform_later(eden_pf_adr);
1522
1523      Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
1524                                   contended_phi_rawmem, eden_pf_adr,
1525                                   TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1526      transform_later(old_pf_wm);
1527
1528      // check against new_eden_top
1529      Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
1530      transform_later(need_pf_cmp);
1531      Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
1532      transform_later(need_pf_bol);
1533      IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
1534                                       PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1535      transform_later(need_pf_iff);
1536
1537      // true node, add prefetchdistance
1538      Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
1539      transform_later(need_pf_true);
1540
1541      Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
1542      transform_later(need_pf_false);
1543
1544      Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
1545                                    _igvn.MakeConX(AllocatePrefetchDistance) );
1546      transform_later(new_pf_wmt );
1547      new_pf_wmt->set_req(0, need_pf_true);
1548
1549      Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
1550                                       contended_phi_rawmem, eden_pf_adr,
1551                                       TypeRawPtr::BOTTOM, new_pf_wmt );
1552      transform_later(store_new_wmt);
1553
1554      // adding prefetches
1555      pf_phi_abio->init_req( fall_in_path, i_o );
1556
1557      Node *prefetch_adr;
1558      Node *prefetch;
1559      uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1560      uint step_size = AllocatePrefetchStepSize;
1561      uint distance = 0;
1562
1563      for ( uint i = 0; i < lines; i++ ) {
1564        prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
1565                                            _igvn.MakeConX(distance) );
1566        transform_later(prefetch_adr);
1567        prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1568        transform_later(prefetch);
1569        distance += step_size;
1570        i_o = prefetch;
1571      }
1572      pf_phi_abio->set_req( pf_path, i_o );
1573
1574      pf_region->init_req( fall_in_path, need_pf_false );
1575      pf_region->init_req( pf_path, need_pf_true );
1576
1577      pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1578      pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1579
1580      transform_later(pf_region);
1581      transform_later(pf_phi_rawmem);
1582      transform_later(pf_phi_abio);
1583
1584      needgc_false = pf_region;
1585      contended_phi_rawmem = pf_phi_rawmem;
1586      i_o = pf_phi_abio;
1587   } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1588      // Insert a prefetch for each allocation only on the fast-path
1589      Node *pf_region = new (C, 3) RegionNode(3);
1590      Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1591                                                TypeRawPtr::BOTTOM );
1592
1593      // Generate several prefetch instructions only for arrays.
1594      uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1595      uint step_size = AllocatePrefetchStepSize;
1596      uint distance = AllocatePrefetchDistance;
1597
1598      // Next cache address.
1599      Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
1600                                            _igvn.MakeConX(distance));
1601      transform_later(cache_adr);
1602      cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
1603      transform_later(cache_adr);
1604      Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1605      cache_adr = new (C, 3) AndXNode(cache_adr, mask);
1606      transform_later(cache_adr);
1607      cache_adr = new (C, 2) CastX2PNode(cache_adr);
1608      transform_later(cache_adr);
1609
1610      // Prefetch
1611      Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
1612      prefetch->set_req(0, needgc_false);
1613      transform_later(prefetch);
1614      contended_phi_rawmem = prefetch;
1615      Node *prefetch_adr;
1616      distance = step_size;
1617      for ( uint i = 1; i < lines; i++ ) {
1618        prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
1619                                            _igvn.MakeConX(distance) );
1620        transform_later(prefetch_adr);
1621        prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
1622        transform_later(prefetch);
1623        distance += step_size;
1624        contended_phi_rawmem = prefetch;
1625      }
1626   } else if( AllocatePrefetchStyle > 0 ) {
1627      // Insert a prefetch for each allocation only on the fast-path
1628      Node *prefetch_adr;
1629      Node *prefetch;
1630      // Generate several prefetch instructions only for arrays.
1631      uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1632      uint step_size = AllocatePrefetchStepSize;
1633      uint distance = AllocatePrefetchDistance;
1634      for ( uint i = 0; i < lines; i++ ) {
1635        prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
1636                                            _igvn.MakeConX(distance) );
1637        transform_later(prefetch_adr);
1638        prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1639        // Do not let it float too high, since if eden_top == eden_end,
1640        // both might be null.
1641        if( i == 0 ) { // Set control for first prefetch, next follows it
1642          prefetch->init_req(0, needgc_false);
1643        }
1644        transform_later(prefetch);
1645        distance += step_size;
1646        i_o = prefetch;
1647      }
1648   }
1649   return i_o;
1650}
1651
1652
1653void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1654  expand_allocate_common(alloc, NULL,
1655                         OptoRuntime::new_instance_Type(),
1656                         OptoRuntime::new_instance_Java());
1657}
1658
1659void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1660  Node* length = alloc->in(AllocateNode::ALength);
1661  expand_allocate_common(alloc, length,
1662                         OptoRuntime::new_array_Type(),
1663                         OptoRuntime::new_array_Java());
1664}
1665
1666
1667// we have determined that this lock/unlock can be eliminated, we simply
1668// eliminate the node without expanding it.
1669//
1670// Note:  The membar's associated with the lock/unlock are currently not
1671//        eliminated.  This should be investigated as a future enhancement.
1672//
1673bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1674
1675  if (!alock->is_eliminated()) {
1676    return false;
1677  }
1678  if (alock->is_Lock() && !alock->is_coarsened()) {
1679      // Create new "eliminated" BoxLock node and use it
1680      // in monitor debug info for the same object.
1681      BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1682      Node* obj = alock->obj_node();
1683      if (!oldbox->is_eliminated()) {
1684        BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1685        newbox->set_eliminated();
1686        transform_later(newbox);
1687        // Replace old box node with new box for all users
1688        // of the same object.
1689        for (uint i = 0; i < oldbox->outcnt();) {
1690
1691          bool next_edge = true;
1692          Node* u = oldbox->raw_out(i);
1693          if (u == alock) {
1694            i++;
1695            continue; // It will be removed below
1696          }
1697          if (u->is_Lock() &&
1698              u->as_Lock()->obj_node() == obj &&
1699              // oldbox could be referenced in debug info also
1700              u->as_Lock()->box_node() == oldbox) {
1701            assert(u->as_Lock()->is_eliminated(), "sanity");
1702            _igvn.hash_delete(u);
1703            u->set_req(TypeFunc::Parms + 1, newbox);
1704            next_edge = false;
1705#ifdef ASSERT
1706          } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
1707            assert(u->as_Unlock()->is_eliminated(), "sanity");
1708#endif
1709          }
1710          // Replace old box in monitor debug info.
1711          if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1712            SafePointNode* sfn = u->as_SafePoint();
1713            JVMState* youngest_jvms = sfn->jvms();
1714            int max_depth = youngest_jvms->depth();
1715            for (int depth = 1; depth <= max_depth; depth++) {
1716              JVMState* jvms = youngest_jvms->of_depth(depth);
1717              int num_mon  = jvms->nof_monitors();
1718              // Loop over monitors
1719              for (int idx = 0; idx < num_mon; idx++) {
1720                Node* obj_node = sfn->monitor_obj(jvms, idx);
1721                Node* box_node = sfn->monitor_box(jvms, idx);
1722                if (box_node == oldbox && obj_node == obj) {
1723                  int j = jvms->monitor_box_offset(idx);
1724                  _igvn.hash_delete(u);
1725                  u->set_req(j, newbox);
1726                  next_edge = false;
1727                }
1728              } // for (int idx = 0;
1729            } // for (int depth = 1;
1730          } // if (u->is_SafePoint()
1731          if (next_edge) i++;
1732        } // for (uint i = 0; i < oldbox->outcnt();)
1733      } // if (!oldbox->is_eliminated())
1734  } // if (alock->is_Lock() && !lock->is_coarsened())
1735
1736  CompileLog* log = C->log();
1737  if (log != NULL) {
1738    log->head("eliminate_lock lock='%d'",
1739              alock->is_Lock());
1740    JVMState* p = alock->jvms();
1741    while (p != NULL) {
1742      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1743      p = p->caller();
1744    }
1745    log->tail("eliminate_lock");
1746  }
1747
1748  #ifndef PRODUCT
1749  if (PrintEliminateLocks) {
1750    if (alock->is_Lock()) {
1751      tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
1752    } else {
1753      tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
1754    }
1755  }
1756  #endif
1757
1758  Node* mem  = alock->in(TypeFunc::Memory);
1759  Node* ctrl = alock->in(TypeFunc::Control);
1760
1761  extract_call_projections(alock);
1762  // There are 2 projections from the lock.  The lock node will
1763  // be deleted when its last use is subsumed below.
1764  assert(alock->outcnt() == 2 &&
1765         _fallthroughproj != NULL &&
1766         _memproj_fallthrough != NULL,
1767         "Unexpected projections from Lock/Unlock");
1768
1769  Node* fallthroughproj = _fallthroughproj;
1770  Node* memproj_fallthrough = _memproj_fallthrough;
1771
1772  // The memory projection from a lock/unlock is RawMem
1773  // The input to a Lock is merged memory, so extract its RawMem input
1774  // (unless the MergeMem has been optimized away.)
1775  if (alock->is_Lock()) {
1776    // Seach for MemBarAcquire node and delete it also.
1777    MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
1778    assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
1779    Node* ctrlproj = membar->proj_out(TypeFunc::Control);
1780    Node* memproj = membar->proj_out(TypeFunc::Memory);
1781    _igvn.replace_node(ctrlproj, fallthroughproj);
1782    _igvn.replace_node(memproj, memproj_fallthrough);
1783
1784    // Delete FastLock node also if this Lock node is unique user
1785    // (a loop peeling may clone a Lock node).
1786    Node* flock = alock->as_Lock()->fastlock_node();
1787    if (flock->outcnt() == 1) {
1788      assert(flock->unique_out() == alock, "sanity");
1789      _igvn.replace_node(flock, top());
1790    }
1791  }
1792
1793  // Seach for MemBarRelease node and delete it also.
1794  if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
1795      ctrl->in(0)->is_MemBar()) {
1796    MemBarNode* membar = ctrl->in(0)->as_MemBar();
1797    assert(membar->Opcode() == Op_MemBarRelease &&
1798           mem->is_Proj() && membar == mem->in(0), "");
1799    _igvn.replace_node(fallthroughproj, ctrl);
1800    _igvn.replace_node(memproj_fallthrough, mem);
1801    fallthroughproj = ctrl;
1802    memproj_fallthrough = mem;
1803    ctrl = membar->in(TypeFunc::Control);
1804    mem  = membar->in(TypeFunc::Memory);
1805  }
1806
1807  _igvn.replace_node(fallthroughproj, ctrl);
1808  _igvn.replace_node(memproj_fallthrough, mem);
1809  return true;
1810}
1811
1812
1813//------------------------------expand_lock_node----------------------
1814void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
1815
1816  Node* ctrl = lock->in(TypeFunc::Control);
1817  Node* mem = lock->in(TypeFunc::Memory);
1818  Node* obj = lock->obj_node();
1819  Node* box = lock->box_node();
1820  Node* flock = lock->fastlock_node();
1821
1822  // Make the merge point
1823  Node *region;
1824  Node *mem_phi;
1825  Node *slow_path;
1826
1827  if (UseOptoBiasInlining) {
1828    /*
1829     *  See the full description in MacroAssembler::biased_locking_enter().
1830     *
1831     *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
1832     *    // The object is biased.
1833     *    proto_node = klass->prototype_header;
1834     *    o_node = thread | proto_node;
1835     *    x_node = o_node ^ mark_word;
1836     *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
1837     *      // Done.
1838     *    } else {
1839     *      if( (x_node & biased_lock_mask) != 0 ) {
1840     *        // The klass's prototype header is no longer biased.
1841     *        cas(&mark_word, mark_word, proto_node)
1842     *        goto cas_lock;
1843     *      } else {
1844     *        // The klass's prototype header is still biased.
1845     *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
1846     *          old = mark_word;
1847     *          new = o_node;
1848     *        } else {
1849     *          // Different thread or anonymous biased.
1850     *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
1851     *          new = thread | old;
1852     *        }
1853     *        // Try to rebias.
1854     *        if( cas(&mark_word, old, new) == 0 ) {
1855     *          // Done.
1856     *        } else {
1857     *          goto slow_path; // Failed.
1858     *        }
1859     *      }
1860     *    }
1861     *  } else {
1862     *    // The object is not biased.
1863     *    cas_lock:
1864     *    if( FastLock(obj) == 0 ) {
1865     *      // Done.
1866     *    } else {
1867     *      slow_path:
1868     *      OptoRuntime::complete_monitor_locking_Java(obj);
1869     *    }
1870     *  }
1871     */
1872
1873    region  = new (C, 5) RegionNode(5);
1874    // create a Phi for the memory state
1875    mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1876
1877    Node* fast_lock_region  = new (C, 3) RegionNode(3);
1878    Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1879
1880    // First, check mark word for the biased lock pattern.
1881    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1882
1883    // Get fast path - mark word has the biased lock pattern.
1884    ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
1885                         markOopDesc::biased_lock_mask_in_place,
1886                         markOopDesc::biased_lock_pattern, true);
1887    // fast_lock_region->in(1) is set to slow path.
1888    fast_lock_mem_phi->init_req(1, mem);
1889
1890    // Now check that the lock is biased to the current thread and has
1891    // the same epoch and bias as Klass::_prototype_header.
1892
1893    // Special-case a fresh allocation to avoid building nodes:
1894    Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
1895    if (klass_node == NULL) {
1896      Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1897      klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
1898#ifdef _LP64
1899      if (UseCompressedOops && klass_node->is_DecodeN()) {
1900        assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
1901        klass_node->in(1)->init_req(0, ctrl);
1902      } else
1903#endif
1904      klass_node->init_req(0, ctrl);
1905    }
1906    Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
1907
1908    Node* thread = transform_later(new (C, 1) ThreadLocalNode());
1909    Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1910    Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
1911    Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
1912
1913    // Get slow path - mark word does NOT match the value.
1914    Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
1915                                      (~markOopDesc::age_mask_in_place), 0);
1916    // region->in(3) is set to fast path - the object is biased to the current thread.
1917    mem_phi->init_req(3, mem);
1918
1919
1920    // Mark word does NOT match the value (thread | Klass::_prototype_header).
1921
1922
1923    // First, check biased pattern.
1924    // Get fast path - _prototype_header has the same biased lock pattern.
1925    ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
1926                          markOopDesc::biased_lock_mask_in_place, 0, true);
1927
1928    not_biased_ctrl = fast_lock_region->in(2); // Slow path
1929    // fast_lock_region->in(2) - the prototype header is no longer biased
1930    // and we have to revoke the bias on this object.
1931    // We are going to try to reset the mark of this object to the prototype
1932    // value and fall through to the CAS-based locking scheme.
1933    Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
1934    Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
1935                                                 proto_node, mark_node);
1936    transform_later(cas);
1937    Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
1938    fast_lock_mem_phi->init_req(2, proj);
1939
1940
1941    // Second, check epoch bits.
1942    Node* rebiased_region  = new (C, 3) RegionNode(3);
1943    Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1944    Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1945
1946    // Get slow path - mark word does NOT match epoch bits.
1947    Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
1948                                      markOopDesc::epoch_mask_in_place, 0);
1949    // The epoch of the current bias is not valid, attempt to rebias the object
1950    // toward the current thread.
1951    rebiased_region->init_req(2, epoch_ctrl);
1952    old_phi->init_req(2, mark_node);
1953    new_phi->init_req(2, o_node);
1954
1955    // rebiased_region->in(1) is set to fast path.
1956    // The epoch of the current bias is still valid but we know
1957    // nothing about the owner; it might be set or it might be clear.
1958    Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
1959                             markOopDesc::age_mask_in_place |
1960                             markOopDesc::epoch_mask_in_place);
1961    Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
1962    cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1963    Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
1964    old_phi->init_req(1, old);
1965    new_phi->init_req(1, new_mark);
1966
1967    transform_later(rebiased_region);
1968    transform_later(old_phi);
1969    transform_later(new_phi);
1970
1971    // Try to acquire the bias of the object using an atomic operation.
1972    // If this fails we will go in to the runtime to revoke the object's bias.
1973    cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
1974                                           new_phi, old_phi);
1975    transform_later(cas);
1976    proj = transform_later( new (C, 1) SCMemProjNode(cas));
1977
1978    // Get slow path - Failed to CAS.
1979    not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
1980    mem_phi->init_req(4, proj);
1981    // region->in(4) is set to fast path - the object is rebiased to the current thread.
1982
1983    // Failed to CAS.
1984    slow_path  = new (C, 3) RegionNode(3);
1985    Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
1986
1987    slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
1988    slow_mem->init_req(1, proj);
1989
1990    // Call CAS-based locking scheme (FastLock node).
1991
1992    transform_later(fast_lock_region);
1993    transform_later(fast_lock_mem_phi);
1994
1995    // Get slow path - FastLock failed to lock the object.
1996    ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
1997    mem_phi->init_req(2, fast_lock_mem_phi);
1998    // region->in(2) is set to fast path - the object is locked to the current thread.
1999
2000    slow_path->init_req(2, ctrl); // Capture slow-control
2001    slow_mem->init_req(2, fast_lock_mem_phi);
2002
2003    transform_later(slow_path);
2004    transform_later(slow_mem);
2005    // Reset lock's memory edge.
2006    lock->set_req(TypeFunc::Memory, slow_mem);
2007
2008  } else {
2009    region  = new (C, 3) RegionNode(3);
2010    // create a Phi for the memory state
2011    mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2012
2013    // Optimize test; set region slot 2
2014    slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2015    mem_phi->init_req(2, mem);
2016  }
2017
2018  // Make slow path call
2019  CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
2020
2021  extract_call_projections(call);
2022
2023  // Slow path can only throw asynchronous exceptions, which are always
2024  // de-opted.  So the compiler thinks the slow-call can never throw an
2025  // exception.  If it DOES throw an exception we would need the debug
2026  // info removed first (since if it throws there is no monitor).
2027  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2028           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2029
2030  // Capture slow path
2031  // disconnect fall-through projection from call and create a new one
2032  // hook up users of fall-through projection to region
2033  Node *slow_ctrl = _fallthroughproj->clone();
2034  transform_later(slow_ctrl);
2035  _igvn.hash_delete(_fallthroughproj);
2036  _fallthroughproj->disconnect_inputs(NULL);
2037  region->init_req(1, slow_ctrl);
2038  // region inputs are now complete
2039  transform_later(region);
2040  _igvn.replace_node(_fallthroughproj, region);
2041
2042  Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2043  mem_phi->init_req(1, memproj );
2044  transform_later(mem_phi);
2045  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2046}
2047
2048//------------------------------expand_unlock_node----------------------
2049void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2050
2051  Node* ctrl = unlock->in(TypeFunc::Control);
2052  Node* mem = unlock->in(TypeFunc::Memory);
2053  Node* obj = unlock->obj_node();
2054  Node* box = unlock->box_node();
2055
2056  // No need for a null check on unlock
2057
2058  // Make the merge point
2059  Node *region;
2060  Node *mem_phi;
2061
2062  if (UseOptoBiasInlining) {
2063    // Check for biased locking unlock case, which is a no-op.
2064    // See the full description in MacroAssembler::biased_locking_exit().
2065    region  = new (C, 4) RegionNode(4);
2066    // create a Phi for the memory state
2067    mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2068    mem_phi->init_req(3, mem);
2069
2070    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2071    ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2072                         markOopDesc::biased_lock_mask_in_place,
2073                         markOopDesc::biased_lock_pattern);
2074  } else {
2075    region  = new (C, 3) RegionNode(3);
2076    // create a Phi for the memory state
2077    mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2078  }
2079
2080  FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
2081  funlock = transform_later( funlock )->as_FastUnlock();
2082  // Optimize test; set region slot 2
2083  Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2084
2085  CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
2086
2087  extract_call_projections(call);
2088
2089  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2090           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2091
2092  // No exceptions for unlocking
2093  // Capture slow path
2094  // disconnect fall-through projection from call and create a new one
2095  // hook up users of fall-through projection to region
2096  Node *slow_ctrl = _fallthroughproj->clone();
2097  transform_later(slow_ctrl);
2098  _igvn.hash_delete(_fallthroughproj);
2099  _fallthroughproj->disconnect_inputs(NULL);
2100  region->init_req(1, slow_ctrl);
2101  // region inputs are now complete
2102  transform_later(region);
2103  _igvn.replace_node(_fallthroughproj, region);
2104
2105  Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2106  mem_phi->init_req(1, memproj );
2107  mem_phi->init_req(2, mem);
2108  transform_later(mem_phi);
2109  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2110}
2111
2112//------------------------------expand_macro_nodes----------------------
2113//  Returns true if a failure occurred.
2114bool PhaseMacroExpand::expand_macro_nodes() {
2115  if (C->macro_count() == 0)
2116    return false;
2117  // First, attempt to eliminate locks
2118  bool progress = true;
2119  while (progress) {
2120    progress = false;
2121    for (int i = C->macro_count(); i > 0; i--) {
2122      Node * n = C->macro_node(i-1);
2123      bool success = false;
2124      debug_only(int old_macro_count = C->macro_count(););
2125      if (n->is_AbstractLock()) {
2126        success = eliminate_locking_node(n->as_AbstractLock());
2127      } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2128        _igvn.replace_node(n, n->in(1));
2129        success = true;
2130      }
2131      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2132      progress = progress || success;
2133    }
2134  }
2135  // Next, attempt to eliminate allocations
2136  progress = true;
2137  while (progress) {
2138    progress = false;
2139    for (int i = C->macro_count(); i > 0; i--) {
2140      Node * n = C->macro_node(i-1);
2141      bool success = false;
2142      debug_only(int old_macro_count = C->macro_count(););
2143      switch (n->class_id()) {
2144      case Node::Class_Allocate:
2145      case Node::Class_AllocateArray:
2146        success = eliminate_allocate_node(n->as_Allocate());
2147        break;
2148      case Node::Class_Lock:
2149      case Node::Class_Unlock:
2150        assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2151        break;
2152      default:
2153        assert(false, "unknown node type in macro list");
2154      }
2155      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2156      progress = progress || success;
2157    }
2158  }
2159  // Make sure expansion will not cause node limit to be exceeded.
2160  // Worst case is a macro node gets expanded into about 50 nodes.
2161  // Allow 50% more for optimization.
2162  if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2163    return true;
2164
2165  // expand "macro" nodes
2166  // nodes are removed from the macro list as they are processed
2167  while (C->macro_count() > 0) {
2168    int macro_count = C->macro_count();
2169    Node * n = C->macro_node(macro_count-1);
2170    assert(n->is_macro(), "only macro nodes expected here");
2171    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2172      // node is unreachable, so don't try to expand it
2173      C->remove_macro_node(n);
2174      continue;
2175    }
2176    switch (n->class_id()) {
2177    case Node::Class_Allocate:
2178      expand_allocate(n->as_Allocate());
2179      break;
2180    case Node::Class_AllocateArray:
2181      expand_allocate_array(n->as_AllocateArray());
2182      break;
2183    case Node::Class_Lock:
2184      expand_lock_node(n->as_Lock());
2185      break;
2186    case Node::Class_Unlock:
2187      expand_unlock_node(n->as_Unlock());
2188      break;
2189    default:
2190      assert(false, "unknown node type in macro list");
2191    }
2192    assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2193    if (C->failing())  return true;
2194  }
2195
2196  _igvn.set_delay_transform(false);
2197  _igvn.optimize();
2198  return false;
2199}
2200