macro.cpp revision 13254:c044f8d03932
1/*
2 * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "libadt/vectset.hpp"
28#include "opto/addnode.hpp"
29#include "opto/arraycopynode.hpp"
30#include "opto/callnode.hpp"
31#include "opto/castnode.hpp"
32#include "opto/cfgnode.hpp"
33#include "opto/compile.hpp"
34#include "opto/convertnode.hpp"
35#include "opto/graphKit.hpp"
36#include "opto/locknode.hpp"
37#include "opto/loopnode.hpp"
38#include "opto/macro.hpp"
39#include "opto/memnode.hpp"
40#include "opto/narrowptrnode.hpp"
41#include "opto/node.hpp"
42#include "opto/opaquenode.hpp"
43#include "opto/phaseX.hpp"
44#include "opto/rootnode.hpp"
45#include "opto/runtime.hpp"
46#include "opto/subnode.hpp"
47#include "opto/type.hpp"
48#include "runtime/sharedRuntime.hpp"
49
50
51//
52// Replace any references to "oldref" in inputs to "use" with "newref".
53// Returns the number of replacements made.
54//
55int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
56  int nreplacements = 0;
57  uint req = use->req();
58  for (uint j = 0; j < use->len(); j++) {
59    Node *uin = use->in(j);
60    if (uin == oldref) {
61      if (j < req)
62        use->set_req(j, newref);
63      else
64        use->set_prec(j, newref);
65      nreplacements++;
66    } else if (j >= req && uin == NULL) {
67      break;
68    }
69  }
70  return nreplacements;
71}
72
73void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
74  // Copy debug information and adjust JVMState information
75  uint old_dbg_start = oldcall->tf()->domain()->cnt();
76  uint new_dbg_start = newcall->tf()->domain()->cnt();
77  int jvms_adj  = new_dbg_start - old_dbg_start;
78  assert (new_dbg_start == newcall->req(), "argument count mismatch");
79
80  // SafePointScalarObject node could be referenced several times in debug info.
81  // Use Dict to record cloned nodes.
82  Dict* sosn_map = new Dict(cmpkey,hashkey);
83  for (uint i = old_dbg_start; i < oldcall->req(); i++) {
84    Node* old_in = oldcall->in(i);
85    // Clone old SafePointScalarObjectNodes, adjusting their field contents.
86    if (old_in != NULL && old_in->is_SafePointScalarObject()) {
87      SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
88      uint old_unique = C->unique();
89      Node* new_in = old_sosn->clone(sosn_map);
90      if (old_unique != C->unique()) { // New node?
91        new_in->set_req(0, C->root()); // reset control edge
92        new_in = transform_later(new_in); // Register new node.
93      }
94      old_in = new_in;
95    }
96    newcall->add_req(old_in);
97  }
98
99  // JVMS may be shared so clone it before we modify it
100  newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
101  for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
102    jvms->set_map(newcall);
103    jvms->set_locoff(jvms->locoff()+jvms_adj);
104    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
105    jvms->set_monoff(jvms->monoff()+jvms_adj);
106    jvms->set_scloff(jvms->scloff()+jvms_adj);
107    jvms->set_endoff(jvms->endoff()+jvms_adj);
108  }
109}
110
111Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
112  Node* cmp;
113  if (mask != 0) {
114    Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
115    cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
116  } else {
117    cmp = word;
118  }
119  Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
120  IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
121  transform_later(iff);
122
123  // Fast path taken.
124  Node *fast_taken = transform_later(new IfFalseNode(iff));
125
126  // Fast path not-taken, i.e. slow path
127  Node *slow_taken = transform_later(new IfTrueNode(iff));
128
129  if (return_fast_path) {
130    region->init_req(edge, slow_taken); // Capture slow-control
131    return fast_taken;
132  } else {
133    region->init_req(edge, fast_taken); // Capture fast-control
134    return slow_taken;
135  }
136}
137
138//--------------------copy_predefined_input_for_runtime_call--------------------
139void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
140  // Set fixed predefined input arguments
141  call->init_req( TypeFunc::Control, ctrl );
142  call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
143  call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
144  call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
145  call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
146}
147
148//------------------------------make_slow_call---------------------------------
149CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
150                                           address slow_call, const char* leaf_name, Node* slow_path,
151                                           Node* parm0, Node* parm1, Node* parm2) {
152
153  // Slow-path call
154 CallNode *call = leaf_name
155   ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
156   : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
157
158  // Slow path call has no side-effects, uses few values
159  copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
160  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
161  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
162  if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
163  copy_call_debug_info(oldcall, call);
164  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
165  _igvn.replace_node(oldcall, call);
166  transform_later(call);
167
168  return call;
169}
170
171void PhaseMacroExpand::extract_call_projections(CallNode *call) {
172  _fallthroughproj = NULL;
173  _fallthroughcatchproj = NULL;
174  _ioproj_fallthrough = NULL;
175  _ioproj_catchall = NULL;
176  _catchallcatchproj = NULL;
177  _memproj_fallthrough = NULL;
178  _memproj_catchall = NULL;
179  _resproj = NULL;
180  for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
181    ProjNode *pn = call->fast_out(i)->as_Proj();
182    switch (pn->_con) {
183      case TypeFunc::Control:
184      {
185        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
186        _fallthroughproj = pn;
187        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
188        const Node *cn = pn->fast_out(j);
189        if (cn->is_Catch()) {
190          ProjNode *cpn = NULL;
191          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
192            cpn = cn->fast_out(k)->as_Proj();
193            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
194            if (cpn->_con == CatchProjNode::fall_through_index)
195              _fallthroughcatchproj = cpn;
196            else {
197              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
198              _catchallcatchproj = cpn;
199            }
200          }
201        }
202        break;
203      }
204      case TypeFunc::I_O:
205        if (pn->_is_io_use)
206          _ioproj_catchall = pn;
207        else
208          _ioproj_fallthrough = pn;
209        break;
210      case TypeFunc::Memory:
211        if (pn->_is_io_use)
212          _memproj_catchall = pn;
213        else
214          _memproj_fallthrough = pn;
215        break;
216      case TypeFunc::Parms:
217        _resproj = pn;
218        break;
219      default:
220        assert(false, "unexpected projection from allocation node.");
221    }
222  }
223
224}
225
226// Eliminate a card mark sequence.  p2x is a ConvP2XNode
227void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
228  assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
229  if (!UseG1GC) {
230    // vanilla/CMS post barrier
231    Node *shift = p2x->unique_out();
232    Node *addp = shift->unique_out();
233    for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
234      Node *mem = addp->last_out(j);
235      if (UseCondCardMark && mem->is_Load()) {
236        assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
237        // The load is checking if the card has been written so
238        // replace it with zero to fold the test.
239        _igvn.replace_node(mem, intcon(0));
240        continue;
241      }
242      assert(mem->is_Store(), "store required");
243      _igvn.replace_node(mem, mem->in(MemNode::Memory));
244    }
245  } else {
246    // G1 pre/post barriers
247    assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
248    // It could be only one user, URShift node, in Object.clone() intrinsic
249    // but the new allocation is passed to arraycopy stub and it could not
250    // be scalar replaced. So we don't check the case.
251
252    // An other case of only one user (Xor) is when the value check for NULL
253    // in G1 post barrier is folded after CCP so the code which used URShift
254    // is removed.
255
256    // Take Region node before eliminating post barrier since it also
257    // eliminates CastP2X node when it has only one user.
258    Node* this_region = p2x->in(0);
259    assert(this_region != NULL, "");
260
261    // Remove G1 post barrier.
262
263    // Search for CastP2X->Xor->URShift->Cmp path which
264    // checks if the store done to a different from the value's region.
265    // And replace Cmp with #0 (false) to collapse G1 post barrier.
266    Node* xorx = p2x->find_out_with(Op_XorX);
267    if (xorx != NULL) {
268      Node* shift = xorx->unique_out();
269      Node* cmpx = shift->unique_out();
270      assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
271      cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
272      "missing region check in G1 post barrier");
273      _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
274
275      // Remove G1 pre barrier.
276
277      // Search "if (marking != 0)" check and set it to "false".
278      // There is no G1 pre barrier if previous stored value is NULL
279      // (for example, after initialization).
280      if (this_region->is_Region() && this_region->req() == 3) {
281        int ind = 1;
282        if (!this_region->in(ind)->is_IfFalse()) {
283          ind = 2;
284        }
285        if (this_region->in(ind)->is_IfFalse()) {
286          Node* bol = this_region->in(ind)->in(0)->in(1);
287          assert(bol->is_Bool(), "");
288          cmpx = bol->in(1);
289          if (bol->as_Bool()->_test._test == BoolTest::ne &&
290              cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
291              cmpx->in(1)->is_Load()) {
292            Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
293            const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
294                                                SATBMarkQueue::byte_offset_of_active());
295            if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
296                adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
297                adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
298              _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
299            }
300          }
301        }
302      }
303    } else {
304      assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking");
305      // This is a G1 post barrier emitted by the Object.clone() intrinsic.
306      // Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
307      // is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
308      Node* shift = p2x->find_out_with(Op_URShiftX);
309      assert(shift != NULL, "missing G1 post barrier");
310      Node* addp = shift->unique_out();
311      Node* load = addp->find_out_with(Op_LoadB);
312      assert(load != NULL, "missing G1 post barrier");
313      Node* cmpx = load->unique_out();
314      assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
315             cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
316             "missing card value check in G1 post barrier");
317      _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
318      // There is no G1 pre barrier in this case
319    }
320    // Now CastP2X can be removed since it is used only on dead path
321    // which currently still alive until igvn optimize it.
322    assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
323    _igvn.replace_node(p2x, top());
324  }
325}
326
327// Search for a memory operation for the specified memory slice.
328static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
329  Node *orig_mem = mem;
330  Node *alloc_mem = alloc->in(TypeFunc::Memory);
331  const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
332  while (true) {
333    if (mem == alloc_mem || mem == start_mem ) {
334      return mem;  // hit one of our sentinels
335    } else if (mem->is_MergeMem()) {
336      mem = mem->as_MergeMem()->memory_at(alias_idx);
337    } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
338      Node *in = mem->in(0);
339      // we can safely skip over safepoints, calls, locks and membars because we
340      // already know that the object is safe to eliminate.
341      if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
342        return in;
343      } else if (in->is_Call()) {
344        CallNode *call = in->as_Call();
345        if (call->may_modify(tinst, phase)) {
346          assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
347          if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
348            return in;
349          }
350        }
351        mem = in->in(TypeFunc::Memory);
352      } else if (in->is_MemBar()) {
353        ArrayCopyNode* ac = NULL;
354        if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
355          assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone");
356          return ac;
357        }
358        mem = in->in(TypeFunc::Memory);
359      } else {
360        assert(false, "unexpected projection");
361      }
362    } else if (mem->is_Store()) {
363      const TypePtr* atype = mem->as_Store()->adr_type();
364      int adr_idx = phase->C->get_alias_index(atype);
365      if (adr_idx == alias_idx) {
366        assert(atype->isa_oopptr(), "address type must be oopptr");
367        int adr_offset = atype->offset();
368        uint adr_iid = atype->is_oopptr()->instance_id();
369        // Array elements references have the same alias_idx
370        // but different offset and different instance_id.
371        if (adr_offset == offset && adr_iid == alloc->_idx)
372          return mem;
373      } else {
374        assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
375      }
376      mem = mem->in(MemNode::Memory);
377    } else if (mem->is_ClearArray()) {
378      if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
379        // Can not bypass initialization of the instance
380        // we are looking.
381        debug_only(intptr_t offset;)
382        assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
383        InitializeNode* init = alloc->as_Allocate()->initialization();
384        // We are looking for stored value, return Initialize node
385        // or memory edge from Allocate node.
386        if (init != NULL)
387          return init;
388        else
389          return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
390      }
391      // Otherwise skip it (the call updated 'mem' value).
392    } else if (mem->Opcode() == Op_SCMemProj) {
393      mem = mem->in(0);
394      Node* adr = NULL;
395      if (mem->is_LoadStore()) {
396        adr = mem->in(MemNode::Address);
397      } else {
398        assert(mem->Opcode() == Op_EncodeISOArray ||
399               mem->Opcode() == Op_StrCompressedCopy, "sanity");
400        adr = mem->in(3); // Destination array
401      }
402      const TypePtr* atype = adr->bottom_type()->is_ptr();
403      int adr_idx = phase->C->get_alias_index(atype);
404      if (adr_idx == alias_idx) {
405        DEBUG_ONLY(mem->dump();)
406        assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
407        return NULL;
408      }
409      mem = mem->in(MemNode::Memory);
410   } else if (mem->Opcode() == Op_StrInflatedCopy) {
411      Node* adr = mem->in(3); // Destination array
412      const TypePtr* atype = adr->bottom_type()->is_ptr();
413      int adr_idx = phase->C->get_alias_index(atype);
414      if (adr_idx == alias_idx) {
415        DEBUG_ONLY(mem->dump();)
416        assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
417        return NULL;
418      }
419      mem = mem->in(MemNode::Memory);
420    } else {
421      return mem;
422    }
423    assert(mem != orig_mem, "dead memory loop");
424  }
425}
426
427// Generate loads from source of the arraycopy for fields of
428// destination needed at a deoptimization point
429Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
430  BasicType bt = ft;
431  const Type *type = ftype;
432  if (ft == T_NARROWOOP) {
433    bt = T_OBJECT;
434    type = ftype->make_oopptr();
435  }
436  Node* res = NULL;
437  if (ac->is_clonebasic()) {
438    Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base);
439    Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
440    const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
441    res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
442  } else {
443    if (ac->modifies(offset, offset, &_igvn, true)) {
444      assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
445      uint shift  = exact_log2(type2aelembytes(bt));
446      Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
447#ifdef _LP64
448      diff = _igvn.transform(new ConvI2LNode(diff));
449#endif
450      diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
451
452      Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
453      Node* base = ac->in(ArrayCopyNode::Src);
454      Node* adr = _igvn.transform(new AddPNode(base, base, off));
455      const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
456      res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
457    }
458  }
459  if (res != NULL) {
460    res = _igvn.transform(res);
461    if (ftype->isa_narrowoop()) {
462      // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
463      res = _igvn.transform(new EncodePNode(res, ftype));
464    }
465    return res;
466  }
467  return NULL;
468}
469
470//
471// Given a Memory Phi, compute a value Phi containing the values from stores
472// on the input paths.
473// Note: this function is recursive, its depth is limited by the "level" argument
474// Returns the computed Phi, or NULL if it cannot compute it.
475Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
476  assert(mem->is_Phi(), "sanity");
477  int alias_idx = C->get_alias_index(adr_t);
478  int offset = adr_t->offset();
479  int instance_id = adr_t->instance_id();
480
481  // Check if an appropriate value phi already exists.
482  Node* region = mem->in(0);
483  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
484    Node* phi = region->fast_out(k);
485    if (phi->is_Phi() && phi != mem &&
486        phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
487      return phi;
488    }
489  }
490  // Check if an appropriate new value phi already exists.
491  Node* new_phi = value_phis->find(mem->_idx);
492  if (new_phi != NULL)
493    return new_phi;
494
495  if (level <= 0) {
496    return NULL; // Give up: phi tree too deep
497  }
498  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
499  Node *alloc_mem = alloc->in(TypeFunc::Memory);
500
501  uint length = mem->req();
502  GrowableArray <Node *> values(length, length, NULL, false);
503
504  // create a new Phi for the value
505  PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
506  transform_later(phi);
507  value_phis->push(phi, mem->_idx);
508
509  for (uint j = 1; j < length; j++) {
510    Node *in = mem->in(j);
511    if (in == NULL || in->is_top()) {
512      values.at_put(j, in);
513    } else  {
514      Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
515      if (val == start_mem || val == alloc_mem) {
516        // hit a sentinel, return appropriate 0 value
517        values.at_put(j, _igvn.zerocon(ft));
518        continue;
519      }
520      if (val->is_Initialize()) {
521        val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
522      }
523      if (val == NULL) {
524        return NULL;  // can't find a value on this path
525      }
526      if (val == mem) {
527        values.at_put(j, mem);
528      } else if (val->is_Store()) {
529        values.at_put(j, val->in(MemNode::ValueIn));
530      } else if(val->is_Proj() && val->in(0) == alloc) {
531        values.at_put(j, _igvn.zerocon(ft));
532      } else if (val->is_Phi()) {
533        val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
534        if (val == NULL) {
535          return NULL;
536        }
537        values.at_put(j, val);
538      } else if (val->Opcode() == Op_SCMemProj) {
539        assert(val->in(0)->is_LoadStore() ||
540               val->in(0)->Opcode() == Op_EncodeISOArray ||
541               val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
542        assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
543        return NULL;
544      } else if (val->is_ArrayCopy()) {
545        Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
546        if (res == NULL) {
547          return NULL;
548        }
549        values.at_put(j, res);
550      } else {
551#ifdef ASSERT
552        val->dump();
553        assert(false, "unknown node on this path");
554#endif
555        return NULL;  // unknown node on this path
556      }
557    }
558  }
559  // Set Phi's inputs
560  for (uint j = 1; j < length; j++) {
561    if (values.at(j) == mem) {
562      phi->init_req(j, phi);
563    } else {
564      phi->init_req(j, values.at(j));
565    }
566  }
567  return phi;
568}
569
570// Search the last value stored into the object's field.
571Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
572  assert(adr_t->is_known_instance_field(), "instance required");
573  int instance_id = adr_t->instance_id();
574  assert((uint)instance_id == alloc->_idx, "wrong allocation");
575
576  int alias_idx = C->get_alias_index(adr_t);
577  int offset = adr_t->offset();
578  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
579  Node *alloc_ctrl = alloc->in(TypeFunc::Control);
580  Node *alloc_mem = alloc->in(TypeFunc::Memory);
581  Arena *a = Thread::current()->resource_area();
582  VectorSet visited(a);
583
584
585  bool done = sfpt_mem == alloc_mem;
586  Node *mem = sfpt_mem;
587  while (!done) {
588    if (visited.test_set(mem->_idx)) {
589      return NULL;  // found a loop, give up
590    }
591    mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
592    if (mem == start_mem || mem == alloc_mem) {
593      done = true;  // hit a sentinel, return appropriate 0 value
594    } else if (mem->is_Initialize()) {
595      mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
596      if (mem == NULL) {
597        done = true; // Something go wrong.
598      } else if (mem->is_Store()) {
599        const TypePtr* atype = mem->as_Store()->adr_type();
600        assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
601        done = true;
602      }
603    } else if (mem->is_Store()) {
604      const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
605      assert(atype != NULL, "address type must be oopptr");
606      assert(C->get_alias_index(atype) == alias_idx &&
607             atype->is_known_instance_field() && atype->offset() == offset &&
608             atype->instance_id() == instance_id, "store is correct memory slice");
609      done = true;
610    } else if (mem->is_Phi()) {
611      // try to find a phi's unique input
612      Node *unique_input = NULL;
613      Node *top = C->top();
614      for (uint i = 1; i < mem->req(); i++) {
615        Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
616        if (n == NULL || n == top || n == mem) {
617          continue;
618        } else if (unique_input == NULL) {
619          unique_input = n;
620        } else if (unique_input != n) {
621          unique_input = top;
622          break;
623        }
624      }
625      if (unique_input != NULL && unique_input != top) {
626        mem = unique_input;
627      } else {
628        done = true;
629      }
630    } else if (mem->is_ArrayCopy()) {
631      done = true;
632    } else {
633      assert(false, "unexpected node");
634    }
635  }
636  if (mem != NULL) {
637    if (mem == start_mem || mem == alloc_mem) {
638      // hit a sentinel, return appropriate 0 value
639      return _igvn.zerocon(ft);
640    } else if (mem->is_Store()) {
641      return mem->in(MemNode::ValueIn);
642    } else if (mem->is_Phi()) {
643      // attempt to produce a Phi reflecting the values on the input paths of the Phi
644      Node_Stack value_phis(a, 8);
645      Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
646      if (phi != NULL) {
647        return phi;
648      } else {
649        // Kill all new Phis
650        while(value_phis.is_nonempty()) {
651          Node* n = value_phis.node();
652          _igvn.replace_node(n, C->top());
653          value_phis.pop();
654        }
655      }
656    } else if (mem->is_ArrayCopy()) {
657      Node* ctl = mem->in(0);
658      Node* m = mem->in(TypeFunc::Memory);
659      if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
660        // pin the loads in the uncommon trap path
661        ctl = sfpt_ctl;
662        m = sfpt_mem;
663      }
664      return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
665    }
666  }
667  // Something go wrong.
668  return NULL;
669}
670
671// Check the possibility of scalar replacement.
672bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
673  //  Scan the uses of the allocation to check for anything that would
674  //  prevent us from eliminating it.
675  NOT_PRODUCT( const char* fail_eliminate = NULL; )
676  DEBUG_ONLY( Node* disq_node = NULL; )
677  bool  can_eliminate = true;
678
679  Node* res = alloc->result_cast();
680  const TypeOopPtr* res_type = NULL;
681  if (res == NULL) {
682    // All users were eliminated.
683  } else if (!res->is_CheckCastPP()) {
684    NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
685    can_eliminate = false;
686  } else {
687    res_type = _igvn.type(res)->isa_oopptr();
688    if (res_type == NULL) {
689      NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
690      can_eliminate = false;
691    } else if (res_type->isa_aryptr()) {
692      int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
693      if (length < 0) {
694        NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
695        can_eliminate = false;
696      }
697    }
698  }
699
700  if (can_eliminate && res != NULL) {
701    for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
702                               j < jmax && can_eliminate; j++) {
703      Node* use = res->fast_out(j);
704
705      if (use->is_AddP()) {
706        const TypePtr* addp_type = _igvn.type(use)->is_ptr();
707        int offset = addp_type->offset();
708
709        if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
710          NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
711          can_eliminate = false;
712          break;
713        }
714        for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
715                                   k < kmax && can_eliminate; k++) {
716          Node* n = use->fast_out(k);
717          if (!n->is_Store() && n->Opcode() != Op_CastP2X &&
718              !(n->is_ArrayCopy() &&
719                n->as_ArrayCopy()->is_clonebasic() &&
720                n->in(ArrayCopyNode::Dest) == use)) {
721            DEBUG_ONLY(disq_node = n;)
722            if (n->is_Load() || n->is_LoadStore()) {
723              NOT_PRODUCT(fail_eliminate = "Field load";)
724            } else {
725              NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
726            }
727            can_eliminate = false;
728          }
729        }
730      } else if (use->is_ArrayCopy() &&
731                 (use->as_ArrayCopy()->is_arraycopy_validated() ||
732                  use->as_ArrayCopy()->is_copyof_validated() ||
733                  use->as_ArrayCopy()->is_copyofrange_validated()) &&
734                 use->in(ArrayCopyNode::Dest) == res) {
735        // ok to eliminate
736      } else if (use->is_SafePoint()) {
737        SafePointNode* sfpt = use->as_SafePoint();
738        if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
739          // Object is passed as argument.
740          DEBUG_ONLY(disq_node = use;)
741          NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
742          can_eliminate = false;
743        }
744        Node* sfptMem = sfpt->memory();
745        if (sfptMem == NULL || sfptMem->is_top()) {
746          DEBUG_ONLY(disq_node = use;)
747          NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
748          can_eliminate = false;
749        } else {
750          safepoints.append_if_missing(sfpt);
751        }
752      } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
753        if (use->is_Phi()) {
754          if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
755            NOT_PRODUCT(fail_eliminate = "Object is return value";)
756          } else {
757            NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
758          }
759          DEBUG_ONLY(disq_node = use;)
760        } else {
761          if (use->Opcode() == Op_Return) {
762            NOT_PRODUCT(fail_eliminate = "Object is return value";)
763          }else {
764            NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
765          }
766          DEBUG_ONLY(disq_node = use;)
767        }
768        can_eliminate = false;
769      }
770    }
771  }
772
773#ifndef PRODUCT
774  if (PrintEliminateAllocations) {
775    if (can_eliminate) {
776      tty->print("Scalar ");
777      if (res == NULL)
778        alloc->dump();
779      else
780        res->dump();
781    } else if (alloc->_is_scalar_replaceable) {
782      tty->print("NotScalar (%s)", fail_eliminate);
783      if (res == NULL)
784        alloc->dump();
785      else
786        res->dump();
787#ifdef ASSERT
788      if (disq_node != NULL) {
789          tty->print("  >>>> ");
790          disq_node->dump();
791      }
792#endif /*ASSERT*/
793    }
794  }
795#endif
796  return can_eliminate;
797}
798
799// Do scalar replacement.
800bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
801  GrowableArray <SafePointNode *> safepoints_done;
802
803  ciKlass* klass = NULL;
804  ciInstanceKlass* iklass = NULL;
805  int nfields = 0;
806  int array_base = 0;
807  int element_size = 0;
808  BasicType basic_elem_type = T_ILLEGAL;
809  ciType* elem_type = NULL;
810
811  Node* res = alloc->result_cast();
812  assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
813  const TypeOopPtr* res_type = NULL;
814  if (res != NULL) { // Could be NULL when there are no users
815    res_type = _igvn.type(res)->isa_oopptr();
816  }
817
818  if (res != NULL) {
819    klass = res_type->klass();
820    if (res_type->isa_instptr()) {
821      // find the fields of the class which will be needed for safepoint debug information
822      assert(klass->is_instance_klass(), "must be an instance klass.");
823      iklass = klass->as_instance_klass();
824      nfields = iklass->nof_nonstatic_fields();
825    } else {
826      // find the array's elements which will be needed for safepoint debug information
827      nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
828      assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
829      elem_type = klass->as_array_klass()->element_type();
830      basic_elem_type = elem_type->basic_type();
831      array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
832      element_size = type2aelembytes(basic_elem_type);
833    }
834  }
835  //
836  // Process the safepoint uses
837  //
838  while (safepoints.length() > 0) {
839    SafePointNode* sfpt = safepoints.pop();
840    Node* mem = sfpt->memory();
841    Node* ctl = sfpt->control();
842    assert(sfpt->jvms() != NULL, "missed JVMS");
843    // Fields of scalar objs are referenced only at the end
844    // of regular debuginfo at the last (youngest) JVMS.
845    // Record relative start index.
846    uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
847    SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
848#ifdef ASSERT
849                                                 alloc,
850#endif
851                                                 first_ind, nfields);
852    sobj->init_req(0, C->root());
853    transform_later(sobj);
854
855    // Scan object's fields adding an input to the safepoint for each field.
856    for (int j = 0; j < nfields; j++) {
857      intptr_t offset;
858      ciField* field = NULL;
859      if (iklass != NULL) {
860        field = iklass->nonstatic_field_at(j);
861        offset = field->offset();
862        elem_type = field->type();
863        basic_elem_type = field->layout_type();
864      } else {
865        offset = array_base + j * (intptr_t)element_size;
866      }
867
868      const Type *field_type;
869      // The next code is taken from Parse::do_get_xxx().
870      if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
871        if (!elem_type->is_loaded()) {
872          field_type = TypeInstPtr::BOTTOM;
873        } else if (field != NULL && field->is_static_constant()) {
874          // This can happen if the constant oop is non-perm.
875          ciObject* con = field->constant_value().as_object();
876          // Do not "join" in the previous type; it doesn't add value,
877          // and may yield a vacuous result if the field is of interface type.
878          field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
879          assert(field_type != NULL, "field singleton type must be consistent");
880        } else {
881          field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
882        }
883        if (UseCompressedOops) {
884          field_type = field_type->make_narrowoop();
885          basic_elem_type = T_NARROWOOP;
886        }
887      } else {
888        field_type = Type::get_const_basic_type(basic_elem_type);
889      }
890
891      const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
892
893      Node *field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
894      if (field_val == NULL) {
895        // We weren't able to find a value for this field,
896        // give up on eliminating this allocation.
897
898        // Remove any extra entries we added to the safepoint.
899        uint last = sfpt->req() - 1;
900        for (int k = 0;  k < j; k++) {
901          sfpt->del_req(last--);
902        }
903        _igvn._worklist.push(sfpt);
904        // rollback processed safepoints
905        while (safepoints_done.length() > 0) {
906          SafePointNode* sfpt_done = safepoints_done.pop();
907          // remove any extra entries we added to the safepoint
908          last = sfpt_done->req() - 1;
909          for (int k = 0;  k < nfields; k++) {
910            sfpt_done->del_req(last--);
911          }
912          JVMState *jvms = sfpt_done->jvms();
913          jvms->set_endoff(sfpt_done->req());
914          // Now make a pass over the debug information replacing any references
915          // to SafePointScalarObjectNode with the allocated object.
916          int start = jvms->debug_start();
917          int end   = jvms->debug_end();
918          for (int i = start; i < end; i++) {
919            if (sfpt_done->in(i)->is_SafePointScalarObject()) {
920              SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
921              if (scobj->first_index(jvms) == sfpt_done->req() &&
922                  scobj->n_fields() == (uint)nfields) {
923                assert(scobj->alloc() == alloc, "sanity");
924                sfpt_done->set_req(i, res);
925              }
926            }
927          }
928          _igvn._worklist.push(sfpt_done);
929        }
930#ifndef PRODUCT
931        if (PrintEliminateAllocations) {
932          if (field != NULL) {
933            tty->print("=== At SafePoint node %d can't find value of Field: ",
934                       sfpt->_idx);
935            field->print();
936            int field_idx = C->get_alias_index(field_addr_type);
937            tty->print(" (alias_idx=%d)", field_idx);
938          } else { // Array's element
939            tty->print("=== At SafePoint node %d can't find value of array element [%d]",
940                       sfpt->_idx, j);
941          }
942          tty->print(", which prevents elimination of: ");
943          if (res == NULL)
944            alloc->dump();
945          else
946            res->dump();
947        }
948#endif
949        return false;
950      }
951      if (UseCompressedOops && field_type->isa_narrowoop()) {
952        // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
953        // to be able scalar replace the allocation.
954        if (field_val->is_EncodeP()) {
955          field_val = field_val->in(1);
956        } else {
957          field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
958        }
959      }
960      sfpt->add_req(field_val);
961    }
962    JVMState *jvms = sfpt->jvms();
963    jvms->set_endoff(sfpt->req());
964    // Now make a pass over the debug information replacing any references
965    // to the allocated object with "sobj"
966    int start = jvms->debug_start();
967    int end   = jvms->debug_end();
968    sfpt->replace_edges_in_range(res, sobj, start, end);
969    _igvn._worklist.push(sfpt);
970    safepoints_done.append_if_missing(sfpt); // keep it for rollback
971  }
972  return true;
973}
974
975static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
976  Node* ctl_proj = n->proj_out(TypeFunc::Control);
977  Node* mem_proj = n->proj_out(TypeFunc::Memory);
978  if (ctl_proj != NULL) {
979    igvn.replace_node(ctl_proj, n->in(0));
980  }
981  if (mem_proj != NULL) {
982    igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
983  }
984}
985
986// Process users of eliminated allocation.
987void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
988  Node* res = alloc->result_cast();
989  if (res != NULL) {
990    for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
991      Node *use = res->last_out(j);
992      uint oc1 = res->outcnt();
993
994      if (use->is_AddP()) {
995        for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
996          Node *n = use->last_out(k);
997          uint oc2 = use->outcnt();
998          if (n->is_Store()) {
999#ifdef ASSERT
1000            // Verify that there is no dependent MemBarVolatile nodes,
1001            // they should be removed during IGVN, see MemBarNode::Ideal().
1002            for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
1003                                       p < pmax; p++) {
1004              Node* mb = n->fast_out(p);
1005              assert(mb->is_Initialize() || !mb->is_MemBar() ||
1006                     mb->req() <= MemBarNode::Precedent ||
1007                     mb->in(MemBarNode::Precedent) != n,
1008                     "MemBarVolatile should be eliminated for non-escaping object");
1009            }
1010#endif
1011            _igvn.replace_node(n, n->in(MemNode::Memory));
1012          } else if (n->is_ArrayCopy()) {
1013            // Disconnect ArrayCopy node
1014            ArrayCopyNode* ac = n->as_ArrayCopy();
1015            assert(ac->is_clonebasic(), "unexpected array copy kind");
1016            Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
1017            disconnect_projections(ac, _igvn);
1018            assert(alloc->in(0)->is_Proj() && alloc->in(0)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
1019            Node* membar_before = alloc->in(0)->in(0);
1020            disconnect_projections(membar_before->as_MemBar(), _igvn);
1021            if (membar_after->is_MemBar()) {
1022              disconnect_projections(membar_after->as_MemBar(), _igvn);
1023            }
1024          } else {
1025            eliminate_card_mark(n);
1026          }
1027          k -= (oc2 - use->outcnt());
1028        }
1029      } else if (use->is_ArrayCopy()) {
1030        // Disconnect ArrayCopy node
1031        ArrayCopyNode* ac = use->as_ArrayCopy();
1032        assert(ac->is_arraycopy_validated() ||
1033               ac->is_copyof_validated() ||
1034               ac->is_copyofrange_validated(), "unsupported");
1035        CallProjections callprojs;
1036        ac->extract_projections(&callprojs, true);
1037
1038        _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
1039        _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
1040        _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
1041
1042        // Set control to top. IGVN will remove the remaining projections
1043        ac->set_req(0, top());
1044        ac->replace_edge(res, top());
1045
1046        // Disconnect src right away: it can help find new
1047        // opportunities for allocation elimination
1048        Node* src = ac->in(ArrayCopyNode::Src);
1049        ac->replace_edge(src, top());
1050        // src can be top at this point if src and dest of the
1051        // arraycopy were the same
1052        if (src->outcnt() == 0 && !src->is_top()) {
1053          _igvn.remove_dead_node(src);
1054        }
1055
1056        _igvn._worklist.push(ac);
1057      } else {
1058        eliminate_card_mark(use);
1059      }
1060      j -= (oc1 - res->outcnt());
1061    }
1062    assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1063    _igvn.remove_dead_node(res);
1064  }
1065
1066  //
1067  // Process other users of allocation's projections
1068  //
1069  if (_resproj != NULL && _resproj->outcnt() != 0) {
1070    // First disconnect stores captured by Initialize node.
1071    // If Initialize node is eliminated first in the following code,
1072    // it will kill such stores and DUIterator_Last will assert.
1073    for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
1074      Node *use = _resproj->fast_out(j);
1075      if (use->is_AddP()) {
1076        // raw memory addresses used only by the initialization
1077        _igvn.replace_node(use, C->top());
1078        --j; --jmax;
1079      }
1080    }
1081    for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
1082      Node *use = _resproj->last_out(j);
1083      uint oc1 = _resproj->outcnt();
1084      if (use->is_Initialize()) {
1085        // Eliminate Initialize node.
1086        InitializeNode *init = use->as_Initialize();
1087        assert(init->outcnt() <= 2, "only a control and memory projection expected");
1088        Node *ctrl_proj = init->proj_out(TypeFunc::Control);
1089        if (ctrl_proj != NULL) {
1090           assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
1091          _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
1092        }
1093        Node *mem_proj = init->proj_out(TypeFunc::Memory);
1094        if (mem_proj != NULL) {
1095          Node *mem = init->in(TypeFunc::Memory);
1096#ifdef ASSERT
1097          if (mem->is_MergeMem()) {
1098            assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
1099          } else {
1100            assert(mem == _memproj_fallthrough, "allocation memory projection");
1101          }
1102#endif
1103          _igvn.replace_node(mem_proj, mem);
1104        }
1105      } else  {
1106        assert(false, "only Initialize or AddP expected");
1107      }
1108      j -= (oc1 - _resproj->outcnt());
1109    }
1110  }
1111  if (_fallthroughcatchproj != NULL) {
1112    _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
1113  }
1114  if (_memproj_fallthrough != NULL) {
1115    _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
1116  }
1117  if (_memproj_catchall != NULL) {
1118    _igvn.replace_node(_memproj_catchall, C->top());
1119  }
1120  if (_ioproj_fallthrough != NULL) {
1121    _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
1122  }
1123  if (_ioproj_catchall != NULL) {
1124    _igvn.replace_node(_ioproj_catchall, C->top());
1125  }
1126  if (_catchallcatchproj != NULL) {
1127    _igvn.replace_node(_catchallcatchproj, C->top());
1128  }
1129}
1130
1131bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1132  // Don't do scalar replacement if the frame can be popped by JVMTI:
1133  // if reallocation fails during deoptimization we'll pop all
1134  // interpreter frames for this compiled frame and that won't play
1135  // nice with JVMTI popframe.
1136  if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
1137    return false;
1138  }
1139  Node* klass = alloc->in(AllocateNode::KlassNode);
1140  const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1141  Node* res = alloc->result_cast();
1142  // Eliminate boxing allocations which are not used
1143  // regardless scalar replacable status.
1144  bool boxing_alloc = C->eliminate_boxing() &&
1145                      tklass->klass()->is_instance_klass()  &&
1146                      tklass->klass()->as_instance_klass()->is_box_klass();
1147  if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
1148    return false;
1149  }
1150
1151  extract_call_projections(alloc);
1152
1153  GrowableArray <SafePointNode *> safepoints;
1154  if (!can_eliminate_allocation(alloc, safepoints)) {
1155    return false;
1156  }
1157
1158  if (!alloc->_is_scalar_replaceable) {
1159    assert(res == NULL, "sanity");
1160    // We can only eliminate allocation if all debug info references
1161    // are already replaced with SafePointScalarObject because
1162    // we can't search for a fields value without instance_id.
1163    if (safepoints.length() > 0) {
1164      return false;
1165    }
1166  }
1167
1168  if (!scalar_replacement(alloc, safepoints)) {
1169    return false;
1170  }
1171
1172  CompileLog* log = C->log();
1173  if (log != NULL) {
1174    log->head("eliminate_allocation type='%d'",
1175              log->identify(tklass->klass()));
1176    JVMState* p = alloc->jvms();
1177    while (p != NULL) {
1178      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1179      p = p->caller();
1180    }
1181    log->tail("eliminate_allocation");
1182  }
1183
1184  process_users_of_allocation(alloc);
1185
1186#ifndef PRODUCT
1187  if (PrintEliminateAllocations) {
1188    if (alloc->is_AllocateArray())
1189      tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1190    else
1191      tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1192  }
1193#endif
1194
1195  return true;
1196}
1197
1198bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1199  // EA should remove all uses of non-escaping boxing node.
1200  if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
1201    return false;
1202  }
1203
1204  assert(boxing->result_cast() == NULL, "unexpected boxing node result");
1205
1206  extract_call_projections(boxing);
1207
1208  const TypeTuple* r = boxing->tf()->range();
1209  assert(r->cnt() > TypeFunc::Parms, "sanity");
1210  const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1211  assert(t != NULL, "sanity");
1212
1213  CompileLog* log = C->log();
1214  if (log != NULL) {
1215    log->head("eliminate_boxing type='%d'",
1216              log->identify(t->klass()));
1217    JVMState* p = boxing->jvms();
1218    while (p != NULL) {
1219      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1220      p = p->caller();
1221    }
1222    log->tail("eliminate_boxing");
1223  }
1224
1225  process_users_of_allocation(boxing);
1226
1227#ifndef PRODUCT
1228  if (PrintEliminateAllocations) {
1229    tty->print("++++ Eliminated: %d ", boxing->_idx);
1230    boxing->method()->print_short_name(tty);
1231    tty->cr();
1232  }
1233#endif
1234
1235  return true;
1236}
1237
1238//---------------------------set_eden_pointers-------------------------
1239void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1240  if (UseTLAB) {                // Private allocation: load from TLS
1241    Node* thread = transform_later(new ThreadLocalNode());
1242    int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1243    int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1244    eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1245    eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1246  } else {                      // Shared allocation: load from globals
1247    CollectedHeap* ch = Universe::heap();
1248    address top_adr = (address)ch->top_addr();
1249    address end_adr = (address)ch->end_addr();
1250    eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1251    eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1252  }
1253}
1254
1255
1256Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1257  Node* adr = basic_plus_adr(base, offset);
1258  const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1259  Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1260  transform_later(value);
1261  return value;
1262}
1263
1264
1265Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1266  Node* adr = basic_plus_adr(base, offset);
1267  mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
1268  transform_later(mem);
1269  return mem;
1270}
1271
1272//=============================================================================
1273//
1274//                              A L L O C A T I O N
1275//
1276// Allocation attempts to be fast in the case of frequent small objects.
1277// It breaks down like this:
1278//
1279// 1) Size in doublewords is computed.  This is a constant for objects and
1280// variable for most arrays.  Doubleword units are used to avoid size
1281// overflow of huge doubleword arrays.  We need doublewords in the end for
1282// rounding.
1283//
1284// 2) Size is checked for being 'too large'.  Too-large allocations will go
1285// the slow path into the VM.  The slow path can throw any required
1286// exceptions, and does all the special checks for very large arrays.  The
1287// size test can constant-fold away for objects.  For objects with
1288// finalizers it constant-folds the otherway: you always go slow with
1289// finalizers.
1290//
1291// 3) If NOT using TLABs, this is the contended loop-back point.
1292// Load-Locked the heap top.  If using TLABs normal-load the heap top.
1293//
1294// 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1295// NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1296// "size*8" we always enter the VM, where "largish" is a constant picked small
1297// enough that there's always space between the eden max and 4Gig (old space is
1298// there so it's quite large) and large enough that the cost of entering the VM
1299// is dwarfed by the cost to initialize the space.
1300//
1301// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1302// down.  If contended, repeat at step 3.  If using TLABs normal-store
1303// adjusted heap top back down; there is no contention.
1304//
1305// 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1306// fields.
1307//
1308// 7) Merge with the slow-path; cast the raw memory pointer to the correct
1309// oop flavor.
1310//
1311//=============================================================================
1312// FastAllocateSizeLimit value is in DOUBLEWORDS.
1313// Allocations bigger than this always go the slow route.
1314// This value must be small enough that allocation attempts that need to
1315// trigger exceptions go the slow route.  Also, it must be small enough so
1316// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1317//=============================================================================j//
1318// %%% Here is an old comment from parseHelper.cpp; is it outdated?
1319// The allocator will coalesce int->oop copies away.  See comment in
1320// coalesce.cpp about how this works.  It depends critically on the exact
1321// code shape produced here, so if you are changing this code shape
1322// make sure the GC info for the heap-top is correct in and around the
1323// slow-path call.
1324//
1325
1326void PhaseMacroExpand::expand_allocate_common(
1327            AllocateNode* alloc, // allocation node to be expanded
1328            Node* length,  // array length for an array allocation
1329            const TypeFunc* slow_call_type, // Type of slow call
1330            address slow_call_address  // Address of slow call
1331    )
1332{
1333
1334  Node* ctrl = alloc->in(TypeFunc::Control);
1335  Node* mem  = alloc->in(TypeFunc::Memory);
1336  Node* i_o  = alloc->in(TypeFunc::I_O);
1337  Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1338  Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1339  Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1340
1341  assert(ctrl != NULL, "must have control");
1342  // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1343  // they will not be used if "always_slow" is set
1344  enum { slow_result_path = 1, fast_result_path = 2 };
1345  Node *result_region = NULL;
1346  Node *result_phi_rawmem = NULL;
1347  Node *result_phi_rawoop = NULL;
1348  Node *result_phi_i_o = NULL;
1349
1350  // The initial slow comparison is a size check, the comparison
1351  // we want to do is a BoolTest::gt
1352  bool always_slow = false;
1353  int tv = _igvn.find_int_con(initial_slow_test, -1);
1354  if (tv >= 0) {
1355    always_slow = (tv == 1);
1356    initial_slow_test = NULL;
1357  } else {
1358    initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1359  }
1360
1361  if (C->env()->dtrace_alloc_probes() ||
1362      (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
1363    // Force slow-path allocation
1364    always_slow = true;
1365    initial_slow_test = NULL;
1366  }
1367
1368
1369  enum { too_big_or_final_path = 1, need_gc_path = 2 };
1370  Node *slow_region = NULL;
1371  Node *toobig_false = ctrl;
1372
1373  assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1374  // generate the initial test if necessary
1375  if (initial_slow_test != NULL ) {
1376    slow_region = new RegionNode(3);
1377
1378    // Now make the initial failure test.  Usually a too-big test but
1379    // might be a TRUE for finalizers or a fancy class check for
1380    // newInstance0.
1381    IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1382    transform_later(toobig_iff);
1383    // Plug the failing-too-big test into the slow-path region
1384    Node *toobig_true = new IfTrueNode( toobig_iff );
1385    transform_later(toobig_true);
1386    slow_region    ->init_req( too_big_or_final_path, toobig_true );
1387    toobig_false = new IfFalseNode( toobig_iff );
1388    transform_later(toobig_false);
1389  } else {         // No initial test, just fall into next case
1390    toobig_false = ctrl;
1391    debug_only(slow_region = NodeSentinel);
1392  }
1393
1394  Node *slow_mem = mem;  // save the current memory state for slow path
1395  // generate the fast allocation code unless we know that the initial test will always go slow
1396  if (!always_slow) {
1397    // Fast path modifies only raw memory.
1398    if (mem->is_MergeMem()) {
1399      mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1400    }
1401
1402    Node* eden_top_adr;
1403    Node* eden_end_adr;
1404
1405    set_eden_pointers(eden_top_adr, eden_end_adr);
1406
1407    // Load Eden::end.  Loop invariant and hoisted.
1408    //
1409    // Note: We set the control input on "eden_end" and "old_eden_top" when using
1410    //       a TLAB to work around a bug where these values were being moved across
1411    //       a safepoint.  These are not oops, so they cannot be include in the oop
1412    //       map, but they can be changed by a GC.   The proper way to fix this would
1413    //       be to set the raw memory state when generating a  SafepointNode.  However
1414    //       this will require extensive changes to the loop optimization in order to
1415    //       prevent a degradation of the optimization.
1416    //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1417    Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1418
1419    // allocate the Region and Phi nodes for the result
1420    result_region = new RegionNode(3);
1421    result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1422    result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1423    result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1424
1425    // We need a Region for the loop-back contended case.
1426    enum { fall_in_path = 1, contended_loopback_path = 2 };
1427    Node *contended_region;
1428    Node *contended_phi_rawmem;
1429    if (UseTLAB) {
1430      contended_region = toobig_false;
1431      contended_phi_rawmem = mem;
1432    } else {
1433      contended_region = new RegionNode(3);
1434      contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1435      // Now handle the passing-too-big test.  We fall into the contended
1436      // loop-back merge point.
1437      contended_region    ->init_req(fall_in_path, toobig_false);
1438      contended_phi_rawmem->init_req(fall_in_path, mem);
1439      transform_later(contended_region);
1440      transform_later(contended_phi_rawmem);
1441    }
1442
1443    // Load(-locked) the heap top.
1444    // See note above concerning the control input when using a TLAB
1445    Node *old_eden_top = UseTLAB
1446      ? new LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
1447      : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
1448
1449    transform_later(old_eden_top);
1450    // Add to heap top to get a new heap top
1451    Node *new_eden_top = new AddPNode(top(), old_eden_top, size_in_bytes);
1452    transform_later(new_eden_top);
1453    // Check for needing a GC; compare against heap end
1454    Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end);
1455    transform_later(needgc_cmp);
1456    Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge);
1457    transform_later(needgc_bol);
1458    IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1459    transform_later(needgc_iff);
1460
1461    // Plug the failing-heap-space-need-gc test into the slow-path region
1462    Node *needgc_true = new IfTrueNode(needgc_iff);
1463    transform_later(needgc_true);
1464    if (initial_slow_test) {
1465      slow_region->init_req(need_gc_path, needgc_true);
1466      // This completes all paths into the slow merge point
1467      transform_later(slow_region);
1468    } else {                      // No initial slow path needed!
1469      // Just fall from the need-GC path straight into the VM call.
1470      slow_region = needgc_true;
1471    }
1472    // No need for a GC.  Setup for the Store-Conditional
1473    Node *needgc_false = new IfFalseNode(needgc_iff);
1474    transform_later(needgc_false);
1475
1476    // Grab regular I/O before optional prefetch may change it.
1477    // Slow-path does no I/O so just set it to the original I/O.
1478    result_phi_i_o->init_req(slow_result_path, i_o);
1479
1480    i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1481                              old_eden_top, new_eden_top, length);
1482
1483    // Name successful fast-path variables
1484    Node* fast_oop = old_eden_top;
1485    Node* fast_oop_ctrl;
1486    Node* fast_oop_rawmem;
1487
1488    // Store (-conditional) the modified eden top back down.
1489    // StorePConditional produces flags for a test PLUS a modified raw
1490    // memory state.
1491    if (UseTLAB) {
1492      Node* store_eden_top =
1493        new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1494                              TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
1495      transform_later(store_eden_top);
1496      fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1497      fast_oop_rawmem = store_eden_top;
1498    } else {
1499      Node* store_eden_top =
1500        new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1501                                         new_eden_top, fast_oop/*old_eden_top*/);
1502      transform_later(store_eden_top);
1503      Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne);
1504      transform_later(contention_check);
1505      store_eden_top = new SCMemProjNode(store_eden_top);
1506      transform_later(store_eden_top);
1507
1508      // If not using TLABs, check to see if there was contention.
1509      IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1510      transform_later(contention_iff);
1511      Node *contention_true = new IfTrueNode(contention_iff);
1512      transform_later(contention_true);
1513      // If contention, loopback and try again.
1514      contended_region->init_req(contended_loopback_path, contention_true);
1515      contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1516
1517      // Fast-path succeeded with no contention!
1518      Node *contention_false = new IfFalseNode(contention_iff);
1519      transform_later(contention_false);
1520      fast_oop_ctrl = contention_false;
1521
1522      // Bump total allocated bytes for this thread
1523      Node* thread = new ThreadLocalNode();
1524      transform_later(thread);
1525      Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1526                                             in_bytes(JavaThread::allocated_bytes_offset()));
1527      Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1528                                    0, TypeLong::LONG, T_LONG);
1529#ifdef _LP64
1530      Node* alloc_size = size_in_bytes;
1531#else
1532      Node* alloc_size = new ConvI2LNode(size_in_bytes);
1533      transform_later(alloc_size);
1534#endif
1535      Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size);
1536      transform_later(new_alloc_bytes);
1537      fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1538                                   0, new_alloc_bytes, T_LONG);
1539    }
1540
1541    InitializeNode* init = alloc->initialization();
1542    fast_oop_rawmem = initialize_object(alloc,
1543                                        fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1544                                        klass_node, length, size_in_bytes);
1545
1546    // If initialization is performed by an array copy, any required
1547    // MemBarStoreStore was already added. If the object does not
1548    // escape no need for a MemBarStoreStore. If the object does not
1549    // escape in its initializer and memory barrier (MemBarStoreStore or
1550    // stronger) is already added at exit of initializer, also no need
1551    // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1552    // so that stores that initialize this object can't be reordered
1553    // with a subsequent store that makes this object accessible by
1554    // other threads.
1555    // Other threads include java threads and JVM internal threads
1556    // (for example concurrent GC threads). Current concurrent GC
1557    // implementation: CMS and G1 will not scan newly created object,
1558    // so it's safe to skip storestore barrier when allocation does
1559    // not escape.
1560    if (!alloc->does_not_escape_thread() &&
1561        !alloc->is_allocation_MemBar_redundant() &&
1562        (init == NULL || !init->is_complete_with_arraycopy())) {
1563      if (init == NULL || init->req() < InitializeNode::RawStores) {
1564        // No InitializeNode or no stores captured by zeroing
1565        // elimination. Simply add the MemBarStoreStore after object
1566        // initialization.
1567        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1568        transform_later(mb);
1569
1570        mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1571        mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1572        fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control);
1573        transform_later(fast_oop_ctrl);
1574        fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory);
1575        transform_later(fast_oop_rawmem);
1576      } else {
1577        // Add the MemBarStoreStore after the InitializeNode so that
1578        // all stores performing the initialization that were moved
1579        // before the InitializeNode happen before the storestore
1580        // barrier.
1581
1582        Node* init_ctrl = init->proj_out(TypeFunc::Control);
1583        Node* init_mem = init->proj_out(TypeFunc::Memory);
1584
1585        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1586        transform_later(mb);
1587
1588        Node* ctrl = new ProjNode(init,TypeFunc::Control);
1589        transform_later(ctrl);
1590        Node* mem = new ProjNode(init,TypeFunc::Memory);
1591        transform_later(mem);
1592
1593        // The MemBarStoreStore depends on control and memory coming
1594        // from the InitializeNode
1595        mb->init_req(TypeFunc::Memory, mem);
1596        mb->init_req(TypeFunc::Control, ctrl);
1597
1598        ctrl = new ProjNode(mb,TypeFunc::Control);
1599        transform_later(ctrl);
1600        mem = new ProjNode(mb,TypeFunc::Memory);
1601        transform_later(mem);
1602
1603        // All nodes that depended on the InitializeNode for control
1604        // and memory must now depend on the MemBarNode that itself
1605        // depends on the InitializeNode
1606        if (init_ctrl != NULL) {
1607          _igvn.replace_node(init_ctrl, ctrl);
1608        }
1609        if (init_mem != NULL) {
1610          _igvn.replace_node(init_mem, mem);
1611        }
1612      }
1613    }
1614
1615    if (C->env()->dtrace_extended_probes()) {
1616      // Slow-path call
1617      int size = TypeFunc::Parms + 2;
1618      CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1619                                            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1620                                            "dtrace_object_alloc",
1621                                            TypeRawPtr::BOTTOM);
1622
1623      // Get base of thread-local storage area
1624      Node* thread = new ThreadLocalNode();
1625      transform_later(thread);
1626
1627      call->init_req(TypeFunc::Parms+0, thread);
1628      call->init_req(TypeFunc::Parms+1, fast_oop);
1629      call->init_req(TypeFunc::Control, fast_oop_ctrl);
1630      call->init_req(TypeFunc::I_O    , top()); // does no i/o
1631      call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1632      call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1633      call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1634      transform_later(call);
1635      fast_oop_ctrl = new ProjNode(call,TypeFunc::Control);
1636      transform_later(fast_oop_ctrl);
1637      fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory);
1638      transform_later(fast_oop_rawmem);
1639    }
1640
1641    // Plug in the successful fast-path into the result merge point
1642    result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1643    result_phi_rawoop->init_req(fast_result_path, fast_oop);
1644    result_phi_i_o   ->init_req(fast_result_path, i_o);
1645    result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1646  } else {
1647    slow_region = ctrl;
1648    result_phi_i_o = i_o; // Rename it to use in the following code.
1649  }
1650
1651  // Generate slow-path call
1652  CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1653                               OptoRuntime::stub_name(slow_call_address),
1654                               alloc->jvms()->bci(),
1655                               TypePtr::BOTTOM);
1656  call->init_req( TypeFunc::Control, slow_region );
1657  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1658  call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1659  call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1660  call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1661
1662  call->init_req(TypeFunc::Parms+0, klass_node);
1663  if (length != NULL) {
1664    call->init_req(TypeFunc::Parms+1, length);
1665  }
1666
1667  // Copy debug information and adjust JVMState information, then replace
1668  // allocate node with the call
1669  copy_call_debug_info((CallNode *) alloc,  call);
1670  if (!always_slow) {
1671    call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1672  } else {
1673    // Hook i_o projection to avoid its elimination during allocation
1674    // replacement (when only a slow call is generated).
1675    call->set_req(TypeFunc::I_O, result_phi_i_o);
1676  }
1677  _igvn.replace_node(alloc, call);
1678  transform_later(call);
1679
1680  // Identify the output projections from the allocate node and
1681  // adjust any references to them.
1682  // The control and io projections look like:
1683  //
1684  //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1685  //  Allocate                   Catch
1686  //        ^---Proj(io) <-------+   ^---CatchProj(io)
1687  //
1688  //  We are interested in the CatchProj nodes.
1689  //
1690  extract_call_projections(call);
1691
1692  // An allocate node has separate memory projections for the uses on
1693  // the control and i_o paths. Replace the control memory projection with
1694  // result_phi_rawmem (unless we are only generating a slow call when
1695  // both memory projections are combined)
1696  if (!always_slow && _memproj_fallthrough != NULL) {
1697    for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1698      Node *use = _memproj_fallthrough->fast_out(i);
1699      _igvn.rehash_node_delayed(use);
1700      imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1701      // back up iterator
1702      --i;
1703    }
1704  }
1705  // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1706  // _memproj_catchall so we end up with a call that has only 1 memory projection.
1707  if (_memproj_catchall != NULL ) {
1708    if (_memproj_fallthrough == NULL) {
1709      _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
1710      transform_later(_memproj_fallthrough);
1711    }
1712    for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1713      Node *use = _memproj_catchall->fast_out(i);
1714      _igvn.rehash_node_delayed(use);
1715      imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1716      // back up iterator
1717      --i;
1718    }
1719    assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1720    _igvn.remove_dead_node(_memproj_catchall);
1721  }
1722
1723  // An allocate node has separate i_o projections for the uses on the control
1724  // and i_o paths. Always replace the control i_o projection with result i_o
1725  // otherwise incoming i_o become dead when only a slow call is generated
1726  // (it is different from memory projections where both projections are
1727  // combined in such case).
1728  if (_ioproj_fallthrough != NULL) {
1729    for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1730      Node *use = _ioproj_fallthrough->fast_out(i);
1731      _igvn.rehash_node_delayed(use);
1732      imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1733      // back up iterator
1734      --i;
1735    }
1736  }
1737  // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1738  // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1739  if (_ioproj_catchall != NULL ) {
1740    if (_ioproj_fallthrough == NULL) {
1741      _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
1742      transform_later(_ioproj_fallthrough);
1743    }
1744    for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1745      Node *use = _ioproj_catchall->fast_out(i);
1746      _igvn.rehash_node_delayed(use);
1747      imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1748      // back up iterator
1749      --i;
1750    }
1751    assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1752    _igvn.remove_dead_node(_ioproj_catchall);
1753  }
1754
1755  // if we generated only a slow call, we are done
1756  if (always_slow) {
1757    // Now we can unhook i_o.
1758    if (result_phi_i_o->outcnt() > 1) {
1759      call->set_req(TypeFunc::I_O, top());
1760    } else {
1761      assert(result_phi_i_o->unique_ctrl_out() == call, "");
1762      // Case of new array with negative size known during compilation.
1763      // AllocateArrayNode::Ideal() optimization disconnect unreachable
1764      // following code since call to runtime will throw exception.
1765      // As result there will be no users of i_o after the call.
1766      // Leave i_o attached to this call to avoid problems in preceding graph.
1767    }
1768    return;
1769  }
1770
1771
1772  if (_fallthroughcatchproj != NULL) {
1773    ctrl = _fallthroughcatchproj->clone();
1774    transform_later(ctrl);
1775    _igvn.replace_node(_fallthroughcatchproj, result_region);
1776  } else {
1777    ctrl = top();
1778  }
1779  Node *slow_result;
1780  if (_resproj == NULL) {
1781    // no uses of the allocation result
1782    slow_result = top();
1783  } else {
1784    slow_result = _resproj->clone();
1785    transform_later(slow_result);
1786    _igvn.replace_node(_resproj, result_phi_rawoop);
1787  }
1788
1789  // Plug slow-path into result merge point
1790  result_region    ->init_req( slow_result_path, ctrl );
1791  result_phi_rawoop->init_req( slow_result_path, slow_result);
1792  result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1793  transform_later(result_region);
1794  transform_later(result_phi_rawoop);
1795  transform_later(result_phi_rawmem);
1796  transform_later(result_phi_i_o);
1797  // This completes all paths into the result merge point
1798}
1799
1800
1801// Helper for PhaseMacroExpand::expand_allocate_common.
1802// Initializes the newly-allocated storage.
1803Node*
1804PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1805                                    Node* control, Node* rawmem, Node* object,
1806                                    Node* klass_node, Node* length,
1807                                    Node* size_in_bytes) {
1808  InitializeNode* init = alloc->initialization();
1809  // Store the klass & mark bits
1810  Node* mark_node = NULL;
1811  // For now only enable fast locking for non-array types
1812  if (UseBiasedLocking && (length == NULL)) {
1813    mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1814  } else {
1815    mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1816  }
1817  rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1818
1819  rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1820  int header_size = alloc->minimum_header_size();  // conservatively small
1821
1822  // Array length
1823  if (length != NULL) {         // Arrays need length field
1824    rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1825    // conservatively small header size:
1826    header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1827    ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1828    if (k->is_array_klass())    // we know the exact header size in most cases:
1829      header_size = Klass::layout_helper_header_size(k->layout_helper());
1830  }
1831
1832  // Clear the object body, if necessary.
1833  if (init == NULL) {
1834    // The init has somehow disappeared; be cautious and clear everything.
1835    //
1836    // This can happen if a node is allocated but an uncommon trap occurs
1837    // immediately.  In this case, the Initialize gets associated with the
1838    // trap, and may be placed in a different (outer) loop, if the Allocate
1839    // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1840    // there can be two Allocates to one Initialize.  The answer in all these
1841    // edge cases is safety first.  It is always safe to clear immediately
1842    // within an Allocate, and then (maybe or maybe not) clear some more later.
1843    if (!(UseTLAB && ZeroTLAB)) {
1844      rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1845                                            header_size, size_in_bytes,
1846                                            &_igvn);
1847    }
1848  } else {
1849    if (!init->is_complete()) {
1850      // Try to win by zeroing only what the init does not store.
1851      // We can also try to do some peephole optimizations,
1852      // such as combining some adjacent subword stores.
1853      rawmem = init->complete_stores(control, rawmem, object,
1854                                     header_size, size_in_bytes, &_igvn);
1855    }
1856    // We have no more use for this link, since the AllocateNode goes away:
1857    init->set_req(InitializeNode::RawAddress, top());
1858    // (If we keep the link, it just confuses the register allocator,
1859    // who thinks he sees a real use of the address by the membar.)
1860  }
1861
1862  return rawmem;
1863}
1864
1865// Generate prefetch instructions for next allocations.
1866Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1867                                        Node*& contended_phi_rawmem,
1868                                        Node* old_eden_top, Node* new_eden_top,
1869                                        Node* length) {
1870   enum { fall_in_path = 1, pf_path = 2 };
1871   if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1872      // Generate prefetch allocation with watermark check.
1873      // As an allocation hits the watermark, we will prefetch starting
1874      // at a "distance" away from watermark.
1875
1876      Node *pf_region = new RegionNode(3);
1877      Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1878                                                TypeRawPtr::BOTTOM );
1879      // I/O is used for Prefetch
1880      Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1881
1882      Node *thread = new ThreadLocalNode();
1883      transform_later(thread);
1884
1885      Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1886                   _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1887      transform_later(eden_pf_adr);
1888
1889      Node *old_pf_wm = new LoadPNode(needgc_false,
1890                                   contended_phi_rawmem, eden_pf_adr,
1891                                   TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1892                                   MemNode::unordered);
1893      transform_later(old_pf_wm);
1894
1895      // check against new_eden_top
1896      Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1897      transform_later(need_pf_cmp);
1898      Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1899      transform_later(need_pf_bol);
1900      IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1901                                       PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1902      transform_later(need_pf_iff);
1903
1904      // true node, add prefetchdistance
1905      Node *need_pf_true = new IfTrueNode( need_pf_iff );
1906      transform_later(need_pf_true);
1907
1908      Node *need_pf_false = new IfFalseNode( need_pf_iff );
1909      transform_later(need_pf_false);
1910
1911      Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1912                                    _igvn.MakeConX(AllocatePrefetchDistance) );
1913      transform_later(new_pf_wmt );
1914      new_pf_wmt->set_req(0, need_pf_true);
1915
1916      Node *store_new_wmt = new StorePNode(need_pf_true,
1917                                       contended_phi_rawmem, eden_pf_adr,
1918                                       TypeRawPtr::BOTTOM, new_pf_wmt,
1919                                       MemNode::unordered);
1920      transform_later(store_new_wmt);
1921
1922      // adding prefetches
1923      pf_phi_abio->init_req( fall_in_path, i_o );
1924
1925      Node *prefetch_adr;
1926      Node *prefetch;
1927      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1928      uint step_size = AllocatePrefetchStepSize;
1929      uint distance = 0;
1930
1931      for ( uint i = 0; i < lines; i++ ) {
1932        prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1933                                            _igvn.MakeConX(distance) );
1934        transform_later(prefetch_adr);
1935        prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1936        transform_later(prefetch);
1937        distance += step_size;
1938        i_o = prefetch;
1939      }
1940      pf_phi_abio->set_req( pf_path, i_o );
1941
1942      pf_region->init_req( fall_in_path, need_pf_false );
1943      pf_region->init_req( pf_path, need_pf_true );
1944
1945      pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1946      pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1947
1948      transform_later(pf_region);
1949      transform_later(pf_phi_rawmem);
1950      transform_later(pf_phi_abio);
1951
1952      needgc_false = pf_region;
1953      contended_phi_rawmem = pf_phi_rawmem;
1954      i_o = pf_phi_abio;
1955   } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1956      // Insert a prefetch instruction for each allocation.
1957      // This code is used to generate 1 prefetch instruction per cache line.
1958
1959      // Generate several prefetch instructions.
1960      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1961      uint step_size = AllocatePrefetchStepSize;
1962      uint distance = AllocatePrefetchDistance;
1963
1964      // Next cache address.
1965      Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1966                                     _igvn.MakeConX(step_size + distance));
1967      transform_later(cache_adr);
1968      cache_adr = new CastP2XNode(needgc_false, cache_adr);
1969      transform_later(cache_adr);
1970      // Address is aligned to execute prefetch to the beginning of cache line size
1971      // (it is important when BIS instruction is used on SPARC as prefetch).
1972      Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1973      cache_adr = new AndXNode(cache_adr, mask);
1974      transform_later(cache_adr);
1975      cache_adr = new CastX2PNode(cache_adr);
1976      transform_later(cache_adr);
1977
1978      // Prefetch
1979      Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1980      prefetch->set_req(0, needgc_false);
1981      transform_later(prefetch);
1982      contended_phi_rawmem = prefetch;
1983      Node *prefetch_adr;
1984      distance = step_size;
1985      for ( uint i = 1; i < lines; i++ ) {
1986        prefetch_adr = new AddPNode( cache_adr, cache_adr,
1987                                            _igvn.MakeConX(distance) );
1988        transform_later(prefetch_adr);
1989        prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1990        transform_later(prefetch);
1991        distance += step_size;
1992        contended_phi_rawmem = prefetch;
1993      }
1994   } else if( AllocatePrefetchStyle > 0 ) {
1995      // Insert a prefetch for each allocation only on the fast-path
1996      Node *prefetch_adr;
1997      Node *prefetch;
1998      // Generate several prefetch instructions.
1999      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
2000      uint step_size = AllocatePrefetchStepSize;
2001      uint distance = AllocatePrefetchDistance;
2002      for ( uint i = 0; i < lines; i++ ) {
2003        prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
2004                                            _igvn.MakeConX(distance) );
2005        transform_later(prefetch_adr);
2006        prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2007        // Do not let it float too high, since if eden_top == eden_end,
2008        // both might be null.
2009        if( i == 0 ) { // Set control for first prefetch, next follows it
2010          prefetch->init_req(0, needgc_false);
2011        }
2012        transform_later(prefetch);
2013        distance += step_size;
2014        i_o = prefetch;
2015      }
2016   }
2017   return i_o;
2018}
2019
2020
2021void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
2022  expand_allocate_common(alloc, NULL,
2023                         OptoRuntime::new_instance_Type(),
2024                         OptoRuntime::new_instance_Java());
2025}
2026
2027void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
2028  Node* length = alloc->in(AllocateNode::ALength);
2029  InitializeNode* init = alloc->initialization();
2030  Node* klass_node = alloc->in(AllocateNode::KlassNode);
2031  ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
2032  address slow_call_address;  // Address of slow call
2033  if (init != NULL && init->is_complete_with_arraycopy() &&
2034      k->is_type_array_klass()) {
2035    // Don't zero type array during slow allocation in VM since
2036    // it will be initialized later by arraycopy in compiled code.
2037    slow_call_address = OptoRuntime::new_array_nozero_Java();
2038  } else {
2039    slow_call_address = OptoRuntime::new_array_Java();
2040  }
2041  expand_allocate_common(alloc, length,
2042                         OptoRuntime::new_array_Type(),
2043                         slow_call_address);
2044}
2045
2046//-------------------mark_eliminated_box----------------------------------
2047//
2048// During EA obj may point to several objects but after few ideal graph
2049// transformations (CCP) it may point to only one non escaping object
2050// (but still using phi), corresponding locks and unlocks will be marked
2051// for elimination. Later obj could be replaced with a new node (new phi)
2052// and which does not have escape information. And later after some graph
2053// reshape other locks and unlocks (which were not marked for elimination
2054// before) are connected to this new obj (phi) but they still will not be
2055// marked for elimination since new obj has no escape information.
2056// Mark all associated (same box and obj) lock and unlock nodes for
2057// elimination if some of them marked already.
2058void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
2059  if (oldbox->as_BoxLock()->is_eliminated())
2060    return; // This BoxLock node was processed already.
2061
2062  // New implementation (EliminateNestedLocks) has separate BoxLock
2063  // node for each locked region so mark all associated locks/unlocks as
2064  // eliminated even if different objects are referenced in one locked region
2065  // (for example, OSR compilation of nested loop inside locked scope).
2066  if (EliminateNestedLocks ||
2067      oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
2068    // Box is used only in one lock region. Mark this box as eliminated.
2069    _igvn.hash_delete(oldbox);
2070    oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
2071     _igvn.hash_insert(oldbox);
2072
2073    for (uint i = 0; i < oldbox->outcnt(); i++) {
2074      Node* u = oldbox->raw_out(i);
2075      if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2076        AbstractLockNode* alock = u->as_AbstractLock();
2077        // Check lock's box since box could be referenced by Lock's debug info.
2078        if (alock->box_node() == oldbox) {
2079          // Mark eliminated all related locks and unlocks.
2080#ifdef ASSERT
2081          alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2082#endif
2083          alock->set_non_esc_obj();
2084        }
2085      }
2086    }
2087    return;
2088  }
2089
2090  // Create new "eliminated" BoxLock node and use it in monitor debug info
2091  // instead of oldbox for the same object.
2092  BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2093
2094  // Note: BoxLock node is marked eliminated only here and it is used
2095  // to indicate that all associated lock and unlock nodes are marked
2096  // for elimination.
2097  newbox->set_eliminated();
2098  transform_later(newbox);
2099
2100  // Replace old box node with new box for all users of the same object.
2101  for (uint i = 0; i < oldbox->outcnt();) {
2102    bool next_edge = true;
2103
2104    Node* u = oldbox->raw_out(i);
2105    if (u->is_AbstractLock()) {
2106      AbstractLockNode* alock = u->as_AbstractLock();
2107      if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2108        // Replace Box and mark eliminated all related locks and unlocks.
2109#ifdef ASSERT
2110        alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2111#endif
2112        alock->set_non_esc_obj();
2113        _igvn.rehash_node_delayed(alock);
2114        alock->set_box_node(newbox);
2115        next_edge = false;
2116      }
2117    }
2118    if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2119      FastLockNode* flock = u->as_FastLock();
2120      assert(flock->box_node() == oldbox, "sanity");
2121      _igvn.rehash_node_delayed(flock);
2122      flock->set_box_node(newbox);
2123      next_edge = false;
2124    }
2125
2126    // Replace old box in monitor debug info.
2127    if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2128      SafePointNode* sfn = u->as_SafePoint();
2129      JVMState* youngest_jvms = sfn->jvms();
2130      int max_depth = youngest_jvms->depth();
2131      for (int depth = 1; depth <= max_depth; depth++) {
2132        JVMState* jvms = youngest_jvms->of_depth(depth);
2133        int num_mon  = jvms->nof_monitors();
2134        // Loop over monitors
2135        for (int idx = 0; idx < num_mon; idx++) {
2136          Node* obj_node = sfn->monitor_obj(jvms, idx);
2137          Node* box_node = sfn->monitor_box(jvms, idx);
2138          if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2139            int j = jvms->monitor_box_offset(idx);
2140            _igvn.replace_input_of(u, j, newbox);
2141            next_edge = false;
2142          }
2143        }
2144      }
2145    }
2146    if (next_edge) i++;
2147  }
2148}
2149
2150//-----------------------mark_eliminated_locking_nodes-----------------------
2151void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2152  if (EliminateNestedLocks) {
2153    if (alock->is_nested()) {
2154       assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2155       return;
2156    } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2157      // Only Lock node has JVMState needed here.
2158      // Not that preceding claim is documented anywhere else.
2159      if (alock->jvms() != NULL) {
2160        if (alock->as_Lock()->is_nested_lock_region()) {
2161          // Mark eliminated related nested locks and unlocks.
2162          Node* obj = alock->obj_node();
2163          BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2164          assert(!box_node->is_eliminated(), "should not be marked yet");
2165          // Note: BoxLock node is marked eliminated only here
2166          // and it is used to indicate that all associated lock
2167          // and unlock nodes are marked for elimination.
2168          box_node->set_eliminated(); // Box's hash is always NO_HASH here
2169          for (uint i = 0; i < box_node->outcnt(); i++) {
2170            Node* u = box_node->raw_out(i);
2171            if (u->is_AbstractLock()) {
2172              alock = u->as_AbstractLock();
2173              if (alock->box_node() == box_node) {
2174                // Verify that this Box is referenced only by related locks.
2175                assert(alock->obj_node()->eqv_uncast(obj), "");
2176                // Mark all related locks and unlocks.
2177#ifdef ASSERT
2178                alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2179#endif
2180                alock->set_nested();
2181              }
2182            }
2183          }
2184        } else {
2185#ifdef ASSERT
2186          alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2187          if (C->log() != NULL)
2188            alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2189#endif
2190        }
2191      }
2192      return;
2193    }
2194    // Process locks for non escaping object
2195    assert(alock->is_non_esc_obj(), "");
2196  } // EliminateNestedLocks
2197
2198  if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2199    // Look for all locks of this object and mark them and
2200    // corresponding BoxLock nodes as eliminated.
2201    Node* obj = alock->obj_node();
2202    for (uint j = 0; j < obj->outcnt(); j++) {
2203      Node* o = obj->raw_out(j);
2204      if (o->is_AbstractLock() &&
2205          o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2206        alock = o->as_AbstractLock();
2207        Node* box = alock->box_node();
2208        // Replace old box node with new eliminated box for all users
2209        // of the same object and mark related locks as eliminated.
2210        mark_eliminated_box(box, obj);
2211      }
2212    }
2213  }
2214}
2215
2216// we have determined that this lock/unlock can be eliminated, we simply
2217// eliminate the node without expanding it.
2218//
2219// Note:  The membar's associated with the lock/unlock are currently not
2220//        eliminated.  This should be investigated as a future enhancement.
2221//
2222bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2223
2224  if (!alock->is_eliminated()) {
2225    return false;
2226  }
2227#ifdef ASSERT
2228  if (!alock->is_coarsened()) {
2229    // Check that new "eliminated" BoxLock node is created.
2230    BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2231    assert(oldbox->is_eliminated(), "should be done already");
2232  }
2233#endif
2234
2235  alock->log_lock_optimization(C, "eliminate_lock");
2236
2237#ifndef PRODUCT
2238  if (PrintEliminateLocks) {
2239    if (alock->is_Lock()) {
2240      tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2241    } else {
2242      tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2243    }
2244  }
2245#endif
2246
2247  Node* mem  = alock->in(TypeFunc::Memory);
2248  Node* ctrl = alock->in(TypeFunc::Control);
2249
2250  extract_call_projections(alock);
2251  // There are 2 projections from the lock.  The lock node will
2252  // be deleted when its last use is subsumed below.
2253  assert(alock->outcnt() == 2 &&
2254         _fallthroughproj != NULL &&
2255         _memproj_fallthrough != NULL,
2256         "Unexpected projections from Lock/Unlock");
2257
2258  Node* fallthroughproj = _fallthroughproj;
2259  Node* memproj_fallthrough = _memproj_fallthrough;
2260
2261  // The memory projection from a lock/unlock is RawMem
2262  // The input to a Lock is merged memory, so extract its RawMem input
2263  // (unless the MergeMem has been optimized away.)
2264  if (alock->is_Lock()) {
2265    // Seach for MemBarAcquireLock node and delete it also.
2266    MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2267    assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2268    Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2269    Node* memproj = membar->proj_out(TypeFunc::Memory);
2270    _igvn.replace_node(ctrlproj, fallthroughproj);
2271    _igvn.replace_node(memproj, memproj_fallthrough);
2272
2273    // Delete FastLock node also if this Lock node is unique user
2274    // (a loop peeling may clone a Lock node).
2275    Node* flock = alock->as_Lock()->fastlock_node();
2276    if (flock->outcnt() == 1) {
2277      assert(flock->unique_out() == alock, "sanity");
2278      _igvn.replace_node(flock, top());
2279    }
2280  }
2281
2282  // Seach for MemBarReleaseLock node and delete it also.
2283  if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
2284      ctrl->in(0)->is_MemBar()) {
2285    MemBarNode* membar = ctrl->in(0)->as_MemBar();
2286    assert(membar->Opcode() == Op_MemBarReleaseLock &&
2287           mem->is_Proj() && membar == mem->in(0), "");
2288    _igvn.replace_node(fallthroughproj, ctrl);
2289    _igvn.replace_node(memproj_fallthrough, mem);
2290    fallthroughproj = ctrl;
2291    memproj_fallthrough = mem;
2292    ctrl = membar->in(TypeFunc::Control);
2293    mem  = membar->in(TypeFunc::Memory);
2294  }
2295
2296  _igvn.replace_node(fallthroughproj, ctrl);
2297  _igvn.replace_node(memproj_fallthrough, mem);
2298  return true;
2299}
2300
2301
2302//------------------------------expand_lock_node----------------------
2303void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2304
2305  Node* ctrl = lock->in(TypeFunc::Control);
2306  Node* mem = lock->in(TypeFunc::Memory);
2307  Node* obj = lock->obj_node();
2308  Node* box = lock->box_node();
2309  Node* flock = lock->fastlock_node();
2310
2311  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2312
2313  // Make the merge point
2314  Node *region;
2315  Node *mem_phi;
2316  Node *slow_path;
2317
2318  if (UseOptoBiasInlining) {
2319    /*
2320     *  See the full description in MacroAssembler::biased_locking_enter().
2321     *
2322     *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2323     *    // The object is biased.
2324     *    proto_node = klass->prototype_header;
2325     *    o_node = thread | proto_node;
2326     *    x_node = o_node ^ mark_word;
2327     *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2328     *      // Done.
2329     *    } else {
2330     *      if( (x_node & biased_lock_mask) != 0 ) {
2331     *        // The klass's prototype header is no longer biased.
2332     *        cas(&mark_word, mark_word, proto_node)
2333     *        goto cas_lock;
2334     *      } else {
2335     *        // The klass's prototype header is still biased.
2336     *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2337     *          old = mark_word;
2338     *          new = o_node;
2339     *        } else {
2340     *          // Different thread or anonymous biased.
2341     *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2342     *          new = thread | old;
2343     *        }
2344     *        // Try to rebias.
2345     *        if( cas(&mark_word, old, new) == 0 ) {
2346     *          // Done.
2347     *        } else {
2348     *          goto slow_path; // Failed.
2349     *        }
2350     *      }
2351     *    }
2352     *  } else {
2353     *    // The object is not biased.
2354     *    cas_lock:
2355     *    if( FastLock(obj) == 0 ) {
2356     *      // Done.
2357     *    } else {
2358     *      slow_path:
2359     *      OptoRuntime::complete_monitor_locking_Java(obj);
2360     *    }
2361     *  }
2362     */
2363
2364    region  = new RegionNode(5);
2365    // create a Phi for the memory state
2366    mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2367
2368    Node* fast_lock_region  = new RegionNode(3);
2369    Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2370
2371    // First, check mark word for the biased lock pattern.
2372    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2373
2374    // Get fast path - mark word has the biased lock pattern.
2375    ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2376                         markOopDesc::biased_lock_mask_in_place,
2377                         markOopDesc::biased_lock_pattern, true);
2378    // fast_lock_region->in(1) is set to slow path.
2379    fast_lock_mem_phi->init_req(1, mem);
2380
2381    // Now check that the lock is biased to the current thread and has
2382    // the same epoch and bias as Klass::_prototype_header.
2383
2384    // Special-case a fresh allocation to avoid building nodes:
2385    Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2386    if (klass_node == NULL) {
2387      Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2388      klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
2389#ifdef _LP64
2390      if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2391        assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2392        klass_node->in(1)->init_req(0, ctrl);
2393      } else
2394#endif
2395      klass_node->init_req(0, ctrl);
2396    }
2397    Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2398
2399    Node* thread = transform_later(new ThreadLocalNode());
2400    Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2401    Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
2402    Node* x_node = transform_later(new XorXNode(o_node, mark_node));
2403
2404    // Get slow path - mark word does NOT match the value.
2405    Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2406                                      (~markOopDesc::age_mask_in_place), 0);
2407    // region->in(3) is set to fast path - the object is biased to the current thread.
2408    mem_phi->init_req(3, mem);
2409
2410
2411    // Mark word does NOT match the value (thread | Klass::_prototype_header).
2412
2413
2414    // First, check biased pattern.
2415    // Get fast path - _prototype_header has the same biased lock pattern.
2416    ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2417                          markOopDesc::biased_lock_mask_in_place, 0, true);
2418
2419    not_biased_ctrl = fast_lock_region->in(2); // Slow path
2420    // fast_lock_region->in(2) - the prototype header is no longer biased
2421    // and we have to revoke the bias on this object.
2422    // We are going to try to reset the mark of this object to the prototype
2423    // value and fall through to the CAS-based locking scheme.
2424    Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2425    Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
2426                                          proto_node, mark_node);
2427    transform_later(cas);
2428    Node* proj = transform_later(new SCMemProjNode(cas));
2429    fast_lock_mem_phi->init_req(2, proj);
2430
2431
2432    // Second, check epoch bits.
2433    Node* rebiased_region  = new RegionNode(3);
2434    Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
2435    Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
2436
2437    // Get slow path - mark word does NOT match epoch bits.
2438    Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2439                                      markOopDesc::epoch_mask_in_place, 0);
2440    // The epoch of the current bias is not valid, attempt to rebias the object
2441    // toward the current thread.
2442    rebiased_region->init_req(2, epoch_ctrl);
2443    old_phi->init_req(2, mark_node);
2444    new_phi->init_req(2, o_node);
2445
2446    // rebiased_region->in(1) is set to fast path.
2447    // The epoch of the current bias is still valid but we know
2448    // nothing about the owner; it might be set or it might be clear.
2449    Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2450                             markOopDesc::age_mask_in_place |
2451                             markOopDesc::epoch_mask_in_place);
2452    Node* old = transform_later(new AndXNode(mark_node, cmask));
2453    cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2454    Node* new_mark = transform_later(new OrXNode(cast_thread, old));
2455    old_phi->init_req(1, old);
2456    new_phi->init_req(1, new_mark);
2457
2458    transform_later(rebiased_region);
2459    transform_later(old_phi);
2460    transform_later(new_phi);
2461
2462    // Try to acquire the bias of the object using an atomic operation.
2463    // If this fails we will go in to the runtime to revoke the object's bias.
2464    cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
2465    transform_later(cas);
2466    proj = transform_later(new SCMemProjNode(cas));
2467
2468    // Get slow path - Failed to CAS.
2469    not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2470    mem_phi->init_req(4, proj);
2471    // region->in(4) is set to fast path - the object is rebiased to the current thread.
2472
2473    // Failed to CAS.
2474    slow_path  = new RegionNode(3);
2475    Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2476
2477    slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2478    slow_mem->init_req(1, proj);
2479
2480    // Call CAS-based locking scheme (FastLock node).
2481
2482    transform_later(fast_lock_region);
2483    transform_later(fast_lock_mem_phi);
2484
2485    // Get slow path - FastLock failed to lock the object.
2486    ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2487    mem_phi->init_req(2, fast_lock_mem_phi);
2488    // region->in(2) is set to fast path - the object is locked to the current thread.
2489
2490    slow_path->init_req(2, ctrl); // Capture slow-control
2491    slow_mem->init_req(2, fast_lock_mem_phi);
2492
2493    transform_later(slow_path);
2494    transform_later(slow_mem);
2495    // Reset lock's memory edge.
2496    lock->set_req(TypeFunc::Memory, slow_mem);
2497
2498  } else {
2499    region  = new RegionNode(3);
2500    // create a Phi for the memory state
2501    mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2502
2503    // Optimize test; set region slot 2
2504    slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2505    mem_phi->init_req(2, mem);
2506  }
2507
2508  // Make slow path call
2509  CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2510                                  OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
2511                                  obj, box, NULL);
2512
2513  extract_call_projections(call);
2514
2515  // Slow path can only throw asynchronous exceptions, which are always
2516  // de-opted.  So the compiler thinks the slow-call can never throw an
2517  // exception.  If it DOES throw an exception we would need the debug
2518  // info removed first (since if it throws there is no monitor).
2519  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2520           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2521
2522  // Capture slow path
2523  // disconnect fall-through projection from call and create a new one
2524  // hook up users of fall-through projection to region
2525  Node *slow_ctrl = _fallthroughproj->clone();
2526  transform_later(slow_ctrl);
2527  _igvn.hash_delete(_fallthroughproj);
2528  _fallthroughproj->disconnect_inputs(NULL, C);
2529  region->init_req(1, slow_ctrl);
2530  // region inputs are now complete
2531  transform_later(region);
2532  _igvn.replace_node(_fallthroughproj, region);
2533
2534  Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2535  mem_phi->init_req(1, memproj );
2536  transform_later(mem_phi);
2537  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2538}
2539
2540//------------------------------expand_unlock_node----------------------
2541void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2542
2543  Node* ctrl = unlock->in(TypeFunc::Control);
2544  Node* mem = unlock->in(TypeFunc::Memory);
2545  Node* obj = unlock->obj_node();
2546  Node* box = unlock->box_node();
2547
2548  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2549
2550  // No need for a null check on unlock
2551
2552  // Make the merge point
2553  Node *region;
2554  Node *mem_phi;
2555
2556  if (UseOptoBiasInlining) {
2557    // Check for biased locking unlock case, which is a no-op.
2558    // See the full description in MacroAssembler::biased_locking_exit().
2559    region  = new RegionNode(4);
2560    // create a Phi for the memory state
2561    mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2562    mem_phi->init_req(3, mem);
2563
2564    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2565    ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2566                         markOopDesc::biased_lock_mask_in_place,
2567                         markOopDesc::biased_lock_pattern);
2568  } else {
2569    region  = new RegionNode(3);
2570    // create a Phi for the memory state
2571    mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2572  }
2573
2574  FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2575  funlock = transform_later( funlock )->as_FastUnlock();
2576  // Optimize test; set region slot 2
2577  Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2578  Node *thread = transform_later(new ThreadLocalNode());
2579
2580  CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2581                                  CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2582                                  "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2583
2584  extract_call_projections(call);
2585
2586  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2587           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2588
2589  // No exceptions for unlocking
2590  // Capture slow path
2591  // disconnect fall-through projection from call and create a new one
2592  // hook up users of fall-through projection to region
2593  Node *slow_ctrl = _fallthroughproj->clone();
2594  transform_later(slow_ctrl);
2595  _igvn.hash_delete(_fallthroughproj);
2596  _fallthroughproj->disconnect_inputs(NULL, C);
2597  region->init_req(1, slow_ctrl);
2598  // region inputs are now complete
2599  transform_later(region);
2600  _igvn.replace_node(_fallthroughproj, region);
2601
2602  Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2603  mem_phi->init_req(1, memproj );
2604  mem_phi->init_req(2, mem);
2605  transform_later(mem_phi);
2606  _igvn.replace_node(_memproj_fallthrough, mem_phi);
2607}
2608
2609//---------------------------eliminate_macro_nodes----------------------
2610// Eliminate scalar replaced allocations and associated locks.
2611void PhaseMacroExpand::eliminate_macro_nodes() {
2612  if (C->macro_count() == 0)
2613    return;
2614
2615  // First, attempt to eliminate locks
2616  int cnt = C->macro_count();
2617  for (int i=0; i < cnt; i++) {
2618    Node *n = C->macro_node(i);
2619    if (n->is_AbstractLock()) { // Lock and Unlock nodes
2620      // Before elimination mark all associated (same box and obj)
2621      // lock and unlock nodes.
2622      mark_eliminated_locking_nodes(n->as_AbstractLock());
2623    }
2624  }
2625  bool progress = true;
2626  while (progress) {
2627    progress = false;
2628    for (int i = C->macro_count(); i > 0; i--) {
2629      Node * n = C->macro_node(i-1);
2630      bool success = false;
2631      debug_only(int old_macro_count = C->macro_count(););
2632      if (n->is_AbstractLock()) {
2633        success = eliminate_locking_node(n->as_AbstractLock());
2634      }
2635      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2636      progress = progress || success;
2637    }
2638  }
2639  // Next, attempt to eliminate allocations
2640  _has_locks = false;
2641  progress = true;
2642  while (progress) {
2643    progress = false;
2644    for (int i = C->macro_count(); i > 0; i--) {
2645      Node * n = C->macro_node(i-1);
2646      bool success = false;
2647      debug_only(int old_macro_count = C->macro_count(););
2648      switch (n->class_id()) {
2649      case Node::Class_Allocate:
2650      case Node::Class_AllocateArray:
2651        success = eliminate_allocate_node(n->as_Allocate());
2652        break;
2653      case Node::Class_CallStaticJava:
2654        success = eliminate_boxing_node(n->as_CallStaticJava());
2655        break;
2656      case Node::Class_Lock:
2657      case Node::Class_Unlock:
2658        assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2659        _has_locks = true;
2660        break;
2661      case Node::Class_ArrayCopy:
2662        break;
2663      default:
2664        assert(n->Opcode() == Op_LoopLimit ||
2665               n->Opcode() == Op_Opaque1   ||
2666               n->Opcode() == Op_Opaque2   ||
2667               n->Opcode() == Op_Opaque3   ||
2668               n->Opcode() == Op_Opaque4, "unknown node type in macro list");
2669      }
2670      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2671      progress = progress || success;
2672    }
2673  }
2674}
2675
2676//------------------------------expand_macro_nodes----------------------
2677//  Returns true if a failure occurred.
2678bool PhaseMacroExpand::expand_macro_nodes() {
2679  // Last attempt to eliminate macro nodes.
2680  eliminate_macro_nodes();
2681
2682  // Make sure expansion will not cause node limit to be exceeded.
2683  // Worst case is a macro node gets expanded into about 200 nodes.
2684  // Allow 50% more for optimization.
2685  if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) )
2686    return true;
2687
2688  // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2689  bool progress = true;
2690  while (progress) {
2691    progress = false;
2692    for (int i = C->macro_count(); i > 0; i--) {
2693      Node * n = C->macro_node(i-1);
2694      bool success = false;
2695      debug_only(int old_macro_count = C->macro_count(););
2696      if (n->Opcode() == Op_LoopLimit) {
2697        // Remove it from macro list and put on IGVN worklist to optimize.
2698        C->remove_macro_node(n);
2699        _igvn._worklist.push(n);
2700        success = true;
2701      } else if (n->Opcode() == Op_CallStaticJava) {
2702        // Remove it from macro list and put on IGVN worklist to optimize.
2703        C->remove_macro_node(n);
2704        _igvn._worklist.push(n);
2705        success = true;
2706      } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2707        _igvn.replace_node(n, n->in(1));
2708        success = true;
2709#if INCLUDE_RTM_OPT
2710      } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2711        assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2712        assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2713        Node* cmp = n->unique_out();
2714#ifdef ASSERT
2715        // Validate graph.
2716        assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2717        BoolNode* bol = cmp->unique_out()->as_Bool();
2718        assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2719               (bol->_test._test == BoolTest::ne), "");
2720        IfNode* ifn = bol->unique_out()->as_If();
2721        assert((ifn->outcnt() == 2) &&
2722               ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
2723#endif
2724        Node* repl = n->in(1);
2725        if (!_has_locks) {
2726          // Remove RTM state check if there are no locks in the code.
2727          // Replace input to compare the same value.
2728          repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
2729        }
2730        _igvn.replace_node(n, repl);
2731        success = true;
2732#endif
2733      } else if (n->Opcode() == Op_Opaque4) {
2734        _igvn.replace_node(n, n->in(2));
2735        success = true;
2736      }
2737      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2738      progress = progress || success;
2739    }
2740  }
2741
2742  // expand arraycopy "macro" nodes first
2743  // For ReduceBulkZeroing, we must first process all arraycopy nodes
2744  // before the allocate nodes are expanded.
2745  int macro_idx = C->macro_count() - 1;
2746  while (macro_idx >= 0) {
2747    Node * n = C->macro_node(macro_idx);
2748    assert(n->is_macro(), "only macro nodes expected here");
2749    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2750      // node is unreachable, so don't try to expand it
2751      C->remove_macro_node(n);
2752    } else if (n->is_ArrayCopy()){
2753      int macro_count = C->macro_count();
2754      expand_arraycopy_node(n->as_ArrayCopy());
2755      assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2756    }
2757    if (C->failing())  return true;
2758    macro_idx --;
2759  }
2760
2761  // expand "macro" nodes
2762  // nodes are removed from the macro list as they are processed
2763  while (C->macro_count() > 0) {
2764    int macro_count = C->macro_count();
2765    Node * n = C->macro_node(macro_count-1);
2766    assert(n->is_macro(), "only macro nodes expected here");
2767    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2768      // node is unreachable, so don't try to expand it
2769      C->remove_macro_node(n);
2770      continue;
2771    }
2772    switch (n->class_id()) {
2773    case Node::Class_Allocate:
2774      expand_allocate(n->as_Allocate());
2775      break;
2776    case Node::Class_AllocateArray:
2777      expand_allocate_array(n->as_AllocateArray());
2778      break;
2779    case Node::Class_Lock:
2780      expand_lock_node(n->as_Lock());
2781      break;
2782    case Node::Class_Unlock:
2783      expand_unlock_node(n->as_Unlock());
2784      break;
2785    default:
2786      assert(false, "unknown node type in macro list");
2787    }
2788    assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2789    if (C->failing())  return true;
2790  }
2791
2792  _igvn.set_delay_transform(false);
2793  _igvn.optimize();
2794  if (C->failing())  return true;
2795  return false;
2796}
2797