loopTransform.cpp revision 420:a1980da045cc
1/*
2 * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_loopTransform.cpp.incl"
27
28//------------------------------is_loop_exit-----------------------------------
29// Given an IfNode, return the loop-exiting projection or NULL if both
30// arms remain in the loop.
31Node *IdealLoopTree::is_loop_exit(Node *iff) const {
32  if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
33  PhaseIdealLoop *phase = _phase;
34  // Test is an IfNode, has 2 projections.  If BOTH are in the loop
35  // we need loop unswitching instead of peeling.
36  if( !is_member(phase->get_loop( iff->raw_out(0) )) )
37    return iff->raw_out(0);
38  if( !is_member(phase->get_loop( iff->raw_out(1) )) )
39    return iff->raw_out(1);
40  return NULL;
41}
42
43
44//=============================================================================
45
46
47//------------------------------record_for_igvn----------------------------
48// Put loop body on igvn work list
49void IdealLoopTree::record_for_igvn() {
50  for( uint i = 0; i < _body.size(); i++ ) {
51    Node *n = _body.at(i);
52    _phase->_igvn._worklist.push(n);
53  }
54}
55
56//------------------------------compute_profile_trip_cnt----------------------------
57// Compute loop trip count from profile data as
58//    (backedge_count + loop_exit_count) / loop_exit_count
59void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
60  if (!_head->is_CountedLoop()) {
61    return;
62  }
63  CountedLoopNode* head = _head->as_CountedLoop();
64  if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
65    return; // Already computed
66  }
67  float trip_cnt = (float)max_jint; // default is big
68
69  Node* back = head->in(LoopNode::LoopBackControl);
70  while (back != head) {
71    if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
72        back->in(0) &&
73        back->in(0)->is_If() &&
74        back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
75        back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
76      break;
77    }
78    back = phase->idom(back);
79  }
80  if (back != head) {
81    assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
82           back->in(0), "if-projection exists");
83    IfNode* back_if = back->in(0)->as_If();
84    float loop_back_cnt = back_if->_fcnt * back_if->_prob;
85
86    // Now compute a loop exit count
87    float loop_exit_cnt = 0.0f;
88    for( uint i = 0; i < _body.size(); i++ ) {
89      Node *n = _body[i];
90      if( n->is_If() ) {
91        IfNode *iff = n->as_If();
92        if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
93          Node *exit = is_loop_exit(iff);
94          if( exit ) {
95            float exit_prob = iff->_prob;
96            if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
97            if (exit_prob > PROB_MIN) {
98              float exit_cnt = iff->_fcnt * exit_prob;
99              loop_exit_cnt += exit_cnt;
100            }
101          }
102        }
103      }
104    }
105    if (loop_exit_cnt > 0.0f) {
106      trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
107    } else {
108      // No exit count so use
109      trip_cnt = loop_back_cnt;
110    }
111  }
112#ifndef PRODUCT
113  if (TraceProfileTripCount) {
114    tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
115  }
116#endif
117  head->set_profile_trip_cnt(trip_cnt);
118}
119
120//---------------------is_invariant_addition-----------------------------
121// Return nonzero index of invariant operand for an Add or Sub
122// of (nonconstant) invariant and variant values. Helper for reassoicate_invariants.
123int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
124  int op = n->Opcode();
125  if (op == Op_AddI || op == Op_SubI) {
126    bool in1_invar = this->is_invariant(n->in(1));
127    bool in2_invar = this->is_invariant(n->in(2));
128    if (in1_invar && !in2_invar) return 1;
129    if (!in1_invar && in2_invar) return 2;
130  }
131  return 0;
132}
133
134//---------------------reassociate_add_sub-----------------------------
135// Reassociate invariant add and subtract expressions:
136//
137// inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
138// (x + inv2) + inv1  =>  ( inv1 + inv2) + x
139// inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
140// inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
141// (x + inv2) - inv1  =>  (-inv1 + inv2) + x
142// (x - inv2) + inv1  =>  ( inv1 - inv2) + x
143// (x - inv2) - inv1  =>  (-inv1 - inv2) + x
144// inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
145// inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
146// (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
147// (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
148// inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
149//
150Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
151  if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
152  if (is_invariant(n1)) return NULL;
153  int inv1_idx = is_invariant_addition(n1, phase);
154  if (!inv1_idx) return NULL;
155  // Don't mess with add of constant (igvn moves them to expression tree root.)
156  if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
157  Node* inv1 = n1->in(inv1_idx);
158  Node* n2 = n1->in(3 - inv1_idx);
159  int inv2_idx = is_invariant_addition(n2, phase);
160  if (!inv2_idx) return NULL;
161  Node* x    = n2->in(3 - inv2_idx);
162  Node* inv2 = n2->in(inv2_idx);
163
164  bool neg_x    = n2->is_Sub() && inv2_idx == 1;
165  bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
166  bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
167  if (n1->is_Sub() && inv1_idx == 1) {
168    neg_x    = !neg_x;
169    neg_inv2 = !neg_inv2;
170  }
171  Node* inv1_c = phase->get_ctrl(inv1);
172  Node* inv2_c = phase->get_ctrl(inv2);
173  Node* n_inv1;
174  if (neg_inv1) {
175    Node *zero = phase->_igvn.intcon(0);
176    phase->set_ctrl(zero, phase->C->root());
177    n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
178    phase->register_new_node(n_inv1, inv1_c);
179  } else {
180    n_inv1 = inv1;
181  }
182  Node* inv;
183  if (neg_inv2) {
184    inv = new (phase->C, 3) SubINode(n_inv1, inv2);
185  } else {
186    inv = new (phase->C, 3) AddINode(n_inv1, inv2);
187  }
188  phase->register_new_node(inv, phase->get_early_ctrl(inv));
189
190  Node* addx;
191  if (neg_x) {
192    addx = new (phase->C, 3) SubINode(inv, x);
193  } else {
194    addx = new (phase->C, 3) AddINode(x, inv);
195  }
196  phase->register_new_node(addx, phase->get_ctrl(x));
197  phase->_igvn.hash_delete(n1);
198  phase->_igvn.subsume_node(n1, addx);
199  return addx;
200}
201
202//---------------------reassociate_invariants-----------------------------
203// Reassociate invariant expressions:
204void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
205  for (int i = _body.size() - 1; i >= 0; i--) {
206    Node *n = _body.at(i);
207    for (int j = 0; j < 5; j++) {
208      Node* nn = reassociate_add_sub(n, phase);
209      if (nn == NULL) break;
210      n = nn; // again
211    };
212  }
213}
214
215//------------------------------policy_peeling---------------------------------
216// Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
217// make some loop-invariant test (usually a null-check) happen before the loop.
218bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
219  Node *test = ((IdealLoopTree*)this)->tail();
220  int  body_size = ((IdealLoopTree*)this)->_body.size();
221  int  uniq      = phase->C->unique();
222  // Peeling does loop cloning which can result in O(N^2) node construction
223  if( body_size > 255 /* Prevent overflow for large body_size */
224      || (body_size * body_size + uniq > MaxNodeLimit) ) {
225    return false;           // too large to safely clone
226  }
227  while( test != _head ) {      // Scan till run off top of loop
228    if( test->is_If() ) {       // Test?
229      Node *ctrl = phase->get_ctrl(test->in(1));
230      if (ctrl->is_top())
231        return false;           // Found dead test on live IF?  No peeling!
232      // Standard IF only has one input value to check for loop invariance
233      assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
234      // Condition is not a member of this loop?
235      if( !is_member(phase->get_loop(ctrl)) &&
236          is_loop_exit(test) )
237        return true;            // Found reason to peel!
238    }
239    // Walk up dominators to loop _head looking for test which is
240    // executed on every path thru loop.
241    test = phase->idom(test);
242  }
243  return false;
244}
245
246//------------------------------peeled_dom_test_elim---------------------------
247// If we got the effect of peeling, either by actually peeling or by making
248// a pre-loop which must execute at least once, we can remove all
249// loop-invariant dominated tests in the main body.
250void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
251  bool progress = true;
252  while( progress ) {
253    progress = false;           // Reset for next iteration
254    Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
255    Node *test = prev->in(0);
256    while( test != loop->_head ) { // Scan till run off top of loop
257
258      int p_op = prev->Opcode();
259      if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
260          test->is_If() &&      // Test?
261          !test->in(1)->is_Con() && // And not already obvious?
262          // Condition is not a member of this loop?
263          !loop->is_member(get_loop(get_ctrl(test->in(1))))){
264        // Walk loop body looking for instances of this test
265        for( uint i = 0; i < loop->_body.size(); i++ ) {
266          Node *n = loop->_body.at(i);
267          if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
268            // IfNode was dominated by version in peeled loop body
269            progress = true;
270            dominated_by( old_new[prev->_idx], n );
271          }
272        }
273      }
274      prev = test;
275      test = idom(test);
276    } // End of scan tests in loop
277
278  } // End of while( progress )
279}
280
281//------------------------------do_peeling-------------------------------------
282// Peel the first iteration of the given loop.
283// Step 1: Clone the loop body.  The clone becomes the peeled iteration.
284//         The pre-loop illegally has 2 control users (old & new loops).
285// Step 2: Make the old-loop fall-in edges point to the peeled iteration.
286//         Do this by making the old-loop fall-in edges act as if they came
287//         around the loopback from the prior iteration (follow the old-loop
288//         backedges) and then map to the new peeled iteration.  This leaves
289//         the pre-loop with only 1 user (the new peeled iteration), but the
290//         peeled-loop backedge has 2 users.
291// Step 3: Cut the backedge on the clone (so its not a loop) and remove the
292//         extra backedge user.
293void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
294
295  C->set_major_progress();
296  // Peeling a 'main' loop in a pre/main/post situation obfuscates the
297  // 'pre' loop from the main and the 'pre' can no longer have it's
298  // iterations adjusted.  Therefore, we need to declare this loop as
299  // no longer a 'main' loop; it will need new pre and post loops before
300  // we can do further RCE.
301  Node *h = loop->_head;
302  if( h->is_CountedLoop() ) {
303    CountedLoopNode *cl = h->as_CountedLoop();
304    assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
305    cl->set_trip_count(cl->trip_count() - 1);
306    if( cl->is_main_loop() ) {
307      cl->set_normal_loop();
308#ifndef PRODUCT
309      if( PrintOpto && VerifyLoopOptimizations ) {
310        tty->print("Peeling a 'main' loop; resetting to 'normal' ");
311        loop->dump_head();
312      }
313#endif
314    }
315  }
316
317  // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
318  //         The pre-loop illegally has 2 control users (old & new loops).
319  clone_loop( loop, old_new, dom_depth(loop->_head) );
320
321
322  // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
323  //         Do this by making the old-loop fall-in edges act as if they came
324  //         around the loopback from the prior iteration (follow the old-loop
325  //         backedges) and then map to the new peeled iteration.  This leaves
326  //         the pre-loop with only 1 user (the new peeled iteration), but the
327  //         peeled-loop backedge has 2 users.
328  for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
329    Node* old = loop->_head->fast_out(j);
330    if( old->in(0) == loop->_head && old->req() == 3 &&
331        (old->is_Loop() || old->is_Phi()) ) {
332      Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
333      if( !new_exit_value )     // Backedge value is ALSO loop invariant?
334        // Then loop body backedge value remains the same.
335        new_exit_value = old->in(LoopNode::LoopBackControl);
336      _igvn.hash_delete(old);
337      old->set_req(LoopNode::EntryControl, new_exit_value);
338    }
339  }
340
341
342  // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
343  //         extra backedge user.
344  Node *nnn = old_new[loop->_head->_idx];
345  _igvn.hash_delete(nnn);
346  nnn->set_req(LoopNode::LoopBackControl, C->top());
347  for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
348    Node* use = nnn->fast_out(j2);
349    if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
350      _igvn.hash_delete(use);
351      use->set_req(LoopNode::LoopBackControl, C->top());
352    }
353  }
354
355
356  // Step 4: Correct dom-depth info.  Set to loop-head depth.
357  int dd = dom_depth(loop->_head);
358  set_idom(loop->_head, loop->_head->in(1), dd);
359  for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
360    Node *old = loop->_body.at(j3);
361    Node *nnn = old_new[old->_idx];
362    if (!has_ctrl(nnn))
363      set_idom(nnn, idom(nnn), dd-1);
364    // While we're at it, remove any SafePoints from the peeled code
365    if( old->Opcode() == Op_SafePoint ) {
366      Node *nnn = old_new[old->_idx];
367      lazy_replace(nnn,nnn->in(TypeFunc::Control));
368    }
369  }
370
371  // Now force out all loop-invariant dominating tests.  The optimizer
372  // finds some, but we _know_ they are all useless.
373  peeled_dom_test_elim(loop,old_new);
374
375  loop->record_for_igvn();
376}
377
378//------------------------------policy_maximally_unroll------------------------
379// Return exact loop trip count, or 0 if not maximally unrolling
380bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
381  CountedLoopNode *cl = _head->as_CountedLoop();
382  assert( cl->is_normal_loop(), "" );
383
384  Node *init_n = cl->init_trip();
385  Node *limit_n = cl->limit();
386
387  // Non-constant bounds
388  if( init_n   == NULL || !init_n->is_Con()  ||
389      limit_n  == NULL || !limit_n->is_Con() ||
390      // protect against stride not being a constant
391      !cl->stride_is_con() ) {
392    return false;
393  }
394  int init   = init_n->get_int();
395  int limit  = limit_n->get_int();
396  int span   = limit - init;
397  int stride = cl->stride_con();
398
399  if (init >= limit || stride > span) {
400    // return a false (no maximally unroll) and the regular unroll/peel
401    // route will make a small mess which CCP will fold away.
402    return false;
403  }
404  uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
405  assert( (int)trip_count*stride == span, "must divide evenly" );
406
407  // Real policy: if we maximally unroll, does it get too big?
408  // Allow the unrolled mess to get larger than standard loop
409  // size.  After all, it will no longer be a loop.
410  uint body_size    = _body.size();
411  uint unroll_limit = (uint)LoopUnrollLimit * 4;
412  assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
413  cl->set_trip_count(trip_count);
414  if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
415    uint new_body_size = body_size * trip_count;
416    if (new_body_size <= unroll_limit &&
417        body_size == new_body_size / trip_count &&
418        // Unrolling can result in a large amount of node construction
419        new_body_size < MaxNodeLimit - phase->C->unique()) {
420      return true;    // maximally unroll
421    }
422  }
423
424  return false;               // Do not maximally unroll
425}
426
427
428//------------------------------policy_unroll----------------------------------
429// Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
430// the loop is a CountedLoop and the body is small enough.
431bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
432
433  CountedLoopNode *cl = _head->as_CountedLoop();
434  assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
435
436  // protect against stride not being a constant
437  if( !cl->stride_is_con() ) return false;
438
439  // protect against over-unrolling
440  if( cl->trip_count() <= 1 ) return false;
441
442  int future_unroll_ct = cl->unrolled_count() * 2;
443
444  // Don't unroll if the next round of unrolling would push us
445  // over the expected trip count of the loop.  One is subtracted
446  // from the expected trip count because the pre-loop normally
447  // executes 1 iteration.
448  if (UnrollLimitForProfileCheck > 0 &&
449      cl->profile_trip_cnt() != COUNT_UNKNOWN &&
450      future_unroll_ct        > UnrollLimitForProfileCheck &&
451      (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
452    return false;
453  }
454
455  // When unroll count is greater than LoopUnrollMin, don't unroll if:
456  //   the residual iterations are more than 10% of the trip count
457  //   and rounds of "unroll,optimize" are not making significant progress
458  //   Progress defined as current size less than 20% larger than previous size.
459  if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
460      future_unroll_ct > LoopUnrollMin &&
461      (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
462      1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
463    return false;
464  }
465
466  Node *init_n = cl->init_trip();
467  Node *limit_n = cl->limit();
468  // Non-constant bounds.
469  // Protect against over-unrolling when init or/and limit are not constant
470  // (so that trip_count's init value is maxint) but iv range is known.
471  if( init_n   == NULL || !init_n->is_Con()  ||
472      limit_n  == NULL || !limit_n->is_Con() ) {
473    Node* phi = cl->phi();
474    if( phi != NULL ) {
475      assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
476      const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
477      int next_stride = cl->stride_con() * 2; // stride after this unroll
478      if( next_stride > 0 ) {
479        if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
480            iv_type->_lo + next_stride >  iv_type->_hi ) {
481          return false;  // over-unrolling
482        }
483      } else if( next_stride < 0 ) {
484        if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
485            iv_type->_hi + next_stride <  iv_type->_lo ) {
486          return false;  // over-unrolling
487        }
488      }
489    }
490  }
491
492  // Adjust body_size to determine if we unroll or not
493  uint body_size = _body.size();
494  // Key test to unroll CaffeineMark's Logic test
495  int xors_in_loop = 0;
496  // Also count ModL, DivL and MulL which expand mightly
497  for( uint k = 0; k < _body.size(); k++ ) {
498    switch( _body.at(k)->Opcode() ) {
499    case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
500    case Op_ModL: body_size += 30; break;
501    case Op_DivL: body_size += 30; break;
502    case Op_MulL: body_size += 10; break;
503    }
504  }
505
506  // Check for being too big
507  if( body_size > (uint)LoopUnrollLimit ) {
508    if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
509    // Normal case: loop too big
510    return false;
511  }
512
513  // Check for stride being a small enough constant
514  if( abs(cl->stride_con()) > (1<<3) ) return false;
515
516  // Unroll once!  (Each trip will soon do double iterations)
517  return true;
518}
519
520//------------------------------policy_align-----------------------------------
521// Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
522// expression that does the alignment.  Note that only one array base can be
523// aligned in a loop (unless the VM guarentees mutual alignment).  Note that
524// if we vectorize short memory ops into longer memory ops, we may want to
525// increase alignment.
526bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
527  return false;
528}
529
530//------------------------------policy_range_check-----------------------------
531// Return TRUE or FALSE if the loop should be range-check-eliminated.
532// Actually we do iteration-splitting, a more powerful form of RCE.
533bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
534  if( !RangeCheckElimination ) return false;
535
536  CountedLoopNode *cl = _head->as_CountedLoop();
537  // If we unrolled with no intention of doing RCE and we later
538  // changed our minds, we got no pre-loop.  Either we need to
539  // make a new pre-loop, or we gotta disallow RCE.
540  if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
541  Node *trip_counter = cl->phi();
542
543  // Check loop body for tests of trip-counter plus loop-invariant vs
544  // loop-invariant.
545  for( uint i = 0; i < _body.size(); i++ ) {
546    Node *iff = _body[i];
547    if( iff->Opcode() == Op_If ) { // Test?
548
549      // Comparing trip+off vs limit
550      Node *bol = iff->in(1);
551      if( bol->req() != 2 ) continue; // dead constant test
552      Node *cmp = bol->in(1);
553
554      Node *rc_exp = cmp->in(1);
555      Node *limit = cmp->in(2);
556
557      Node *limit_c = phase->get_ctrl(limit);
558      if( limit_c == phase->C->top() )
559        return false;           // Found dead test on live IF?  No RCE!
560      if( is_member(phase->get_loop(limit_c) ) ) {
561        // Compare might have operands swapped; commute them
562        rc_exp = cmp->in(2);
563        limit  = cmp->in(1);
564        limit_c = phase->get_ctrl(limit);
565        if( is_member(phase->get_loop(limit_c) ) )
566          continue;             // Both inputs are loop varying; cannot RCE
567      }
568
569      if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
570        continue;
571      }
572      // Yeah!  Found a test like 'trip+off vs limit'
573      // Test is an IfNode, has 2 projections.  If BOTH are in the loop
574      // we need loop unswitching instead of iteration splitting.
575      if( is_loop_exit(iff) )
576        return true;            // Found reason to split iterations
577    } // End of is IF
578  }
579
580  return false;
581}
582
583//------------------------------policy_peel_only-------------------------------
584// Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
585// for unrolling loops with NO array accesses.
586bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
587
588  for( uint i = 0; i < _body.size(); i++ )
589    if( _body[i]->is_Mem() )
590      return false;
591
592  // No memory accesses at all!
593  return true;
594}
595
596//------------------------------clone_up_backedge_goo--------------------------
597// If Node n lives in the back_ctrl block and cannot float, we clone a private
598// version of n in preheader_ctrl block and return that, otherwise return n.
599Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
600  if( get_ctrl(n) != back_ctrl ) return n;
601
602  Node *x = NULL;               // If required, a clone of 'n'
603  // Check for 'n' being pinned in the backedge.
604  if( n->in(0) && n->in(0) == back_ctrl ) {
605    x = n->clone();             // Clone a copy of 'n' to preheader
606    x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
607  }
608
609  // Recursive fixup any other input edges into x.
610  // If there are no changes we can just return 'n', otherwise
611  // we need to clone a private copy and change it.
612  for( uint i = 1; i < n->req(); i++ ) {
613    Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
614    if( g != n->in(i) ) {
615      if( !x )
616        x = n->clone();
617      x->set_req(i, g);
618    }
619  }
620  if( x ) {                     // x can legally float to pre-header location
621    register_new_node( x, preheader_ctrl );
622    return x;
623  } else {                      // raise n to cover LCA of uses
624    set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
625  }
626  return n;
627}
628
629//------------------------------insert_pre_post_loops--------------------------
630// Insert pre and post loops.  If peel_only is set, the pre-loop can not have
631// more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
632// alignment.  Useful to unroll loops that do no array accesses.
633void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
634
635  C->set_major_progress();
636
637  // Find common pieces of the loop being guarded with pre & post loops
638  CountedLoopNode *main_head = loop->_head->as_CountedLoop();
639  assert( main_head->is_normal_loop(), "" );
640  CountedLoopEndNode *main_end = main_head->loopexit();
641  assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
642  uint dd_main_head = dom_depth(main_head);
643  uint max = main_head->outcnt();
644
645  Node *pre_header= main_head->in(LoopNode::EntryControl);
646  Node *init      = main_head->init_trip();
647  Node *incr      = main_end ->incr();
648  Node *limit     = main_end ->limit();
649  Node *stride    = main_end ->stride();
650  Node *cmp       = main_end ->cmp_node();
651  BoolTest::mask b_test = main_end->test_trip();
652
653  // Need only 1 user of 'bol' because I will be hacking the loop bounds.
654  Node *bol = main_end->in(CountedLoopEndNode::TestValue);
655  if( bol->outcnt() != 1 ) {
656    bol = bol->clone();
657    register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
658    _igvn.hash_delete(main_end);
659    main_end->set_req(CountedLoopEndNode::TestValue, bol);
660  }
661  // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
662  if( cmp->outcnt() != 1 ) {
663    cmp = cmp->clone();
664    register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
665    _igvn.hash_delete(bol);
666    bol->set_req(1, cmp);
667  }
668
669  //------------------------------
670  // Step A: Create Post-Loop.
671  Node* main_exit = main_end->proj_out(false);
672  assert( main_exit->Opcode() == Op_IfFalse, "" );
673  int dd_main_exit = dom_depth(main_exit);
674
675  // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
676  // loop pre-header illegally has 2 control users (old & new loops).
677  clone_loop( loop, old_new, dd_main_exit );
678  assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
679  CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
680  post_head->set_post_loop(main_head);
681
682  // Reduce the post-loop trip count.
683  CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
684  post_end->_prob = PROB_FAIR;
685
686  // Build the main-loop normal exit.
687  IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
688  _igvn.register_new_node_with_optimizer( new_main_exit );
689  set_idom(new_main_exit, main_end, dd_main_exit );
690  set_loop(new_main_exit, loop->_parent);
691
692  // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
693  // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
694  // (the main-loop trip-counter exit value) because we will be changing
695  // the exit value (via unrolling) so we cannot constant-fold away the zero
696  // trip guard until all unrolling is done.
697  Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
698  Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
699  Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
700  register_new_node( zer_opaq, new_main_exit );
701  register_new_node( zer_cmp , new_main_exit );
702  register_new_node( zer_bol , new_main_exit );
703
704  // Build the IfNode
705  IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
706  _igvn.register_new_node_with_optimizer( zer_iff );
707  set_idom(zer_iff, new_main_exit, dd_main_exit);
708  set_loop(zer_iff, loop->_parent);
709
710  // Plug in the false-path, taken if we need to skip post-loop
711  _igvn.hash_delete( main_exit );
712  main_exit->set_req(0, zer_iff);
713  _igvn._worklist.push(main_exit);
714  set_idom(main_exit, zer_iff, dd_main_exit);
715  set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
716  // Make the true-path, must enter the post loop
717  Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
718  _igvn.register_new_node_with_optimizer( zer_taken );
719  set_idom(zer_taken, zer_iff, dd_main_exit);
720  set_loop(zer_taken, loop->_parent);
721  // Plug in the true path
722  _igvn.hash_delete( post_head );
723  post_head->set_req(LoopNode::EntryControl, zer_taken);
724  set_idom(post_head, zer_taken, dd_main_exit);
725
726  // Step A3: Make the fall-in values to the post-loop come from the
727  // fall-out values of the main-loop.
728  for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
729    Node* main_phi = main_head->fast_out(i);
730    if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
731      Node *post_phi = old_new[main_phi->_idx];
732      Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
733                                              post_head->init_control(),
734                                              main_phi->in(LoopNode::LoopBackControl));
735      _igvn.hash_delete(post_phi);
736      post_phi->set_req( LoopNode::EntryControl, fallmain );
737    }
738  }
739
740  // Update local caches for next stanza
741  main_exit = new_main_exit;
742
743
744  //------------------------------
745  // Step B: Create Pre-Loop.
746
747  // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
748  // loop pre-header illegally has 2 control users (old & new loops).
749  clone_loop( loop, old_new, dd_main_head );
750  CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
751  CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
752  pre_head->set_pre_loop(main_head);
753  Node *pre_incr = old_new[incr->_idx];
754
755  // Reduce the pre-loop trip count.
756  pre_end->_prob = PROB_FAIR;
757
758  // Find the pre-loop normal exit.
759  Node* pre_exit = pre_end->proj_out(false);
760  assert( pre_exit->Opcode() == Op_IfFalse, "" );
761  IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
762  _igvn.register_new_node_with_optimizer( new_pre_exit );
763  set_idom(new_pre_exit, pre_end, dd_main_head);
764  set_loop(new_pre_exit, loop->_parent);
765
766  // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
767  // pre-loop, the main-loop may not execute at all.  Later in life this
768  // zero-trip guard will become the minimum-trip guard when we unroll
769  // the main-loop.
770  Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
771  Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
772  Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
773  register_new_node( min_opaq, new_pre_exit );
774  register_new_node( min_cmp , new_pre_exit );
775  register_new_node( min_bol , new_pre_exit );
776
777  // Build the IfNode (assume the main-loop is executed always).
778  IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
779  _igvn.register_new_node_with_optimizer( min_iff );
780  set_idom(min_iff, new_pre_exit, dd_main_head);
781  set_loop(min_iff, loop->_parent);
782
783  // Plug in the false-path, taken if we need to skip main-loop
784  _igvn.hash_delete( pre_exit );
785  pre_exit->set_req(0, min_iff);
786  set_idom(pre_exit, min_iff, dd_main_head);
787  set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
788  // Make the true-path, must enter the main loop
789  Node *min_taken = new (C, 1) IfTrueNode( min_iff );
790  _igvn.register_new_node_with_optimizer( min_taken );
791  set_idom(min_taken, min_iff, dd_main_head);
792  set_loop(min_taken, loop->_parent);
793  // Plug in the true path
794  _igvn.hash_delete( main_head );
795  main_head->set_req(LoopNode::EntryControl, min_taken);
796  set_idom(main_head, min_taken, dd_main_head);
797
798  // Step B3: Make the fall-in values to the main-loop come from the
799  // fall-out values of the pre-loop.
800  for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
801    Node* main_phi = main_head->fast_out(i2);
802    if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
803      Node *pre_phi = old_new[main_phi->_idx];
804      Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
805                                             main_head->init_control(),
806                                             pre_phi->in(LoopNode::LoopBackControl));
807      _igvn.hash_delete(main_phi);
808      main_phi->set_req( LoopNode::EntryControl, fallpre );
809    }
810  }
811
812  // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
813  // RCE and alignment may change this later.
814  Node *cmp_end = pre_end->cmp_node();
815  assert( cmp_end->in(2) == limit, "" );
816  Node *pre_limit = new (C, 3) AddINode( init, stride );
817
818  // Save the original loop limit in this Opaque1 node for
819  // use by range check elimination.
820  Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
821
822  register_new_node( pre_limit, pre_head->in(0) );
823  register_new_node( pre_opaq , pre_head->in(0) );
824
825  // Since no other users of pre-loop compare, I can hack limit directly
826  assert( cmp_end->outcnt() == 1, "no other users" );
827  _igvn.hash_delete(cmp_end);
828  cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
829
830  // Special case for not-equal loop bounds:
831  // Change pre loop test, main loop test, and the
832  // main loop guard test to use lt or gt depending on stride
833  // direction:
834  // positive stride use <
835  // negative stride use >
836
837  if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
838
839    BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
840    // Modify pre loop end condition
841    Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
842    BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
843    register_new_node( new_bol0, pre_head->in(0) );
844    _igvn.hash_delete(pre_end);
845    pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
846    // Modify main loop guard condition
847    assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
848    BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
849    register_new_node( new_bol1, new_pre_exit );
850    _igvn.hash_delete(min_iff);
851    min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
852    // Modify main loop end condition
853    BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
854    BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
855    register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
856    _igvn.hash_delete(main_end);
857    main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
858  }
859
860  // Flag main loop
861  main_head->set_main_loop();
862  if( peel_only ) main_head->set_main_no_pre_loop();
863
864  // It's difficult to be precise about the trip-counts
865  // for the pre/post loops.  They are usually very short,
866  // so guess that 4 trips is a reasonable value.
867  post_head->set_profile_trip_cnt(4.0);
868  pre_head->set_profile_trip_cnt(4.0);
869
870  // Now force out all loop-invariant dominating tests.  The optimizer
871  // finds some, but we _know_ they are all useless.
872  peeled_dom_test_elim(loop,old_new);
873}
874
875//------------------------------is_invariant-----------------------------
876// Return true if n is invariant
877bool IdealLoopTree::is_invariant(Node* n) const {
878  Node *n_c = _phase->get_ctrl(n);
879  if (n_c->is_top()) return false;
880  return !is_member(_phase->get_loop(n_c));
881}
882
883
884//------------------------------do_unroll--------------------------------------
885// Unroll the loop body one step - make each trip do 2 iterations.
886void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
887  assert( LoopUnrollLimit, "" );
888#ifndef PRODUCT
889  if( PrintOpto && VerifyLoopOptimizations ) {
890    tty->print("Unrolling ");
891    loop->dump_head();
892  }
893#endif
894  CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
895  CountedLoopEndNode *loop_end = loop_head->loopexit();
896  assert( loop_end, "" );
897
898  // Remember loop node count before unrolling to detect
899  // if rounds of unroll,optimize are making progress
900  loop_head->set_node_count_before_unroll(loop->_body.size());
901
902  Node *ctrl  = loop_head->in(LoopNode::EntryControl);
903  Node *limit = loop_head->limit();
904  Node *init  = loop_head->init_trip();
905  Node *strid = loop_head->stride();
906
907  Node *opaq = NULL;
908  if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
909    assert( loop_head->is_main_loop(), "" );
910    assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
911    Node *iff = ctrl->in(0);
912    assert( iff->Opcode() == Op_If, "" );
913    Node *bol = iff->in(1);
914    assert( bol->Opcode() == Op_Bool, "" );
915    Node *cmp = bol->in(1);
916    assert( cmp->Opcode() == Op_CmpI, "" );
917    opaq = cmp->in(2);
918    // Occasionally it's possible for a pre-loop Opaque1 node to be
919    // optimized away and then another round of loop opts attempted.
920    // We can not optimize this particular loop in that case.
921    if( opaq->Opcode() != Op_Opaque1 )
922      return;                   // Cannot find pre-loop!  Bail out!
923  }
924
925  C->set_major_progress();
926
927  // Adjust max trip count. The trip count is intentionally rounded
928  // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
929  // the main, unrolled, part of the loop will never execute as it is protected
930  // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
931  // and later determined that part of the unrolled loop was dead.
932  loop_head->set_trip_count(loop_head->trip_count() / 2);
933
934  // Double the count of original iterations in the unrolled loop body.
935  loop_head->double_unrolled_count();
936
937  // -----------
938  // Step 2: Cut back the trip counter for an unroll amount of 2.
939  // Loop will normally trip (limit - init)/stride_con.  Since it's a
940  // CountedLoop this is exact (stride divides limit-init exactly).
941  // We are going to double the loop body, so we want to knock off any
942  // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
943  Node *span = new (C, 3) SubINode( limit, init );
944  register_new_node( span, ctrl );
945  Node *trip = new (C, 3) DivINode( 0, span, strid );
946  register_new_node( trip, ctrl );
947  Node *mtwo = _igvn.intcon(-2);
948  set_ctrl(mtwo, C->root());
949  Node *rond = new (C, 3) AndINode( trip, mtwo );
950  register_new_node( rond, ctrl );
951  Node *spn2 = new (C, 3) MulINode( rond, strid );
952  register_new_node( spn2, ctrl );
953  Node *lim2 = new (C, 3) AddINode( spn2, init );
954  register_new_node( lim2, ctrl );
955
956  // Hammer in the new limit
957  Node *ctrl2 = loop_end->in(0);
958  Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
959  register_new_node( cmp2, ctrl2 );
960  Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
961  register_new_node( bol2, ctrl2 );
962  _igvn.hash_delete(loop_end);
963  loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
964
965  // Step 3: Find the min-trip test guaranteed before a 'main' loop.
966  // Make it a 1-trip test (means at least 2 trips).
967  if( adjust_min_trip ) {
968    // Guard test uses an 'opaque' node which is not shared.  Hence I
969    // can edit it's inputs directly.  Hammer in the new limit for the
970    // minimum-trip guard.
971    assert( opaq->outcnt() == 1, "" );
972    _igvn.hash_delete(opaq);
973    opaq->set_req(1, lim2);
974  }
975
976  // ---------
977  // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
978  // represents the odd iterations; since the loop trips an even number of
979  // times its backedge is never taken.  Kill the backedge.
980  uint dd = dom_depth(loop_head);
981  clone_loop( loop, old_new, dd );
982
983  // Make backedges of the clone equal to backedges of the original.
984  // Make the fall-in from the original come from the fall-out of the clone.
985  for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
986    Node* phi = loop_head->fast_out(j);
987    if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
988      Node *newphi = old_new[phi->_idx];
989      _igvn.hash_delete( phi );
990      _igvn.hash_delete( newphi );
991
992      phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
993      newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
994      phi   ->set_req(LoopNode::LoopBackControl, C->top());
995    }
996  }
997  Node *clone_head = old_new[loop_head->_idx];
998  _igvn.hash_delete( clone_head );
999  loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1000  clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1001  loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1002  loop->_head = clone_head;     // New loop header
1003
1004  set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1005  set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1006
1007  // Kill the clone's backedge
1008  Node *newcle = old_new[loop_end->_idx];
1009  _igvn.hash_delete( newcle );
1010  Node *one = _igvn.intcon(1);
1011  set_ctrl(one, C->root());
1012  newcle->set_req(1, one);
1013  // Force clone into same loop body
1014  uint max = loop->_body.size();
1015  for( uint k = 0; k < max; k++ ) {
1016    Node *old = loop->_body.at(k);
1017    Node *nnn = old_new[old->_idx];
1018    loop->_body.push(nnn);
1019    if (!has_ctrl(old))
1020      set_loop(nnn, loop);
1021  }
1022
1023  loop->record_for_igvn();
1024}
1025
1026//------------------------------do_maximally_unroll----------------------------
1027
1028void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1029  CountedLoopNode *cl = loop->_head->as_CountedLoop();
1030  assert( cl->trip_count() > 0, "");
1031
1032  // If loop is tripping an odd number of times, peel odd iteration
1033  if( (cl->trip_count() & 1) == 1 ) {
1034    do_peeling( loop, old_new );
1035  }
1036
1037  // Now its tripping an even number of times remaining.  Double loop body.
1038  // Do not adjust pre-guards; they are not needed and do not exist.
1039  if( cl->trip_count() > 0 ) {
1040    do_unroll( loop, old_new, false );
1041  }
1042}
1043
1044//------------------------------dominates_backedge---------------------------------
1045// Returns true if ctrl is executed on every complete iteration
1046bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1047  assert(ctrl->is_CFG(), "must be control");
1048  Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1049  return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1050}
1051
1052//------------------------------add_constraint---------------------------------
1053// Constrain the main loop iterations so the condition:
1054//    scale_con * I + offset  <  limit
1055// always holds true.  That is, either increase the number of iterations in
1056// the pre-loop or the post-loop until the condition holds true in the main
1057// loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1058// stride and scale are constants (offset and limit often are).
1059void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1060
1061  // Compute "I :: (limit-offset)/scale_con"
1062  Node *con = new (C, 3) SubINode( limit, offset );
1063  register_new_node( con, pre_ctrl );
1064  Node *scale = _igvn.intcon(scale_con);
1065  set_ctrl(scale, C->root());
1066  Node *X = new (C, 3) DivINode( 0, con, scale );
1067  register_new_node( X, pre_ctrl );
1068
1069  // For positive stride, the pre-loop limit always uses a MAX function
1070  // and the main loop a MIN function.  For negative stride these are
1071  // reversed.
1072
1073  // Also for positive stride*scale the affine function is increasing, so the
1074  // pre-loop must check for underflow and the post-loop for overflow.
1075  // Negative stride*scale reverses this; pre-loop checks for overflow and
1076  // post-loop for underflow.
1077  if( stride_con*scale_con > 0 ) {
1078    // Compute I < (limit-offset)/scale_con
1079    // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
1080    *main_limit = (stride_con > 0)
1081      ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
1082      : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
1083    register_new_node( *main_limit, pre_ctrl );
1084
1085  } else {
1086    // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
1087    // Add the negation of the main-loop constraint to the pre-loop.
1088    // See footnote [++] below for a derivation of the limit expression.
1089    Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
1090    set_ctrl(incr, C->root());
1091    Node *adj = new (C, 3) AddINode( X, incr );
1092    register_new_node( adj, pre_ctrl );
1093    *pre_limit = (scale_con > 0)
1094      ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
1095      : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
1096    register_new_node( *pre_limit, pre_ctrl );
1097
1098//   [++] Here's the algebra that justifies the pre-loop limit expression:
1099//
1100//   NOT( scale_con * I + offset  <  limit )
1101//      ==
1102//   scale_con * I + offset  >=  limit
1103//      ==
1104//   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
1105//      ==
1106//   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
1107//      ==
1108//   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
1109//      ==
1110//   ( if (scale_con > 0) /*common case*/
1111//       (limit-offset)/scale_con - 1  <  I
1112//     else
1113//       (limit-offset)/scale_con + 1  >  I
1114//    )
1115//   ( if (scale_con > 0) /*common case*/
1116//       (limit-offset)/scale_con + SGN(-scale_con)  <  I
1117//     else
1118//       (limit-offset)/scale_con + SGN(-scale_con)  >  I
1119  }
1120}
1121
1122
1123//------------------------------is_scaled_iv---------------------------------
1124// Return true if exp is a constant times an induction var
1125bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1126  if (exp == iv) {
1127    if (p_scale != NULL) {
1128      *p_scale = 1;
1129    }
1130    return true;
1131  }
1132  int opc = exp->Opcode();
1133  if (opc == Op_MulI) {
1134    if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1135      if (p_scale != NULL) {
1136        *p_scale = exp->in(2)->get_int();
1137      }
1138      return true;
1139    }
1140    if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1141      if (p_scale != NULL) {
1142        *p_scale = exp->in(1)->get_int();
1143      }
1144      return true;
1145    }
1146  } else if (opc == Op_LShiftI) {
1147    if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1148      if (p_scale != NULL) {
1149        *p_scale = 1 << exp->in(2)->get_int();
1150      }
1151      return true;
1152    }
1153  }
1154  return false;
1155}
1156
1157//-----------------------------is_scaled_iv_plus_offset------------------------------
1158// Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1159bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1160  if (is_scaled_iv(exp, iv, p_scale)) {
1161    if (p_offset != NULL) {
1162      Node *zero = _igvn.intcon(0);
1163      set_ctrl(zero, C->root());
1164      *p_offset = zero;
1165    }
1166    return true;
1167  }
1168  int opc = exp->Opcode();
1169  if (opc == Op_AddI) {
1170    if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1171      if (p_offset != NULL) {
1172        *p_offset = exp->in(2);
1173      }
1174      return true;
1175    }
1176    if (exp->in(2)->is_Con()) {
1177      Node* offset2 = NULL;
1178      if (depth < 2 &&
1179          is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1180                                   p_offset != NULL ? &offset2 : NULL, depth+1)) {
1181        if (p_offset != NULL) {
1182          Node *ctrl_off2 = get_ctrl(offset2);
1183          Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
1184          register_new_node(offset, ctrl_off2);
1185          *p_offset = offset;
1186        }
1187        return true;
1188      }
1189    }
1190  } else if (opc == Op_SubI) {
1191    if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1192      if (p_offset != NULL) {
1193        Node *zero = _igvn.intcon(0);
1194        set_ctrl(zero, C->root());
1195        Node *ctrl_off = get_ctrl(exp->in(2));
1196        Node* offset = new (C, 3) SubINode(zero, exp->in(2));
1197        register_new_node(offset, ctrl_off);
1198        *p_offset = offset;
1199      }
1200      return true;
1201    }
1202    if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1203      if (p_offset != NULL) {
1204        *p_scale *= -1;
1205        *p_offset = exp->in(1);
1206      }
1207      return true;
1208    }
1209  }
1210  return false;
1211}
1212
1213//------------------------------do_range_check---------------------------------
1214// Eliminate range-checks and other trip-counter vs loop-invariant tests.
1215void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1216#ifndef PRODUCT
1217  if( PrintOpto && VerifyLoopOptimizations ) {
1218    tty->print("Range Check Elimination ");
1219    loop->dump_head();
1220  }
1221#endif
1222  assert( RangeCheckElimination, "" );
1223  CountedLoopNode *cl = loop->_head->as_CountedLoop();
1224  assert( cl->is_main_loop(), "" );
1225
1226  // Find the trip counter; we are iteration splitting based on it
1227  Node *trip_counter = cl->phi();
1228  // Find the main loop limit; we will trim it's iterations
1229  // to not ever trip end tests
1230  Node *main_limit = cl->limit();
1231  // Find the pre-loop limit; we will expand it's iterations to
1232  // not ever trip low tests.
1233  Node *ctrl  = cl->in(LoopNode::EntryControl);
1234  assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1235  Node *iffm = ctrl->in(0);
1236  assert( iffm->Opcode() == Op_If, "" );
1237  Node *p_f = iffm->in(0);
1238  assert( p_f->Opcode() == Op_IfFalse, "" );
1239  CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1240  assert( pre_end->loopnode()->is_pre_loop(), "" );
1241  Node *pre_opaq1 = pre_end->limit();
1242  // Occasionally it's possible for a pre-loop Opaque1 node to be
1243  // optimized away and then another round of loop opts attempted.
1244  // We can not optimize this particular loop in that case.
1245  if( pre_opaq1->Opcode() != Op_Opaque1 )
1246    return;
1247  Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1248  Node *pre_limit = pre_opaq->in(1);
1249
1250  // Where do we put new limit calculations
1251  Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1252
1253  // Ensure the original loop limit is available from the
1254  // pre-loop Opaque1 node.
1255  Node *orig_limit = pre_opaq->original_loop_limit();
1256  if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
1257    return;
1258
1259  // Need to find the main-loop zero-trip guard
1260  Node *bolzm = iffm->in(1);
1261  assert( bolzm->Opcode() == Op_Bool, "" );
1262  Node *cmpzm = bolzm->in(1);
1263  assert( cmpzm->is_Cmp(), "" );
1264  Node *opqzm = cmpzm->in(2);
1265  if( opqzm->Opcode() != Op_Opaque1 )
1266    return;
1267  assert( opqzm->in(1) == main_limit, "do not understand situation" );
1268
1269  // Must know if its a count-up or count-down loop
1270
1271  // protect against stride not being a constant
1272  if ( !cl->stride_is_con() ) {
1273    return;
1274  }
1275  int stride_con = cl->stride_con();
1276  Node *zero = _igvn.intcon(0);
1277  Node *one  = _igvn.intcon(1);
1278  set_ctrl(zero, C->root());
1279  set_ctrl(one,  C->root());
1280
1281  // Range checks that do not dominate the loop backedge (ie.
1282  // conditionally executed) can lengthen the pre loop limit beyond
1283  // the original loop limit. To prevent this, the pre limit is
1284  // (for stride > 0) MINed with the original loop limit (MAXed
1285  // stride < 0) when some range_check (rc) is conditionally
1286  // executed.
1287  bool conditional_rc = false;
1288
1289  // Check loop body for tests of trip-counter plus loop-invariant vs
1290  // loop-invariant.
1291  for( uint i = 0; i < loop->_body.size(); i++ ) {
1292    Node *iff = loop->_body[i];
1293    if( iff->Opcode() == Op_If ) { // Test?
1294
1295      // Test is an IfNode, has 2 projections.  If BOTH are in the loop
1296      // we need loop unswitching instead of iteration splitting.
1297      Node *exit = loop->is_loop_exit(iff);
1298      if( !exit ) continue;
1299      int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
1300
1301      // Get boolean condition to test
1302      Node *i1 = iff->in(1);
1303      if( !i1->is_Bool() ) continue;
1304      BoolNode *bol = i1->as_Bool();
1305      BoolTest b_test = bol->_test;
1306      // Flip sense of test if exit condition is flipped
1307      if( flip )
1308        b_test = b_test.negate();
1309
1310      // Get compare
1311      Node *cmp = bol->in(1);
1312
1313      // Look for trip_counter + offset vs limit
1314      Node *rc_exp = cmp->in(1);
1315      Node *limit  = cmp->in(2);
1316      jint scale_con= 1;        // Assume trip counter not scaled
1317
1318      Node *limit_c = get_ctrl(limit);
1319      if( loop->is_member(get_loop(limit_c) ) ) {
1320        // Compare might have operands swapped; commute them
1321        b_test = b_test.commute();
1322        rc_exp = cmp->in(2);
1323        limit  = cmp->in(1);
1324        limit_c = get_ctrl(limit);
1325        if( loop->is_member(get_loop(limit_c) ) )
1326          continue;             // Both inputs are loop varying; cannot RCE
1327      }
1328      // Here we know 'limit' is loop invariant
1329
1330      // 'limit' maybe pinned below the zero trip test (probably from a
1331      // previous round of rce), in which case, it can't be used in the
1332      // zero trip test expression which must occur before the zero test's if.
1333      if( limit_c == ctrl ) {
1334        continue;  // Don't rce this check but continue looking for other candidates.
1335      }
1336
1337      // Check for scaled induction variable plus an offset
1338      Node *offset = NULL;
1339
1340      if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
1341        continue;
1342      }
1343
1344      Node *offset_c = get_ctrl(offset);
1345      if( loop->is_member( get_loop(offset_c) ) )
1346        continue;               // Offset is not really loop invariant
1347      // Here we know 'offset' is loop invariant.
1348
1349      // As above for the 'limit', the 'offset' maybe pinned below the
1350      // zero trip test.
1351      if( offset_c == ctrl ) {
1352        continue; // Don't rce this check but continue looking for other candidates.
1353      }
1354
1355      // At this point we have the expression as:
1356      //   scale_con * trip_counter + offset :: limit
1357      // where scale_con, offset and limit are loop invariant.  Trip_counter
1358      // monotonically increases by stride_con, a constant.  Both (or either)
1359      // stride_con and scale_con can be negative which will flip about the
1360      // sense of the test.
1361
1362      // Adjust pre and main loop limits to guard the correct iteration set
1363      if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
1364        if( b_test._test == BoolTest::lt ) { // Range checks always use lt
1365          // The overflow limit: scale*I+offset < limit
1366          add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
1367          // The underflow limit: 0 <= scale*I+offset.
1368          // Some math yields: -scale*I-(offset+1) < 0
1369          Node *plus_one = new (C, 3) AddINode( offset, one );
1370          register_new_node( plus_one, pre_ctrl );
1371          Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
1372          register_new_node( neg_offset, pre_ctrl );
1373          add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
1374          if (!conditional_rc) {
1375            conditional_rc = !loop->dominates_backedge(iff);
1376          }
1377        } else {
1378#ifndef PRODUCT
1379          if( PrintOpto )
1380            tty->print_cr("missed RCE opportunity");
1381#endif
1382          continue;             // In release mode, ignore it
1383        }
1384      } else {                  // Otherwise work on normal compares
1385        switch( b_test._test ) {
1386        case BoolTest::ge:      // Convert X >= Y to -X <= -Y
1387          scale_con = -scale_con;
1388          offset = new (C, 3) SubINode( zero, offset );
1389          register_new_node( offset, pre_ctrl );
1390          limit  = new (C, 3) SubINode( zero, limit  );
1391          register_new_node( limit, pre_ctrl );
1392          // Fall into LE case
1393        case BoolTest::le:      // Convert X <= Y to X < Y+1
1394          limit = new (C, 3) AddINode( limit, one );
1395          register_new_node( limit, pre_ctrl );
1396          // Fall into LT case
1397        case BoolTest::lt:
1398          add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
1399          if (!conditional_rc) {
1400            conditional_rc = !loop->dominates_backedge(iff);
1401          }
1402          break;
1403        default:
1404#ifndef PRODUCT
1405          if( PrintOpto )
1406            tty->print_cr("missed RCE opportunity");
1407#endif
1408          continue;             // Unhandled case
1409        }
1410      }
1411
1412      // Kill the eliminated test
1413      C->set_major_progress();
1414      Node *kill_con = _igvn.intcon( 1-flip );
1415      set_ctrl(kill_con, C->root());
1416      _igvn.hash_delete(iff);
1417      iff->set_req(1, kill_con);
1418      _igvn._worklist.push(iff);
1419      // Find surviving projection
1420      assert(iff->is_If(), "");
1421      ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
1422      // Find loads off the surviving projection; remove their control edge
1423      for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
1424        Node* cd = dp->fast_out(i); // Control-dependent node
1425        if( cd->is_Load() ) {   // Loads can now float around in the loop
1426          _igvn.hash_delete(cd);
1427          // Allow the load to float around in the loop, or before it
1428          // but NOT before the pre-loop.
1429          cd->set_req(0, ctrl);   // ctrl, not NULL
1430          _igvn._worklist.push(cd);
1431          --i;
1432          --imax;
1433        }
1434      }
1435
1436    } // End of is IF
1437
1438  }
1439
1440  // Update loop limits
1441  if (conditional_rc) {
1442    pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
1443                                 : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
1444    register_new_node(pre_limit, pre_ctrl);
1445  }
1446  _igvn.hash_delete(pre_opaq);
1447  pre_opaq->set_req(1, pre_limit);
1448
1449  // Note:: we are making the main loop limit no longer precise;
1450  // need to round up based on stride.
1451  if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
1452    // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
1453    // Hopefully, compiler will optimize for powers of 2.
1454    Node *ctrl = get_ctrl(main_limit);
1455    Node *stride = cl->stride();
1456    Node *init = cl->init_trip();
1457    Node *span = new (C, 3) SubINode(main_limit,init);
1458    register_new_node(span,ctrl);
1459    Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
1460    Node *add = new (C, 3) AddINode(span,rndup);
1461    register_new_node(add,ctrl);
1462    Node *div = new (C, 3) DivINode(0,add,stride);
1463    register_new_node(div,ctrl);
1464    Node *mul = new (C, 3) MulINode(div,stride);
1465    register_new_node(mul,ctrl);
1466    Node *newlim = new (C, 3) AddINode(mul,init);
1467    register_new_node(newlim,ctrl);
1468    main_limit = newlim;
1469  }
1470
1471  Node *main_cle = cl->loopexit();
1472  Node *main_bol = main_cle->in(1);
1473  // Hacking loop bounds; need private copies of exit test
1474  if( main_bol->outcnt() > 1 ) {// BoolNode shared?
1475    _igvn.hash_delete(main_cle);
1476    main_bol = main_bol->clone();// Clone a private BoolNode
1477    register_new_node( main_bol, main_cle->in(0) );
1478    main_cle->set_req(1,main_bol);
1479  }
1480  Node *main_cmp = main_bol->in(1);
1481  if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
1482    _igvn.hash_delete(main_bol);
1483    main_cmp = main_cmp->clone();// Clone a private CmpNode
1484    register_new_node( main_cmp, main_cle->in(0) );
1485    main_bol->set_req(1,main_cmp);
1486  }
1487  // Hack the now-private loop bounds
1488  _igvn.hash_delete(main_cmp);
1489  main_cmp->set_req(2, main_limit);
1490  _igvn._worklist.push(main_cmp);
1491  // The OpaqueNode is unshared by design
1492  _igvn.hash_delete(opqzm);
1493  assert( opqzm->outcnt() == 1, "cannot hack shared node" );
1494  opqzm->set_req(1,main_limit);
1495  _igvn._worklist.push(opqzm);
1496}
1497
1498//------------------------------DCE_loop_body----------------------------------
1499// Remove simplistic dead code from loop body
1500void IdealLoopTree::DCE_loop_body() {
1501  for( uint i = 0; i < _body.size(); i++ )
1502    if( _body.at(i)->outcnt() == 0 )
1503      _body.map( i--, _body.pop() );
1504}
1505
1506
1507//------------------------------adjust_loop_exit_prob--------------------------
1508// Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
1509// Replace with a 1-in-10 exit guess.
1510void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
1511  Node *test = tail();
1512  while( test != _head ) {
1513    uint top = test->Opcode();
1514    if( top == Op_IfTrue || top == Op_IfFalse ) {
1515      int test_con = ((ProjNode*)test)->_con;
1516      assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
1517      IfNode *iff = test->in(0)->as_If();
1518      if( iff->outcnt() == 2 ) {        // Ignore dead tests
1519        Node *bol = iff->in(1);
1520        if( bol && bol->req() > 1 && bol->in(1) &&
1521            ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
1522             (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
1523             (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
1524             (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
1525             (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
1526             (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
1527             (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
1528          return;               // Allocation loops RARELY take backedge
1529        // Find the OTHER exit path from the IF
1530        Node* ex = iff->proj_out(1-test_con);
1531        float p = iff->_prob;
1532        if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
1533          if( top == Op_IfTrue ) {
1534            if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
1535              iff->_prob = PROB_STATIC_FREQUENT;
1536            }
1537          } else {
1538            if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
1539              iff->_prob = PROB_STATIC_INFREQUENT;
1540            }
1541          }
1542        }
1543      }
1544    }
1545    test = phase->idom(test);
1546  }
1547}
1548
1549
1550//------------------------------policy_do_remove_empty_loop--------------------
1551// Micro-benchmark spamming.  Policy is to always remove empty loops.
1552// The 'DO' part is to replace the trip counter with the value it will
1553// have on the last iteration.  This will break the loop.
1554bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
1555  // Minimum size must be empty loop
1556  if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
1557
1558  if( !_head->is_CountedLoop() ) return false;     // Dead loop
1559  CountedLoopNode *cl = _head->as_CountedLoop();
1560  if( !cl->loopexit() ) return false; // Malformed loop
1561  if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
1562    return false;             // Infinite loop
1563#ifndef PRODUCT
1564  if( PrintOpto )
1565    tty->print_cr("Removing empty loop");
1566#endif
1567#ifdef ASSERT
1568  // Ensure only one phi which is the iv.
1569  Node* iv = NULL;
1570  for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
1571    Node* n = cl->fast_out(i);
1572    if (n->Opcode() == Op_Phi) {
1573      assert(iv == NULL, "Too many phis" );
1574      iv = n;
1575    }
1576  }
1577  assert(iv == cl->phi(), "Wrong phi" );
1578#endif
1579  // Replace the phi at loop head with the final value of the last
1580  // iteration.  Then the CountedLoopEnd will collapse (backedge never
1581  // taken) and all loop-invariant uses of the exit values will be correct.
1582  Node *phi = cl->phi();
1583  Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
1584  phase->register_new_node(final,cl->in(LoopNode::EntryControl));
1585  phase->_igvn.hash_delete(phi);
1586  phase->_igvn.subsume_node(phi,final);
1587  phase->C->set_major_progress();
1588  return true;
1589}
1590
1591
1592//=============================================================================
1593//------------------------------iteration_split_impl---------------------------
1594bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
1595  // Check and remove empty loops (spam micro-benchmarks)
1596  if( policy_do_remove_empty_loop(phase) )
1597    return true;                     // Here we removed an empty loop
1598
1599  bool should_peel = policy_peeling(phase); // Should we peel?
1600
1601  bool should_unswitch = policy_unswitching(phase);
1602
1603  // Non-counted loops may be peeled; exactly 1 iteration is peeled.
1604  // This removes loop-invariant tests (usually null checks).
1605  if( !_head->is_CountedLoop() ) { // Non-counted loop
1606    if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
1607      // Partial peel succeeded so terminate this round of loop opts
1608      return false;
1609    }
1610    if( should_peel ) {            // Should we peel?
1611#ifndef PRODUCT
1612      if (PrintOpto) tty->print_cr("should_peel");
1613#endif
1614      phase->do_peeling(this,old_new);
1615    } else if( should_unswitch ) {
1616      phase->do_unswitching(this, old_new);
1617    }
1618    return true;
1619  }
1620  CountedLoopNode *cl = _head->as_CountedLoop();
1621
1622  if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
1623
1624  // Do nothing special to pre- and post- loops
1625  if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
1626
1627  // Compute loop trip count from profile data
1628  compute_profile_trip_cnt(phase);
1629
1630  // Before attempting fancy unrolling, RCE or alignment, see if we want
1631  // to completely unroll this loop or do loop unswitching.
1632  if( cl->is_normal_loop() ) {
1633    bool should_maximally_unroll =  policy_maximally_unroll(phase);
1634    if( should_maximally_unroll ) {
1635      // Here we did some unrolling and peeling.  Eventually we will
1636      // completely unroll this loop and it will no longer be a loop.
1637      phase->do_maximally_unroll(this,old_new);
1638      return true;
1639    }
1640    if (should_unswitch) {
1641      phase->do_unswitching(this, old_new);
1642      return true;
1643    }
1644  }
1645
1646
1647  // Counted loops may be peeled, may need some iterations run up
1648  // front for RCE, and may want to align loop refs to a cache
1649  // line.  Thus we clone a full loop up front whose trip count is
1650  // at least 1 (if peeling), but may be several more.
1651
1652  // The main loop will start cache-line aligned with at least 1
1653  // iteration of the unrolled body (zero-trip test required) and
1654  // will have some range checks removed.
1655
1656  // A post-loop will finish any odd iterations (leftover after
1657  // unrolling), plus any needed for RCE purposes.
1658
1659  bool should_unroll = policy_unroll(phase);
1660
1661  bool should_rce = policy_range_check(phase);
1662
1663  bool should_align = policy_align(phase);
1664
1665  // If not RCE'ing (iteration splitting) or Aligning, then we do not
1666  // need a pre-loop.  We may still need to peel an initial iteration but
1667  // we will not be needing an unknown number of pre-iterations.
1668  //
1669  // Basically, if may_rce_align reports FALSE first time through,
1670  // we will not be able to later do RCE or Aligning on this loop.
1671  bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
1672
1673  // If we have any of these conditions (RCE, alignment, unrolling) met, then
1674  // we switch to the pre-/main-/post-loop model.  This model also covers
1675  // peeling.
1676  if( should_rce || should_align || should_unroll ) {
1677    if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
1678      phase->insert_pre_post_loops(this,old_new, !may_rce_align);
1679
1680    // Adjust the pre- and main-loop limits to let the pre and post loops run
1681    // with full checks, but the main-loop with no checks.  Remove said
1682    // checks from the main body.
1683    if( should_rce )
1684      phase->do_range_check(this,old_new);
1685
1686    // Double loop body for unrolling.  Adjust the minimum-trip test (will do
1687    // twice as many iterations as before) and the main body limit (only do
1688    // an even number of trips).  If we are peeling, we might enable some RCE
1689    // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
1690    // peeling.
1691    if( should_unroll && !should_peel )
1692      phase->do_unroll(this,old_new, true);
1693
1694    // Adjust the pre-loop limits to align the main body
1695    // iterations.
1696    if( should_align )
1697      Unimplemented();
1698
1699  } else {                      // Else we have an unchanged counted loop
1700    if( should_peel )           // Might want to peel but do nothing else
1701      phase->do_peeling(this,old_new);
1702  }
1703  return true;
1704}
1705
1706
1707//=============================================================================
1708//------------------------------iteration_split--------------------------------
1709bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
1710  // Recursively iteration split nested loops
1711  if( _child && !_child->iteration_split( phase, old_new ))
1712    return false;
1713
1714  // Clean out prior deadwood
1715  DCE_loop_body();
1716
1717
1718  // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
1719  // Replace with a 1-in-10 exit guess.
1720  if( _parent /*not the root loop*/ &&
1721      !_irreducible &&
1722      // Also ignore the occasional dead backedge
1723      !tail()->is_top() ) {
1724    adjust_loop_exit_prob(phase);
1725  }
1726
1727
1728  // Gate unrolling, RCE and peeling efforts.
1729  if( !_child &&                // If not an inner loop, do not split
1730      !_irreducible &&
1731      _allow_optimizations &&
1732      !tail()->is_top() ) {     // Also ignore the occasional dead backedge
1733    if (!_has_call) {
1734      if (!iteration_split_impl( phase, old_new )) {
1735        return false;
1736      }
1737    } else if (policy_unswitching(phase)) {
1738      phase->do_unswitching(this, old_new);
1739    }
1740  }
1741
1742  // Minor offset re-organization to remove loop-fallout uses of
1743  // trip counter.
1744  if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
1745  if( _next && !_next->iteration_split( phase, old_new ))
1746    return false;
1747  return true;
1748}
1749