loopTransform.cpp revision 3718:b9a9ed0f8eeb
1190391Ssam/*
2190391Ssam * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
3190391Ssam * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4190391Ssam *
5190391Ssam * This code is free software; you can redistribute it and/or modify it
6190391Ssam * under the terms of the GNU General Public License version 2 only, as
7190391Ssam * published by the Free Software Foundation.
8190391Ssam *
9190391Ssam * This code is distributed in the hope that it will be useful, but WITHOUT
10190391Ssam * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11190391Ssam * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12190391Ssam * version 2 for more details (a copy is included in the LICENSE file that
13190391Ssam * accompanied this code).
14190391Ssam *
15190391Ssam * You should have received a copy of the GNU General Public License version
16190391Ssam * 2 along with this work; if not, write to the Free Software Foundation,
17190391Ssam * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18190391Ssam *
19190391Ssam * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20190391Ssam * or visit www.oracle.com if you need additional information or have any
21190391Ssam * questions.
22190391Ssam *
23190391Ssam */
24190391Ssam
25190391Ssam#include "precompiled.hpp"
26190391Ssam#include "compiler/compileLog.hpp"
27190391Ssam#include "memory/allocation.inline.hpp"
28190391Ssam#include "opto/addnode.hpp"
29190391Ssam#include "opto/callnode.hpp"
30190391Ssam#include "opto/connode.hpp"
31190391Ssam#include "opto/divnode.hpp"
32190391Ssam#include "opto/loopnode.hpp"
33190391Ssam#include "opto/mulnode.hpp"
34190391Ssam#include "opto/rootnode.hpp"
35190391Ssam#include "opto/runtime.hpp"
36190391Ssam#include "opto/subnode.hpp"
37190391Ssam
38190391Ssam//------------------------------is_loop_exit-----------------------------------
39190391Ssam// Given an IfNode, return the loop-exiting projection or NULL if both
40190391Ssam// arms remain in the loop.
41190391SsamNode *IdealLoopTree::is_loop_exit(Node *iff) const {
42190391Ssam  if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
43190391Ssam  PhaseIdealLoop *phase = _phase;
44190391Ssam  // Test is an IfNode, has 2 projections.  If BOTH are in the loop
45190391Ssam  // we need loop unswitching instead of peeling.
46190391Ssam  if( !is_member(phase->get_loop( iff->raw_out(0) )) )
47190391Ssam    return iff->raw_out(0);
48190391Ssam  if( !is_member(phase->get_loop( iff->raw_out(1) )) )
49190391Ssam    return iff->raw_out(1);
50190391Ssam  return NULL;
51190391Ssam}
52190391Ssam
53190391Ssam
54190391Ssam//=============================================================================
55190391Ssam
56190391Ssam
57190391Ssam//------------------------------record_for_igvn----------------------------
58190391Ssam// Put loop body on igvn work list
59190391Ssamvoid IdealLoopTree::record_for_igvn() {
60190391Ssam  for( uint i = 0; i < _body.size(); i++ ) {
61190391Ssam    Node *n = _body.at(i);
62190391Ssam    _phase->_igvn._worklist.push(n);
63190391Ssam  }
64190391Ssam}
65190391Ssam
66190391Ssam//------------------------------compute_exact_trip_count-----------------------
67190391Ssam// Compute loop exact trip count if possible. Do not recalculate trip count for
68190450Ssam// split loops (pre-main-post) which have their limits and inits behind Opaque node.
69190450Ssamvoid IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
70190450Ssam  if (!_head->as_Loop()->is_valid_counted_loop()) {
71190391Ssam    return;
72190391Ssam  }
73190391Ssam  CountedLoopNode* cl = _head->as_CountedLoop();
74190391Ssam  // Trip count may become nonexact for iteration split loops since
75190391Ssam  // RCE modifies limits. Note, _trip_count value is not reset since
76190391Ssam  // it is used to limit unrolling of main loop.
77190391Ssam  cl->set_nonexact_trip_count();
78190391Ssam
79190391Ssam  // Loop's test should be part of loop.
80190391Ssam  if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
81190391Ssam    return; // Infinite loop
82190391Ssam
83190391Ssam#ifdef ASSERT
84190391Ssam  BoolTest::mask bt = cl->loopexit()->test_trip();
85190391Ssam  assert(bt == BoolTest::lt || bt == BoolTest::gt ||
86190391Ssam         bt == BoolTest::ne, "canonical test is expected");
87190391Ssam#endif
88190391Ssam
89190391Ssam  Node* init_n = cl->init_trip();
90190391Ssam  Node* limit_n = cl->limit();
91190391Ssam  if (init_n  != NULL &&  init_n->is_Con() &&
92190391Ssam      limit_n != NULL && limit_n->is_Con()) {
93190391Ssam    // Use longs to avoid integer overflow.
94190391Ssam    int stride_con  = cl->stride_con();
95190391Ssam    long init_con   = cl->init_trip()->get_int();
96190391Ssam    long limit_con  = cl->limit()->get_int();
97190391Ssam    int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
98190391Ssam    long trip_count = (limit_con - init_con + stride_m)/stride_con;
99190391Ssam    if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
100190391Ssam      // Set exact trip count.
101190391Ssam      cl->set_exact_trip_count((uint)trip_count);
102190391Ssam    }
103190391Ssam  }
104190391Ssam}
105190391Ssam
106190391Ssam//------------------------------compute_profile_trip_cnt----------------------------
107190391Ssam// Compute loop trip count from profile data as
108190391Ssam//    (backedge_count + loop_exit_count) / loop_exit_count
109190391Ssamvoid IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
110190391Ssam  if (!_head->is_CountedLoop()) {
111190391Ssam    return;
112190391Ssam  }
113190391Ssam  CountedLoopNode* head = _head->as_CountedLoop();
114190391Ssam  if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
115190391Ssam    return; // Already computed
116190391Ssam  }
117190391Ssam  float trip_cnt = (float)max_jint; // default is big
118190391Ssam
119190391Ssam  Node* back = head->in(LoopNode::LoopBackControl);
120190391Ssam  while (back != head) {
121190391Ssam    if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
122190391Ssam        back->in(0) &&
123190391Ssam        back->in(0)->is_If() &&
124190391Ssam        back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
125190391Ssam        back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
126190391Ssam      break;
127190391Ssam    }
128190391Ssam    back = phase->idom(back);
129190391Ssam  }
130190391Ssam  if (back != head) {
131190391Ssam    assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
132190391Ssam           back->in(0), "if-projection exists");
133190391Ssam    IfNode* back_if = back->in(0)->as_If();
134190391Ssam    float loop_back_cnt = back_if->_fcnt * back_if->_prob;
135190391Ssam
136190391Ssam    // Now compute a loop exit count
137190391Ssam    float loop_exit_cnt = 0.0f;
138190391Ssam    for( uint i = 0; i < _body.size(); i++ ) {
139190391Ssam      Node *n = _body[i];
140190391Ssam      if( n->is_If() ) {
141190391Ssam        IfNode *iff = n->as_If();
142190391Ssam        if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
143190391Ssam          Node *exit = is_loop_exit(iff);
144190391Ssam          if( exit ) {
145190391Ssam            float exit_prob = iff->_prob;
146190391Ssam            if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
147190391Ssam            if (exit_prob > PROB_MIN) {
148190391Ssam              float exit_cnt = iff->_fcnt * exit_prob;
149190391Ssam              loop_exit_cnt += exit_cnt;
150190391Ssam            }
151190391Ssam          }
152190391Ssam        }
153190391Ssam      }
154190391Ssam    }
155190391Ssam    if (loop_exit_cnt > 0.0f) {
156190391Ssam      trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
157190391Ssam    } else {
158190391Ssam      // No exit count so use
159190391Ssam      trip_cnt = loop_back_cnt;
160190391Ssam    }
161190391Ssam  }
162190391Ssam#ifndef PRODUCT
163190391Ssam  if (TraceProfileTripCount) {
164190391Ssam    tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
165190391Ssam  }
166190391Ssam#endif
167190391Ssam  head->set_profile_trip_cnt(trip_cnt);
168190391Ssam}
169190391Ssam
170190391Ssam//---------------------is_invariant_addition-----------------------------
171190391Ssam// Return nonzero index of invariant operand for an Add or Sub
172190391Ssam// of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
173190391Ssamint IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
174190391Ssam  int op = n->Opcode();
175190391Ssam  if (op == Op_AddI || op == Op_SubI) {
176190391Ssam    bool in1_invar = this->is_invariant(n->in(1));
177190391Ssam    bool in2_invar = this->is_invariant(n->in(2));
178190391Ssam    if (in1_invar && !in2_invar) return 1;
179190391Ssam    if (!in1_invar && in2_invar) return 2;
180190391Ssam  }
181190391Ssam  return 0;
182190391Ssam}
183190391Ssam
184190391Ssam//---------------------reassociate_add_sub-----------------------------
185190391Ssam// Reassociate invariant add and subtract expressions:
186190391Ssam//
187190391Ssam// inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
188190391Ssam// (x + inv2) + inv1  =>  ( inv1 + inv2) + x
189190391Ssam// inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
190190391Ssam// inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
191190391Ssam// (x + inv2) - inv1  =>  (-inv1 + inv2) + x
192190391Ssam// (x - inv2) + inv1  =>  ( inv1 - inv2) + x
193190391Ssam// (x - inv2) - inv1  =>  (-inv1 - inv2) + x
194190391Ssam// inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
195190391Ssam// inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
196190391Ssam// (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
197190391Ssam// (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
198190391Ssam// inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
199190391Ssam//
200190391SsamNode* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
201190391Ssam  if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
202190391Ssam  if (is_invariant(n1)) return NULL;
203190391Ssam  int inv1_idx = is_invariant_addition(n1, phase);
204190391Ssam  if (!inv1_idx) return NULL;
205190391Ssam  // Don't mess with add of constant (igvn moves them to expression tree root.)
206190391Ssam  if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
207190391Ssam  Node* inv1 = n1->in(inv1_idx);
208190391Ssam  Node* n2 = n1->in(3 - inv1_idx);
209190391Ssam  int inv2_idx = is_invariant_addition(n2, phase);
210190391Ssam  if (!inv2_idx) return NULL;
211190391Ssam  Node* x    = n2->in(3 - inv2_idx);
212190391Ssam  Node* inv2 = n2->in(inv2_idx);
213190391Ssam
214190391Ssam  bool neg_x    = n2->is_Sub() && inv2_idx == 1;
215190391Ssam  bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
216190391Ssam  bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
217190391Ssam  if (n1->is_Sub() && inv1_idx == 1) {
218190391Ssam    neg_x    = !neg_x;
219190391Ssam    neg_inv2 = !neg_inv2;
220190391Ssam  }
221190391Ssam  Node* inv1_c = phase->get_ctrl(inv1);
222190391Ssam  Node* inv2_c = phase->get_ctrl(inv2);
223190391Ssam  Node* n_inv1;
224190391Ssam  if (neg_inv1) {
225190391Ssam    Node *zero = phase->_igvn.intcon(0);
226190391Ssam    phase->set_ctrl(zero, phase->C->root());
227190391Ssam    n_inv1 = new (phase->C) SubINode(zero, inv1);
228190391Ssam    phase->register_new_node(n_inv1, inv1_c);
229190391Ssam  } else {
230190391Ssam    n_inv1 = inv1;
231190391Ssam  }
232190391Ssam  Node* inv;
233190391Ssam  if (neg_inv2) {
234190391Ssam    inv = new (phase->C) SubINode(n_inv1, inv2);
235190391Ssam  } else {
236190391Ssam    inv = new (phase->C) AddINode(n_inv1, inv2);
237190391Ssam  }
238190391Ssam  phase->register_new_node(inv, phase->get_early_ctrl(inv));
239190391Ssam
240190391Ssam  Node* addx;
241190391Ssam  if (neg_x) {
242190391Ssam    addx = new (phase->C) SubINode(inv, x);
243190391Ssam  } else {
244190391Ssam    addx = new (phase->C) AddINode(x, inv);
245190391Ssam  }
246190391Ssam  phase->register_new_node(addx, phase->get_ctrl(x));
247190391Ssam  phase->_igvn.replace_node(n1, addx);
248190391Ssam  assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
249190391Ssam  _body.yank(n1);
250190391Ssam  return addx;
251190391Ssam}
252190391Ssam
253190391Ssam//---------------------reassociate_invariants-----------------------------
254190391Ssam// Reassociate invariant expressions:
255190391Ssamvoid IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
256190391Ssam  for (int i = _body.size() - 1; i >= 0; i--) {
257190391Ssam    Node *n = _body.at(i);
258190391Ssam    for (int j = 0; j < 5; j++) {
259190391Ssam      Node* nn = reassociate_add_sub(n, phase);
260190391Ssam      if (nn == NULL) break;
261190391Ssam      n = nn; // again
262190391Ssam    };
263190391Ssam  }
264190391Ssam}
265190391Ssam
266190391Ssam//------------------------------policy_peeling---------------------------------
267190391Ssam// Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
268190391Ssam// make some loop-invariant test (usually a null-check) happen before the loop.
269190391Ssambool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
270190391Ssam  Node *test = ((IdealLoopTree*)this)->tail();
271190391Ssam  int  body_size = ((IdealLoopTree*)this)->_body.size();
272190391Ssam  int  uniq      = phase->C->unique();
273190391Ssam  // Peeling does loop cloning which can result in O(N^2) node construction
274190391Ssam  if( body_size > 255 /* Prevent overflow for large body_size */
275190391Ssam      || (body_size * body_size + uniq > MaxNodeLimit) ) {
276190391Ssam    return false;           // too large to safely clone
277190391Ssam  }
278190391Ssam  while( test != _head ) {      // Scan till run off top of loop
279190391Ssam    if( test->is_If() ) {       // Test?
280190391Ssam      Node *ctrl = phase->get_ctrl(test->in(1));
281190391Ssam      if (ctrl->is_top())
282190391Ssam        return false;           // Found dead test on live IF?  No peeling!
283190391Ssam      // Standard IF only has one input value to check for loop invariance
284190391Ssam      assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
285190391Ssam      // Condition is not a member of this loop?
286190391Ssam      if( !is_member(phase->get_loop(ctrl)) &&
287190391Ssam          is_loop_exit(test) )
288190391Ssam        return true;            // Found reason to peel!
289190391Ssam    }
290190391Ssam    // Walk up dominators to loop _head looking for test which is
291190391Ssam    // executed on every path thru loop.
292190391Ssam    test = phase->idom(test);
293190391Ssam  }
294190391Ssam  return false;
295190391Ssam}
296190391Ssam
297190391Ssam//------------------------------peeled_dom_test_elim---------------------------
298190391Ssam// If we got the effect of peeling, either by actually peeling or by making
299190391Ssam// a pre-loop which must execute at least once, we can remove all
300190391Ssam// loop-invariant dominated tests in the main body.
301190391Ssamvoid PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
302190391Ssam  bool progress = true;
303190391Ssam  while( progress ) {
304190391Ssam    progress = false;           // Reset for next iteration
305190391Ssam    Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
306190391Ssam    Node *test = prev->in(0);
307190391Ssam    while( test != loop->_head ) { // Scan till run off top of loop
308190391Ssam
309190391Ssam      int p_op = prev->Opcode();
310190391Ssam      if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
311190391Ssam          test->is_If() &&      // Test?
312190391Ssam          !test->in(1)->is_Con() && // And not already obvious?
313190391Ssam          // Condition is not a member of this loop?
314190391Ssam          !loop->is_member(get_loop(get_ctrl(test->in(1))))){
315190391Ssam        // Walk loop body looking for instances of this test
316190391Ssam        for( uint i = 0; i < loop->_body.size(); i++ ) {
317190391Ssam          Node *n = loop->_body.at(i);
318190391Ssam          if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
319190391Ssam            // IfNode was dominated by version in peeled loop body
320190391Ssam            progress = true;
321190391Ssam            dominated_by( old_new[prev->_idx], n );
322190391Ssam          }
323190391Ssam        }
324190391Ssam      }
325190391Ssam      prev = test;
326190391Ssam      test = idom(test);
327190391Ssam    } // End of scan tests in loop
328190391Ssam
329190391Ssam  } // End of while( progress )
330190391Ssam}
331190391Ssam
332190391Ssam//------------------------------do_peeling-------------------------------------
333190391Ssam// Peel the first iteration of the given loop.
334190391Ssam// Step 1: Clone the loop body.  The clone becomes the peeled iteration.
335190391Ssam//         The pre-loop illegally has 2 control users (old & new loops).
336190391Ssam// Step 2: Make the old-loop fall-in edges point to the peeled iteration.
337190391Ssam//         Do this by making the old-loop fall-in edges act as if they came
338190391Ssam//         around the loopback from the prior iteration (follow the old-loop
339190391Ssam//         backedges) and then map to the new peeled iteration.  This leaves
340190391Ssam//         the pre-loop with only 1 user (the new peeled iteration), but the
341190391Ssam//         peeled-loop backedge has 2 users.
342190391Ssam// Step 3: Cut the backedge on the clone (so its not a loop) and remove the
343190391Ssam//         extra backedge user.
344190391Ssam//
345190391Ssam//                   orig
346190391Ssam//
347190391Ssam//                  stmt1
348190391Ssam//                    |
349190391Ssam//                    v
350190391Ssam//              loop predicate
351190391Ssam//                    |
352190391Ssam//                    v
353190391Ssam//                   loop<----+
354190391Ssam//                     |      |
355190391Ssam//                   stmt2    |
356190391Ssam//                     |      |
357190391Ssam//                     v      |
358190391Ssam//                    if      ^
359190391Ssam//                   / \      |
360190391Ssam//                  /   \     |
361190391Ssam//                 v     v    |
362190391Ssam//               false true   |
363190391Ssam//               /       \    |
364190391Ssam//              /         ----+
365190391Ssam//             |
366190391Ssam//             v
367190391Ssam//           exit
368190391Ssam//
369190391Ssam//
370190391Ssam//            after clone loop
371190391Ssam//
372190391Ssam//                   stmt1
373190391Ssam//                     |
374190391Ssam//                     v
375190391Ssam//               loop predicate
376190391Ssam//                 /       \
377190391Ssam//        clone   /         \   orig
378190391Ssam//               /           \
379190391Ssam//              /             \
380190391Ssam//             v               v
381190391Ssam//   +---->loop clone          loop<----+
382190391Ssam//   |      |                    |      |
383190391Ssam//   |    stmt2 clone          stmt2    |
384190391Ssam//   |      |                    |      |
385190391Ssam//   |      v                    v      |
386190391Ssam//   ^      if clone            If      ^
387190391Ssam//   |      / \                / \      |
388190391Ssam//   |     /   \              /   \     |
389190391Ssam//   |    v     v            v     v    |
390190391Ssam//   |    true  false      false true   |
391190391Ssam//   |    /         \      /       \    |
392190391Ssam//   +----           \    /         ----+
393190391Ssam//                    \  /
394190391Ssam//                    1v v2
395190391Ssam//                  region
396190391Ssam//                     |
397190391Ssam//                     v
398190391Ssam//                   exit
399190391Ssam//
400190391Ssam//
401190391Ssam//         after peel and predicate move
402190391Ssam//
403190391Ssam//                   stmt1
404190391Ssam//                    /
405190391Ssam//                   /
406190391Ssam//        clone     /            orig
407190391Ssam//                 /
408190391Ssam//                /              +----------+
409190391Ssam//               /               |          |
410190391Ssam//              /          loop predicate   |
411190391Ssam//             /                 |          |
412190391Ssam//            v                  v          |
413190391Ssam//   TOP-->loop clone          loop<----+   |
414190391Ssam//          |                    |      |   |
415190391Ssam//        stmt2 clone          stmt2    |   |
416190391Ssam//          |                    |      |   ^
417190391Ssam//          v                    v      |   |
418190391Ssam//          if clone            If      ^   |
419190391Ssam//          / \                / \      |   |
420190391Ssam//         /   \              /   \     |   |
421190391Ssam//        v     v            v     v    |   |
422190391Ssam//      true   false      false  true   |   |
423190391Ssam//        |         \      /       \    |   |
424190391Ssam//        |          \    /         ----+   ^
425190391Ssam//        |           \  /                  |
426190391Ssam//        |           1v v2                 |
427190391Ssam//        v         region                  |
428190391Ssam//        |            |                    |
429190391Ssam//        |            v                    |
430190391Ssam//        |          exit                   |
431190391Ssam//        |                                 |
432190391Ssam//        +--------------->-----------------+
433190391Ssam//
434190391Ssam//
435190391Ssam//              final graph
436190391Ssam//
437190391Ssam//                  stmt1
438190391Ssam//                    |
439190391Ssam//                    v
440190391Ssam//                  stmt2 clone
441190391Ssam//                    |
442190391Ssam//                    v
443190391Ssam//                   if clone
444190391Ssam//                  / |
445190391Ssam//                 /  |
446190391Ssam//                v   v
447190391Ssam//            false  true
448190391Ssam//             |      |
449190391Ssam//             |      v
450190391Ssam//             | loop predicate
451190391Ssam//             |      |
452190391Ssam//             |      v
453190391Ssam//             |     loop<----+
454190391Ssam//             |      |       |
455190391Ssam//             |    stmt2     |
456190391Ssam//             |      |       |
457190391Ssam//             |      v       |
458190391Ssam//             v      if      ^
459190391Ssam//             |     /  \     |
460190391Ssam//             |    /    \    |
461190391Ssam//             |   v     v    |
462190391Ssam//             | false  true  |
463190391Ssam//             |  |        \  |
464190391Ssam//             v  v         --+
465190391Ssam//            region
466190391Ssam//              |
467190391Ssam//              v
468190391Ssam//             exit
469190391Ssam//
470190391Ssamvoid PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
471190391Ssam
472190391Ssam  C->set_major_progress();
473190391Ssam  // Peeling a 'main' loop in a pre/main/post situation obfuscates the
474190391Ssam  // 'pre' loop from the main and the 'pre' can no longer have it's
475190391Ssam  // iterations adjusted.  Therefore, we need to declare this loop as
476190391Ssam  // no longer a 'main' loop; it will need new pre and post loops before
477190391Ssam  // we can do further RCE.
478190391Ssam#ifndef PRODUCT
479190391Ssam  if (TraceLoopOpts) {
480190391Ssam    tty->print("Peel         ");
481190391Ssam    loop->dump_head();
482190391Ssam  }
483190391Ssam#endif
484190391Ssam  Node* head = loop->_head;
485190391Ssam  bool counted_loop = head->is_CountedLoop();
486190391Ssam  if (counted_loop) {
487190391Ssam    CountedLoopNode *cl = head->as_CountedLoop();
488190391Ssam    assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
489190391Ssam    cl->set_trip_count(cl->trip_count() - 1);
490190391Ssam    if (cl->is_main_loop()) {
491190391Ssam      cl->set_normal_loop();
492190391Ssam#ifndef PRODUCT
493190391Ssam      if (PrintOpto && VerifyLoopOptimizations) {
494190391Ssam        tty->print("Peeling a 'main' loop; resetting to 'normal' ");
495190391Ssam        loop->dump_head();
496190391Ssam      }
497190391Ssam#endif
498190391Ssam    }
499190391Ssam  }
500190391Ssam  Node* entry = head->in(LoopNode::EntryControl);
501190391Ssam
502190391Ssam  // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
503190391Ssam  //         The pre-loop illegally has 2 control users (old & new loops).
504190391Ssam  clone_loop( loop, old_new, dom_depth(head) );
505190391Ssam
506190391Ssam  // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
507190391Ssam  //         Do this by making the old-loop fall-in edges act as if they came
508190391Ssam  //         around the loopback from the prior iteration (follow the old-loop
509  //         backedges) and then map to the new peeled iteration.  This leaves
510  //         the pre-loop with only 1 user (the new peeled iteration), but the
511  //         peeled-loop backedge has 2 users.
512  Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
513  _igvn.hash_delete(head);
514  head->set_req(LoopNode::EntryControl, new_entry);
515  for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
516    Node* old = head->fast_out(j);
517    if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
518      Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
519      if (!new_exit_value )     // Backedge value is ALSO loop invariant?
520        // Then loop body backedge value remains the same.
521        new_exit_value = old->in(LoopNode::LoopBackControl);
522      _igvn.hash_delete(old);
523      old->set_req(LoopNode::EntryControl, new_exit_value);
524    }
525  }
526
527
528  // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
529  //         extra backedge user.
530  Node* new_head = old_new[head->_idx];
531  _igvn.hash_delete(new_head);
532  new_head->set_req(LoopNode::LoopBackControl, C->top());
533  for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
534    Node* use = new_head->fast_out(j2);
535    if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
536      _igvn.hash_delete(use);
537      use->set_req(LoopNode::LoopBackControl, C->top());
538    }
539  }
540
541
542  // Step 4: Correct dom-depth info.  Set to loop-head depth.
543  int dd = dom_depth(head);
544  set_idom(head, head->in(1), dd);
545  for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
546    Node *old = loop->_body.at(j3);
547    Node *nnn = old_new[old->_idx];
548    if (!has_ctrl(nnn))
549      set_idom(nnn, idom(nnn), dd-1);
550  }
551
552  // Now force out all loop-invariant dominating tests.  The optimizer
553  // finds some, but we _know_ they are all useless.
554  peeled_dom_test_elim(loop,old_new);
555
556  loop->record_for_igvn();
557}
558
559#define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
560
561//------------------------------policy_maximally_unroll------------------------
562// Calculate exact loop trip count and return true if loop can be maximally
563// unrolled.
564bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
565  CountedLoopNode *cl = _head->as_CountedLoop();
566  assert(cl->is_normal_loop(), "");
567  if (!cl->is_valid_counted_loop())
568    return false; // Malformed counted loop
569
570  if (!cl->has_exact_trip_count()) {
571    // Trip count is not exact.
572    return false;
573  }
574
575  uint trip_count = cl->trip_count();
576  // Note, max_juint is used to indicate unknown trip count.
577  assert(trip_count > 1, "one iteration loop should be optimized out already");
578  assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
579
580  // Real policy: if we maximally unroll, does it get too big?
581  // Allow the unrolled mess to get larger than standard loop
582  // size.  After all, it will no longer be a loop.
583  uint body_size    = _body.size();
584  uint unroll_limit = (uint)LoopUnrollLimit * 4;
585  assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
586  if (trip_count > unroll_limit || body_size > unroll_limit) {
587    return false;
588  }
589
590  // Fully unroll a loop with few iterations regardless next
591  // conditions since following loop optimizations will split
592  // such loop anyway (pre-main-post).
593  if (trip_count <= 3)
594    return true;
595
596  // Take into account that after unroll conjoined heads and tails will fold,
597  // otherwise policy_unroll() may allow more unrolling than max unrolling.
598  uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
599  uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
600  if (body_size != tst_body_size) // Check for int overflow
601    return false;
602  if (new_body_size > unroll_limit ||
603      // Unrolling can result in a large amount of node construction
604      new_body_size >= MaxNodeLimit - phase->C->unique()) {
605    return false;
606  }
607
608  // Do not unroll a loop with String intrinsics code.
609  // String intrinsics are large and have loops.
610  for (uint k = 0; k < _body.size(); k++) {
611    Node* n = _body.at(k);
612    switch (n->Opcode()) {
613      case Op_StrComp:
614      case Op_StrEquals:
615      case Op_StrIndexOf:
616      case Op_AryEq: {
617        return false;
618      }
619    } // switch
620  }
621
622  return true; // Do maximally unroll
623}
624
625
626#define MAX_UNROLL 16 // maximum number of unrolls for main loop
627
628//------------------------------policy_unroll----------------------------------
629// Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
630// the loop is a CountedLoop and the body is small enough.
631bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
632
633  CountedLoopNode *cl = _head->as_CountedLoop();
634  assert(cl->is_normal_loop() || cl->is_main_loop(), "");
635
636  if (!cl->is_valid_counted_loop())
637    return false; // Malformed counted loop
638
639  // Protect against over-unrolling.
640  // After split at least one iteration will be executed in pre-loop.
641  if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
642
643  int future_unroll_ct = cl->unrolled_count() * 2;
644  if (future_unroll_ct > MAX_UNROLL) return false;
645
646  // Check for initial stride being a small enough constant
647  if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
648
649  // Don't unroll if the next round of unrolling would push us
650  // over the expected trip count of the loop.  One is subtracted
651  // from the expected trip count because the pre-loop normally
652  // executes 1 iteration.
653  if (UnrollLimitForProfileCheck > 0 &&
654      cl->profile_trip_cnt() != COUNT_UNKNOWN &&
655      future_unroll_ct        > UnrollLimitForProfileCheck &&
656      (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
657    return false;
658  }
659
660  // When unroll count is greater than LoopUnrollMin, don't unroll if:
661  //   the residual iterations are more than 10% of the trip count
662  //   and rounds of "unroll,optimize" are not making significant progress
663  //   Progress defined as current size less than 20% larger than previous size.
664  if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
665      future_unroll_ct > LoopUnrollMin &&
666      (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
667      1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
668    return false;
669  }
670
671  Node *init_n = cl->init_trip();
672  Node *limit_n = cl->limit();
673  int stride_con = cl->stride_con();
674  // Non-constant bounds.
675  // Protect against over-unrolling when init or/and limit are not constant
676  // (so that trip_count's init value is maxint) but iv range is known.
677  if (init_n   == NULL || !init_n->is_Con()  ||
678      limit_n  == NULL || !limit_n->is_Con()) {
679    Node* phi = cl->phi();
680    if (phi != NULL) {
681      assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
682      const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
683      int next_stride = stride_con * 2; // stride after this unroll
684      if (next_stride > 0) {
685        if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
686            iv_type->_lo + next_stride >  iv_type->_hi) {
687          return false;  // over-unrolling
688        }
689      } else if (next_stride < 0) {
690        if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
691            iv_type->_hi + next_stride <  iv_type->_lo) {
692          return false;  // over-unrolling
693        }
694      }
695    }
696  }
697
698  // After unroll limit will be adjusted: new_limit = limit-stride.
699  // Bailout if adjustment overflow.
700  const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
701  if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
702      stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
703    return false;  // overflow
704
705  // Adjust body_size to determine if we unroll or not
706  uint body_size = _body.size();
707  // Key test to unroll loop in CRC32 java code
708  int xors_in_loop = 0;
709  // Also count ModL, DivL and MulL which expand mightly
710  for (uint k = 0; k < _body.size(); k++) {
711    Node* n = _body.at(k);
712    switch (n->Opcode()) {
713      case Op_XorI: xors_in_loop++; break; // CRC32 java code
714      case Op_ModL: body_size += 30; break;
715      case Op_DivL: body_size += 30; break;
716      case Op_MulL: body_size += 10; break;
717      case Op_StrComp:
718      case Op_StrEquals:
719      case Op_StrIndexOf:
720      case Op_AryEq: {
721        // Do not unroll a loop with String intrinsics code.
722        // String intrinsics are large and have loops.
723        return false;
724      }
725    } // switch
726  }
727
728  // Check for being too big
729  if (body_size > (uint)LoopUnrollLimit) {
730    if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
731    // Normal case: loop too big
732    return false;
733  }
734
735  // Unroll once!  (Each trip will soon do double iterations)
736  return true;
737}
738
739//------------------------------policy_align-----------------------------------
740// Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
741// expression that does the alignment.  Note that only one array base can be
742// aligned in a loop (unless the VM guarantees mutual alignment).  Note that
743// if we vectorize short memory ops into longer memory ops, we may want to
744// increase alignment.
745bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
746  return false;
747}
748
749//------------------------------policy_range_check-----------------------------
750// Return TRUE or FALSE if the loop should be range-check-eliminated.
751// Actually we do iteration-splitting, a more powerful form of RCE.
752bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
753  if (!RangeCheckElimination) return false;
754
755  CountedLoopNode *cl = _head->as_CountedLoop();
756  // If we unrolled with no intention of doing RCE and we later
757  // changed our minds, we got no pre-loop.  Either we need to
758  // make a new pre-loop, or we gotta disallow RCE.
759  if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
760  Node *trip_counter = cl->phi();
761
762  // Check loop body for tests of trip-counter plus loop-invariant vs
763  // loop-invariant.
764  for (uint i = 0; i < _body.size(); i++) {
765    Node *iff = _body[i];
766    if (iff->Opcode() == Op_If) { // Test?
767
768      // Comparing trip+off vs limit
769      Node *bol = iff->in(1);
770      if (bol->req() != 2) continue; // dead constant test
771      if (!bol->is_Bool()) {
772        assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
773        continue;
774      }
775      if (bol->as_Bool()->_test._test == BoolTest::ne)
776        continue; // not RC
777
778      Node *cmp = bol->in(1);
779
780      Node *rc_exp = cmp->in(1);
781      Node *limit = cmp->in(2);
782
783      Node *limit_c = phase->get_ctrl(limit);
784      if( limit_c == phase->C->top() )
785        return false;           // Found dead test on live IF?  No RCE!
786      if( is_member(phase->get_loop(limit_c) ) ) {
787        // Compare might have operands swapped; commute them
788        rc_exp = cmp->in(2);
789        limit  = cmp->in(1);
790        limit_c = phase->get_ctrl(limit);
791        if( is_member(phase->get_loop(limit_c) ) )
792          continue;             // Both inputs are loop varying; cannot RCE
793      }
794
795      if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
796        continue;
797      }
798      // Yeah!  Found a test like 'trip+off vs limit'
799      // Test is an IfNode, has 2 projections.  If BOTH are in the loop
800      // we need loop unswitching instead of iteration splitting.
801      if( is_loop_exit(iff) )
802        return true;            // Found reason to split iterations
803    } // End of is IF
804  }
805
806  return false;
807}
808
809//------------------------------policy_peel_only-------------------------------
810// Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
811// for unrolling loops with NO array accesses.
812bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
813
814  for( uint i = 0; i < _body.size(); i++ )
815    if( _body[i]->is_Mem() )
816      return false;
817
818  // No memory accesses at all!
819  return true;
820}
821
822//------------------------------clone_up_backedge_goo--------------------------
823// If Node n lives in the back_ctrl block and cannot float, we clone a private
824// version of n in preheader_ctrl block and return that, otherwise return n.
825Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
826  if( get_ctrl(n) != back_ctrl ) return n;
827
828  // Only visit once
829  if (visited.test_set(n->_idx)) {
830    Node *x = clones.find(n->_idx);
831    if (x != NULL)
832      return x;
833    return n;
834  }
835
836  Node *x = NULL;               // If required, a clone of 'n'
837  // Check for 'n' being pinned in the backedge.
838  if( n->in(0) && n->in(0) == back_ctrl ) {
839    assert(clones.find(n->_idx) == NULL, "dead loop");
840    x = n->clone();             // Clone a copy of 'n' to preheader
841    clones.push(x, n->_idx);
842    x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
843  }
844
845  // Recursive fixup any other input edges into x.
846  // If there are no changes we can just return 'n', otherwise
847  // we need to clone a private copy and change it.
848  for( uint i = 1; i < n->req(); i++ ) {
849    Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
850    if( g != n->in(i) ) {
851      if( !x ) {
852        assert(clones.find(n->_idx) == NULL, "dead loop");
853        x = n->clone();
854        clones.push(x, n->_idx);
855      }
856      x->set_req(i, g);
857    }
858  }
859  if( x ) {                     // x can legally float to pre-header location
860    register_new_node( x, preheader_ctrl );
861    return x;
862  } else {                      // raise n to cover LCA of uses
863    set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
864  }
865  return n;
866}
867
868//------------------------------insert_pre_post_loops--------------------------
869// Insert pre and post loops.  If peel_only is set, the pre-loop can not have
870// more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
871// alignment.  Useful to unroll loops that do no array accesses.
872void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
873
874#ifndef PRODUCT
875  if (TraceLoopOpts) {
876    if (peel_only)
877      tty->print("PeelMainPost ");
878    else
879      tty->print("PreMainPost  ");
880    loop->dump_head();
881  }
882#endif
883  C->set_major_progress();
884
885  // Find common pieces of the loop being guarded with pre & post loops
886  CountedLoopNode *main_head = loop->_head->as_CountedLoop();
887  assert( main_head->is_normal_loop(), "" );
888  CountedLoopEndNode *main_end = main_head->loopexit();
889  assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
890  uint dd_main_head = dom_depth(main_head);
891  uint max = main_head->outcnt();
892
893  Node *pre_header= main_head->in(LoopNode::EntryControl);
894  Node *init      = main_head->init_trip();
895  Node *incr      = main_end ->incr();
896  Node *limit     = main_end ->limit();
897  Node *stride    = main_end ->stride();
898  Node *cmp       = main_end ->cmp_node();
899  BoolTest::mask b_test = main_end->test_trip();
900
901  // Need only 1 user of 'bol' because I will be hacking the loop bounds.
902  Node *bol = main_end->in(CountedLoopEndNode::TestValue);
903  if( bol->outcnt() != 1 ) {
904    bol = bol->clone();
905    register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
906    _igvn.hash_delete(main_end);
907    main_end->set_req(CountedLoopEndNode::TestValue, bol);
908  }
909  // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
910  if( cmp->outcnt() != 1 ) {
911    cmp = cmp->clone();
912    register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
913    _igvn.hash_delete(bol);
914    bol->set_req(1, cmp);
915  }
916
917  //------------------------------
918  // Step A: Create Post-Loop.
919  Node* main_exit = main_end->proj_out(false);
920  assert( main_exit->Opcode() == Op_IfFalse, "" );
921  int dd_main_exit = dom_depth(main_exit);
922
923  // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
924  // loop pre-header illegally has 2 control users (old & new loops).
925  clone_loop( loop, old_new, dd_main_exit );
926  assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
927  CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
928  post_head->set_post_loop(main_head);
929
930  // Reduce the post-loop trip count.
931  CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
932  post_end->_prob = PROB_FAIR;
933
934  // Build the main-loop normal exit.
935  IfFalseNode *new_main_exit = new (C) IfFalseNode(main_end);
936  _igvn.register_new_node_with_optimizer( new_main_exit );
937  set_idom(new_main_exit, main_end, dd_main_exit );
938  set_loop(new_main_exit, loop->_parent);
939
940  // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
941  // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
942  // (the main-loop trip-counter exit value) because we will be changing
943  // the exit value (via unrolling) so we cannot constant-fold away the zero
944  // trip guard until all unrolling is done.
945  Node *zer_opaq = new (C) Opaque1Node(C, incr);
946  Node *zer_cmp  = new (C) CmpINode( zer_opaq, limit );
947  Node *zer_bol  = new (C) BoolNode( zer_cmp, b_test );
948  register_new_node( zer_opaq, new_main_exit );
949  register_new_node( zer_cmp , new_main_exit );
950  register_new_node( zer_bol , new_main_exit );
951
952  // Build the IfNode
953  IfNode *zer_iff = new (C) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
954  _igvn.register_new_node_with_optimizer( zer_iff );
955  set_idom(zer_iff, new_main_exit, dd_main_exit);
956  set_loop(zer_iff, loop->_parent);
957
958  // Plug in the false-path, taken if we need to skip post-loop
959  _igvn.replace_input_of(main_exit, 0, zer_iff);
960  set_idom(main_exit, zer_iff, dd_main_exit);
961  set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
962  // Make the true-path, must enter the post loop
963  Node *zer_taken = new (C) IfTrueNode( zer_iff );
964  _igvn.register_new_node_with_optimizer( zer_taken );
965  set_idom(zer_taken, zer_iff, dd_main_exit);
966  set_loop(zer_taken, loop->_parent);
967  // Plug in the true path
968  _igvn.hash_delete( post_head );
969  post_head->set_req(LoopNode::EntryControl, zer_taken);
970  set_idom(post_head, zer_taken, dd_main_exit);
971
972  Arena *a = Thread::current()->resource_area();
973  VectorSet visited(a);
974  Node_Stack clones(a, main_head->back_control()->outcnt());
975  // Step A3: Make the fall-in values to the post-loop come from the
976  // fall-out values of the main-loop.
977  for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
978    Node* main_phi = main_head->fast_out(i);
979    if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
980      Node *post_phi = old_new[main_phi->_idx];
981      Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
982                                              post_head->init_control(),
983                                              main_phi->in(LoopNode::LoopBackControl),
984                                              visited, clones);
985      _igvn.hash_delete(post_phi);
986      post_phi->set_req( LoopNode::EntryControl, fallmain );
987    }
988  }
989
990  // Update local caches for next stanza
991  main_exit = new_main_exit;
992
993
994  //------------------------------
995  // Step B: Create Pre-Loop.
996
997  // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
998  // loop pre-header illegally has 2 control users (old & new loops).
999  clone_loop( loop, old_new, dd_main_head );
1000  CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1001  CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1002  pre_head->set_pre_loop(main_head);
1003  Node *pre_incr = old_new[incr->_idx];
1004
1005  // Reduce the pre-loop trip count.
1006  pre_end->_prob = PROB_FAIR;
1007
1008  // Find the pre-loop normal exit.
1009  Node* pre_exit = pre_end->proj_out(false);
1010  assert( pre_exit->Opcode() == Op_IfFalse, "" );
1011  IfFalseNode *new_pre_exit = new (C) IfFalseNode(pre_end);
1012  _igvn.register_new_node_with_optimizer( new_pre_exit );
1013  set_idom(new_pre_exit, pre_end, dd_main_head);
1014  set_loop(new_pre_exit, loop->_parent);
1015
1016  // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1017  // pre-loop, the main-loop may not execute at all.  Later in life this
1018  // zero-trip guard will become the minimum-trip guard when we unroll
1019  // the main-loop.
1020  Node *min_opaq = new (C) Opaque1Node(C, limit);
1021  Node *min_cmp  = new (C) CmpINode( pre_incr, min_opaq );
1022  Node *min_bol  = new (C) BoolNode( min_cmp, b_test );
1023  register_new_node( min_opaq, new_pre_exit );
1024  register_new_node( min_cmp , new_pre_exit );
1025  register_new_node( min_bol , new_pre_exit );
1026
1027  // Build the IfNode (assume the main-loop is executed always).
1028  IfNode *min_iff = new (C) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1029  _igvn.register_new_node_with_optimizer( min_iff );
1030  set_idom(min_iff, new_pre_exit, dd_main_head);
1031  set_loop(min_iff, loop->_parent);
1032
1033  // Plug in the false-path, taken if we need to skip main-loop
1034  _igvn.hash_delete( pre_exit );
1035  pre_exit->set_req(0, min_iff);
1036  set_idom(pre_exit, min_iff, dd_main_head);
1037  set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1038  // Make the true-path, must enter the main loop
1039  Node *min_taken = new (C) IfTrueNode( min_iff );
1040  _igvn.register_new_node_with_optimizer( min_taken );
1041  set_idom(min_taken, min_iff, dd_main_head);
1042  set_loop(min_taken, loop->_parent);
1043  // Plug in the true path
1044  _igvn.hash_delete( main_head );
1045  main_head->set_req(LoopNode::EntryControl, min_taken);
1046  set_idom(main_head, min_taken, dd_main_head);
1047
1048  visited.Clear();
1049  clones.clear();
1050  // Step B3: Make the fall-in values to the main-loop come from the
1051  // fall-out values of the pre-loop.
1052  for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1053    Node* main_phi = main_head->fast_out(i2);
1054    if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1055      Node *pre_phi = old_new[main_phi->_idx];
1056      Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1057                                             main_head->init_control(),
1058                                             pre_phi->in(LoopNode::LoopBackControl),
1059                                             visited, clones);
1060      _igvn.hash_delete(main_phi);
1061      main_phi->set_req( LoopNode::EntryControl, fallpre );
1062    }
1063  }
1064
1065  // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1066  // RCE and alignment may change this later.
1067  Node *cmp_end = pre_end->cmp_node();
1068  assert( cmp_end->in(2) == limit, "" );
1069  Node *pre_limit = new (C) AddINode( init, stride );
1070
1071  // Save the original loop limit in this Opaque1 node for
1072  // use by range check elimination.
1073  Node *pre_opaq  = new (C) Opaque1Node(C, pre_limit, limit);
1074
1075  register_new_node( pre_limit, pre_head->in(0) );
1076  register_new_node( pre_opaq , pre_head->in(0) );
1077
1078  // Since no other users of pre-loop compare, I can hack limit directly
1079  assert( cmp_end->outcnt() == 1, "no other users" );
1080  _igvn.hash_delete(cmp_end);
1081  cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1082
1083  // Special case for not-equal loop bounds:
1084  // Change pre loop test, main loop test, and the
1085  // main loop guard test to use lt or gt depending on stride
1086  // direction:
1087  // positive stride use <
1088  // negative stride use >
1089  //
1090  // not-equal test is kept for post loop to handle case
1091  // when init > limit when stride > 0 (and reverse).
1092
1093  if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1094
1095    BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1096    // Modify pre loop end condition
1097    Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1098    BoolNode* new_bol0 = new (C) BoolNode(pre_bol->in(1), new_test);
1099    register_new_node( new_bol0, pre_head->in(0) );
1100    _igvn.hash_delete(pre_end);
1101    pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
1102    // Modify main loop guard condition
1103    assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1104    BoolNode* new_bol1 = new (C) BoolNode(min_bol->in(1), new_test);
1105    register_new_node( new_bol1, new_pre_exit );
1106    _igvn.hash_delete(min_iff);
1107    min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1108    // Modify main loop end condition
1109    BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1110    BoolNode* new_bol2 = new (C) BoolNode(main_bol->in(1), new_test);
1111    register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1112    _igvn.hash_delete(main_end);
1113    main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
1114  }
1115
1116  // Flag main loop
1117  main_head->set_main_loop();
1118  if( peel_only ) main_head->set_main_no_pre_loop();
1119
1120  // Subtract a trip count for the pre-loop.
1121  main_head->set_trip_count(main_head->trip_count() - 1);
1122
1123  // It's difficult to be precise about the trip-counts
1124  // for the pre/post loops.  They are usually very short,
1125  // so guess that 4 trips is a reasonable value.
1126  post_head->set_profile_trip_cnt(4.0);
1127  pre_head->set_profile_trip_cnt(4.0);
1128
1129  // Now force out all loop-invariant dominating tests.  The optimizer
1130  // finds some, but we _know_ they are all useless.
1131  peeled_dom_test_elim(loop,old_new);
1132}
1133
1134//------------------------------is_invariant-----------------------------
1135// Return true if n is invariant
1136bool IdealLoopTree::is_invariant(Node* n) const {
1137  Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
1138  if (n_c->is_top()) return false;
1139  return !is_member(_phase->get_loop(n_c));
1140}
1141
1142
1143//------------------------------do_unroll--------------------------------------
1144// Unroll the loop body one step - make each trip do 2 iterations.
1145void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
1146  assert(LoopUnrollLimit, "");
1147  CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
1148  CountedLoopEndNode *loop_end = loop_head->loopexit();
1149  assert(loop_end, "");
1150#ifndef PRODUCT
1151  if (PrintOpto && VerifyLoopOptimizations) {
1152    tty->print("Unrolling ");
1153    loop->dump_head();
1154  } else if (TraceLoopOpts) {
1155    if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
1156      tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
1157    } else {
1158      tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
1159    }
1160    loop->dump_head();
1161  }
1162#endif
1163
1164  // Remember loop node count before unrolling to detect
1165  // if rounds of unroll,optimize are making progress
1166  loop_head->set_node_count_before_unroll(loop->_body.size());
1167
1168  Node *ctrl  = loop_head->in(LoopNode::EntryControl);
1169  Node *limit = loop_head->limit();
1170  Node *init  = loop_head->init_trip();
1171  Node *stride = loop_head->stride();
1172
1173  Node *opaq = NULL;
1174  if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
1175    // Search for zero-trip guard.
1176    assert( loop_head->is_main_loop(), "" );
1177    assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1178    Node *iff = ctrl->in(0);
1179    assert( iff->Opcode() == Op_If, "" );
1180    Node *bol = iff->in(1);
1181    assert( bol->Opcode() == Op_Bool, "" );
1182    Node *cmp = bol->in(1);
1183    assert( cmp->Opcode() == Op_CmpI, "" );
1184    opaq = cmp->in(2);
1185    // Occasionally it's possible for a zero-trip guard Opaque1 node to be
1186    // optimized away and then another round of loop opts attempted.
1187    // We can not optimize this particular loop in that case.
1188    if (opaq->Opcode() != Op_Opaque1)
1189      return; // Cannot find zero-trip guard!  Bail out!
1190    // Zero-trip test uses an 'opaque' node which is not shared.
1191    assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
1192  }
1193
1194  C->set_major_progress();
1195
1196  Node* new_limit = NULL;
1197  if (UnrollLimitCheck) {
1198    int stride_con = stride->get_int();
1199    int stride_p = (stride_con > 0) ? stride_con : -stride_con;
1200    uint old_trip_count = loop_head->trip_count();
1201    // Verify that unroll policy result is still valid.
1202    assert(old_trip_count > 1 &&
1203           (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
1204
1205    // Adjust loop limit to keep valid iterations number after unroll.
1206    // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
1207    // which may overflow.
1208    if (!adjust_min_trip) {
1209      assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
1210             "odd trip count for maximally unroll");
1211      // Don't need to adjust limit for maximally unroll since trip count is even.
1212    } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
1213      // Loop's limit is constant. Loop's init could be constant when pre-loop
1214      // become peeled iteration.
1215      long init_con = init->get_int();
1216      // We can keep old loop limit if iterations count stays the same:
1217      //   old_trip_count == new_trip_count * 2
1218      // Note: since old_trip_count >= 2 then new_trip_count >= 1
1219      // so we also don't need to adjust zero trip test.
1220      long limit_con  = limit->get_int();
1221      // (stride_con*2) not overflow since stride_con <= 8.
1222      int new_stride_con = stride_con * 2;
1223      int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
1224      long trip_count = (limit_con - init_con + stride_m)/new_stride_con;
1225      // New trip count should satisfy next conditions.
1226      assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
1227      uint new_trip_count = (uint)trip_count;
1228      adjust_min_trip = (old_trip_count != new_trip_count*2);
1229    }
1230
1231    if (adjust_min_trip) {
1232      // Step 2: Adjust the trip limit if it is called for.
1233      // The adjustment amount is -stride. Need to make sure if the
1234      // adjustment underflows or overflows, then the main loop is skipped.
1235      Node* cmp = loop_end->cmp_node();
1236      assert(cmp->in(2) == limit, "sanity");
1237      assert(opaq != NULL && opaq->in(1) == limit, "sanity");
1238
1239      // Verify that policy_unroll result is still valid.
1240      const TypeInt* limit_type = _igvn.type(limit)->is_int();
1241      assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1242             stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1243
1244      if (limit->is_Con()) {
1245        // The check in policy_unroll and the assert above guarantee
1246        // no underflow if limit is constant.
1247        new_limit = _igvn.intcon(limit->get_int() - stride_con);
1248        set_ctrl(new_limit, C->root());
1249      } else {
1250        // Limit is not constant.
1251        if (loop_head->unrolled_count() == 1) { // only for first unroll
1252          // Separate limit by Opaque node in case it is an incremented
1253          // variable from previous loop to avoid using pre-incremented
1254          // value which could increase register pressure.
1255          // Otherwise reorg_offsets() optimization will create a separate
1256          // Opaque node for each use of trip-counter and as result
1257          // zero trip guard limit will be different from loop limit.
1258          assert(has_ctrl(opaq), "should have it");
1259          Node* opaq_ctrl = get_ctrl(opaq);
1260          limit = new (C) Opaque2Node( C, limit );
1261          register_new_node( limit, opaq_ctrl );
1262        }
1263        if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
1264                   stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
1265          // No underflow.
1266          new_limit = new (C) SubINode(limit, stride);
1267        } else {
1268          // (limit - stride) may underflow.
1269          // Clamp the adjustment value with MININT or MAXINT:
1270          //
1271          //   new_limit = limit-stride
1272          //   if (stride > 0)
1273          //     new_limit = (limit < new_limit) ? MININT : new_limit;
1274          //   else
1275          //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1276          //
1277          BoolTest::mask bt = loop_end->test_trip();
1278          assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1279          Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1280          set_ctrl(adj_max, C->root());
1281          Node* old_limit = NULL;
1282          Node* adj_limit = NULL;
1283          Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1284          if (loop_head->unrolled_count() > 1 &&
1285              limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1286              limit->in(CMoveNode::IfTrue) == adj_max &&
1287              bol->as_Bool()->_test._test == bt &&
1288              bol->in(1)->Opcode() == Op_CmpI &&
1289              bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1290            // Loop was unrolled before.
1291            // Optimize the limit to avoid nested CMove:
1292            // use original limit as old limit.
1293            old_limit = bol->in(1)->in(1);
1294            // Adjust previous adjusted limit.
1295            adj_limit = limit->in(CMoveNode::IfFalse);
1296            adj_limit = new (C) SubINode(adj_limit, stride);
1297          } else {
1298            old_limit = limit;
1299            adj_limit = new (C) SubINode(limit, stride);
1300          }
1301          assert(old_limit != NULL && adj_limit != NULL, "");
1302          register_new_node( adj_limit, ctrl ); // adjust amount
1303          Node* adj_cmp = new (C) CmpINode(old_limit, adj_limit);
1304          register_new_node( adj_cmp, ctrl );
1305          Node* adj_bool = new (C) BoolNode(adj_cmp, bt);
1306          register_new_node( adj_bool, ctrl );
1307          new_limit = new (C) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1308        }
1309        register_new_node(new_limit, ctrl);
1310      }
1311      assert(new_limit != NULL, "");
1312      // Replace in loop test.
1313      assert(loop_end->in(1)->in(1) == cmp, "sanity");
1314      if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1315        // Don't need to create new test since only one user.
1316        _igvn.hash_delete(cmp);
1317        cmp->set_req(2, new_limit);
1318      } else {
1319        // Create new test since it is shared.
1320        Node* ctrl2 = loop_end->in(0);
1321        Node* cmp2  = cmp->clone();
1322        cmp2->set_req(2, new_limit);
1323        register_new_node(cmp2, ctrl2);
1324        Node* bol2 = loop_end->in(1)->clone();
1325        bol2->set_req(1, cmp2);
1326        register_new_node(bol2, ctrl2);
1327        _igvn.hash_delete(loop_end);
1328        loop_end->set_req(1, bol2);
1329      }
1330      // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1331      // Make it a 1-trip test (means at least 2 trips).
1332
1333      // Guard test uses an 'opaque' node which is not shared.  Hence I
1334      // can edit it's inputs directly.  Hammer in the new limit for the
1335      // minimum-trip guard.
1336      assert(opaq->outcnt() == 1, "");
1337      _igvn.hash_delete(opaq);
1338      opaq->set_req(1, new_limit);
1339    }
1340
1341    // Adjust max trip count. The trip count is intentionally rounded
1342    // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1343    // the main, unrolled, part of the loop will never execute as it is protected
1344    // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1345    // and later determined that part of the unrolled loop was dead.
1346    loop_head->set_trip_count(old_trip_count / 2);
1347
1348    // Double the count of original iterations in the unrolled loop body.
1349    loop_head->double_unrolled_count();
1350
1351  } else { // LoopLimitCheck
1352
1353    // Adjust max trip count. The trip count is intentionally rounded
1354    // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1355    // the main, unrolled, part of the loop will never execute as it is protected
1356    // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1357    // and later determined that part of the unrolled loop was dead.
1358    loop_head->set_trip_count(loop_head->trip_count() / 2);
1359
1360    // Double the count of original iterations in the unrolled loop body.
1361    loop_head->double_unrolled_count();
1362
1363    // -----------
1364    // Step 2: Cut back the trip counter for an unroll amount of 2.
1365    // Loop will normally trip (limit - init)/stride_con.  Since it's a
1366    // CountedLoop this is exact (stride divides limit-init exactly).
1367    // We are going to double the loop body, so we want to knock off any
1368    // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1369    Node *span = new (C) SubINode( limit, init );
1370    register_new_node( span, ctrl );
1371    Node *trip = new (C) DivINode( 0, span, stride );
1372    register_new_node( trip, ctrl );
1373    Node *mtwo = _igvn.intcon(-2);
1374    set_ctrl(mtwo, C->root());
1375    Node *rond = new (C) AndINode( trip, mtwo );
1376    register_new_node( rond, ctrl );
1377    Node *spn2 = new (C) MulINode( rond, stride );
1378    register_new_node( spn2, ctrl );
1379    new_limit = new (C) AddINode( spn2, init );
1380    register_new_node( new_limit, ctrl );
1381
1382    // Hammer in the new limit
1383    Node *ctrl2 = loop_end->in(0);
1384    Node *cmp2 = new (C) CmpINode( loop_head->incr(), new_limit );
1385    register_new_node( cmp2, ctrl2 );
1386    Node *bol2 = new (C) BoolNode( cmp2, loop_end->test_trip() );
1387    register_new_node( bol2, ctrl2 );
1388    _igvn.hash_delete(loop_end);
1389    loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
1390
1391    // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1392    // Make it a 1-trip test (means at least 2 trips).
1393    if( adjust_min_trip ) {
1394      assert( new_limit != NULL, "" );
1395      // Guard test uses an 'opaque' node which is not shared.  Hence I
1396      // can edit it's inputs directly.  Hammer in the new limit for the
1397      // minimum-trip guard.
1398      assert( opaq->outcnt() == 1, "" );
1399      _igvn.hash_delete(opaq);
1400      opaq->set_req(1, new_limit);
1401    }
1402  } // LoopLimitCheck
1403
1404  // ---------
1405  // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1406  // represents the odd iterations; since the loop trips an even number of
1407  // times its backedge is never taken.  Kill the backedge.
1408  uint dd = dom_depth(loop_head);
1409  clone_loop( loop, old_new, dd );
1410
1411  // Make backedges of the clone equal to backedges of the original.
1412  // Make the fall-in from the original come from the fall-out of the clone.
1413  for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
1414    Node* phi = loop_head->fast_out(j);
1415    if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
1416      Node *newphi = old_new[phi->_idx];
1417      _igvn.hash_delete( phi );
1418      _igvn.hash_delete( newphi );
1419
1420      phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
1421      newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
1422      phi   ->set_req(LoopNode::LoopBackControl, C->top());
1423    }
1424  }
1425  Node *clone_head = old_new[loop_head->_idx];
1426  _igvn.hash_delete( clone_head );
1427  loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1428  clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1429  loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1430  loop->_head = clone_head;     // New loop header
1431
1432  set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1433  set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1434
1435  // Kill the clone's backedge
1436  Node *newcle = old_new[loop_end->_idx];
1437  _igvn.hash_delete( newcle );
1438  Node *one = _igvn.intcon(1);
1439  set_ctrl(one, C->root());
1440  newcle->set_req(1, one);
1441  // Force clone into same loop body
1442  uint max = loop->_body.size();
1443  for( uint k = 0; k < max; k++ ) {
1444    Node *old = loop->_body.at(k);
1445    Node *nnn = old_new[old->_idx];
1446    loop->_body.push(nnn);
1447    if (!has_ctrl(old))
1448      set_loop(nnn, loop);
1449  }
1450
1451  loop->record_for_igvn();
1452}
1453
1454//------------------------------do_maximally_unroll----------------------------
1455
1456void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1457  CountedLoopNode *cl = loop->_head->as_CountedLoop();
1458  assert(cl->has_exact_trip_count(), "trip count is not exact");
1459  assert(cl->trip_count() > 0, "");
1460#ifndef PRODUCT
1461  if (TraceLoopOpts) {
1462    tty->print("MaxUnroll  %d ", cl->trip_count());
1463    loop->dump_head();
1464  }
1465#endif
1466
1467  // If loop is tripping an odd number of times, peel odd iteration
1468  if ((cl->trip_count() & 1) == 1) {
1469    do_peeling(loop, old_new);
1470  }
1471
1472  // Now its tripping an even number of times remaining.  Double loop body.
1473  // Do not adjust pre-guards; they are not needed and do not exist.
1474  if (cl->trip_count() > 0) {
1475    assert((cl->trip_count() & 1) == 0, "missed peeling");
1476    do_unroll(loop, old_new, false);
1477  }
1478}
1479
1480//------------------------------dominates_backedge---------------------------------
1481// Returns true if ctrl is executed on every complete iteration
1482bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1483  assert(ctrl->is_CFG(), "must be control");
1484  Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1485  return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1486}
1487
1488//------------------------------adjust_limit-----------------------------------
1489// Helper function for add_constraint().
1490Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1491  // Compute "I :: (limit-offset)/scale"
1492  Node *con = new (C) SubINode(rc_limit, offset);
1493  register_new_node(con, pre_ctrl);
1494  Node *X = new (C) DivINode(0, con, scale);
1495  register_new_node(X, pre_ctrl);
1496
1497  // Adjust loop limit
1498  loop_limit = (stride_con > 0)
1499               ? (Node*)(new (C) MinINode(loop_limit, X))
1500               : (Node*)(new (C) MaxINode(loop_limit, X));
1501  register_new_node(loop_limit, pre_ctrl);
1502  return loop_limit;
1503}
1504
1505//------------------------------add_constraint---------------------------------
1506// Constrain the main loop iterations so the conditions:
1507//    low_limit <= scale_con * I + offset  <  upper_limit
1508// always holds true.  That is, either increase the number of iterations in
1509// the pre-loop or the post-loop until the condition holds true in the main
1510// loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1511// stride and scale are constants (offset and limit often are).
1512void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1513  // For positive stride, the pre-loop limit always uses a MAX function
1514  // and the main loop a MIN function.  For negative stride these are
1515  // reversed.
1516
1517  // Also for positive stride*scale the affine function is increasing, so the
1518  // pre-loop must check for underflow and the post-loop for overflow.
1519  // Negative stride*scale reverses this; pre-loop checks for overflow and
1520  // post-loop for underflow.
1521
1522  Node *scale = _igvn.intcon(scale_con);
1523  set_ctrl(scale, C->root());
1524
1525  if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
1526    // The overflow limit: scale*I+offset < upper_limit
1527    // For main-loop compute
1528    //   ( if (scale > 0) /* and stride > 0 */
1529    //       I < (upper_limit-offset)/scale
1530    //     else /* scale < 0 and stride < 0 */
1531    //       I > (upper_limit-offset)/scale
1532    //   )
1533    //
1534    // (upper_limit-offset) may overflow or underflow.
1535    // But it is fine since main loop will either have
1536    // less iterations or will be skipped in such case.
1537    *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
1538
1539    // The underflow limit: low_limit <= scale*I+offset.
1540    // For pre-loop compute
1541    //   NOT(scale*I+offset >= low_limit)
1542    //   scale*I+offset < low_limit
1543    //   ( if (scale > 0) /* and stride > 0 */
1544    //       I < (low_limit-offset)/scale
1545    //     else /* scale < 0 and stride < 0 */
1546    //       I > (low_limit-offset)/scale
1547    //   )
1548
1549    if (low_limit->get_int() == -max_jint) {
1550      if (!RangeLimitCheck) return;
1551      // We need this guard when scale*pre_limit+offset >= limit
1552      // due to underflow. So we need execute pre-loop until
1553      // scale*I+offset >= min_int. But (min_int-offset) will
1554      // underflow when offset > 0 and X will be > original_limit
1555      // when stride > 0. To avoid it we replace positive offset with 0.
1556      //
1557      // Also (min_int+1 == -max_int) is used instead of min_int here
1558      // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1559      Node* shift = _igvn.intcon(31);
1560      set_ctrl(shift, C->root());
1561      Node* sign = new (C) RShiftINode(offset, shift);
1562      register_new_node(sign, pre_ctrl);
1563      offset = new (C) AndINode(offset, sign);
1564      register_new_node(offset, pre_ctrl);
1565    } else {
1566      assert(low_limit->get_int() == 0, "wrong low limit for range check");
1567      // The only problem we have here when offset == min_int
1568      // since (0-min_int) == min_int. It may be fine for stride > 0
1569      // but for stride < 0 X will be < original_limit. To avoid it
1570      // max(pre_limit, original_limit) is used in do_range_check().
1571    }
1572    // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1573    *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1574
1575  } else { // stride_con*scale_con < 0
1576    // For negative stride*scale pre-loop checks for overflow and
1577    // post-loop for underflow.
1578    //
1579    // The overflow limit: scale*I+offset < upper_limit
1580    // For pre-loop compute
1581    //   NOT(scale*I+offset < upper_limit)
1582    //   scale*I+offset >= upper_limit
1583    //   scale*I+offset+1 > upper_limit
1584    //   ( if (scale < 0) /* and stride > 0 */
1585    //       I < (upper_limit-(offset+1))/scale
1586    //     else /* scale > 0 and stride < 0 */
1587    //       I > (upper_limit-(offset+1))/scale
1588    //   )
1589    //
1590    // (upper_limit-offset-1) may underflow or overflow.
1591    // To avoid it min(pre_limit, original_limit) is used
1592    // in do_range_check() for stride > 0 and max() for < 0.
1593    Node *one  = _igvn.intcon(1);
1594    set_ctrl(one, C->root());
1595
1596    Node *plus_one = new (C) AddINode(offset, one);
1597    register_new_node( plus_one, pre_ctrl );
1598    // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1599    *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1600
1601    if (low_limit->get_int() == -max_jint) {
1602      if (!RangeLimitCheck) return;
1603      // We need this guard when scale*main_limit+offset >= limit
1604      // due to underflow. So we need execute main-loop while
1605      // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1606      // underflow when (offset+1) > 0 and X will be < main_limit
1607      // when scale < 0 (and stride > 0). To avoid it we replace
1608      // positive (offset+1) with 0.
1609      //
1610      // Also (min_int+1 == -max_int) is used instead of min_int here
1611      // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1612      Node* shift = _igvn.intcon(31);
1613      set_ctrl(shift, C->root());
1614      Node* sign = new (C) RShiftINode(plus_one, shift);
1615      register_new_node(sign, pre_ctrl);
1616      plus_one = new (C) AndINode(plus_one, sign);
1617      register_new_node(plus_one, pre_ctrl);
1618    } else {
1619      assert(low_limit->get_int() == 0, "wrong low limit for range check");
1620      // The only problem we have here when offset == max_int
1621      // since (max_int+1) == min_int and (0-min_int) == min_int.
1622      // But it is fine since main loop will either have
1623      // less iterations or will be skipped in such case.
1624    }
1625    // The underflow limit: low_limit <= scale*I+offset.
1626    // For main-loop compute
1627    //   scale*I+offset+1 > low_limit
1628    //   ( if (scale < 0) /* and stride > 0 */
1629    //       I < (low_limit-(offset+1))/scale
1630    //     else /* scale > 0 and stride < 0 */
1631    //       I > (low_limit-(offset+1))/scale
1632    //   )
1633
1634    *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1635  }
1636}
1637
1638
1639//------------------------------is_scaled_iv---------------------------------
1640// Return true if exp is a constant times an induction var
1641bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1642  if (exp == iv) {
1643    if (p_scale != NULL) {
1644      *p_scale = 1;
1645    }
1646    return true;
1647  }
1648  int opc = exp->Opcode();
1649  if (opc == Op_MulI) {
1650    if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1651      if (p_scale != NULL) {
1652        *p_scale = exp->in(2)->get_int();
1653      }
1654      return true;
1655    }
1656    if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1657      if (p_scale != NULL) {
1658        *p_scale = exp->in(1)->get_int();
1659      }
1660      return true;
1661    }
1662  } else if (opc == Op_LShiftI) {
1663    if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1664      if (p_scale != NULL) {
1665        *p_scale = 1 << exp->in(2)->get_int();
1666      }
1667      return true;
1668    }
1669  }
1670  return false;
1671}
1672
1673//-----------------------------is_scaled_iv_plus_offset------------------------------
1674// Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1675bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1676  if (is_scaled_iv(exp, iv, p_scale)) {
1677    if (p_offset != NULL) {
1678      Node *zero = _igvn.intcon(0);
1679      set_ctrl(zero, C->root());
1680      *p_offset = zero;
1681    }
1682    return true;
1683  }
1684  int opc = exp->Opcode();
1685  if (opc == Op_AddI) {
1686    if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1687      if (p_offset != NULL) {
1688        *p_offset = exp->in(2);
1689      }
1690      return true;
1691    }
1692    if (exp->in(2)->is_Con()) {
1693      Node* offset2 = NULL;
1694      if (depth < 2 &&
1695          is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1696                                   p_offset != NULL ? &offset2 : NULL, depth+1)) {
1697        if (p_offset != NULL) {
1698          Node *ctrl_off2 = get_ctrl(offset2);
1699          Node* offset = new (C) AddINode(offset2, exp->in(2));
1700          register_new_node(offset, ctrl_off2);
1701          *p_offset = offset;
1702        }
1703        return true;
1704      }
1705    }
1706  } else if (opc == Op_SubI) {
1707    if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1708      if (p_offset != NULL) {
1709        Node *zero = _igvn.intcon(0);
1710        set_ctrl(zero, C->root());
1711        Node *ctrl_off = get_ctrl(exp->in(2));
1712        Node* offset = new (C) SubINode(zero, exp->in(2));
1713        register_new_node(offset, ctrl_off);
1714        *p_offset = offset;
1715      }
1716      return true;
1717    }
1718    if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1719      if (p_offset != NULL) {
1720        *p_scale *= -1;
1721        *p_offset = exp->in(1);
1722      }
1723      return true;
1724    }
1725  }
1726  return false;
1727}
1728
1729//------------------------------do_range_check---------------------------------
1730// Eliminate range-checks and other trip-counter vs loop-invariant tests.
1731void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1732#ifndef PRODUCT
1733  if (PrintOpto && VerifyLoopOptimizations) {
1734    tty->print("Range Check Elimination ");
1735    loop->dump_head();
1736  } else if (TraceLoopOpts) {
1737    tty->print("RangeCheck   ");
1738    loop->dump_head();
1739  }
1740#endif
1741  assert(RangeCheckElimination, "");
1742  CountedLoopNode *cl = loop->_head->as_CountedLoop();
1743  assert(cl->is_main_loop(), "");
1744
1745  // protect against stride not being a constant
1746  if (!cl->stride_is_con())
1747    return;
1748
1749  // Find the trip counter; we are iteration splitting based on it
1750  Node *trip_counter = cl->phi();
1751  // Find the main loop limit; we will trim it's iterations
1752  // to not ever trip end tests
1753  Node *main_limit = cl->limit();
1754
1755  // Need to find the main-loop zero-trip guard
1756  Node *ctrl  = cl->in(LoopNode::EntryControl);
1757  assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
1758  Node *iffm = ctrl->in(0);
1759  assert(iffm->Opcode() == Op_If, "");
1760  Node *bolzm = iffm->in(1);
1761  assert(bolzm->Opcode() == Op_Bool, "");
1762  Node *cmpzm = bolzm->in(1);
1763  assert(cmpzm->is_Cmp(), "");
1764  Node *opqzm = cmpzm->in(2);
1765  // Can not optimize a loop if zero-trip Opaque1 node is optimized
1766  // away and then another round of loop opts attempted.
1767  if (opqzm->Opcode() != Op_Opaque1)
1768    return;
1769  assert(opqzm->in(1) == main_limit, "do not understand situation");
1770
1771  // Find the pre-loop limit; we will expand it's iterations to
1772  // not ever trip low tests.
1773  Node *p_f = iffm->in(0);
1774  assert(p_f->Opcode() == Op_IfFalse, "");
1775  CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1776  assert(pre_end->loopnode()->is_pre_loop(), "");
1777  Node *pre_opaq1 = pre_end->limit();
1778  // Occasionally it's possible for a pre-loop Opaque1 node to be
1779  // optimized away and then another round of loop opts attempted.
1780  // We can not optimize this particular loop in that case.
1781  if (pre_opaq1->Opcode() != Op_Opaque1)
1782    return;
1783  Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1784  Node *pre_limit = pre_opaq->in(1);
1785
1786  // Where do we put new limit calculations
1787  Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1788
1789  // Ensure the original loop limit is available from the
1790  // pre-loop Opaque1 node.
1791  Node *orig_limit = pre_opaq->original_loop_limit();
1792  if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
1793    return;
1794
1795  // Must know if its a count-up or count-down loop
1796
1797  int stride_con = cl->stride_con();
1798  Node *zero = _igvn.intcon(0);
1799  Node *one  = _igvn.intcon(1);
1800  // Use symmetrical int range [-max_jint,max_jint]
1801  Node *mini = _igvn.intcon(-max_jint);
1802  set_ctrl(zero, C->root());
1803  set_ctrl(one,  C->root());
1804  set_ctrl(mini, C->root());
1805
1806  // Range checks that do not dominate the loop backedge (ie.
1807  // conditionally executed) can lengthen the pre loop limit beyond
1808  // the original loop limit. To prevent this, the pre limit is
1809  // (for stride > 0) MINed with the original loop limit (MAXed
1810  // stride < 0) when some range_check (rc) is conditionally
1811  // executed.
1812  bool conditional_rc = false;
1813
1814  // Check loop body for tests of trip-counter plus loop-invariant vs
1815  // loop-invariant.
1816  for( uint i = 0; i < loop->_body.size(); i++ ) {
1817    Node *iff = loop->_body[i];
1818    if( iff->Opcode() == Op_If ) { // Test?
1819
1820      // Test is an IfNode, has 2 projections.  If BOTH are in the loop
1821      // we need loop unswitching instead of iteration splitting.
1822      Node *exit = loop->is_loop_exit(iff);
1823      if( !exit ) continue;
1824      int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
1825
1826      // Get boolean condition to test
1827      Node *i1 = iff->in(1);
1828      if( !i1->is_Bool() ) continue;
1829      BoolNode *bol = i1->as_Bool();
1830      BoolTest b_test = bol->_test;
1831      // Flip sense of test if exit condition is flipped
1832      if( flip )
1833        b_test = b_test.negate();
1834
1835      // Get compare
1836      Node *cmp = bol->in(1);
1837
1838      // Look for trip_counter + offset vs limit
1839      Node *rc_exp = cmp->in(1);
1840      Node *limit  = cmp->in(2);
1841      jint scale_con= 1;        // Assume trip counter not scaled
1842
1843      Node *limit_c = get_ctrl(limit);
1844      if( loop->is_member(get_loop(limit_c) ) ) {
1845        // Compare might have operands swapped; commute them
1846        b_test = b_test.commute();
1847        rc_exp = cmp->in(2);
1848        limit  = cmp->in(1);
1849        limit_c = get_ctrl(limit);
1850        if( loop->is_member(get_loop(limit_c) ) )
1851          continue;             // Both inputs are loop varying; cannot RCE
1852      }
1853      // Here we know 'limit' is loop invariant
1854
1855      // 'limit' maybe pinned below the zero trip test (probably from a
1856      // previous round of rce), in which case, it can't be used in the
1857      // zero trip test expression which must occur before the zero test's if.
1858      if( limit_c == ctrl ) {
1859        continue;  // Don't rce this check but continue looking for other candidates.
1860      }
1861
1862      // Check for scaled induction variable plus an offset
1863      Node *offset = NULL;
1864
1865      if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
1866        continue;
1867      }
1868
1869      Node *offset_c = get_ctrl(offset);
1870      if( loop->is_member( get_loop(offset_c) ) )
1871        continue;               // Offset is not really loop invariant
1872      // Here we know 'offset' is loop invariant.
1873
1874      // As above for the 'limit', the 'offset' maybe pinned below the
1875      // zero trip test.
1876      if( offset_c == ctrl ) {
1877        continue; // Don't rce this check but continue looking for other candidates.
1878      }
1879#ifdef ASSERT
1880      if (TraceRangeLimitCheck) {
1881        tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
1882        bol->dump(2);
1883      }
1884#endif
1885      // At this point we have the expression as:
1886      //   scale_con * trip_counter + offset :: limit
1887      // where scale_con, offset and limit are loop invariant.  Trip_counter
1888      // monotonically increases by stride_con, a constant.  Both (or either)
1889      // stride_con and scale_con can be negative which will flip about the
1890      // sense of the test.
1891
1892      // Adjust pre and main loop limits to guard the correct iteration set
1893      if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
1894        if( b_test._test == BoolTest::lt ) { // Range checks always use lt
1895          // The underflow and overflow limits: 0 <= scale*I+offset < limit
1896          add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
1897          if (!conditional_rc) {
1898            // (0-offset)/scale could be outside of loop iterations range.
1899            conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1900          }
1901        } else {
1902#ifndef PRODUCT
1903          if( PrintOpto )
1904            tty->print_cr("missed RCE opportunity");
1905#endif
1906          continue;             // In release mode, ignore it
1907        }
1908      } else {                  // Otherwise work on normal compares
1909        switch( b_test._test ) {
1910        case BoolTest::gt:
1911          // Fall into GE case
1912        case BoolTest::ge:
1913          // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
1914          scale_con = -scale_con;
1915          offset = new (C) SubINode( zero, offset );
1916          register_new_node( offset, pre_ctrl );
1917          limit  = new (C) SubINode( zero, limit  );
1918          register_new_node( limit, pre_ctrl );
1919          // Fall into LE case
1920        case BoolTest::le:
1921          if (b_test._test != BoolTest::gt) {
1922            // Convert X <= Y to X < Y+1
1923            limit = new (C) AddINode( limit, one );
1924            register_new_node( limit, pre_ctrl );
1925          }
1926          // Fall into LT case
1927        case BoolTest::lt:
1928          // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
1929          // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
1930          // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
1931          add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
1932          if (!conditional_rc) {
1933            // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
1934            // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
1935            // still be outside of loop range.
1936            conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1937          }
1938          break;
1939        default:
1940#ifndef PRODUCT
1941          if( PrintOpto )
1942            tty->print_cr("missed RCE opportunity");
1943#endif
1944          continue;             // Unhandled case
1945        }
1946      }
1947
1948      // Kill the eliminated test
1949      C->set_major_progress();
1950      Node *kill_con = _igvn.intcon( 1-flip );
1951      set_ctrl(kill_con, C->root());
1952      _igvn.replace_input_of(iff, 1, kill_con);
1953      // Find surviving projection
1954      assert(iff->is_If(), "");
1955      ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
1956      // Find loads off the surviving projection; remove their control edge
1957      for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
1958        Node* cd = dp->fast_out(i); // Control-dependent node
1959        if( cd->is_Load() ) {   // Loads can now float around in the loop
1960          // Allow the load to float around in the loop, or before it
1961          // but NOT before the pre-loop.
1962          _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
1963          --i;
1964          --imax;
1965        }
1966      }
1967
1968    } // End of is IF
1969
1970  }
1971
1972  // Update loop limits
1973  if (conditional_rc) {
1974    pre_limit = (stride_con > 0) ? (Node*)new (C) MinINode(pre_limit, orig_limit)
1975                                 : (Node*)new (C) MaxINode(pre_limit, orig_limit);
1976    register_new_node(pre_limit, pre_ctrl);
1977  }
1978  _igvn.hash_delete(pre_opaq);
1979  pre_opaq->set_req(1, pre_limit);
1980
1981  // Note:: we are making the main loop limit no longer precise;
1982  // need to round up based on stride.
1983  cl->set_nonexact_trip_count();
1984  if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
1985    // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
1986    // Hopefully, compiler will optimize for powers of 2.
1987    Node *ctrl = get_ctrl(main_limit);
1988    Node *stride = cl->stride();
1989    Node *init = cl->init_trip();
1990    Node *span = new (C) SubINode(main_limit,init);
1991    register_new_node(span,ctrl);
1992    Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
1993    Node *add = new (C) AddINode(span,rndup);
1994    register_new_node(add,ctrl);
1995    Node *div = new (C) DivINode(0,add,stride);
1996    register_new_node(div,ctrl);
1997    Node *mul = new (C) MulINode(div,stride);
1998    register_new_node(mul,ctrl);
1999    Node *newlim = new (C) AddINode(mul,init);
2000    register_new_node(newlim,ctrl);
2001    main_limit = newlim;
2002  }
2003
2004  Node *main_cle = cl->loopexit();
2005  Node *main_bol = main_cle->in(1);
2006  // Hacking loop bounds; need private copies of exit test
2007  if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2008    _igvn.hash_delete(main_cle);
2009    main_bol = main_bol->clone();// Clone a private BoolNode
2010    register_new_node( main_bol, main_cle->in(0) );
2011    main_cle->set_req(1,main_bol);
2012  }
2013  Node *main_cmp = main_bol->in(1);
2014  if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2015    _igvn.hash_delete(main_bol);
2016    main_cmp = main_cmp->clone();// Clone a private CmpNode
2017    register_new_node( main_cmp, main_cle->in(0) );
2018    main_bol->set_req(1,main_cmp);
2019  }
2020  // Hack the now-private loop bounds
2021  _igvn.replace_input_of(main_cmp, 2, main_limit);
2022  // The OpaqueNode is unshared by design
2023  assert( opqzm->outcnt() == 1, "cannot hack shared node" );
2024  _igvn.replace_input_of(opqzm, 1, main_limit);
2025}
2026
2027//------------------------------DCE_loop_body----------------------------------
2028// Remove simplistic dead code from loop body
2029void IdealLoopTree::DCE_loop_body() {
2030  for( uint i = 0; i < _body.size(); i++ )
2031    if( _body.at(i)->outcnt() == 0 )
2032      _body.map( i--, _body.pop() );
2033}
2034
2035
2036//------------------------------adjust_loop_exit_prob--------------------------
2037// Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
2038// Replace with a 1-in-10 exit guess.
2039void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
2040  Node *test = tail();
2041  while( test != _head ) {
2042    uint top = test->Opcode();
2043    if( top == Op_IfTrue || top == Op_IfFalse ) {
2044      int test_con = ((ProjNode*)test)->_con;
2045      assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
2046      IfNode *iff = test->in(0)->as_If();
2047      if( iff->outcnt() == 2 ) {        // Ignore dead tests
2048        Node *bol = iff->in(1);
2049        if( bol && bol->req() > 1 && bol->in(1) &&
2050            ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
2051             (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
2052             (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
2053             (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
2054             (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
2055             (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
2056             (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
2057          return;               // Allocation loops RARELY take backedge
2058        // Find the OTHER exit path from the IF
2059        Node* ex = iff->proj_out(1-test_con);
2060        float p = iff->_prob;
2061        if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
2062          if( top == Op_IfTrue ) {
2063            if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
2064              iff->_prob = PROB_STATIC_FREQUENT;
2065            }
2066          } else {
2067            if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
2068              iff->_prob = PROB_STATIC_INFREQUENT;
2069            }
2070          }
2071        }
2072      }
2073    }
2074    test = phase->idom(test);
2075  }
2076}
2077
2078
2079//------------------------------policy_do_remove_empty_loop--------------------
2080// Micro-benchmark spamming.  Policy is to always remove empty loops.
2081// The 'DO' part is to replace the trip counter with the value it will
2082// have on the last iteration.  This will break the loop.
2083bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
2084  // Minimum size must be empty loop
2085  if (_body.size() > EMPTY_LOOP_SIZE)
2086    return false;
2087
2088  if (!_head->is_CountedLoop())
2089    return false;     // Dead loop
2090  CountedLoopNode *cl = _head->as_CountedLoop();
2091  if (!cl->is_valid_counted_loop())
2092    return false; // Malformed loop
2093  if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
2094    return false;             // Infinite loop
2095
2096#ifdef ASSERT
2097  // Ensure only one phi which is the iv.
2098  Node* iv = NULL;
2099  for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
2100    Node* n = cl->fast_out(i);
2101    if (n->Opcode() == Op_Phi) {
2102      assert(iv == NULL, "Too many phis" );
2103      iv = n;
2104    }
2105  }
2106  assert(iv == cl->phi(), "Wrong phi" );
2107#endif
2108
2109  // main and post loops have explicitly created zero trip guard
2110  bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
2111  if (needs_guard) {
2112    // Skip guard if values not overlap.
2113    const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
2114    const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
2115    int  stride_con = cl->stride_con();
2116    if (stride_con > 0) {
2117      needs_guard = (init_t->_hi >= limit_t->_lo);
2118    } else {
2119      needs_guard = (init_t->_lo <= limit_t->_hi);
2120    }
2121  }
2122  if (needs_guard) {
2123    // Check for an obvious zero trip guard.
2124    Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
2125    if (inctrl->Opcode() == Op_IfTrue) {
2126      // The test should look like just the backedge of a CountedLoop
2127      Node* iff = inctrl->in(0);
2128      if (iff->is_If()) {
2129        Node* bol = iff->in(1);
2130        if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
2131          Node* cmp = bol->in(1);
2132          if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
2133            needs_guard = false;
2134          }
2135        }
2136      }
2137    }
2138  }
2139
2140#ifndef PRODUCT
2141  if (PrintOpto) {
2142    tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
2143    this->dump_head();
2144  } else if (TraceLoopOpts) {
2145    tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
2146    this->dump_head();
2147  }
2148#endif
2149
2150  if (needs_guard) {
2151    // Peel the loop to ensure there's a zero trip guard
2152    Node_List old_new;
2153    phase->do_peeling(this, old_new);
2154  }
2155
2156  // Replace the phi at loop head with the final value of the last
2157  // iteration.  Then the CountedLoopEnd will collapse (backedge never
2158  // taken) and all loop-invariant uses of the exit values will be correct.
2159  Node *phi = cl->phi();
2160  Node *exact_limit = phase->exact_limit(this);
2161  if (exact_limit != cl->limit()) {
2162    // We also need to replace the original limit to collapse loop exit.
2163    Node* cmp = cl->loopexit()->cmp_node();
2164    assert(cl->limit() == cmp->in(2), "sanity");
2165    phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2166    phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2167  }
2168  // Note: the final value after increment should not overflow since
2169  // counted loop has limit check predicate.
2170  Node *final = new (phase->C) SubINode( exact_limit, cl->stride() );
2171  phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2172  phase->_igvn.replace_node(phi,final);
2173  phase->C->set_major_progress();
2174  return true;
2175}
2176
2177//------------------------------policy_do_one_iteration_loop-------------------
2178// Convert one iteration loop into normal code.
2179bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2180  if (!_head->as_Loop()->is_valid_counted_loop())
2181    return false; // Only for counted loop
2182
2183  CountedLoopNode *cl = _head->as_CountedLoop();
2184  if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2185    return false;
2186  }
2187
2188#ifndef PRODUCT
2189  if(TraceLoopOpts) {
2190    tty->print("OneIteration ");
2191    this->dump_head();
2192  }
2193#endif
2194
2195  Node *init_n = cl->init_trip();
2196#ifdef ASSERT
2197  // Loop boundaries should be constant since trip count is exact.
2198  assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
2199#endif
2200  // Replace the phi at loop head with the value of the init_trip.
2201  // Then the CountedLoopEnd will collapse (backedge will not be taken)
2202  // and all loop-invariant uses of the exit values will be correct.
2203  phase->_igvn.replace_node(cl->phi(), cl->init_trip());
2204  phase->C->set_major_progress();
2205  return true;
2206}
2207
2208//=============================================================================
2209//------------------------------iteration_split_impl---------------------------
2210bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
2211  // Compute exact loop trip count if possible.
2212  compute_exact_trip_count(phase);
2213
2214  // Convert one iteration loop into normal code.
2215  if (policy_do_one_iteration_loop(phase))
2216    return true;
2217
2218  // Check and remove empty loops (spam micro-benchmarks)
2219  if (policy_do_remove_empty_loop(phase))
2220    return true;  // Here we removed an empty loop
2221
2222  bool should_peel = policy_peeling(phase); // Should we peel?
2223
2224  bool should_unswitch = policy_unswitching(phase);
2225
2226  // Non-counted loops may be peeled; exactly 1 iteration is peeled.
2227  // This removes loop-invariant tests (usually null checks).
2228  if (!_head->is_CountedLoop()) { // Non-counted loop
2229    if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
2230      // Partial peel succeeded so terminate this round of loop opts
2231      return false;
2232    }
2233    if (should_peel) {            // Should we peel?
2234#ifndef PRODUCT
2235      if (PrintOpto) tty->print_cr("should_peel");
2236#endif
2237      phase->do_peeling(this,old_new);
2238    } else if (should_unswitch) {
2239      phase->do_unswitching(this, old_new);
2240    }
2241    return true;
2242  }
2243  CountedLoopNode *cl = _head->as_CountedLoop();
2244
2245  if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
2246
2247  // Do nothing special to pre- and post- loops
2248  if (cl->is_pre_loop() || cl->is_post_loop()) return true;
2249
2250  // Compute loop trip count from profile data
2251  compute_profile_trip_cnt(phase);
2252
2253  // Before attempting fancy unrolling, RCE or alignment, see if we want
2254  // to completely unroll this loop or do loop unswitching.
2255  if (cl->is_normal_loop()) {
2256    if (should_unswitch) {
2257      phase->do_unswitching(this, old_new);
2258      return true;
2259    }
2260    bool should_maximally_unroll =  policy_maximally_unroll(phase);
2261    if (should_maximally_unroll) {
2262      // Here we did some unrolling and peeling.  Eventually we will
2263      // completely unroll this loop and it will no longer be a loop.
2264      phase->do_maximally_unroll(this,old_new);
2265      return true;
2266    }
2267  }
2268
2269  // Skip next optimizations if running low on nodes. Note that
2270  // policy_unswitching and policy_maximally_unroll have this check.
2271  uint nodes_left = MaxNodeLimit - phase->C->unique();
2272  if ((2 * _body.size()) > nodes_left) {
2273    return true;
2274  }
2275
2276  // Counted loops may be peeled, may need some iterations run up
2277  // front for RCE, and may want to align loop refs to a cache
2278  // line.  Thus we clone a full loop up front whose trip count is
2279  // at least 1 (if peeling), but may be several more.
2280
2281  // The main loop will start cache-line aligned with at least 1
2282  // iteration of the unrolled body (zero-trip test required) and
2283  // will have some range checks removed.
2284
2285  // A post-loop will finish any odd iterations (leftover after
2286  // unrolling), plus any needed for RCE purposes.
2287
2288  bool should_unroll = policy_unroll(phase);
2289
2290  bool should_rce = policy_range_check(phase);
2291
2292  bool should_align = policy_align(phase);
2293
2294  // If not RCE'ing (iteration splitting) or Aligning, then we do not
2295  // need a pre-loop.  We may still need to peel an initial iteration but
2296  // we will not be needing an unknown number of pre-iterations.
2297  //
2298  // Basically, if may_rce_align reports FALSE first time through,
2299  // we will not be able to later do RCE or Aligning on this loop.
2300  bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
2301
2302  // If we have any of these conditions (RCE, alignment, unrolling) met, then
2303  // we switch to the pre-/main-/post-loop model.  This model also covers
2304  // peeling.
2305  if (should_rce || should_align || should_unroll) {
2306    if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
2307      phase->insert_pre_post_loops(this,old_new, !may_rce_align);
2308
2309    // Adjust the pre- and main-loop limits to let the pre and post loops run
2310    // with full checks, but the main-loop with no checks.  Remove said
2311    // checks from the main body.
2312    if (should_rce)
2313      phase->do_range_check(this,old_new);
2314
2315    // Double loop body for unrolling.  Adjust the minimum-trip test (will do
2316    // twice as many iterations as before) and the main body limit (only do
2317    // an even number of trips).  If we are peeling, we might enable some RCE
2318    // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
2319    // peeling.
2320    if (should_unroll && !should_peel)
2321      phase->do_unroll(this,old_new, true);
2322
2323    // Adjust the pre-loop limits to align the main body
2324    // iterations.
2325    if (should_align)
2326      Unimplemented();
2327
2328  } else {                      // Else we have an unchanged counted loop
2329    if (should_peel)           // Might want to peel but do nothing else
2330      phase->do_peeling(this,old_new);
2331  }
2332  return true;
2333}
2334
2335
2336//=============================================================================
2337//------------------------------iteration_split--------------------------------
2338bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
2339  // Recursively iteration split nested loops
2340  if (_child && !_child->iteration_split(phase, old_new))
2341    return false;
2342
2343  // Clean out prior deadwood
2344  DCE_loop_body();
2345
2346
2347  // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
2348  // Replace with a 1-in-10 exit guess.
2349  if (_parent /*not the root loop*/ &&
2350      !_irreducible &&
2351      // Also ignore the occasional dead backedge
2352      !tail()->is_top()) {
2353    adjust_loop_exit_prob(phase);
2354  }
2355
2356  // Gate unrolling, RCE and peeling efforts.
2357  if (!_child &&                // If not an inner loop, do not split
2358      !_irreducible &&
2359      _allow_optimizations &&
2360      !tail()->is_top()) {     // Also ignore the occasional dead backedge
2361    if (!_has_call) {
2362        if (!iteration_split_impl(phase, old_new)) {
2363          return false;
2364        }
2365    } else if (policy_unswitching(phase)) {
2366      phase->do_unswitching(this, old_new);
2367    }
2368  }
2369
2370  // Minor offset re-organization to remove loop-fallout uses of
2371  // trip counter when there was no major reshaping.
2372  phase->reorg_offsets(this);
2373
2374  if (_next && !_next->iteration_split(phase, old_new))
2375    return false;
2376  return true;
2377}
2378
2379
2380//=============================================================================
2381// Process all the loops in the loop tree and replace any fill
2382// patterns with an intrisc version.
2383bool PhaseIdealLoop::do_intrinsify_fill() {
2384  bool changed = false;
2385  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2386    IdealLoopTree* lpt = iter.current();
2387    changed |= intrinsify_fill(lpt);
2388  }
2389  return changed;
2390}
2391
2392
2393// Examine an inner loop looking for a a single store of an invariant
2394// value in a unit stride loop,
2395bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
2396                                     Node*& shift, Node*& con) {
2397  const char* msg = NULL;
2398  Node* msg_node = NULL;
2399
2400  store_value = NULL;
2401  con = NULL;
2402  shift = NULL;
2403
2404  // Process the loop looking for stores.  If there are multiple
2405  // stores or extra control flow give at this point.
2406  CountedLoopNode* head = lpt->_head->as_CountedLoop();
2407  for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2408    Node* n = lpt->_body.at(i);
2409    if (n->outcnt() == 0) continue; // Ignore dead
2410    if (n->is_Store()) {
2411      if (store != NULL) {
2412        msg = "multiple stores";
2413        break;
2414      }
2415      int opc = n->Opcode();
2416      if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
2417        msg = "oop fills not handled";
2418        break;
2419      }
2420      Node* value = n->in(MemNode::ValueIn);
2421      if (!lpt->is_invariant(value)) {
2422        msg  = "variant store value";
2423      } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
2424        msg = "not array address";
2425      }
2426      store = n;
2427      store_value = value;
2428    } else if (n->is_If() && n != head->loopexit()) {
2429      msg = "extra control flow";
2430      msg_node = n;
2431    }
2432  }
2433
2434  if (store == NULL) {
2435    // No store in loop
2436    return false;
2437  }
2438
2439  if (msg == NULL && head->stride_con() != 1) {
2440    // could handle negative strides too
2441    if (head->stride_con() < 0) {
2442      msg = "negative stride";
2443    } else {
2444      msg = "non-unit stride";
2445    }
2446  }
2447
2448  if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
2449    msg = "can't handle store address";
2450    msg_node = store->in(MemNode::Address);
2451  }
2452
2453  if (msg == NULL &&
2454      (!store->in(MemNode::Memory)->is_Phi() ||
2455       store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
2456    msg = "store memory isn't proper phi";
2457    msg_node = store->in(MemNode::Memory);
2458  }
2459
2460  // Make sure there is an appropriate fill routine
2461  BasicType t = store->as_Mem()->memory_type();
2462  const char* fill_name;
2463  if (msg == NULL &&
2464      StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
2465    msg = "unsupported store";
2466    msg_node = store;
2467  }
2468
2469  if (msg != NULL) {
2470#ifndef PRODUCT
2471    if (TraceOptimizeFill) {
2472      tty->print_cr("not fill intrinsic candidate: %s", msg);
2473      if (msg_node != NULL) msg_node->dump();
2474    }
2475#endif
2476    return false;
2477  }
2478
2479  // Make sure the address expression can be handled.  It should be
2480  // head->phi * elsize + con.  head->phi might have a ConvI2L.
2481  Node* elements[4];
2482  Node* conv = NULL;
2483  bool found_index = false;
2484  int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
2485  for (int e = 0; e < count; e++) {
2486    Node* n = elements[e];
2487    if (n->is_Con() && con == NULL) {
2488      con = n;
2489    } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
2490      Node* value = n->in(1);
2491#ifdef _LP64
2492      if (value->Opcode() == Op_ConvI2L) {
2493        conv = value;
2494        value = value->in(1);
2495      }
2496#endif
2497      if (value != head->phi()) {
2498        msg = "unhandled shift in address";
2499      } else {
2500        if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
2501          msg = "scale doesn't match";
2502        } else {
2503          found_index = true;
2504          shift = n;
2505        }
2506      }
2507    } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
2508      if (n->in(1) == head->phi()) {
2509        found_index = true;
2510        conv = n;
2511      } else {
2512        msg = "unhandled input to ConvI2L";
2513      }
2514    } else if (n == head->phi()) {
2515      // no shift, check below for allowed cases
2516      found_index = true;
2517    } else {
2518      msg = "unhandled node in address";
2519      msg_node = n;
2520    }
2521  }
2522
2523  if (count == -1) {
2524    msg = "malformed address expression";
2525    msg_node = store;
2526  }
2527
2528  if (!found_index) {
2529    msg = "missing use of index";
2530  }
2531
2532  // byte sized items won't have a shift
2533  if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
2534    msg = "can't find shift";
2535    msg_node = store;
2536  }
2537
2538  if (msg != NULL) {
2539#ifndef PRODUCT
2540    if (TraceOptimizeFill) {
2541      tty->print_cr("not fill intrinsic: %s", msg);
2542      if (msg_node != NULL) msg_node->dump();
2543    }
2544#endif
2545    return false;
2546  }
2547
2548  // No make sure all the other nodes in the loop can be handled
2549  VectorSet ok(Thread::current()->resource_area());
2550
2551  // store related values are ok
2552  ok.set(store->_idx);
2553  ok.set(store->in(MemNode::Memory)->_idx);
2554
2555  // Loop structure is ok
2556  ok.set(head->_idx);
2557  ok.set(head->loopexit()->_idx);
2558  ok.set(head->phi()->_idx);
2559  ok.set(head->incr()->_idx);
2560  ok.set(head->loopexit()->cmp_node()->_idx);
2561  ok.set(head->loopexit()->in(1)->_idx);
2562
2563  // Address elements are ok
2564  if (con)   ok.set(con->_idx);
2565  if (shift) ok.set(shift->_idx);
2566  if (conv)  ok.set(conv->_idx);
2567
2568  for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2569    Node* n = lpt->_body.at(i);
2570    if (n->outcnt() == 0) continue; // Ignore dead
2571    if (ok.test(n->_idx)) continue;
2572    // Backedge projection is ok
2573    if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
2574    if (!n->is_AddP()) {
2575      msg = "unhandled node";
2576      msg_node = n;
2577      break;
2578    }
2579  }
2580
2581  // Make sure no unexpected values are used outside the loop
2582  for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2583    Node* n = lpt->_body.at(i);
2584    // These values can be replaced with other nodes if they are used
2585    // outside the loop.
2586    if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
2587    for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
2588      Node* use = iter.get();
2589      if (!lpt->_body.contains(use)) {
2590        msg = "node is used outside loop";
2591        // lpt->_body.dump();
2592        msg_node = n;
2593        break;
2594      }
2595    }
2596  }
2597
2598#ifdef ASSERT
2599  if (TraceOptimizeFill) {
2600    if (msg != NULL) {
2601      tty->print_cr("no fill intrinsic: %s", msg);
2602      if (msg_node != NULL) msg_node->dump();
2603    } else {
2604      tty->print_cr("fill intrinsic for:");
2605    }
2606    store->dump();
2607    if (Verbose) {
2608      lpt->_body.dump();
2609    }
2610  }
2611#endif
2612
2613  return msg == NULL;
2614}
2615
2616
2617
2618bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
2619  // Only for counted inner loops
2620  if (!lpt->is_counted() || !lpt->is_inner()) {
2621    return false;
2622  }
2623
2624  // Must have constant stride
2625  CountedLoopNode* head = lpt->_head->as_CountedLoop();
2626  if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
2627    return false;
2628  }
2629
2630  // Check that the body only contains a store of a loop invariant
2631  // value that is indexed by the loop phi.
2632  Node* store = NULL;
2633  Node* store_value = NULL;
2634  Node* shift = NULL;
2635  Node* offset = NULL;
2636  if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2637    return false;
2638  }
2639
2640#ifndef PRODUCT
2641  if (TraceLoopOpts) {
2642    tty->print("ArrayFill    ");
2643    lpt->dump_head();
2644  }
2645#endif
2646
2647  // Now replace the whole loop body by a call to a fill routine that
2648  // covers the same region as the loop.
2649  Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2650
2651  // Build an expression for the beginning of the copy region
2652  Node* index = head->init_trip();
2653#ifdef _LP64
2654  index = new (C) ConvI2LNode(index);
2655  _igvn.register_new_node_with_optimizer(index);
2656#endif
2657  if (shift != NULL) {
2658    // byte arrays don't require a shift but others do.
2659    index = new (C) LShiftXNode(index, shift->in(2));
2660    _igvn.register_new_node_with_optimizer(index);
2661  }
2662  index = new (C) AddPNode(base, base, index);
2663  _igvn.register_new_node_with_optimizer(index);
2664  Node* from = new (C) AddPNode(base, index, offset);
2665  _igvn.register_new_node_with_optimizer(from);
2666  // Compute the number of elements to copy
2667  Node* len = new (C) SubINode(head->limit(), head->init_trip());
2668  _igvn.register_new_node_with_optimizer(len);
2669
2670  BasicType t = store->as_Mem()->memory_type();
2671  bool aligned = false;
2672  if (offset != NULL && head->init_trip()->is_Con()) {
2673    int element_size = type2aelembytes(t);
2674    aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2675  }
2676
2677  // Build a call to the fill routine
2678  const char* fill_name;
2679  address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2680  assert(fill != NULL, "what?");
2681
2682  // Convert float/double to int/long for fill routines
2683  if (t == T_FLOAT) {
2684    store_value = new (C) MoveF2INode(store_value);
2685    _igvn.register_new_node_with_optimizer(store_value);
2686  } else if (t == T_DOUBLE) {
2687    store_value = new (C) MoveD2LNode(store_value);
2688    _igvn.register_new_node_with_optimizer(store_value);
2689  }
2690
2691  Node* mem_phi = store->in(MemNode::Memory);
2692  Node* result_ctrl;
2693  Node* result_mem;
2694  const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2695  CallLeafNode *call = new (C) CallLeafNoFPNode(call_type, fill,
2696                                                fill_name, TypeAryPtr::get_array_body_type(t));
2697  call->init_req(TypeFunc::Parms+0, from);
2698  call->init_req(TypeFunc::Parms+1, store_value);
2699#ifdef _LP64
2700  len = new (C) ConvI2LNode(len);
2701  _igvn.register_new_node_with_optimizer(len);
2702#endif
2703  call->init_req(TypeFunc::Parms+2, len);
2704#ifdef _LP64
2705  call->init_req(TypeFunc::Parms+3, C->top());
2706#endif
2707  call->init_req( TypeFunc::Control, head->init_control());
2708  call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
2709  call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
2710  call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
2711  call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
2712  _igvn.register_new_node_with_optimizer(call);
2713  result_ctrl = new (C) ProjNode(call,TypeFunc::Control);
2714  _igvn.register_new_node_with_optimizer(result_ctrl);
2715  result_mem = new (C) ProjNode(call,TypeFunc::Memory);
2716  _igvn.register_new_node_with_optimizer(result_mem);
2717
2718  // If this fill is tightly coupled to an allocation and overwrites
2719  // the whole body, allow it to take over the zeroing.
2720  AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
2721  if (alloc != NULL && alloc->is_AllocateArray()) {
2722    Node* length = alloc->as_AllocateArray()->Ideal_length();
2723    if (head->limit() == length &&
2724        head->init_trip() == _igvn.intcon(0)) {
2725      if (TraceOptimizeFill) {
2726        tty->print_cr("Eliminated zeroing in allocation");
2727      }
2728      alloc->maybe_set_complete(&_igvn);
2729    } else {
2730#ifdef ASSERT
2731      if (TraceOptimizeFill) {
2732        tty->print_cr("filling array but bounds don't match");
2733        alloc->dump();
2734        head->init_trip()->dump();
2735        head->limit()->dump();
2736        length->dump();
2737      }
2738#endif
2739    }
2740  }
2741
2742  // Redirect the old control and memory edges that are outside the loop.
2743  Node* exit = head->loopexit()->proj_out(0);
2744  // Sometimes the memory phi of the head is used as the outgoing
2745  // state of the loop.  It's safe in this case to replace it with the
2746  // result_mem.
2747  _igvn.replace_node(store->in(MemNode::Memory), result_mem);
2748  _igvn.replace_node(exit, result_ctrl);
2749  _igvn.replace_node(store, result_mem);
2750  // Any uses the increment outside of the loop become the loop limit.
2751  _igvn.replace_node(head->incr(), head->limit());
2752
2753  // Disconnect the head from the loop.
2754  for (uint i = 0; i < lpt->_body.size(); i++) {
2755    Node* n = lpt->_body.at(i);
2756    _igvn.replace_node(n, C->top());
2757  }
2758
2759  return true;
2760}
2761