lcm.cpp revision 647:bd441136a5ce
1/*
2 * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Optimization - Graph Style
26
27#include "incls/_precompiled.incl"
28#include "incls/_lcm.cpp.incl"
29
30//------------------------------implicit_null_check----------------------------
31// Detect implicit-null-check opportunities.  Basically, find NULL checks
32// with suitable memory ops nearby.  Use the memory op to do the NULL check.
33// I can generate a memory op if there is not one nearby.
34// The proj is the control projection for the not-null case.
35// The val is the pointer being checked for nullness.
36void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
37  // Assume if null check need for 0 offset then always needed
38  // Intel solaris doesn't support any null checks yet and no
39  // mechanism exists (yet) to set the switches at an os_cpu level
40  if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
41
42  // Make sure the ptr-is-null path appears to be uncommon!
43  float f = end()->as_MachIf()->_prob;
44  if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
45  if( f > PROB_UNLIKELY_MAG(4) ) return;
46
47  uint bidx = 0;                // Capture index of value into memop
48  bool was_store;               // Memory op is a store op
49
50  // Get the successor block for if the test ptr is non-null
51  Block* not_null_block;  // this one goes with the proj
52  Block* null_block;
53  if (_nodes[_nodes.size()-1] == proj) {
54    null_block     = _succs[0];
55    not_null_block = _succs[1];
56  } else {
57    assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
58    not_null_block = _succs[0];
59    null_block     = _succs[1];
60  }
61  while (null_block->is_Empty() == Block::empty_with_goto) {
62    null_block     = null_block->_succs[0];
63  }
64
65  // Search the exception block for an uncommon trap.
66  // (See Parse::do_if and Parse::do_ifnull for the reason
67  // we need an uncommon trap.  Briefly, we need a way to
68  // detect failure of this optimization, as in 6366351.)
69  {
70    bool found_trap = false;
71    for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
72      Node* nn = null_block->_nodes[i1];
73      if (nn->is_MachCall() &&
74          nn->as_MachCall()->entry_point() ==
75          SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
76        const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
77        if (trtype->isa_int() && trtype->is_int()->is_con()) {
78          jint tr_con = trtype->is_int()->get_con();
79          Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
80          Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
81          assert((int)reason < (int)BitsPerInt, "recode bit map");
82          if (is_set_nth_bit(allowed_reasons, (int) reason)
83              && action != Deoptimization::Action_none) {
84            // This uncommon trap is sure to recompile, eventually.
85            // When that happens, C->too_many_traps will prevent
86            // this transformation from happening again.
87            found_trap = true;
88          }
89        }
90        break;
91      }
92    }
93    if (!found_trap) {
94      // We did not find an uncommon trap.
95      return;
96    }
97  }
98
99  // Search the successor block for a load or store who's base value is also
100  // the tested value.  There may be several.
101  Node_List *out = new Node_List(Thread::current()->resource_area());
102  MachNode *best = NULL;        // Best found so far
103  for (DUIterator i = val->outs(); val->has_out(i); i++) {
104    Node *m = val->out(i);
105    if( !m->is_Mach() ) continue;
106    MachNode *mach = m->as_Mach();
107    was_store = false;
108    switch( mach->ideal_Opcode() ) {
109    case Op_LoadB:
110    case Op_LoadUS:
111    case Op_LoadD:
112    case Op_LoadF:
113    case Op_LoadI:
114    case Op_LoadL:
115    case Op_LoadP:
116    case Op_LoadN:
117    case Op_LoadS:
118    case Op_LoadKlass:
119    case Op_LoadNKlass:
120    case Op_LoadRange:
121    case Op_LoadD_unaligned:
122    case Op_LoadL_unaligned:
123      break;
124    case Op_StoreB:
125    case Op_StoreC:
126    case Op_StoreCM:
127    case Op_StoreD:
128    case Op_StoreF:
129    case Op_StoreI:
130    case Op_StoreL:
131    case Op_StoreP:
132    case Op_StoreN:
133      was_store = true;         // Memory op is a store op
134      // Stores will have their address in slot 2 (memory in slot 1).
135      // If the value being nul-checked is in another slot, it means we
136      // are storing the checked value, which does NOT check the value!
137      if( mach->in(2) != val ) continue;
138      break;                    // Found a memory op?
139    case Op_StrComp:
140    case Op_AryEq:
141      // Not a legit memory op for implicit null check regardless of
142      // embedded loads
143      continue;
144    default:                    // Also check for embedded loads
145      if( !mach->needs_anti_dependence_check() )
146        continue;               // Not an memory op; skip it
147      break;
148    }
149    // check if the offset is not too high for implicit exception
150    {
151      intptr_t offset = 0;
152      const TypePtr *adr_type = NULL;  // Do not need this return value here
153      const Node* base = mach->get_base_and_disp(offset, adr_type);
154      if (base == NULL || base == NodeSentinel) {
155        // Narrow oop address doesn't have base, only index
156        if( val->bottom_type()->isa_narrowoop() &&
157            MacroAssembler::needs_explicit_null_check(offset) )
158          continue;             // Give up if offset is beyond page size
159        // cannot reason about it; is probably not implicit null exception
160      } else {
161        const TypePtr* tptr;
162        if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
163          // 32-bits narrow oop can be the base of address expressions
164          tptr = base->bottom_type()->make_ptr();
165        } else {
166          // only regular oops are expected here
167          tptr = base->bottom_type()->is_ptr();
168        }
169        // Give up if offset is not a compile-time constant
170        if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
171          continue;
172        offset += tptr->_offset; // correct if base is offseted
173        if( MacroAssembler::needs_explicit_null_check(offset) )
174          continue;             // Give up is reference is beyond 4K page size
175      }
176    }
177
178    // Check ctrl input to see if the null-check dominates the memory op
179    Block *cb = cfg->_bbs[mach->_idx];
180    cb = cb->_idom;             // Always hoist at least 1 block
181    if( !was_store ) {          // Stores can be hoisted only one block
182      while( cb->_dom_depth > (_dom_depth + 1))
183        cb = cb->_idom;         // Hoist loads as far as we want
184      // The non-null-block should dominate the memory op, too. Live
185      // range spilling will insert a spill in the non-null-block if it is
186      // needs to spill the memory op for an implicit null check.
187      if (cb->_dom_depth == (_dom_depth + 1)) {
188        if (cb != not_null_block) continue;
189        cb = cb->_idom;
190      }
191    }
192    if( cb != this ) continue;
193
194    // Found a memory user; see if it can be hoisted to check-block
195    uint vidx = 0;              // Capture index of value into memop
196    uint j;
197    for( j = mach->req()-1; j > 0; j-- ) {
198      if( mach->in(j) == val ) vidx = j;
199      // Block of memory-op input
200      Block *inb = cfg->_bbs[mach->in(j)->_idx];
201      Block *b = this;          // Start from nul check
202      while( b != inb && b->_dom_depth > inb->_dom_depth )
203        b = b->_idom;           // search upwards for input
204      // See if input dominates null check
205      if( b != inb )
206        break;
207    }
208    if( j > 0 )
209      continue;
210    Block *mb = cfg->_bbs[mach->_idx];
211    // Hoisting stores requires more checks for the anti-dependence case.
212    // Give up hoisting if we have to move the store past any load.
213    if( was_store ) {
214      Block *b = mb;            // Start searching here for a local load
215      // mach use (faulting) trying to hoist
216      // n might be blocker to hoisting
217      while( b != this ) {
218        uint k;
219        for( k = 1; k < b->_nodes.size(); k++ ) {
220          Node *n = b->_nodes[k];
221          if( n->needs_anti_dependence_check() &&
222              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
223            break;              // Found anti-dependent load
224        }
225        if( k < b->_nodes.size() )
226          break;                // Found anti-dependent load
227        // Make sure control does not do a merge (would have to check allpaths)
228        if( b->num_preds() != 2 ) break;
229        b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
230      }
231      if( b != this ) continue;
232    }
233
234    // Make sure this memory op is not already being used for a NullCheck
235    Node *e = mb->end();
236    if( e->is_MachNullCheck() && e->in(1) == mach )
237      continue;                 // Already being used as a NULL check
238
239    // Found a candidate!  Pick one with least dom depth - the highest
240    // in the dom tree should be closest to the null check.
241    if( !best ||
242        cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
243      best = mach;
244      bidx = vidx;
245
246    }
247  }
248  // No candidate!
249  if( !best ) return;
250
251  // ---- Found an implicit null check
252  extern int implicit_null_checks;
253  implicit_null_checks++;
254
255  // Hoist the memory candidate up to the end of the test block.
256  Block *old_block = cfg->_bbs[best->_idx];
257  old_block->find_remove(best);
258  add_inst(best);
259  cfg->_bbs.map(best->_idx,this);
260
261  // Move the control dependence
262  if (best->in(0) && best->in(0) == old_block->_nodes[0])
263    best->set_req(0, _nodes[0]);
264
265  // Check for flag-killing projections that also need to be hoisted
266  // Should be DU safe because no edge updates.
267  for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
268    Node* n = best->fast_out(j);
269    if( n->Opcode() == Op_MachProj ) {
270      cfg->_bbs[n->_idx]->find_remove(n);
271      add_inst(n);
272      cfg->_bbs.map(n->_idx,this);
273    }
274  }
275
276  Compile *C = cfg->C;
277  // proj==Op_True --> ne test; proj==Op_False --> eq test.
278  // One of two graph shapes got matched:
279  //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
280  //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
281  // NULL checks are always branch-if-eq.  If we see a IfTrue projection
282  // then we are replacing a 'ne' test with a 'eq' NULL check test.
283  // We need to flip the projections to keep the same semantics.
284  if( proj->Opcode() == Op_IfTrue ) {
285    // Swap order of projections in basic block to swap branch targets
286    Node *tmp1 = _nodes[end_idx()+1];
287    Node *tmp2 = _nodes[end_idx()+2];
288    _nodes.map(end_idx()+1, tmp2);
289    _nodes.map(end_idx()+2, tmp1);
290    Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
291    tmp1->replace_by(tmp);
292    tmp2->replace_by(tmp1);
293    tmp->replace_by(tmp2);
294    tmp->destruct();
295  }
296
297  // Remove the existing null check; use a new implicit null check instead.
298  // Since schedule-local needs precise def-use info, we need to correct
299  // it as well.
300  Node *old_tst = proj->in(0);
301  MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
302  _nodes.map(end_idx(),nul_chk);
303  cfg->_bbs.map(nul_chk->_idx,this);
304  // Redirect users of old_test to nul_chk
305  for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
306    old_tst->last_out(i2)->set_req(0, nul_chk);
307  // Clean-up any dead code
308  for (uint i3 = 0; i3 < old_tst->req(); i3++)
309    old_tst->set_req(i3, NULL);
310
311  cfg->latency_from_uses(nul_chk);
312  cfg->latency_from_uses(best);
313}
314
315
316//------------------------------select-----------------------------------------
317// Select a nice fellow from the worklist to schedule next. If there is only
318// one choice, then use it. Projections take top priority for correctness
319// reasons - if I see a projection, then it is next.  There are a number of
320// other special cases, for instructions that consume condition codes, et al.
321// These are chosen immediately. Some instructions are required to immediately
322// precede the last instruction in the block, and these are taken last. Of the
323// remaining cases (most), choose the instruction with the greatest latency
324// (that is, the most number of pseudo-cycles required to the end of the
325// routine). If there is a tie, choose the instruction with the most inputs.
326Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
327
328  // If only a single entry on the stack, use it
329  uint cnt = worklist.size();
330  if (cnt == 1) {
331    Node *n = worklist[0];
332    worklist.map(0,worklist.pop());
333    return n;
334  }
335
336  uint choice  = 0; // Bigger is most important
337  uint latency = 0; // Bigger is scheduled first
338  uint score   = 0; // Bigger is better
339  int idx = -1;     // Index in worklist
340
341  for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
342    // Order in worklist is used to break ties.
343    // See caller for how this is used to delay scheduling
344    // of induction variable increments to after the other
345    // uses of the phi are scheduled.
346    Node *n = worklist[i];      // Get Node on worklist
347
348    int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
349    if( n->is_Proj() ||         // Projections always win
350        n->Opcode()== Op_Con || // So does constant 'Top'
351        iop == Op_CreateEx ||   // Create-exception must start block
352        iop == Op_CheckCastPP
353        ) {
354      worklist.map(i,worklist.pop());
355      return n;
356    }
357
358    // Final call in a block must be adjacent to 'catch'
359    Node *e = end();
360    if( e->is_Catch() && e->in(0)->in(0) == n )
361      continue;
362
363    // Memory op for an implicit null check has to be at the end of the block
364    if( e->is_MachNullCheck() && e->in(1) == n )
365      continue;
366
367    uint n_choice  = 2;
368
369    // See if this instruction is consumed by a branch. If so, then (as the
370    // branch is the last instruction in the basic block) force it to the
371    // end of the basic block
372    if ( must_clone[iop] ) {
373      // See if any use is a branch
374      bool found_machif = false;
375
376      for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
377        Node* use = n->fast_out(j);
378
379        // The use is a conditional branch, make them adjacent
380        if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
381          found_machif = true;
382          break;
383        }
384
385        // More than this instruction pending for successor to be ready,
386        // don't choose this if other opportunities are ready
387        if (ready_cnt[use->_idx] > 1)
388          n_choice = 1;
389      }
390
391      // loop terminated, prefer not to use this instruction
392      if (found_machif)
393        continue;
394    }
395
396    // See if this has a predecessor that is "must_clone", i.e. sets the
397    // condition code. If so, choose this first
398    for (uint j = 0; j < n->req() ; j++) {
399      Node *inn = n->in(j);
400      if (inn) {
401        if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
402          n_choice = 3;
403          break;
404        }
405      }
406    }
407
408    // MachTemps should be scheduled last so they are near their uses
409    if (n->is_MachTemp()) {
410      n_choice = 1;
411    }
412
413    uint n_latency = cfg->_node_latency.at_grow(n->_idx);
414    uint n_score   = n->req();   // Many inputs get high score to break ties
415
416    // Keep best latency found
417    if( choice < n_choice ||
418        ( choice == n_choice &&
419          ( latency < n_latency ||
420            ( latency == n_latency &&
421              ( score < n_score ))))) {
422      choice  = n_choice;
423      latency = n_latency;
424      score   = n_score;
425      idx     = i;               // Also keep index in worklist
426    }
427  } // End of for all ready nodes in worklist
428
429  assert(idx >= 0, "index should be set");
430  Node *n = worklist[(uint)idx];      // Get the winner
431
432  worklist.map((uint)idx, worklist.pop());     // Compress worklist
433  return n;
434}
435
436
437//------------------------------set_next_call----------------------------------
438void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
439  if( next_call.test_set(n->_idx) ) return;
440  for( uint i=0; i<n->len(); i++ ) {
441    Node *m = n->in(i);
442    if( !m ) continue;  // must see all nodes in block that precede call
443    if( bbs[m->_idx] == this )
444      set_next_call( m, next_call, bbs );
445  }
446}
447
448//------------------------------needed_for_next_call---------------------------
449// Set the flag 'next_call' for each Node that is needed for the next call to
450// be scheduled.  This flag lets me bias scheduling so Nodes needed for the
451// next subroutine call get priority - basically it moves things NOT needed
452// for the next call till after the call.  This prevents me from trying to
453// carry lots of stuff live across a call.
454void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
455  // Find the next control-defining Node in this block
456  Node* call = NULL;
457  for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
458    Node* m = this_call->fast_out(i);
459    if( bbs[m->_idx] == this && // Local-block user
460        m != this_call &&       // Not self-start node
461        m->is_Call() )
462      call = m;
463      break;
464  }
465  if (call == NULL)  return;    // No next call (e.g., block end is near)
466  // Set next-call for all inputs to this call
467  set_next_call(call, next_call, bbs);
468}
469
470//------------------------------sched_call-------------------------------------
471uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
472  RegMask regs;
473
474  // Schedule all the users of the call right now.  All the users are
475  // projection Nodes, so they must be scheduled next to the call.
476  // Collect all the defined registers.
477  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
478    Node* n = mcall->fast_out(i);
479    assert( n->Opcode()==Op_MachProj, "" );
480    --ready_cnt[n->_idx];
481    assert( !ready_cnt[n->_idx], "" );
482    // Schedule next to call
483    _nodes.map(node_cnt++, n);
484    // Collect defined registers
485    regs.OR(n->out_RegMask());
486    // Check for scheduling the next control-definer
487    if( n->bottom_type() == Type::CONTROL )
488      // Warm up next pile of heuristic bits
489      needed_for_next_call(n, next_call, bbs);
490
491    // Children of projections are now all ready
492    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
493      Node* m = n->fast_out(j); // Get user
494      if( bbs[m->_idx] != this ) continue;
495      if( m->is_Phi() ) continue;
496      if( !--ready_cnt[m->_idx] )
497        worklist.push(m);
498    }
499
500  }
501
502  // Act as if the call defines the Frame Pointer.
503  // Certainly the FP is alive and well after the call.
504  regs.Insert(matcher.c_frame_pointer());
505
506  // Set all registers killed and not already defined by the call.
507  uint r_cnt = mcall->tf()->range()->cnt();
508  int op = mcall->ideal_Opcode();
509  MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
510  bbs.map(proj->_idx,this);
511  _nodes.insert(node_cnt++, proj);
512
513  // Select the right register save policy.
514  const char * save_policy;
515  switch (op) {
516    case Op_CallRuntime:
517    case Op_CallLeaf:
518    case Op_CallLeafNoFP:
519      // Calling C code so use C calling convention
520      save_policy = matcher._c_reg_save_policy;
521      break;
522
523    case Op_CallStaticJava:
524    case Op_CallDynamicJava:
525      // Calling Java code so use Java calling convention
526      save_policy = matcher._register_save_policy;
527      break;
528
529    default:
530      ShouldNotReachHere();
531  }
532
533  // When using CallRuntime mark SOE registers as killed by the call
534  // so values that could show up in the RegisterMap aren't live in a
535  // callee saved register since the register wouldn't know where to
536  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
537  // have debug info on them.  Strictly speaking this only needs to be
538  // done for oops since idealreg2debugmask takes care of debug info
539  // references but there no way to handle oops differently than other
540  // pointers as far as the kill mask goes.
541  bool exclude_soe = op == Op_CallRuntime;
542
543  // Fill in the kill mask for the call
544  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
545    if( !regs.Member(r) ) {     // Not already defined by the call
546      // Save-on-call register?
547      if ((save_policy[r] == 'C') ||
548          (save_policy[r] == 'A') ||
549          ((save_policy[r] == 'E') && exclude_soe)) {
550        proj->_rout.Insert(r);
551      }
552    }
553  }
554
555  return node_cnt;
556}
557
558
559//------------------------------schedule_local---------------------------------
560// Topological sort within a block.  Someday become a real scheduler.
561bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
562  // Already "sorted" are the block start Node (as the first entry), and
563  // the block-ending Node and any trailing control projections.  We leave
564  // these alone.  PhiNodes and ParmNodes are made to follow the block start
565  // Node.  Everything else gets topo-sorted.
566
567#ifndef PRODUCT
568    if (cfg->trace_opto_pipelining()) {
569      tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
570      for (uint i = 0;i < _nodes.size();i++) {
571        tty->print("# ");
572        _nodes[i]->fast_dump();
573      }
574      tty->print_cr("#");
575    }
576#endif
577
578  // RootNode is already sorted
579  if( _nodes.size() == 1 ) return true;
580
581  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
582  uint node_cnt = end_idx();
583  uint phi_cnt = 1;
584  uint i;
585  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
586    Node *n = _nodes[i];
587    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
588        (n->is_Proj()  && n->in(0) == head()) ) {
589      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
590      _nodes.map(i,_nodes[phi_cnt]);
591      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
592    } else {                    // All others
593      // Count block-local inputs to 'n'
594      uint cnt = n->len();      // Input count
595      uint local = 0;
596      for( uint j=0; j<cnt; j++ ) {
597        Node *m = n->in(j);
598        if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
599          local++;              // One more block-local input
600      }
601      ready_cnt[n->_idx] = local; // Count em up
602
603      // A few node types require changing a required edge to a precedence edge
604      // before allocation.
605      if( UseConcMarkSweepGC || UseG1GC ) {
606        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
607          // Note: Required edges with an index greater than oper_input_base
608          // are not supported by the allocator.
609          // Note2: Can only depend on unmatched edge being last,
610          // can not depend on its absolute position.
611          Node *oop_store = n->in(n->req() - 1);
612          n->del_req(n->req() - 1);
613          n->add_prec(oop_store);
614          assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
615        }
616      }
617      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire &&
618          n->req() > TypeFunc::Parms ) {
619        // MemBarAcquire could be created without Precedent edge.
620        // del_req() replaces the specified edge with the last input edge
621        // and then removes the last edge. If the specified edge > number of
622        // edges the last edge will be moved outside of the input edges array
623        // and the edge will be lost. This is why this code should be
624        // executed only when Precedent (== TypeFunc::Parms) edge is present.
625        Node *x = n->in(TypeFunc::Parms);
626        n->del_req(TypeFunc::Parms);
627        n->add_prec(x);
628      }
629    }
630  }
631  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
632    ready_cnt[_nodes[i2]->_idx] = 0;
633
634  // All the prescheduled guys do not hold back internal nodes
635  uint i3;
636  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
637    Node *n = _nodes[i3];       // Get pre-scheduled
638    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
639      Node* m = n->fast_out(j);
640      if( cfg->_bbs[m->_idx] ==this ) // Local-block user
641        ready_cnt[m->_idx]--;   // Fix ready count
642    }
643  }
644
645  Node_List delay;
646  // Make a worklist
647  Node_List worklist;
648  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
649    Node *m = _nodes[i4];
650    if( !ready_cnt[m->_idx] ) {   // Zero ready count?
651      if (m->is_iteratively_computed()) {
652        // Push induction variable increments last to allow other uses
653        // of the phi to be scheduled first. The select() method breaks
654        // ties in scheduling by worklist order.
655        delay.push(m);
656      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
657        // Force the CreateEx to the top of the list so it's processed
658        // first and ends up at the start of the block.
659        worklist.insert(0, m);
660      } else {
661        worklist.push(m);         // Then on to worklist!
662      }
663    }
664  }
665  while (delay.size()) {
666    Node* d = delay.pop();
667    worklist.push(d);
668  }
669
670  // Warm up the 'next_call' heuristic bits
671  needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
672
673#ifndef PRODUCT
674    if (cfg->trace_opto_pipelining()) {
675      for (uint j=0; j<_nodes.size(); j++) {
676        Node     *n = _nodes[j];
677        int     idx = n->_idx;
678        tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
679        tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
680        tty->print("%4d: %s\n", idx, n->Name());
681      }
682    }
683#endif
684
685  // Pull from worklist and schedule
686  while( worklist.size() ) {    // Worklist is not ready
687
688#ifndef PRODUCT
689    if (cfg->trace_opto_pipelining()) {
690      tty->print("#   ready list:");
691      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
692        Node *n = worklist[i];      // Get Node on worklist
693        tty->print(" %d", n->_idx);
694      }
695      tty->cr();
696    }
697#endif
698
699    // Select and pop a ready guy from worklist
700    Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
701    _nodes.map(phi_cnt++,n);    // Schedule him next
702
703#ifndef PRODUCT
704    if (cfg->trace_opto_pipelining()) {
705      tty->print("#    select %d: %s", n->_idx, n->Name());
706      tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
707      n->dump();
708      if (Verbose) {
709        tty->print("#   ready list:");
710        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
711          Node *n = worklist[i];      // Get Node on worklist
712          tty->print(" %d", n->_idx);
713        }
714        tty->cr();
715      }
716    }
717
718#endif
719    if( n->is_MachCall() ) {
720      MachCallNode *mcall = n->as_MachCall();
721      phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
722      continue;
723    }
724    // Children are now all ready
725    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
726      Node* m = n->fast_out(i5); // Get user
727      if( cfg->_bbs[m->_idx] != this ) continue;
728      if( m->is_Phi() ) continue;
729      if( !--ready_cnt[m->_idx] )
730        worklist.push(m);
731    }
732  }
733
734  if( phi_cnt != end_idx() ) {
735    // did not schedule all.  Retry, Bailout, or Die
736    Compile* C = matcher.C;
737    if (C->subsume_loads() == true && !C->failing()) {
738      // Retry with subsume_loads == false
739      // If this is the first failure, the sentinel string will "stick"
740      // to the Compile object, and the C2Compiler will see it and retry.
741      C->record_failure(C2Compiler::retry_no_subsuming_loads());
742    }
743    // assert( phi_cnt == end_idx(), "did not schedule all" );
744    return false;
745  }
746
747#ifndef PRODUCT
748  if (cfg->trace_opto_pipelining()) {
749    tty->print_cr("#");
750    tty->print_cr("# after schedule_local");
751    for (uint i = 0;i < _nodes.size();i++) {
752      tty->print("# ");
753      _nodes[i]->fast_dump();
754    }
755    tty->cr();
756  }
757#endif
758
759
760  return true;
761}
762
763//--------------------------catch_cleanup_fix_all_inputs-----------------------
764static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
765  for (uint l = 0; l < use->len(); l++) {
766    if (use->in(l) == old_def) {
767      if (l < use->req()) {
768        use->set_req(l, new_def);
769      } else {
770        use->rm_prec(l);
771        use->add_prec(new_def);
772        l--;
773      }
774    }
775  }
776}
777
778//------------------------------catch_cleanup_find_cloned_def------------------
779static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
780  assert( use_blk != def_blk, "Inter-block cleanup only");
781
782  // The use is some block below the Catch.  Find and return the clone of the def
783  // that dominates the use. If there is no clone in a dominating block, then
784  // create a phi for the def in a dominating block.
785
786  // Find which successor block dominates this use.  The successor
787  // blocks must all be single-entry (from the Catch only; I will have
788  // split blocks to make this so), hence they all dominate.
789  while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
790    use_blk = use_blk->_idom;
791
792  // Find the successor
793  Node *fixup = NULL;
794
795  uint j;
796  for( j = 0; j < def_blk->_num_succs; j++ )
797    if( use_blk == def_blk->_succs[j] )
798      break;
799
800  if( j == def_blk->_num_succs ) {
801    // Block at same level in dom-tree is not a successor.  It needs a
802    // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
803    Node_Array inputs = new Node_List(Thread::current()->resource_area());
804    for(uint k = 1; k < use_blk->num_preds(); k++) {
805      inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
806    }
807
808    // Check to see if the use_blk already has an identical phi inserted.
809    // If it exists, it will be at the first position since all uses of a
810    // def are processed together.
811    Node *phi = use_blk->_nodes[1];
812    if( phi->is_Phi() ) {
813      fixup = phi;
814      for (uint k = 1; k < use_blk->num_preds(); k++) {
815        if (phi->in(k) != inputs[k]) {
816          // Not a match
817          fixup = NULL;
818          break;
819        }
820      }
821    }
822
823    // If an existing PhiNode was not found, make a new one.
824    if (fixup == NULL) {
825      Node *new_phi = PhiNode::make(use_blk->head(), def);
826      use_blk->_nodes.insert(1, new_phi);
827      bbs.map(new_phi->_idx, use_blk);
828      for (uint k = 1; k < use_blk->num_preds(); k++) {
829        new_phi->set_req(k, inputs[k]);
830      }
831      fixup = new_phi;
832    }
833
834  } else {
835    // Found the use just below the Catch.  Make it use the clone.
836    fixup = use_blk->_nodes[n_clone_idx];
837  }
838
839  return fixup;
840}
841
842//--------------------------catch_cleanup_intra_block--------------------------
843// Fix all input edges in use that reference "def".  The use is in the same
844// block as the def and both have been cloned in each successor block.
845static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
846
847  // Both the use and def have been cloned. For each successor block,
848  // get the clone of the use, and make its input the clone of the def
849  // found in that block.
850
851  uint use_idx = blk->find_node(use);
852  uint offset_idx = use_idx - beg;
853  for( uint k = 0; k < blk->_num_succs; k++ ) {
854    // Get clone in each successor block
855    Block *sb = blk->_succs[k];
856    Node *clone = sb->_nodes[offset_idx+1];
857    assert( clone->Opcode() == use->Opcode(), "" );
858
859    // Make use-clone reference the def-clone
860    catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
861  }
862}
863
864//------------------------------catch_cleanup_inter_block---------------------
865// Fix all input edges in use that reference "def".  The use is in a different
866// block than the def.
867static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
868  if( !use_blk ) return;        // Can happen if the use is a precedence edge
869
870  Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
871  catch_cleanup_fix_all_inputs(use, def, new_def);
872}
873
874//------------------------------call_catch_cleanup-----------------------------
875// If we inserted any instructions between a Call and his CatchNode,
876// clone the instructions on all paths below the Catch.
877void Block::call_catch_cleanup(Block_Array &bbs) {
878
879  // End of region to clone
880  uint end = end_idx();
881  if( !_nodes[end]->is_Catch() ) return;
882  // Start of region to clone
883  uint beg = end;
884  while( _nodes[beg-1]->Opcode() != Op_MachProj ||
885        !_nodes[beg-1]->in(0)->is_Call() ) {
886    beg--;
887    assert(beg > 0,"Catch cleanup walking beyond block boundary");
888  }
889  // Range of inserted instructions is [beg, end)
890  if( beg == end ) return;
891
892  // Clone along all Catch output paths.  Clone area between the 'beg' and
893  // 'end' indices.
894  for( uint i = 0; i < _num_succs; i++ ) {
895    Block *sb = _succs[i];
896    // Clone the entire area; ignoring the edge fixup for now.
897    for( uint j = end; j > beg; j-- ) {
898      Node *clone = _nodes[j-1]->clone();
899      sb->_nodes.insert( 1, clone );
900      bbs.map(clone->_idx,sb);
901    }
902  }
903
904
905  // Fixup edges.  Check the def-use info per cloned Node
906  for(uint i2 = beg; i2 < end; i2++ ) {
907    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
908    Node *n = _nodes[i2];        // Node that got cloned
909    // Need DU safe iterator because of edge manipulation in calls.
910    Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
911    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
912      out->push(n->fast_out(j1));
913    }
914    uint max = out->size();
915    for (uint j = 0; j < max; j++) {// For all users
916      Node *use = out->pop();
917      Block *buse = bbs[use->_idx];
918      if( use->is_Phi() ) {
919        for( uint k = 1; k < use->req(); k++ )
920          if( use->in(k) == n ) {
921            Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
922            use->set_req(k, fixup);
923          }
924      } else {
925        if (this == buse) {
926          catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
927        } else {
928          catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
929        }
930      }
931    } // End for all users
932
933  } // End of for all Nodes in cloned area
934
935  // Remove the now-dead cloned ops
936  for(uint i3 = beg; i3 < end; i3++ ) {
937    _nodes[beg]->disconnect_inputs(NULL);
938    _nodes.remove(beg);
939  }
940
941  // If the successor blocks have a CreateEx node, move it back to the top
942  for(uint i4 = 0; i4 < _num_succs; i4++ ) {
943    Block *sb = _succs[i4];
944    uint new_cnt = end - beg;
945    // Remove any newly created, but dead, nodes.
946    for( uint j = new_cnt; j > 0; j-- ) {
947      Node *n = sb->_nodes[j];
948      if (n->outcnt() == 0 &&
949          (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
950        n->disconnect_inputs(NULL);
951        sb->_nodes.remove(j);
952        new_cnt--;
953      }
954    }
955    // If any newly created nodes remain, move the CreateEx node to the top
956    if (new_cnt > 0) {
957      Node *cex = sb->_nodes[1+new_cnt];
958      if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
959        sb->_nodes.remove(1+new_cnt);
960        sb->_nodes.insert(1,cex);
961      }
962    }
963  }
964}
965