lcm.cpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/block.hpp"
28#include "opto/c2compiler.hpp"
29#include "opto/callnode.hpp"
30#include "opto/cfgnode.hpp"
31#include "opto/machnode.hpp"
32#include "opto/runtime.hpp"
33#ifdef TARGET_ARCH_MODEL_x86_32
34# include "adfiles/ad_x86_32.hpp"
35#endif
36#ifdef TARGET_ARCH_MODEL_x86_64
37# include "adfiles/ad_x86_64.hpp"
38#endif
39#ifdef TARGET_ARCH_MODEL_sparc
40# include "adfiles/ad_sparc.hpp"
41#endif
42#ifdef TARGET_ARCH_MODEL_zero
43# include "adfiles/ad_zero.hpp"
44#endif
45#ifdef TARGET_ARCH_MODEL_arm
46# include "adfiles/ad_arm.hpp"
47#endif
48#ifdef TARGET_ARCH_MODEL_ppc
49# include "adfiles/ad_ppc.hpp"
50#endif
51
52// Optimization - Graph Style
53
54//------------------------------implicit_null_check----------------------------
55// Detect implicit-null-check opportunities.  Basically, find NULL checks
56// with suitable memory ops nearby.  Use the memory op to do the NULL check.
57// I can generate a memory op if there is not one nearby.
58// The proj is the control projection for the not-null case.
59// The val is the pointer being checked for nullness or
60// decodeHeapOop_not_null node if it did not fold into address.
61void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
62  // Assume if null check need for 0 offset then always needed
63  // Intel solaris doesn't support any null checks yet and no
64  // mechanism exists (yet) to set the switches at an os_cpu level
65  if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
66
67  // Make sure the ptr-is-null path appears to be uncommon!
68  float f = block->end()->as_MachIf()->_prob;
69  if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
70  if( f > PROB_UNLIKELY_MAG(4) ) return;
71
72  uint bidx = 0;                // Capture index of value into memop
73  bool was_store;               // Memory op is a store op
74
75  // Get the successor block for if the test ptr is non-null
76  Block* not_null_block;  // this one goes with the proj
77  Block* null_block;
78  if (block->get_node(block->number_of_nodes()-1) == proj) {
79    null_block     = block->_succs[0];
80    not_null_block = block->_succs[1];
81  } else {
82    assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
83    not_null_block = block->_succs[0];
84    null_block     = block->_succs[1];
85  }
86  while (null_block->is_Empty() == Block::empty_with_goto) {
87    null_block     = null_block->_succs[0];
88  }
89
90  // Search the exception block for an uncommon trap.
91  // (See Parse::do_if and Parse::do_ifnull for the reason
92  // we need an uncommon trap.  Briefly, we need a way to
93  // detect failure of this optimization, as in 6366351.)
94  {
95    bool found_trap = false;
96    for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
97      Node* nn = null_block->get_node(i1);
98      if (nn->is_MachCall() &&
99          nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
100        const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
101        if (trtype->isa_int() && trtype->is_int()->is_con()) {
102          jint tr_con = trtype->is_int()->get_con();
103          Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
104          Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
105          assert((int)reason < (int)BitsPerInt, "recode bit map");
106          if (is_set_nth_bit(allowed_reasons, (int) reason)
107              && action != Deoptimization::Action_none) {
108            // This uncommon trap is sure to recompile, eventually.
109            // When that happens, C->too_many_traps will prevent
110            // this transformation from happening again.
111            found_trap = true;
112          }
113        }
114        break;
115      }
116    }
117    if (!found_trap) {
118      // We did not find an uncommon trap.
119      return;
120    }
121  }
122
123  // Check for decodeHeapOop_not_null node which did not fold into address
124  bool is_decoden = ((intptr_t)val) & 1;
125  val = (Node*)(((intptr_t)val) & ~1);
126
127  assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
128         (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
129
130  // Search the successor block for a load or store who's base value is also
131  // the tested value.  There may be several.
132  Node_List *out = new Node_List(Thread::current()->resource_area());
133  MachNode *best = NULL;        // Best found so far
134  for (DUIterator i = val->outs(); val->has_out(i); i++) {
135    Node *m = val->out(i);
136    if( !m->is_Mach() ) continue;
137    MachNode *mach = m->as_Mach();
138    was_store = false;
139    int iop = mach->ideal_Opcode();
140    switch( iop ) {
141    case Op_LoadB:
142    case Op_LoadUB:
143    case Op_LoadUS:
144    case Op_LoadD:
145    case Op_LoadF:
146    case Op_LoadI:
147    case Op_LoadL:
148    case Op_LoadP:
149    case Op_LoadN:
150    case Op_LoadS:
151    case Op_LoadKlass:
152    case Op_LoadNKlass:
153    case Op_LoadRange:
154    case Op_LoadD_unaligned:
155    case Op_LoadL_unaligned:
156      assert(mach->in(2) == val, "should be address");
157      break;
158    case Op_StoreB:
159    case Op_StoreC:
160    case Op_StoreCM:
161    case Op_StoreD:
162    case Op_StoreF:
163    case Op_StoreI:
164    case Op_StoreL:
165    case Op_StoreP:
166    case Op_StoreN:
167    case Op_StoreNKlass:
168      was_store = true;         // Memory op is a store op
169      // Stores will have their address in slot 2 (memory in slot 1).
170      // If the value being nul-checked is in another slot, it means we
171      // are storing the checked value, which does NOT check the value!
172      if( mach->in(2) != val ) continue;
173      break;                    // Found a memory op?
174    case Op_StrComp:
175    case Op_StrEquals:
176    case Op_StrIndexOf:
177    case Op_AryEq:
178    case Op_EncodeISOArray:
179      // Not a legit memory op for implicit null check regardless of
180      // embedded loads
181      continue;
182    default:                    // Also check for embedded loads
183      if( !mach->needs_anti_dependence_check() )
184        continue;               // Not an memory op; skip it
185      if( must_clone[iop] ) {
186        // Do not move nodes which produce flags because
187        // RA will try to clone it to place near branch and
188        // it will cause recompilation, see clone_node().
189        continue;
190      }
191      {
192        // Check that value is used in memory address in
193        // instructions with embedded load (CmpP val1,(val2+off)).
194        Node* base;
195        Node* index;
196        const MachOper* oper = mach->memory_inputs(base, index);
197        if (oper == NULL || oper == (MachOper*)-1) {
198          continue;             // Not an memory op; skip it
199        }
200        if (val == base ||
201            val == index && val->bottom_type()->isa_narrowoop()) {
202          break;                // Found it
203        } else {
204          continue;             // Skip it
205        }
206      }
207      break;
208    }
209    // check if the offset is not too high for implicit exception
210    {
211      intptr_t offset = 0;
212      const TypePtr *adr_type = NULL;  // Do not need this return value here
213      const Node* base = mach->get_base_and_disp(offset, adr_type);
214      if (base == NULL || base == NodeSentinel) {
215        // Narrow oop address doesn't have base, only index
216        if( val->bottom_type()->isa_narrowoop() &&
217            MacroAssembler::needs_explicit_null_check(offset) )
218          continue;             // Give up if offset is beyond page size
219        // cannot reason about it; is probably not implicit null exception
220      } else {
221        const TypePtr* tptr;
222        if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
223                                  Universe::narrow_klass_shift() == 0)) {
224          // 32-bits narrow oop can be the base of address expressions
225          tptr = base->get_ptr_type();
226        } else {
227          // only regular oops are expected here
228          tptr = base->bottom_type()->is_ptr();
229        }
230        // Give up if offset is not a compile-time constant
231        if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
232          continue;
233        offset += tptr->_offset; // correct if base is offseted
234        if( MacroAssembler::needs_explicit_null_check(offset) )
235          continue;             // Give up is reference is beyond 4K page size
236      }
237    }
238
239    // Check ctrl input to see if the null-check dominates the memory op
240    Block *cb = get_block_for_node(mach);
241    cb = cb->_idom;             // Always hoist at least 1 block
242    if( !was_store ) {          // Stores can be hoisted only one block
243      while( cb->_dom_depth > (block->_dom_depth + 1))
244        cb = cb->_idom;         // Hoist loads as far as we want
245      // The non-null-block should dominate the memory op, too. Live
246      // range spilling will insert a spill in the non-null-block if it is
247      // needs to spill the memory op for an implicit null check.
248      if (cb->_dom_depth == (block->_dom_depth + 1)) {
249        if (cb != not_null_block) continue;
250        cb = cb->_idom;
251      }
252    }
253    if( cb != block ) continue;
254
255    // Found a memory user; see if it can be hoisted to check-block
256    uint vidx = 0;              // Capture index of value into memop
257    uint j;
258    for( j = mach->req()-1; j > 0; j-- ) {
259      if( mach->in(j) == val ) {
260        vidx = j;
261        // Ignore DecodeN val which could be hoisted to where needed.
262        if( is_decoden ) continue;
263      }
264      // Block of memory-op input
265      Block *inb = get_block_for_node(mach->in(j));
266      Block *b = block;          // Start from nul check
267      while( b != inb && b->_dom_depth > inb->_dom_depth )
268        b = b->_idom;           // search upwards for input
269      // See if input dominates null check
270      if( b != inb )
271        break;
272    }
273    if( j > 0 )
274      continue;
275    Block *mb = get_block_for_node(mach);
276    // Hoisting stores requires more checks for the anti-dependence case.
277    // Give up hoisting if we have to move the store past any load.
278    if( was_store ) {
279      Block *b = mb;            // Start searching here for a local load
280      // mach use (faulting) trying to hoist
281      // n might be blocker to hoisting
282      while( b != block ) {
283        uint k;
284        for( k = 1; k < b->number_of_nodes(); k++ ) {
285          Node *n = b->get_node(k);
286          if( n->needs_anti_dependence_check() &&
287              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
288            break;              // Found anti-dependent load
289        }
290        if( k < b->number_of_nodes() )
291          break;                // Found anti-dependent load
292        // Make sure control does not do a merge (would have to check allpaths)
293        if( b->num_preds() != 2 ) break;
294        b = get_block_for_node(b->pred(1)); // Move up to predecessor block
295      }
296      if( b != block ) continue;
297    }
298
299    // Make sure this memory op is not already being used for a NullCheck
300    Node *e = mb->end();
301    if( e->is_MachNullCheck() && e->in(1) == mach )
302      continue;                 // Already being used as a NULL check
303
304    // Found a candidate!  Pick one with least dom depth - the highest
305    // in the dom tree should be closest to the null check.
306    if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
307      best = mach;
308      bidx = vidx;
309    }
310  }
311  // No candidate!
312  if (best == NULL) {
313    return;
314  }
315
316  // ---- Found an implicit null check
317  extern int implicit_null_checks;
318  implicit_null_checks++;
319
320  if( is_decoden ) {
321    // Check if we need to hoist decodeHeapOop_not_null first.
322    Block *valb = get_block_for_node(val);
323    if( block != valb && block->_dom_depth < valb->_dom_depth ) {
324      // Hoist it up to the end of the test block.
325      valb->find_remove(val);
326      block->add_inst(val);
327      map_node_to_block(val, block);
328      // DecodeN on x86 may kill flags. Check for flag-killing projections
329      // that also need to be hoisted.
330      for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
331        Node* n = val->fast_out(j);
332        if( n->is_MachProj() ) {
333          get_block_for_node(n)->find_remove(n);
334          block->add_inst(n);
335          map_node_to_block(n, block);
336        }
337      }
338    }
339  }
340  // Hoist the memory candidate up to the end of the test block.
341  Block *old_block = get_block_for_node(best);
342  old_block->find_remove(best);
343  block->add_inst(best);
344  map_node_to_block(best, block);
345
346  // Move the control dependence
347  if (best->in(0) && best->in(0) == old_block->head())
348    best->set_req(0, block->head());
349
350  // Check for flag-killing projections that also need to be hoisted
351  // Should be DU safe because no edge updates.
352  for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
353    Node* n = best->fast_out(j);
354    if( n->is_MachProj() ) {
355      get_block_for_node(n)->find_remove(n);
356      block->add_inst(n);
357      map_node_to_block(n, block);
358    }
359  }
360
361  // proj==Op_True --> ne test; proj==Op_False --> eq test.
362  // One of two graph shapes got matched:
363  //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
364  //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
365  // NULL checks are always branch-if-eq.  If we see a IfTrue projection
366  // then we are replacing a 'ne' test with a 'eq' NULL check test.
367  // We need to flip the projections to keep the same semantics.
368  if( proj->Opcode() == Op_IfTrue ) {
369    // Swap order of projections in basic block to swap branch targets
370    Node *tmp1 = block->get_node(block->end_idx()+1);
371    Node *tmp2 = block->get_node(block->end_idx()+2);
372    block->map_node(tmp2, block->end_idx()+1);
373    block->map_node(tmp1, block->end_idx()+2);
374    Node *tmp = new (C) Node(C->top()); // Use not NULL input
375    tmp1->replace_by(tmp);
376    tmp2->replace_by(tmp1);
377    tmp->replace_by(tmp2);
378    tmp->destruct();
379  }
380
381  // Remove the existing null check; use a new implicit null check instead.
382  // Since schedule-local needs precise def-use info, we need to correct
383  // it as well.
384  Node *old_tst = proj->in(0);
385  MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
386  block->map_node(nul_chk, block->end_idx());
387  map_node_to_block(nul_chk, block);
388  // Redirect users of old_test to nul_chk
389  for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
390    old_tst->last_out(i2)->set_req(0, nul_chk);
391  // Clean-up any dead code
392  for (uint i3 = 0; i3 < old_tst->req(); i3++)
393    old_tst->set_req(i3, NULL);
394
395  latency_from_uses(nul_chk);
396  latency_from_uses(best);
397}
398
399
400//------------------------------select-----------------------------------------
401// Select a nice fellow from the worklist to schedule next. If there is only
402// one choice, then use it. Projections take top priority for correctness
403// reasons - if I see a projection, then it is next.  There are a number of
404// other special cases, for instructions that consume condition codes, et al.
405// These are chosen immediately. Some instructions are required to immediately
406// precede the last instruction in the block, and these are taken last. Of the
407// remaining cases (most), choose the instruction with the greatest latency
408// (that is, the most number of pseudo-cycles required to the end of the
409// routine). If there is a tie, choose the instruction with the most inputs.
410Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
411
412  // If only a single entry on the stack, use it
413  uint cnt = worklist.size();
414  if (cnt == 1) {
415    Node *n = worklist[0];
416    worklist.map(0,worklist.pop());
417    return n;
418  }
419
420  uint choice  = 0; // Bigger is most important
421  uint latency = 0; // Bigger is scheduled first
422  uint score   = 0; // Bigger is better
423  int idx = -1;     // Index in worklist
424  int cand_cnt = 0; // Candidate count
425
426  for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
427    // Order in worklist is used to break ties.
428    // See caller for how this is used to delay scheduling
429    // of induction variable increments to after the other
430    // uses of the phi are scheduled.
431    Node *n = worklist[i];      // Get Node on worklist
432
433    int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
434    if( n->is_Proj() ||         // Projections always win
435        n->Opcode()== Op_Con || // So does constant 'Top'
436        iop == Op_CreateEx ||   // Create-exception must start block
437        iop == Op_CheckCastPP
438        ) {
439      worklist.map(i,worklist.pop());
440      return n;
441    }
442
443    // Final call in a block must be adjacent to 'catch'
444    Node *e = block->end();
445    if( e->is_Catch() && e->in(0)->in(0) == n )
446      continue;
447
448    // Memory op for an implicit null check has to be at the end of the block
449    if( e->is_MachNullCheck() && e->in(1) == n )
450      continue;
451
452    // Schedule IV increment last.
453    if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
454        e->in(1)->in(1) == n && n->is_iteratively_computed())
455      continue;
456
457    uint n_choice  = 2;
458
459    // See if this instruction is consumed by a branch. If so, then (as the
460    // branch is the last instruction in the basic block) force it to the
461    // end of the basic block
462    if ( must_clone[iop] ) {
463      // See if any use is a branch
464      bool found_machif = false;
465
466      for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
467        Node* use = n->fast_out(j);
468
469        // The use is a conditional branch, make them adjacent
470        if (use->is_MachIf() && get_block_for_node(use) == block) {
471          found_machif = true;
472          break;
473        }
474
475        // For nodes that produce a FlagsProj, make the node adjacent to the
476        // use of the FlagsProj
477        if (use->is_FlagsProj() && get_block_for_node(use) == block) {
478          found_machif = true;
479          break;
480        }
481
482        // More than this instruction pending for successor to be ready,
483        // don't choose this if other opportunities are ready
484        if (ready_cnt.at(use->_idx) > 1)
485          n_choice = 1;
486      }
487
488      // loop terminated, prefer not to use this instruction
489      if (found_machif)
490        continue;
491    }
492
493    // See if this has a predecessor that is "must_clone", i.e. sets the
494    // condition code. If so, choose this first
495    for (uint j = 0; j < n->req() ; j++) {
496      Node *inn = n->in(j);
497      if (inn) {
498        if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
499          n_choice = 3;
500          break;
501        }
502      }
503    }
504
505    // MachTemps should be scheduled last so they are near their uses
506    if (n->is_MachTemp()) {
507      n_choice = 1;
508    }
509
510    uint n_latency = get_latency_for_node(n);
511    uint n_score   = n->req();   // Many inputs get high score to break ties
512
513    // Keep best latency found
514    cand_cnt++;
515    if (choice < n_choice ||
516        (choice == n_choice &&
517         ((StressLCM && Compile::randomized_select(cand_cnt)) ||
518          (!StressLCM &&
519           (latency < n_latency ||
520            (latency == n_latency &&
521             (score < n_score))))))) {
522      choice  = n_choice;
523      latency = n_latency;
524      score   = n_score;
525      idx     = i;               // Also keep index in worklist
526    }
527  } // End of for all ready nodes in worklist
528
529  assert(idx >= 0, "index should be set");
530  Node *n = worklist[(uint)idx];      // Get the winner
531
532  worklist.map((uint)idx, worklist.pop());     // Compress worklist
533  return n;
534}
535
536
537//------------------------------set_next_call----------------------------------
538void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
539  if( next_call.test_set(n->_idx) ) return;
540  for( uint i=0; i<n->len(); i++ ) {
541    Node *m = n->in(i);
542    if( !m ) continue;  // must see all nodes in block that precede call
543    if (get_block_for_node(m) == block) {
544      set_next_call(block, m, next_call);
545    }
546  }
547}
548
549//------------------------------needed_for_next_call---------------------------
550// Set the flag 'next_call' for each Node that is needed for the next call to
551// be scheduled.  This flag lets me bias scheduling so Nodes needed for the
552// next subroutine call get priority - basically it moves things NOT needed
553// for the next call till after the call.  This prevents me from trying to
554// carry lots of stuff live across a call.
555void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
556  // Find the next control-defining Node in this block
557  Node* call = NULL;
558  for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
559    Node* m = this_call->fast_out(i);
560    if (get_block_for_node(m) == block && // Local-block user
561        m != this_call &&       // Not self-start node
562        m->is_MachCall()) {
563      call = m;
564      break;
565    }
566  }
567  if (call == NULL)  return;    // No next call (e.g., block end is near)
568  // Set next-call for all inputs to this call
569  set_next_call(block, call, next_call);
570}
571
572//------------------------------add_call_kills-------------------------------------
573// helper function that adds caller save registers to MachProjNode
574static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
575  // Fill in the kill mask for the call
576  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
577    if( !regs.Member(r) ) {     // Not already defined by the call
578      // Save-on-call register?
579      if ((save_policy[r] == 'C') ||
580          (save_policy[r] == 'A') ||
581          ((save_policy[r] == 'E') && exclude_soe)) {
582        proj->_rout.Insert(r);
583      }
584    }
585  }
586}
587
588
589//------------------------------sched_call-------------------------------------
590uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
591  RegMask regs;
592
593  // Schedule all the users of the call right now.  All the users are
594  // projection Nodes, so they must be scheduled next to the call.
595  // Collect all the defined registers.
596  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
597    Node* n = mcall->fast_out(i);
598    assert( n->is_MachProj(), "" );
599    int n_cnt = ready_cnt.at(n->_idx)-1;
600    ready_cnt.at_put(n->_idx, n_cnt);
601    assert( n_cnt == 0, "" );
602    // Schedule next to call
603    block->map_node(n, node_cnt++);
604    // Collect defined registers
605    regs.OR(n->out_RegMask());
606    // Check for scheduling the next control-definer
607    if( n->bottom_type() == Type::CONTROL )
608      // Warm up next pile of heuristic bits
609      needed_for_next_call(block, n, next_call);
610
611    // Children of projections are now all ready
612    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
613      Node* m = n->fast_out(j); // Get user
614      if(get_block_for_node(m) != block) {
615        continue;
616      }
617      if( m->is_Phi() ) continue;
618      int m_cnt = ready_cnt.at(m->_idx)-1;
619      ready_cnt.at_put(m->_idx, m_cnt);
620      if( m_cnt == 0 )
621        worklist.push(m);
622    }
623
624  }
625
626  // Act as if the call defines the Frame Pointer.
627  // Certainly the FP is alive and well after the call.
628  regs.Insert(_matcher.c_frame_pointer());
629
630  // Set all registers killed and not already defined by the call.
631  uint r_cnt = mcall->tf()->range()->cnt();
632  int op = mcall->ideal_Opcode();
633  MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
634  map_node_to_block(proj, block);
635  block->insert_node(proj, node_cnt++);
636
637  // Select the right register save policy.
638  const char * save_policy;
639  switch (op) {
640    case Op_CallRuntime:
641    case Op_CallLeaf:
642    case Op_CallLeafNoFP:
643      // Calling C code so use C calling convention
644      save_policy = _matcher._c_reg_save_policy;
645      break;
646
647    case Op_CallStaticJava:
648    case Op_CallDynamicJava:
649      // Calling Java code so use Java calling convention
650      save_policy = _matcher._register_save_policy;
651      break;
652
653    default:
654      ShouldNotReachHere();
655  }
656
657  // When using CallRuntime mark SOE registers as killed by the call
658  // so values that could show up in the RegisterMap aren't live in a
659  // callee saved register since the register wouldn't know where to
660  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
661  // have debug info on them.  Strictly speaking this only needs to be
662  // done for oops since idealreg2debugmask takes care of debug info
663  // references but there no way to handle oops differently than other
664  // pointers as far as the kill mask goes.
665  bool exclude_soe = op == Op_CallRuntime;
666
667  // If the call is a MethodHandle invoke, we need to exclude the
668  // register which is used to save the SP value over MH invokes from
669  // the mask.  Otherwise this register could be used for
670  // deoptimization information.
671  if (op == Op_CallStaticJava) {
672    MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
673    if (mcallstaticjava->_method_handle_invoke)
674      proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
675  }
676
677  add_call_kills(proj, regs, save_policy, exclude_soe);
678
679  return node_cnt;
680}
681
682
683//------------------------------schedule_local---------------------------------
684// Topological sort within a block.  Someday become a real scheduler.
685bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
686  // Already "sorted" are the block start Node (as the first entry), and
687  // the block-ending Node and any trailing control projections.  We leave
688  // these alone.  PhiNodes and ParmNodes are made to follow the block start
689  // Node.  Everything else gets topo-sorted.
690
691#ifndef PRODUCT
692    if (trace_opto_pipelining()) {
693      tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
694      for (uint i = 0;i < block->number_of_nodes(); i++) {
695        tty->print("# ");
696        block->get_node(i)->fast_dump();
697      }
698      tty->print_cr("#");
699    }
700#endif
701
702  // RootNode is already sorted
703  if (block->number_of_nodes() == 1) {
704    return true;
705  }
706
707  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
708  uint node_cnt = block->end_idx();
709  uint phi_cnt = 1;
710  uint i;
711  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
712    Node *n = block->get_node(i);
713    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
714        (n->is_Proj()  && n->in(0) == block->head()) ) {
715      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
716      block->map_node(block->get_node(phi_cnt), i);
717      block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
718    } else {                    // All others
719      // Count block-local inputs to 'n'
720      uint cnt = n->len();      // Input count
721      uint local = 0;
722      for( uint j=0; j<cnt; j++ ) {
723        Node *m = n->in(j);
724        if( m && get_block_for_node(m) == block && !m->is_top() )
725          local++;              // One more block-local input
726      }
727      ready_cnt.at_put(n->_idx, local); // Count em up
728
729#ifdef ASSERT
730      if( UseConcMarkSweepGC || UseG1GC ) {
731        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
732          // Check the precedence edges
733          for (uint prec = n->req(); prec < n->len(); prec++) {
734            Node* oop_store = n->in(prec);
735            if (oop_store != NULL) {
736              assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
737            }
738          }
739        }
740      }
741#endif
742
743      // A few node types require changing a required edge to a precedence edge
744      // before allocation.
745      if( n->is_Mach() && n->req() > TypeFunc::Parms &&
746          (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
747           n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
748        // MemBarAcquire could be created without Precedent edge.
749        // del_req() replaces the specified edge with the last input edge
750        // and then removes the last edge. If the specified edge > number of
751        // edges the last edge will be moved outside of the input edges array
752        // and the edge will be lost. This is why this code should be
753        // executed only when Precedent (== TypeFunc::Parms) edge is present.
754        Node *x = n->in(TypeFunc::Parms);
755        n->del_req(TypeFunc::Parms);
756        n->add_prec(x);
757      }
758    }
759  }
760  for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
761    ready_cnt.at_put(block->get_node(i2)->_idx, 0);
762
763  // All the prescheduled guys do not hold back internal nodes
764  uint i3;
765  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
766    Node *n = block->get_node(i3);       // Get pre-scheduled
767    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
768      Node* m = n->fast_out(j);
769      if (get_block_for_node(m) == block) { // Local-block user
770        int m_cnt = ready_cnt.at(m->_idx)-1;
771        ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
772      }
773    }
774  }
775
776  Node_List delay;
777  // Make a worklist
778  Node_List worklist;
779  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
780    Node *m = block->get_node(i4);
781    if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
782      if (m->is_iteratively_computed()) {
783        // Push induction variable increments last to allow other uses
784        // of the phi to be scheduled first. The select() method breaks
785        // ties in scheduling by worklist order.
786        delay.push(m);
787      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
788        // Force the CreateEx to the top of the list so it's processed
789        // first and ends up at the start of the block.
790        worklist.insert(0, m);
791      } else {
792        worklist.push(m);         // Then on to worklist!
793      }
794    }
795  }
796  while (delay.size()) {
797    Node* d = delay.pop();
798    worklist.push(d);
799  }
800
801  // Warm up the 'next_call' heuristic bits
802  needed_for_next_call(block, block->head(), next_call);
803
804#ifndef PRODUCT
805    if (trace_opto_pipelining()) {
806      for (uint j=0; j< block->number_of_nodes(); j++) {
807        Node     *n = block->get_node(j);
808        int     idx = n->_idx;
809        tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
810        tty->print("latency:%3d  ", get_latency_for_node(n));
811        tty->print("%4d: %s\n", idx, n->Name());
812      }
813    }
814#endif
815
816  uint max_idx = (uint)ready_cnt.length();
817  // Pull from worklist and schedule
818  while( worklist.size() ) {    // Worklist is not ready
819
820#ifndef PRODUCT
821    if (trace_opto_pipelining()) {
822      tty->print("#   ready list:");
823      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
824        Node *n = worklist[i];      // Get Node on worklist
825        tty->print(" %d", n->_idx);
826      }
827      tty->cr();
828    }
829#endif
830
831    // Select and pop a ready guy from worklist
832    Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
833    block->map_node(n, phi_cnt++);    // Schedule him next
834
835#ifndef PRODUCT
836    if (trace_opto_pipelining()) {
837      tty->print("#    select %d: %s", n->_idx, n->Name());
838      tty->print(", latency:%d", get_latency_for_node(n));
839      n->dump();
840      if (Verbose) {
841        tty->print("#   ready list:");
842        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
843          Node *n = worklist[i];      // Get Node on worklist
844          tty->print(" %d", n->_idx);
845        }
846        tty->cr();
847      }
848    }
849
850#endif
851    if( n->is_MachCall() ) {
852      MachCallNode *mcall = n->as_MachCall();
853      phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
854      continue;
855    }
856
857    if (n->is_Mach() && n->as_Mach()->has_call()) {
858      RegMask regs;
859      regs.Insert(_matcher.c_frame_pointer());
860      regs.OR(n->out_RegMask());
861
862      MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
863      map_node_to_block(proj, block);
864      block->insert_node(proj, phi_cnt++);
865
866      add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
867    }
868
869    // Children are now all ready
870    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
871      Node* m = n->fast_out(i5); // Get user
872      if (get_block_for_node(m) != block) {
873        continue;
874      }
875      if( m->is_Phi() ) continue;
876      if (m->_idx >= max_idx) { // new node, skip it
877        assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
878        continue;
879      }
880      int m_cnt = ready_cnt.at(m->_idx)-1;
881      ready_cnt.at_put(m->_idx, m_cnt);
882      if( m_cnt == 0 )
883        worklist.push(m);
884    }
885  }
886
887  if( phi_cnt != block->end_idx() ) {
888    // did not schedule all.  Retry, Bailout, or Die
889    if (C->subsume_loads() == true && !C->failing()) {
890      // Retry with subsume_loads == false
891      // If this is the first failure, the sentinel string will "stick"
892      // to the Compile object, and the C2Compiler will see it and retry.
893      C->record_failure(C2Compiler::retry_no_subsuming_loads());
894    }
895    // assert( phi_cnt == end_idx(), "did not schedule all" );
896    return false;
897  }
898
899#ifndef PRODUCT
900  if (trace_opto_pipelining()) {
901    tty->print_cr("#");
902    tty->print_cr("# after schedule_local");
903    for (uint i = 0;i < block->number_of_nodes();i++) {
904      tty->print("# ");
905      block->get_node(i)->fast_dump();
906    }
907    tty->cr();
908  }
909#endif
910
911
912  return true;
913}
914
915//--------------------------catch_cleanup_fix_all_inputs-----------------------
916static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
917  for (uint l = 0; l < use->len(); l++) {
918    if (use->in(l) == old_def) {
919      if (l < use->req()) {
920        use->set_req(l, new_def);
921      } else {
922        use->rm_prec(l);
923        use->add_prec(new_def);
924        l--;
925      }
926    }
927  }
928}
929
930//------------------------------catch_cleanup_find_cloned_def------------------
931Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
932  assert( use_blk != def_blk, "Inter-block cleanup only");
933
934  // The use is some block below the Catch.  Find and return the clone of the def
935  // that dominates the use. If there is no clone in a dominating block, then
936  // create a phi for the def in a dominating block.
937
938  // Find which successor block dominates this use.  The successor
939  // blocks must all be single-entry (from the Catch only; I will have
940  // split blocks to make this so), hence they all dominate.
941  while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
942    use_blk = use_blk->_idom;
943
944  // Find the successor
945  Node *fixup = NULL;
946
947  uint j;
948  for( j = 0; j < def_blk->_num_succs; j++ )
949    if( use_blk == def_blk->_succs[j] )
950      break;
951
952  if( j == def_blk->_num_succs ) {
953    // Block at same level in dom-tree is not a successor.  It needs a
954    // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
955    Node_Array inputs = new Node_List(Thread::current()->resource_area());
956    for(uint k = 1; k < use_blk->num_preds(); k++) {
957      Block* block = get_block_for_node(use_blk->pred(k));
958      inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
959    }
960
961    // Check to see if the use_blk already has an identical phi inserted.
962    // If it exists, it will be at the first position since all uses of a
963    // def are processed together.
964    Node *phi = use_blk->get_node(1);
965    if( phi->is_Phi() ) {
966      fixup = phi;
967      for (uint k = 1; k < use_blk->num_preds(); k++) {
968        if (phi->in(k) != inputs[k]) {
969          // Not a match
970          fixup = NULL;
971          break;
972        }
973      }
974    }
975
976    // If an existing PhiNode was not found, make a new one.
977    if (fixup == NULL) {
978      Node *new_phi = PhiNode::make(use_blk->head(), def);
979      use_blk->insert_node(new_phi, 1);
980      map_node_to_block(new_phi, use_blk);
981      for (uint k = 1; k < use_blk->num_preds(); k++) {
982        new_phi->set_req(k, inputs[k]);
983      }
984      fixup = new_phi;
985    }
986
987  } else {
988    // Found the use just below the Catch.  Make it use the clone.
989    fixup = use_blk->get_node(n_clone_idx);
990  }
991
992  return fixup;
993}
994
995//--------------------------catch_cleanup_intra_block--------------------------
996// Fix all input edges in use that reference "def".  The use is in the same
997// block as the def and both have been cloned in each successor block.
998static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
999
1000  // Both the use and def have been cloned. For each successor block,
1001  // get the clone of the use, and make its input the clone of the def
1002  // found in that block.
1003
1004  uint use_idx = blk->find_node(use);
1005  uint offset_idx = use_idx - beg;
1006  for( uint k = 0; k < blk->_num_succs; k++ ) {
1007    // Get clone in each successor block
1008    Block *sb = blk->_succs[k];
1009    Node *clone = sb->get_node(offset_idx+1);
1010    assert( clone->Opcode() == use->Opcode(), "" );
1011
1012    // Make use-clone reference the def-clone
1013    catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1014  }
1015}
1016
1017//------------------------------catch_cleanup_inter_block---------------------
1018// Fix all input edges in use that reference "def".  The use is in a different
1019// block than the def.
1020void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1021  if( !use_blk ) return;        // Can happen if the use is a precedence edge
1022
1023  Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1024  catch_cleanup_fix_all_inputs(use, def, new_def);
1025}
1026
1027//------------------------------call_catch_cleanup-----------------------------
1028// If we inserted any instructions between a Call and his CatchNode,
1029// clone the instructions on all paths below the Catch.
1030void PhaseCFG::call_catch_cleanup(Block* block) {
1031
1032  // End of region to clone
1033  uint end = block->end_idx();
1034  if( !block->get_node(end)->is_Catch() ) return;
1035  // Start of region to clone
1036  uint beg = end;
1037  while(!block->get_node(beg-1)->is_MachProj() ||
1038        !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1039    beg--;
1040    assert(beg > 0,"Catch cleanup walking beyond block boundary");
1041  }
1042  // Range of inserted instructions is [beg, end)
1043  if( beg == end ) return;
1044
1045  // Clone along all Catch output paths.  Clone area between the 'beg' and
1046  // 'end' indices.
1047  for( uint i = 0; i < block->_num_succs; i++ ) {
1048    Block *sb = block->_succs[i];
1049    // Clone the entire area; ignoring the edge fixup for now.
1050    for( uint j = end; j > beg; j-- ) {
1051      // It is safe here to clone a node with anti_dependence
1052      // since clones dominate on each path.
1053      Node *clone = block->get_node(j-1)->clone();
1054      sb->insert_node(clone, 1);
1055      map_node_to_block(clone, sb);
1056    }
1057  }
1058
1059
1060  // Fixup edges.  Check the def-use info per cloned Node
1061  for(uint i2 = beg; i2 < end; i2++ ) {
1062    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1063    Node *n = block->get_node(i2);        // Node that got cloned
1064    // Need DU safe iterator because of edge manipulation in calls.
1065    Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1066    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1067      out->push(n->fast_out(j1));
1068    }
1069    uint max = out->size();
1070    for (uint j = 0; j < max; j++) {// For all users
1071      Node *use = out->pop();
1072      Block *buse = get_block_for_node(use);
1073      if( use->is_Phi() ) {
1074        for( uint k = 1; k < use->req(); k++ )
1075          if( use->in(k) == n ) {
1076            Block* b = get_block_for_node(buse->pred(k));
1077            Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1078            use->set_req(k, fixup);
1079          }
1080      } else {
1081        if (block == buse) {
1082          catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1083        } else {
1084          catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1085        }
1086      }
1087    } // End for all users
1088
1089  } // End of for all Nodes in cloned area
1090
1091  // Remove the now-dead cloned ops
1092  for(uint i3 = beg; i3 < end; i3++ ) {
1093    block->get_node(beg)->disconnect_inputs(NULL, C);
1094    block->remove_node(beg);
1095  }
1096
1097  // If the successor blocks have a CreateEx node, move it back to the top
1098  for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1099    Block *sb = block->_succs[i4];
1100    uint new_cnt = end - beg;
1101    // Remove any newly created, but dead, nodes.
1102    for( uint j = new_cnt; j > 0; j-- ) {
1103      Node *n = sb->get_node(j);
1104      if (n->outcnt() == 0 &&
1105          (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1106        n->disconnect_inputs(NULL, C);
1107        sb->remove_node(j);
1108        new_cnt--;
1109      }
1110    }
1111    // If any newly created nodes remain, move the CreateEx node to the top
1112    if (new_cnt > 0) {
1113      Node *cex = sb->get_node(1+new_cnt);
1114      if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1115        sb->remove_node(1+new_cnt);
1116        sb->insert_node(cex, 1);
1117      }
1118    }
1119  }
1120}
1121