lcm.cpp revision 3724:8e47bac5643a
1/*
2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/block.hpp"
28#include "opto/c2compiler.hpp"
29#include "opto/callnode.hpp"
30#include "opto/cfgnode.hpp"
31#include "opto/machnode.hpp"
32#include "opto/runtime.hpp"
33#ifdef TARGET_ARCH_MODEL_x86_32
34# include "adfiles/ad_x86_32.hpp"
35#endif
36#ifdef TARGET_ARCH_MODEL_x86_64
37# include "adfiles/ad_x86_64.hpp"
38#endif
39#ifdef TARGET_ARCH_MODEL_sparc
40# include "adfiles/ad_sparc.hpp"
41#endif
42#ifdef TARGET_ARCH_MODEL_zero
43# include "adfiles/ad_zero.hpp"
44#endif
45#ifdef TARGET_ARCH_MODEL_arm
46# include "adfiles/ad_arm.hpp"
47#endif
48#ifdef TARGET_ARCH_MODEL_ppc
49# include "adfiles/ad_ppc.hpp"
50#endif
51
52// Optimization - Graph Style
53
54//------------------------------implicit_null_check----------------------------
55// Detect implicit-null-check opportunities.  Basically, find NULL checks
56// with suitable memory ops nearby.  Use the memory op to do the NULL check.
57// I can generate a memory op if there is not one nearby.
58// The proj is the control projection for the not-null case.
59// The val is the pointer being checked for nullness or
60// decodeHeapOop_not_null node if it did not fold into address.
61void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
62  // Assume if null check need for 0 offset then always needed
63  // Intel solaris doesn't support any null checks yet and no
64  // mechanism exists (yet) to set the switches at an os_cpu level
65  if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
66
67  // Make sure the ptr-is-null path appears to be uncommon!
68  float f = end()->as_MachIf()->_prob;
69  if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
70  if( f > PROB_UNLIKELY_MAG(4) ) return;
71
72  uint bidx = 0;                // Capture index of value into memop
73  bool was_store;               // Memory op is a store op
74
75  // Get the successor block for if the test ptr is non-null
76  Block* not_null_block;  // this one goes with the proj
77  Block* null_block;
78  if (_nodes[_nodes.size()-1] == proj) {
79    null_block     = _succs[0];
80    not_null_block = _succs[1];
81  } else {
82    assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
83    not_null_block = _succs[0];
84    null_block     = _succs[1];
85  }
86  while (null_block->is_Empty() == Block::empty_with_goto) {
87    null_block     = null_block->_succs[0];
88  }
89
90  // Search the exception block for an uncommon trap.
91  // (See Parse::do_if and Parse::do_ifnull for the reason
92  // we need an uncommon trap.  Briefly, we need a way to
93  // detect failure of this optimization, as in 6366351.)
94  {
95    bool found_trap = false;
96    for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
97      Node* nn = null_block->_nodes[i1];
98      if (nn->is_MachCall() &&
99          nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
100        const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
101        if (trtype->isa_int() && trtype->is_int()->is_con()) {
102          jint tr_con = trtype->is_int()->get_con();
103          Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
104          Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
105          assert((int)reason < (int)BitsPerInt, "recode bit map");
106          if (is_set_nth_bit(allowed_reasons, (int) reason)
107              && action != Deoptimization::Action_none) {
108            // This uncommon trap is sure to recompile, eventually.
109            // When that happens, C->too_many_traps will prevent
110            // this transformation from happening again.
111            found_trap = true;
112          }
113        }
114        break;
115      }
116    }
117    if (!found_trap) {
118      // We did not find an uncommon trap.
119      return;
120    }
121  }
122
123  // Check for decodeHeapOop_not_null node which did not fold into address
124  bool is_decoden = ((intptr_t)val) & 1;
125  val = (Node*)(((intptr_t)val) & ~1);
126
127  assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
128         (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
129
130  // Search the successor block for a load or store who's base value is also
131  // the tested value.  There may be several.
132  Node_List *out = new Node_List(Thread::current()->resource_area());
133  MachNode *best = NULL;        // Best found so far
134  for (DUIterator i = val->outs(); val->has_out(i); i++) {
135    Node *m = val->out(i);
136    if( !m->is_Mach() ) continue;
137    MachNode *mach = m->as_Mach();
138    was_store = false;
139    int iop = mach->ideal_Opcode();
140    switch( iop ) {
141    case Op_LoadB:
142    case Op_LoadUB:
143    case Op_LoadUS:
144    case Op_LoadD:
145    case Op_LoadF:
146    case Op_LoadI:
147    case Op_LoadL:
148    case Op_LoadP:
149    case Op_LoadN:
150    case Op_LoadS:
151    case Op_LoadKlass:
152    case Op_LoadNKlass:
153    case Op_LoadRange:
154    case Op_LoadD_unaligned:
155    case Op_LoadL_unaligned:
156      assert(mach->in(2) == val, "should be address");
157      break;
158    case Op_StoreB:
159    case Op_StoreC:
160    case Op_StoreCM:
161    case Op_StoreD:
162    case Op_StoreF:
163    case Op_StoreI:
164    case Op_StoreL:
165    case Op_StoreP:
166    case Op_StoreN:
167    case Op_StoreNKlass:
168      was_store = true;         // Memory op is a store op
169      // Stores will have their address in slot 2 (memory in slot 1).
170      // If the value being nul-checked is in another slot, it means we
171      // are storing the checked value, which does NOT check the value!
172      if( mach->in(2) != val ) continue;
173      break;                    // Found a memory op?
174    case Op_StrComp:
175    case Op_StrEquals:
176    case Op_StrIndexOf:
177    case Op_AryEq:
178      // Not a legit memory op for implicit null check regardless of
179      // embedded loads
180      continue;
181    default:                    // Also check for embedded loads
182      if( !mach->needs_anti_dependence_check() )
183        continue;               // Not an memory op; skip it
184      if( must_clone[iop] ) {
185        // Do not move nodes which produce flags because
186        // RA will try to clone it to place near branch and
187        // it will cause recompilation, see clone_node().
188        continue;
189      }
190      {
191        // Check that value is used in memory address in
192        // instructions with embedded load (CmpP val1,(val2+off)).
193        Node* base;
194        Node* index;
195        const MachOper* oper = mach->memory_inputs(base, index);
196        if (oper == NULL || oper == (MachOper*)-1) {
197          continue;             // Not an memory op; skip it
198        }
199        if (val == base ||
200            val == index && val->bottom_type()->isa_narrowoop()) {
201          break;                // Found it
202        } else {
203          continue;             // Skip it
204        }
205      }
206      break;
207    }
208    // check if the offset is not too high for implicit exception
209    {
210      intptr_t offset = 0;
211      const TypePtr *adr_type = NULL;  // Do not need this return value here
212      const Node* base = mach->get_base_and_disp(offset, adr_type);
213      if (base == NULL || base == NodeSentinel) {
214        // Narrow oop address doesn't have base, only index
215        if( val->bottom_type()->isa_narrowoop() &&
216            MacroAssembler::needs_explicit_null_check(offset) )
217          continue;             // Give up if offset is beyond page size
218        // cannot reason about it; is probably not implicit null exception
219      } else {
220        const TypePtr* tptr;
221        if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
222          // 32-bits narrow oop can be the base of address expressions
223          tptr = base->bottom_type()->make_ptr();
224        } else {
225          // only regular oops are expected here
226          tptr = base->bottom_type()->is_ptr();
227        }
228        // Give up if offset is not a compile-time constant
229        if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
230          continue;
231        offset += tptr->_offset; // correct if base is offseted
232        if( MacroAssembler::needs_explicit_null_check(offset) )
233          continue;             // Give up is reference is beyond 4K page size
234      }
235    }
236
237    // Check ctrl input to see if the null-check dominates the memory op
238    Block *cb = cfg->_bbs[mach->_idx];
239    cb = cb->_idom;             // Always hoist at least 1 block
240    if( !was_store ) {          // Stores can be hoisted only one block
241      while( cb->_dom_depth > (_dom_depth + 1))
242        cb = cb->_idom;         // Hoist loads as far as we want
243      // The non-null-block should dominate the memory op, too. Live
244      // range spilling will insert a spill in the non-null-block if it is
245      // needs to spill the memory op for an implicit null check.
246      if (cb->_dom_depth == (_dom_depth + 1)) {
247        if (cb != not_null_block) continue;
248        cb = cb->_idom;
249      }
250    }
251    if( cb != this ) continue;
252
253    // Found a memory user; see if it can be hoisted to check-block
254    uint vidx = 0;              // Capture index of value into memop
255    uint j;
256    for( j = mach->req()-1; j > 0; j-- ) {
257      if( mach->in(j) == val ) {
258        vidx = j;
259        // Ignore DecodeN val which could be hoisted to where needed.
260        if( is_decoden ) continue;
261      }
262      // Block of memory-op input
263      Block *inb = cfg->_bbs[mach->in(j)->_idx];
264      Block *b = this;          // Start from nul check
265      while( b != inb && b->_dom_depth > inb->_dom_depth )
266        b = b->_idom;           // search upwards for input
267      // See if input dominates null check
268      if( b != inb )
269        break;
270    }
271    if( j > 0 )
272      continue;
273    Block *mb = cfg->_bbs[mach->_idx];
274    // Hoisting stores requires more checks for the anti-dependence case.
275    // Give up hoisting if we have to move the store past any load.
276    if( was_store ) {
277      Block *b = mb;            // Start searching here for a local load
278      // mach use (faulting) trying to hoist
279      // n might be blocker to hoisting
280      while( b != this ) {
281        uint k;
282        for( k = 1; k < b->_nodes.size(); k++ ) {
283          Node *n = b->_nodes[k];
284          if( n->needs_anti_dependence_check() &&
285              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
286            break;              // Found anti-dependent load
287        }
288        if( k < b->_nodes.size() )
289          break;                // Found anti-dependent load
290        // Make sure control does not do a merge (would have to check allpaths)
291        if( b->num_preds() != 2 ) break;
292        b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
293      }
294      if( b != this ) continue;
295    }
296
297    // Make sure this memory op is not already being used for a NullCheck
298    Node *e = mb->end();
299    if( e->is_MachNullCheck() && e->in(1) == mach )
300      continue;                 // Already being used as a NULL check
301
302    // Found a candidate!  Pick one with least dom depth - the highest
303    // in the dom tree should be closest to the null check.
304    if( !best ||
305        cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
306      best = mach;
307      bidx = vidx;
308
309    }
310  }
311  // No candidate!
312  if( !best ) return;
313
314  // ---- Found an implicit null check
315  extern int implicit_null_checks;
316  implicit_null_checks++;
317
318  if( is_decoden ) {
319    // Check if we need to hoist decodeHeapOop_not_null first.
320    Block *valb = cfg->_bbs[val->_idx];
321    if( this != valb && this->_dom_depth < valb->_dom_depth ) {
322      // Hoist it up to the end of the test block.
323      valb->find_remove(val);
324      this->add_inst(val);
325      cfg->_bbs.map(val->_idx,this);
326      // DecodeN on x86 may kill flags. Check for flag-killing projections
327      // that also need to be hoisted.
328      for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
329        Node* n = val->fast_out(j);
330        if( n->is_MachProj() ) {
331          cfg->_bbs[n->_idx]->find_remove(n);
332          this->add_inst(n);
333          cfg->_bbs.map(n->_idx,this);
334        }
335      }
336    }
337  }
338  // Hoist the memory candidate up to the end of the test block.
339  Block *old_block = cfg->_bbs[best->_idx];
340  old_block->find_remove(best);
341  add_inst(best);
342  cfg->_bbs.map(best->_idx,this);
343
344  // Move the control dependence
345  if (best->in(0) && best->in(0) == old_block->_nodes[0])
346    best->set_req(0, _nodes[0]);
347
348  // Check for flag-killing projections that also need to be hoisted
349  // Should be DU safe because no edge updates.
350  for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
351    Node* n = best->fast_out(j);
352    if( n->is_MachProj() ) {
353      cfg->_bbs[n->_idx]->find_remove(n);
354      add_inst(n);
355      cfg->_bbs.map(n->_idx,this);
356    }
357  }
358
359  Compile *C = cfg->C;
360  // proj==Op_True --> ne test; proj==Op_False --> eq test.
361  // One of two graph shapes got matched:
362  //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
363  //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
364  // NULL checks are always branch-if-eq.  If we see a IfTrue projection
365  // then we are replacing a 'ne' test with a 'eq' NULL check test.
366  // We need to flip the projections to keep the same semantics.
367  if( proj->Opcode() == Op_IfTrue ) {
368    // Swap order of projections in basic block to swap branch targets
369    Node *tmp1 = _nodes[end_idx()+1];
370    Node *tmp2 = _nodes[end_idx()+2];
371    _nodes.map(end_idx()+1, tmp2);
372    _nodes.map(end_idx()+2, tmp1);
373    Node *tmp = new (C) Node(C->top()); // Use not NULL input
374    tmp1->replace_by(tmp);
375    tmp2->replace_by(tmp1);
376    tmp->replace_by(tmp2);
377    tmp->destruct();
378  }
379
380  // Remove the existing null check; use a new implicit null check instead.
381  // Since schedule-local needs precise def-use info, we need to correct
382  // it as well.
383  Node *old_tst = proj->in(0);
384  MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
385  _nodes.map(end_idx(),nul_chk);
386  cfg->_bbs.map(nul_chk->_idx,this);
387  // Redirect users of old_test to nul_chk
388  for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
389    old_tst->last_out(i2)->set_req(0, nul_chk);
390  // Clean-up any dead code
391  for (uint i3 = 0; i3 < old_tst->req(); i3++)
392    old_tst->set_req(i3, NULL);
393
394  cfg->latency_from_uses(nul_chk);
395  cfg->latency_from_uses(best);
396}
397
398
399//------------------------------select-----------------------------------------
400// Select a nice fellow from the worklist to schedule next. If there is only
401// one choice, then use it. Projections take top priority for correctness
402// reasons - if I see a projection, then it is next.  There are a number of
403// other special cases, for instructions that consume condition codes, et al.
404// These are chosen immediately. Some instructions are required to immediately
405// precede the last instruction in the block, and these are taken last. Of the
406// remaining cases (most), choose the instruction with the greatest latency
407// (that is, the most number of pseudo-cycles required to the end of the
408// routine). If there is a tie, choose the instruction with the most inputs.
409Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
410
411  // If only a single entry on the stack, use it
412  uint cnt = worklist.size();
413  if (cnt == 1) {
414    Node *n = worklist[0];
415    worklist.map(0,worklist.pop());
416    return n;
417  }
418
419  uint choice  = 0; // Bigger is most important
420  uint latency = 0; // Bigger is scheduled first
421  uint score   = 0; // Bigger is better
422  int idx = -1;     // Index in worklist
423
424  for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
425    // Order in worklist is used to break ties.
426    // See caller for how this is used to delay scheduling
427    // of induction variable increments to after the other
428    // uses of the phi are scheduled.
429    Node *n = worklist[i];      // Get Node on worklist
430
431    int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
432    if( n->is_Proj() ||         // Projections always win
433        n->Opcode()== Op_Con || // So does constant 'Top'
434        iop == Op_CreateEx ||   // Create-exception must start block
435        iop == Op_CheckCastPP
436        ) {
437      worklist.map(i,worklist.pop());
438      return n;
439    }
440
441    // Final call in a block must be adjacent to 'catch'
442    Node *e = end();
443    if( e->is_Catch() && e->in(0)->in(0) == n )
444      continue;
445
446    // Memory op for an implicit null check has to be at the end of the block
447    if( e->is_MachNullCheck() && e->in(1) == n )
448      continue;
449
450    // Schedule IV increment last.
451    if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
452        e->in(1)->in(1) == n && n->is_iteratively_computed())
453      continue;
454
455    uint n_choice  = 2;
456
457    // See if this instruction is consumed by a branch. If so, then (as the
458    // branch is the last instruction in the basic block) force it to the
459    // end of the basic block
460    if ( must_clone[iop] ) {
461      // See if any use is a branch
462      bool found_machif = false;
463
464      for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
465        Node* use = n->fast_out(j);
466
467        // The use is a conditional branch, make them adjacent
468        if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
469          found_machif = true;
470          break;
471        }
472
473        // More than this instruction pending for successor to be ready,
474        // don't choose this if other opportunities are ready
475        if (ready_cnt.at(use->_idx) > 1)
476          n_choice = 1;
477      }
478
479      // loop terminated, prefer not to use this instruction
480      if (found_machif)
481        continue;
482    }
483
484    // See if this has a predecessor that is "must_clone", i.e. sets the
485    // condition code. If so, choose this first
486    for (uint j = 0; j < n->req() ; j++) {
487      Node *inn = n->in(j);
488      if (inn) {
489        if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
490          n_choice = 3;
491          break;
492        }
493      }
494    }
495
496    // MachTemps should be scheduled last so they are near their uses
497    if (n->is_MachTemp()) {
498      n_choice = 1;
499    }
500
501    uint n_latency = cfg->_node_latency->at_grow(n->_idx);
502    uint n_score   = n->req();   // Many inputs get high score to break ties
503
504    // Keep best latency found
505    if( choice < n_choice ||
506        ( choice == n_choice &&
507          ( latency < n_latency ||
508            ( latency == n_latency &&
509              ( score < n_score ))))) {
510      choice  = n_choice;
511      latency = n_latency;
512      score   = n_score;
513      idx     = i;               // Also keep index in worklist
514    }
515  } // End of for all ready nodes in worklist
516
517  assert(idx >= 0, "index should be set");
518  Node *n = worklist[(uint)idx];      // Get the winner
519
520  worklist.map((uint)idx, worklist.pop());     // Compress worklist
521  return n;
522}
523
524
525//------------------------------set_next_call----------------------------------
526void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
527  if( next_call.test_set(n->_idx) ) return;
528  for( uint i=0; i<n->len(); i++ ) {
529    Node *m = n->in(i);
530    if( !m ) continue;  // must see all nodes in block that precede call
531    if( bbs[m->_idx] == this )
532      set_next_call( m, next_call, bbs );
533  }
534}
535
536//------------------------------needed_for_next_call---------------------------
537// Set the flag 'next_call' for each Node that is needed for the next call to
538// be scheduled.  This flag lets me bias scheduling so Nodes needed for the
539// next subroutine call get priority - basically it moves things NOT needed
540// for the next call till after the call.  This prevents me from trying to
541// carry lots of stuff live across a call.
542void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
543  // Find the next control-defining Node in this block
544  Node* call = NULL;
545  for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
546    Node* m = this_call->fast_out(i);
547    if( bbs[m->_idx] == this && // Local-block user
548        m != this_call &&       // Not self-start node
549        m->is_MachCall() )
550      call = m;
551      break;
552  }
553  if (call == NULL)  return;    // No next call (e.g., block end is near)
554  // Set next-call for all inputs to this call
555  set_next_call(call, next_call, bbs);
556}
557
558//------------------------------add_call_kills-------------------------------------
559void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
560  // Fill in the kill mask for the call
561  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
562    if( !regs.Member(r) ) {     // Not already defined by the call
563      // Save-on-call register?
564      if ((save_policy[r] == 'C') ||
565          (save_policy[r] == 'A') ||
566          ((save_policy[r] == 'E') && exclude_soe)) {
567        proj->_rout.Insert(r);
568      }
569    }
570  }
571}
572
573
574//------------------------------sched_call-------------------------------------
575uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
576  RegMask regs;
577
578  // Schedule all the users of the call right now.  All the users are
579  // projection Nodes, so they must be scheduled next to the call.
580  // Collect all the defined registers.
581  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
582    Node* n = mcall->fast_out(i);
583    assert( n->is_MachProj(), "" );
584    int n_cnt = ready_cnt.at(n->_idx)-1;
585    ready_cnt.at_put(n->_idx, n_cnt);
586    assert( n_cnt == 0, "" );
587    // Schedule next to call
588    _nodes.map(node_cnt++, n);
589    // Collect defined registers
590    regs.OR(n->out_RegMask());
591    // Check for scheduling the next control-definer
592    if( n->bottom_type() == Type::CONTROL )
593      // Warm up next pile of heuristic bits
594      needed_for_next_call(n, next_call, bbs);
595
596    // Children of projections are now all ready
597    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
598      Node* m = n->fast_out(j); // Get user
599      if( bbs[m->_idx] != this ) continue;
600      if( m->is_Phi() ) continue;
601      int m_cnt = ready_cnt.at(m->_idx)-1;
602      ready_cnt.at_put(m->_idx, m_cnt);
603      if( m_cnt == 0 )
604        worklist.push(m);
605    }
606
607  }
608
609  // Act as if the call defines the Frame Pointer.
610  // Certainly the FP is alive and well after the call.
611  regs.Insert(matcher.c_frame_pointer());
612
613  // Set all registers killed and not already defined by the call.
614  uint r_cnt = mcall->tf()->range()->cnt();
615  int op = mcall->ideal_Opcode();
616  MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
617  bbs.map(proj->_idx,this);
618  _nodes.insert(node_cnt++, proj);
619
620  // Select the right register save policy.
621  const char * save_policy;
622  switch (op) {
623    case Op_CallRuntime:
624    case Op_CallLeaf:
625    case Op_CallLeafNoFP:
626      // Calling C code so use C calling convention
627      save_policy = matcher._c_reg_save_policy;
628      break;
629
630    case Op_CallStaticJava:
631    case Op_CallDynamicJava:
632      // Calling Java code so use Java calling convention
633      save_policy = matcher._register_save_policy;
634      break;
635
636    default:
637      ShouldNotReachHere();
638  }
639
640  // When using CallRuntime mark SOE registers as killed by the call
641  // so values that could show up in the RegisterMap aren't live in a
642  // callee saved register since the register wouldn't know where to
643  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
644  // have debug info on them.  Strictly speaking this only needs to be
645  // done for oops since idealreg2debugmask takes care of debug info
646  // references but there no way to handle oops differently than other
647  // pointers as far as the kill mask goes.
648  bool exclude_soe = op == Op_CallRuntime;
649
650  // If the call is a MethodHandle invoke, we need to exclude the
651  // register which is used to save the SP value over MH invokes from
652  // the mask.  Otherwise this register could be used for
653  // deoptimization information.
654  if (op == Op_CallStaticJava) {
655    MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
656    if (mcallstaticjava->_method_handle_invoke)
657      proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
658  }
659
660  add_call_kills(proj, regs, save_policy, exclude_soe);
661
662  return node_cnt;
663}
664
665
666//------------------------------schedule_local---------------------------------
667// Topological sort within a block.  Someday become a real scheduler.
668bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
669  // Already "sorted" are the block start Node (as the first entry), and
670  // the block-ending Node and any trailing control projections.  We leave
671  // these alone.  PhiNodes and ParmNodes are made to follow the block start
672  // Node.  Everything else gets topo-sorted.
673
674#ifndef PRODUCT
675    if (cfg->trace_opto_pipelining()) {
676      tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
677      for (uint i = 0;i < _nodes.size();i++) {
678        tty->print("# ");
679        _nodes[i]->fast_dump();
680      }
681      tty->print_cr("#");
682    }
683#endif
684
685  // RootNode is already sorted
686  if( _nodes.size() == 1 ) return true;
687
688  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
689  uint node_cnt = end_idx();
690  uint phi_cnt = 1;
691  uint i;
692  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
693    Node *n = _nodes[i];
694    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
695        (n->is_Proj()  && n->in(0) == head()) ) {
696      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
697      _nodes.map(i,_nodes[phi_cnt]);
698      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
699    } else {                    // All others
700      // Count block-local inputs to 'n'
701      uint cnt = n->len();      // Input count
702      uint local = 0;
703      for( uint j=0; j<cnt; j++ ) {
704        Node *m = n->in(j);
705        if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
706          local++;              // One more block-local input
707      }
708      ready_cnt.at_put(n->_idx, local); // Count em up
709
710#ifdef ASSERT
711      if( UseConcMarkSweepGC || UseG1GC ) {
712        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
713          // Check the precedence edges
714          for (uint prec = n->req(); prec < n->len(); prec++) {
715            Node* oop_store = n->in(prec);
716            if (oop_store != NULL) {
717              assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
718            }
719          }
720        }
721      }
722#endif
723
724      // A few node types require changing a required edge to a precedence edge
725      // before allocation.
726      if( n->is_Mach() && n->req() > TypeFunc::Parms &&
727          (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
728           n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
729        // MemBarAcquire could be created without Precedent edge.
730        // del_req() replaces the specified edge with the last input edge
731        // and then removes the last edge. If the specified edge > number of
732        // edges the last edge will be moved outside of the input edges array
733        // and the edge will be lost. This is why this code should be
734        // executed only when Precedent (== TypeFunc::Parms) edge is present.
735        Node *x = n->in(TypeFunc::Parms);
736        n->del_req(TypeFunc::Parms);
737        n->add_prec(x);
738      }
739    }
740  }
741  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
742    ready_cnt.at_put(_nodes[i2]->_idx, 0);
743
744  // All the prescheduled guys do not hold back internal nodes
745  uint i3;
746  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
747    Node *n = _nodes[i3];       // Get pre-scheduled
748    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
749      Node* m = n->fast_out(j);
750      if( cfg->_bbs[m->_idx] ==this ) { // Local-block user
751        int m_cnt = ready_cnt.at(m->_idx)-1;
752        ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
753      }
754    }
755  }
756
757  Node_List delay;
758  // Make a worklist
759  Node_List worklist;
760  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
761    Node *m = _nodes[i4];
762    if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
763      if (m->is_iteratively_computed()) {
764        // Push induction variable increments last to allow other uses
765        // of the phi to be scheduled first. The select() method breaks
766        // ties in scheduling by worklist order.
767        delay.push(m);
768      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
769        // Force the CreateEx to the top of the list so it's processed
770        // first and ends up at the start of the block.
771        worklist.insert(0, m);
772      } else {
773        worklist.push(m);         // Then on to worklist!
774      }
775    }
776  }
777  while (delay.size()) {
778    Node* d = delay.pop();
779    worklist.push(d);
780  }
781
782  // Warm up the 'next_call' heuristic bits
783  needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
784
785#ifndef PRODUCT
786    if (cfg->trace_opto_pipelining()) {
787      for (uint j=0; j<_nodes.size(); j++) {
788        Node     *n = _nodes[j];
789        int     idx = n->_idx;
790        tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
791        tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
792        tty->print("%4d: %s\n", idx, n->Name());
793      }
794    }
795#endif
796
797  uint max_idx = (uint)ready_cnt.length();
798  // Pull from worklist and schedule
799  while( worklist.size() ) {    // Worklist is not ready
800
801#ifndef PRODUCT
802    if (cfg->trace_opto_pipelining()) {
803      tty->print("#   ready list:");
804      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
805        Node *n = worklist[i];      // Get Node on worklist
806        tty->print(" %d", n->_idx);
807      }
808      tty->cr();
809    }
810#endif
811
812    // Select and pop a ready guy from worklist
813    Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
814    _nodes.map(phi_cnt++,n);    // Schedule him next
815
816#ifndef PRODUCT
817    if (cfg->trace_opto_pipelining()) {
818      tty->print("#    select %d: %s", n->_idx, n->Name());
819      tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
820      n->dump();
821      if (Verbose) {
822        tty->print("#   ready list:");
823        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
824          Node *n = worklist[i];      // Get Node on worklist
825          tty->print(" %d", n->_idx);
826        }
827        tty->cr();
828      }
829    }
830
831#endif
832    if( n->is_MachCall() ) {
833      MachCallNode *mcall = n->as_MachCall();
834      phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
835      continue;
836    }
837
838    if (n->is_Mach() && n->as_Mach()->has_call()) {
839      RegMask regs;
840      regs.Insert(matcher.c_frame_pointer());
841      regs.OR(n->out_RegMask());
842
843      MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
844      cfg->_bbs.map(proj->_idx,this);
845      _nodes.insert(phi_cnt++, proj);
846
847      add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
848    }
849
850    // Children are now all ready
851    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
852      Node* m = n->fast_out(i5); // Get user
853      if( cfg->_bbs[m->_idx] != this ) continue;
854      if( m->is_Phi() ) continue;
855      if (m->_idx >= max_idx) { // new node, skip it
856        assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
857        continue;
858      }
859      int m_cnt = ready_cnt.at(m->_idx)-1;
860      ready_cnt.at_put(m->_idx, m_cnt);
861      if( m_cnt == 0 )
862        worklist.push(m);
863    }
864  }
865
866  if( phi_cnt != end_idx() ) {
867    // did not schedule all.  Retry, Bailout, or Die
868    Compile* C = matcher.C;
869    if (C->subsume_loads() == true && !C->failing()) {
870      // Retry with subsume_loads == false
871      // If this is the first failure, the sentinel string will "stick"
872      // to the Compile object, and the C2Compiler will see it and retry.
873      C->record_failure(C2Compiler::retry_no_subsuming_loads());
874    }
875    // assert( phi_cnt == end_idx(), "did not schedule all" );
876    return false;
877  }
878
879#ifndef PRODUCT
880  if (cfg->trace_opto_pipelining()) {
881    tty->print_cr("#");
882    tty->print_cr("# after schedule_local");
883    for (uint i = 0;i < _nodes.size();i++) {
884      tty->print("# ");
885      _nodes[i]->fast_dump();
886    }
887    tty->cr();
888  }
889#endif
890
891
892  return true;
893}
894
895//--------------------------catch_cleanup_fix_all_inputs-----------------------
896static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
897  for (uint l = 0; l < use->len(); l++) {
898    if (use->in(l) == old_def) {
899      if (l < use->req()) {
900        use->set_req(l, new_def);
901      } else {
902        use->rm_prec(l);
903        use->add_prec(new_def);
904        l--;
905      }
906    }
907  }
908}
909
910//------------------------------catch_cleanup_find_cloned_def------------------
911static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
912  assert( use_blk != def_blk, "Inter-block cleanup only");
913
914  // The use is some block below the Catch.  Find and return the clone of the def
915  // that dominates the use. If there is no clone in a dominating block, then
916  // create a phi for the def in a dominating block.
917
918  // Find which successor block dominates this use.  The successor
919  // blocks must all be single-entry (from the Catch only; I will have
920  // split blocks to make this so), hence they all dominate.
921  while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
922    use_blk = use_blk->_idom;
923
924  // Find the successor
925  Node *fixup = NULL;
926
927  uint j;
928  for( j = 0; j < def_blk->_num_succs; j++ )
929    if( use_blk == def_blk->_succs[j] )
930      break;
931
932  if( j == def_blk->_num_succs ) {
933    // Block at same level in dom-tree is not a successor.  It needs a
934    // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
935    Node_Array inputs = new Node_List(Thread::current()->resource_area());
936    for(uint k = 1; k < use_blk->num_preds(); k++) {
937      inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
938    }
939
940    // Check to see if the use_blk already has an identical phi inserted.
941    // If it exists, it will be at the first position since all uses of a
942    // def are processed together.
943    Node *phi = use_blk->_nodes[1];
944    if( phi->is_Phi() ) {
945      fixup = phi;
946      for (uint k = 1; k < use_blk->num_preds(); k++) {
947        if (phi->in(k) != inputs[k]) {
948          // Not a match
949          fixup = NULL;
950          break;
951        }
952      }
953    }
954
955    // If an existing PhiNode was not found, make a new one.
956    if (fixup == NULL) {
957      Node *new_phi = PhiNode::make(use_blk->head(), def);
958      use_blk->_nodes.insert(1, new_phi);
959      bbs.map(new_phi->_idx, use_blk);
960      for (uint k = 1; k < use_blk->num_preds(); k++) {
961        new_phi->set_req(k, inputs[k]);
962      }
963      fixup = new_phi;
964    }
965
966  } else {
967    // Found the use just below the Catch.  Make it use the clone.
968    fixup = use_blk->_nodes[n_clone_idx];
969  }
970
971  return fixup;
972}
973
974//--------------------------catch_cleanup_intra_block--------------------------
975// Fix all input edges in use that reference "def".  The use is in the same
976// block as the def and both have been cloned in each successor block.
977static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
978
979  // Both the use and def have been cloned. For each successor block,
980  // get the clone of the use, and make its input the clone of the def
981  // found in that block.
982
983  uint use_idx = blk->find_node(use);
984  uint offset_idx = use_idx - beg;
985  for( uint k = 0; k < blk->_num_succs; k++ ) {
986    // Get clone in each successor block
987    Block *sb = blk->_succs[k];
988    Node *clone = sb->_nodes[offset_idx+1];
989    assert( clone->Opcode() == use->Opcode(), "" );
990
991    // Make use-clone reference the def-clone
992    catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
993  }
994}
995
996//------------------------------catch_cleanup_inter_block---------------------
997// Fix all input edges in use that reference "def".  The use is in a different
998// block than the def.
999static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
1000  if( !use_blk ) return;        // Can happen if the use is a precedence edge
1001
1002  Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
1003  catch_cleanup_fix_all_inputs(use, def, new_def);
1004}
1005
1006//------------------------------call_catch_cleanup-----------------------------
1007// If we inserted any instructions between a Call and his CatchNode,
1008// clone the instructions on all paths below the Catch.
1009void Block::call_catch_cleanup(Block_Array &bbs) {
1010
1011  // End of region to clone
1012  uint end = end_idx();
1013  if( !_nodes[end]->is_Catch() ) return;
1014  // Start of region to clone
1015  uint beg = end;
1016  while(!_nodes[beg-1]->is_MachProj() ||
1017        !_nodes[beg-1]->in(0)->is_MachCall() ) {
1018    beg--;
1019    assert(beg > 0,"Catch cleanup walking beyond block boundary");
1020  }
1021  // Range of inserted instructions is [beg, end)
1022  if( beg == end ) return;
1023
1024  // Clone along all Catch output paths.  Clone area between the 'beg' and
1025  // 'end' indices.
1026  for( uint i = 0; i < _num_succs; i++ ) {
1027    Block *sb = _succs[i];
1028    // Clone the entire area; ignoring the edge fixup for now.
1029    for( uint j = end; j > beg; j-- ) {
1030      // It is safe here to clone a node with anti_dependence
1031      // since clones dominate on each path.
1032      Node *clone = _nodes[j-1]->clone();
1033      sb->_nodes.insert( 1, clone );
1034      bbs.map(clone->_idx,sb);
1035    }
1036  }
1037
1038
1039  // Fixup edges.  Check the def-use info per cloned Node
1040  for(uint i2 = beg; i2 < end; i2++ ) {
1041    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1042    Node *n = _nodes[i2];        // Node that got cloned
1043    // Need DU safe iterator because of edge manipulation in calls.
1044    Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1045    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1046      out->push(n->fast_out(j1));
1047    }
1048    uint max = out->size();
1049    for (uint j = 0; j < max; j++) {// For all users
1050      Node *use = out->pop();
1051      Block *buse = bbs[use->_idx];
1052      if( use->is_Phi() ) {
1053        for( uint k = 1; k < use->req(); k++ )
1054          if( use->in(k) == n ) {
1055            Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
1056            use->set_req(k, fixup);
1057          }
1058      } else {
1059        if (this == buse) {
1060          catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
1061        } else {
1062          catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
1063        }
1064      }
1065    } // End for all users
1066
1067  } // End of for all Nodes in cloned area
1068
1069  // Remove the now-dead cloned ops
1070  for(uint i3 = beg; i3 < end; i3++ ) {
1071    _nodes[beg]->disconnect_inputs(NULL);
1072    _nodes.remove(beg);
1073  }
1074
1075  // If the successor blocks have a CreateEx node, move it back to the top
1076  for(uint i4 = 0; i4 < _num_succs; i4++ ) {
1077    Block *sb = _succs[i4];
1078    uint new_cnt = end - beg;
1079    // Remove any newly created, but dead, nodes.
1080    for( uint j = new_cnt; j > 0; j-- ) {
1081      Node *n = sb->_nodes[j];
1082      if (n->outcnt() == 0 &&
1083          (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1084        n->disconnect_inputs(NULL);
1085        sb->_nodes.remove(j);
1086        new_cnt--;
1087      }
1088    }
1089    // If any newly created nodes remain, move the CreateEx node to the top
1090    if (new_cnt > 0) {
1091      Node *cex = sb->_nodes[1+new_cnt];
1092      if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1093        sb->_nodes.remove(1+new_cnt);
1094        sb->_nodes.insert(1,cex);
1095      }
1096    }
1097  }
1098}
1099