lcm.cpp revision 1668:3e8fbc61cee8
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Optimization - Graph Style
26
27#include "incls/_precompiled.incl"
28#include "incls/_lcm.cpp.incl"
29
30//------------------------------implicit_null_check----------------------------
31// Detect implicit-null-check opportunities.  Basically, find NULL checks
32// with suitable memory ops nearby.  Use the memory op to do the NULL check.
33// I can generate a memory op if there is not one nearby.
34// The proj is the control projection for the not-null case.
35// The val is the pointer being checked for nullness or
36// decodeHeapOop_not_null node if it did not fold into address.
37void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
38  // Assume if null check need for 0 offset then always needed
39  // Intel solaris doesn't support any null checks yet and no
40  // mechanism exists (yet) to set the switches at an os_cpu level
41  if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
42
43  // Make sure the ptr-is-null path appears to be uncommon!
44  float f = end()->as_MachIf()->_prob;
45  if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
46  if( f > PROB_UNLIKELY_MAG(4) ) return;
47
48  uint bidx = 0;                // Capture index of value into memop
49  bool was_store;               // Memory op is a store op
50
51  // Get the successor block for if the test ptr is non-null
52  Block* not_null_block;  // this one goes with the proj
53  Block* null_block;
54  if (_nodes[_nodes.size()-1] == proj) {
55    null_block     = _succs[0];
56    not_null_block = _succs[1];
57  } else {
58    assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
59    not_null_block = _succs[0];
60    null_block     = _succs[1];
61  }
62  while (null_block->is_Empty() == Block::empty_with_goto) {
63    null_block     = null_block->_succs[0];
64  }
65
66  // Search the exception block for an uncommon trap.
67  // (See Parse::do_if and Parse::do_ifnull for the reason
68  // we need an uncommon trap.  Briefly, we need a way to
69  // detect failure of this optimization, as in 6366351.)
70  {
71    bool found_trap = false;
72    for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
73      Node* nn = null_block->_nodes[i1];
74      if (nn->is_MachCall() &&
75          nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
76        const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
77        if (trtype->isa_int() && trtype->is_int()->is_con()) {
78          jint tr_con = trtype->is_int()->get_con();
79          Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
80          Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
81          assert((int)reason < (int)BitsPerInt, "recode bit map");
82          if (is_set_nth_bit(allowed_reasons, (int) reason)
83              && action != Deoptimization::Action_none) {
84            // This uncommon trap is sure to recompile, eventually.
85            // When that happens, C->too_many_traps will prevent
86            // this transformation from happening again.
87            found_trap = true;
88          }
89        }
90        break;
91      }
92    }
93    if (!found_trap) {
94      // We did not find an uncommon trap.
95      return;
96    }
97  }
98
99  // Check for decodeHeapOop_not_null node which did not fold into address
100  bool is_decoden = ((intptr_t)val) & 1;
101  val = (Node*)(((intptr_t)val) & ~1);
102
103  assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
104         (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
105
106  // Search the successor block for a load or store who's base value is also
107  // the tested value.  There may be several.
108  Node_List *out = new Node_List(Thread::current()->resource_area());
109  MachNode *best = NULL;        // Best found so far
110  for (DUIterator i = val->outs(); val->has_out(i); i++) {
111    Node *m = val->out(i);
112    if( !m->is_Mach() ) continue;
113    MachNode *mach = m->as_Mach();
114    was_store = false;
115    int iop = mach->ideal_Opcode();
116    switch( iop ) {
117    case Op_LoadB:
118    case Op_LoadUS:
119    case Op_LoadD:
120    case Op_LoadF:
121    case Op_LoadI:
122    case Op_LoadL:
123    case Op_LoadP:
124    case Op_LoadN:
125    case Op_LoadS:
126    case Op_LoadKlass:
127    case Op_LoadNKlass:
128    case Op_LoadRange:
129    case Op_LoadD_unaligned:
130    case Op_LoadL_unaligned:
131      assert(mach->in(2) == val, "should be address");
132      break;
133    case Op_StoreB:
134    case Op_StoreC:
135    case Op_StoreCM:
136    case Op_StoreD:
137    case Op_StoreF:
138    case Op_StoreI:
139    case Op_StoreL:
140    case Op_StoreP:
141    case Op_StoreN:
142      was_store = true;         // Memory op is a store op
143      // Stores will have their address in slot 2 (memory in slot 1).
144      // If the value being nul-checked is in another slot, it means we
145      // are storing the checked value, which does NOT check the value!
146      if( mach->in(2) != val ) continue;
147      break;                    // Found a memory op?
148    case Op_StrComp:
149    case Op_StrEquals:
150    case Op_StrIndexOf:
151    case Op_AryEq:
152      // Not a legit memory op for implicit null check regardless of
153      // embedded loads
154      continue;
155    default:                    // Also check for embedded loads
156      if( !mach->needs_anti_dependence_check() )
157        continue;               // Not an memory op; skip it
158      if( must_clone[iop] ) {
159        // Do not move nodes which produce flags because
160        // RA will try to clone it to place near branch and
161        // it will cause recompilation, see clone_node().
162        continue;
163      }
164      {
165        // Check that value is used in memory address in
166        // instructions with embedded load (CmpP val1,(val2+off)).
167        Node* base;
168        Node* index;
169        const MachOper* oper = mach->memory_inputs(base, index);
170        if (oper == NULL || oper == (MachOper*)-1) {
171          continue;             // Not an memory op; skip it
172        }
173        if (val == base ||
174            val == index && val->bottom_type()->isa_narrowoop()) {
175          break;                // Found it
176        } else {
177          continue;             // Skip it
178        }
179      }
180      break;
181    }
182    // check if the offset is not too high for implicit exception
183    {
184      intptr_t offset = 0;
185      const TypePtr *adr_type = NULL;  // Do not need this return value here
186      const Node* base = mach->get_base_and_disp(offset, adr_type);
187      if (base == NULL || base == NodeSentinel) {
188        // Narrow oop address doesn't have base, only index
189        if( val->bottom_type()->isa_narrowoop() &&
190            MacroAssembler::needs_explicit_null_check(offset) )
191          continue;             // Give up if offset is beyond page size
192        // cannot reason about it; is probably not implicit null exception
193      } else {
194        const TypePtr* tptr;
195        if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
196          // 32-bits narrow oop can be the base of address expressions
197          tptr = base->bottom_type()->make_ptr();
198        } else {
199          // only regular oops are expected here
200          tptr = base->bottom_type()->is_ptr();
201        }
202        // Give up if offset is not a compile-time constant
203        if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
204          continue;
205        offset += tptr->_offset; // correct if base is offseted
206        if( MacroAssembler::needs_explicit_null_check(offset) )
207          continue;             // Give up is reference is beyond 4K page size
208      }
209    }
210
211    // Check ctrl input to see if the null-check dominates the memory op
212    Block *cb = cfg->_bbs[mach->_idx];
213    cb = cb->_idom;             // Always hoist at least 1 block
214    if( !was_store ) {          // Stores can be hoisted only one block
215      while( cb->_dom_depth > (_dom_depth + 1))
216        cb = cb->_idom;         // Hoist loads as far as we want
217      // The non-null-block should dominate the memory op, too. Live
218      // range spilling will insert a spill in the non-null-block if it is
219      // needs to spill the memory op for an implicit null check.
220      if (cb->_dom_depth == (_dom_depth + 1)) {
221        if (cb != not_null_block) continue;
222        cb = cb->_idom;
223      }
224    }
225    if( cb != this ) continue;
226
227    // Found a memory user; see if it can be hoisted to check-block
228    uint vidx = 0;              // Capture index of value into memop
229    uint j;
230    for( j = mach->req()-1; j > 0; j-- ) {
231      if( mach->in(j) == val ) {
232        vidx = j;
233        // Ignore DecodeN val which could be hoisted to where needed.
234        if( is_decoden ) continue;
235      }
236      // Block of memory-op input
237      Block *inb = cfg->_bbs[mach->in(j)->_idx];
238      Block *b = this;          // Start from nul check
239      while( b != inb && b->_dom_depth > inb->_dom_depth )
240        b = b->_idom;           // search upwards for input
241      // See if input dominates null check
242      if( b != inb )
243        break;
244    }
245    if( j > 0 )
246      continue;
247    Block *mb = cfg->_bbs[mach->_idx];
248    // Hoisting stores requires more checks for the anti-dependence case.
249    // Give up hoisting if we have to move the store past any load.
250    if( was_store ) {
251      Block *b = mb;            // Start searching here for a local load
252      // mach use (faulting) trying to hoist
253      // n might be blocker to hoisting
254      while( b != this ) {
255        uint k;
256        for( k = 1; k < b->_nodes.size(); k++ ) {
257          Node *n = b->_nodes[k];
258          if( n->needs_anti_dependence_check() &&
259              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
260            break;              // Found anti-dependent load
261        }
262        if( k < b->_nodes.size() )
263          break;                // Found anti-dependent load
264        // Make sure control does not do a merge (would have to check allpaths)
265        if( b->num_preds() != 2 ) break;
266        b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
267      }
268      if( b != this ) continue;
269    }
270
271    // Make sure this memory op is not already being used for a NullCheck
272    Node *e = mb->end();
273    if( e->is_MachNullCheck() && e->in(1) == mach )
274      continue;                 // Already being used as a NULL check
275
276    // Found a candidate!  Pick one with least dom depth - the highest
277    // in the dom tree should be closest to the null check.
278    if( !best ||
279        cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
280      best = mach;
281      bidx = vidx;
282
283    }
284  }
285  // No candidate!
286  if( !best ) return;
287
288  // ---- Found an implicit null check
289  extern int implicit_null_checks;
290  implicit_null_checks++;
291
292  if( is_decoden ) {
293    // Check if we need to hoist decodeHeapOop_not_null first.
294    Block *valb = cfg->_bbs[val->_idx];
295    if( this != valb && this->_dom_depth < valb->_dom_depth ) {
296      // Hoist it up to the end of the test block.
297      valb->find_remove(val);
298      this->add_inst(val);
299      cfg->_bbs.map(val->_idx,this);
300      // DecodeN on x86 may kill flags. Check for flag-killing projections
301      // that also need to be hoisted.
302      for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
303        Node* n = val->fast_out(j);
304        if( n->Opcode() == Op_MachProj ) {
305          cfg->_bbs[n->_idx]->find_remove(n);
306          this->add_inst(n);
307          cfg->_bbs.map(n->_idx,this);
308        }
309      }
310    }
311  }
312  // Hoist the memory candidate up to the end of the test block.
313  Block *old_block = cfg->_bbs[best->_idx];
314  old_block->find_remove(best);
315  add_inst(best);
316  cfg->_bbs.map(best->_idx,this);
317
318  // Move the control dependence
319  if (best->in(0) && best->in(0) == old_block->_nodes[0])
320    best->set_req(0, _nodes[0]);
321
322  // Check for flag-killing projections that also need to be hoisted
323  // Should be DU safe because no edge updates.
324  for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
325    Node* n = best->fast_out(j);
326    if( n->Opcode() == Op_MachProj ) {
327      cfg->_bbs[n->_idx]->find_remove(n);
328      add_inst(n);
329      cfg->_bbs.map(n->_idx,this);
330    }
331  }
332
333  Compile *C = cfg->C;
334  // proj==Op_True --> ne test; proj==Op_False --> eq test.
335  // One of two graph shapes got matched:
336  //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
337  //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
338  // NULL checks are always branch-if-eq.  If we see a IfTrue projection
339  // then we are replacing a 'ne' test with a 'eq' NULL check test.
340  // We need to flip the projections to keep the same semantics.
341  if( proj->Opcode() == Op_IfTrue ) {
342    // Swap order of projections in basic block to swap branch targets
343    Node *tmp1 = _nodes[end_idx()+1];
344    Node *tmp2 = _nodes[end_idx()+2];
345    _nodes.map(end_idx()+1, tmp2);
346    _nodes.map(end_idx()+2, tmp1);
347    Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
348    tmp1->replace_by(tmp);
349    tmp2->replace_by(tmp1);
350    tmp->replace_by(tmp2);
351    tmp->destruct();
352  }
353
354  // Remove the existing null check; use a new implicit null check instead.
355  // Since schedule-local needs precise def-use info, we need to correct
356  // it as well.
357  Node *old_tst = proj->in(0);
358  MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
359  _nodes.map(end_idx(),nul_chk);
360  cfg->_bbs.map(nul_chk->_idx,this);
361  // Redirect users of old_test to nul_chk
362  for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
363    old_tst->last_out(i2)->set_req(0, nul_chk);
364  // Clean-up any dead code
365  for (uint i3 = 0; i3 < old_tst->req(); i3++)
366    old_tst->set_req(i3, NULL);
367
368  cfg->latency_from_uses(nul_chk);
369  cfg->latency_from_uses(best);
370}
371
372
373//------------------------------select-----------------------------------------
374// Select a nice fellow from the worklist to schedule next. If there is only
375// one choice, then use it. Projections take top priority for correctness
376// reasons - if I see a projection, then it is next.  There are a number of
377// other special cases, for instructions that consume condition codes, et al.
378// These are chosen immediately. Some instructions are required to immediately
379// precede the last instruction in the block, and these are taken last. Of the
380// remaining cases (most), choose the instruction with the greatest latency
381// (that is, the most number of pseudo-cycles required to the end of the
382// routine). If there is a tie, choose the instruction with the most inputs.
383Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
384
385  // If only a single entry on the stack, use it
386  uint cnt = worklist.size();
387  if (cnt == 1) {
388    Node *n = worklist[0];
389    worklist.map(0,worklist.pop());
390    return n;
391  }
392
393  uint choice  = 0; // Bigger is most important
394  uint latency = 0; // Bigger is scheduled first
395  uint score   = 0; // Bigger is better
396  int idx = -1;     // Index in worklist
397
398  for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
399    // Order in worklist is used to break ties.
400    // See caller for how this is used to delay scheduling
401    // of induction variable increments to after the other
402    // uses of the phi are scheduled.
403    Node *n = worklist[i];      // Get Node on worklist
404
405    int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
406    if( n->is_Proj() ||         // Projections always win
407        n->Opcode()== Op_Con || // So does constant 'Top'
408        iop == Op_CreateEx ||   // Create-exception must start block
409        iop == Op_CheckCastPP
410        ) {
411      worklist.map(i,worklist.pop());
412      return n;
413    }
414
415    // Final call in a block must be adjacent to 'catch'
416    Node *e = end();
417    if( e->is_Catch() && e->in(0)->in(0) == n )
418      continue;
419
420    // Memory op for an implicit null check has to be at the end of the block
421    if( e->is_MachNullCheck() && e->in(1) == n )
422      continue;
423
424    uint n_choice  = 2;
425
426    // See if this instruction is consumed by a branch. If so, then (as the
427    // branch is the last instruction in the basic block) force it to the
428    // end of the basic block
429    if ( must_clone[iop] ) {
430      // See if any use is a branch
431      bool found_machif = false;
432
433      for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
434        Node* use = n->fast_out(j);
435
436        // The use is a conditional branch, make them adjacent
437        if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
438          found_machif = true;
439          break;
440        }
441
442        // More than this instruction pending for successor to be ready,
443        // don't choose this if other opportunities are ready
444        if (ready_cnt[use->_idx] > 1)
445          n_choice = 1;
446      }
447
448      // loop terminated, prefer not to use this instruction
449      if (found_machif)
450        continue;
451    }
452
453    // See if this has a predecessor that is "must_clone", i.e. sets the
454    // condition code. If so, choose this first
455    for (uint j = 0; j < n->req() ; j++) {
456      Node *inn = n->in(j);
457      if (inn) {
458        if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
459          n_choice = 3;
460          break;
461        }
462      }
463    }
464
465    // MachTemps should be scheduled last so they are near their uses
466    if (n->is_MachTemp()) {
467      n_choice = 1;
468    }
469
470    uint n_latency = cfg->_node_latency->at_grow(n->_idx);
471    uint n_score   = n->req();   // Many inputs get high score to break ties
472
473    // Keep best latency found
474    if( choice < n_choice ||
475        ( choice == n_choice &&
476          ( latency < n_latency ||
477            ( latency == n_latency &&
478              ( score < n_score ))))) {
479      choice  = n_choice;
480      latency = n_latency;
481      score   = n_score;
482      idx     = i;               // Also keep index in worklist
483    }
484  } // End of for all ready nodes in worklist
485
486  assert(idx >= 0, "index should be set");
487  Node *n = worklist[(uint)idx];      // Get the winner
488
489  worklist.map((uint)idx, worklist.pop());     // Compress worklist
490  return n;
491}
492
493
494//------------------------------set_next_call----------------------------------
495void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
496  if( next_call.test_set(n->_idx) ) return;
497  for( uint i=0; i<n->len(); i++ ) {
498    Node *m = n->in(i);
499    if( !m ) continue;  // must see all nodes in block that precede call
500    if( bbs[m->_idx] == this )
501      set_next_call( m, next_call, bbs );
502  }
503}
504
505//------------------------------needed_for_next_call---------------------------
506// Set the flag 'next_call' for each Node that is needed for the next call to
507// be scheduled.  This flag lets me bias scheduling so Nodes needed for the
508// next subroutine call get priority - basically it moves things NOT needed
509// for the next call till after the call.  This prevents me from trying to
510// carry lots of stuff live across a call.
511void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
512  // Find the next control-defining Node in this block
513  Node* call = NULL;
514  for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
515    Node* m = this_call->fast_out(i);
516    if( bbs[m->_idx] == this && // Local-block user
517        m != this_call &&       // Not self-start node
518        m->is_Call() )
519      call = m;
520      break;
521  }
522  if (call == NULL)  return;    // No next call (e.g., block end is near)
523  // Set next-call for all inputs to this call
524  set_next_call(call, next_call, bbs);
525}
526
527//------------------------------sched_call-------------------------------------
528uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
529  RegMask regs;
530
531  // Schedule all the users of the call right now.  All the users are
532  // projection Nodes, so they must be scheduled next to the call.
533  // Collect all the defined registers.
534  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
535    Node* n = mcall->fast_out(i);
536    assert( n->Opcode()==Op_MachProj, "" );
537    --ready_cnt[n->_idx];
538    assert( !ready_cnt[n->_idx], "" );
539    // Schedule next to call
540    _nodes.map(node_cnt++, n);
541    // Collect defined registers
542    regs.OR(n->out_RegMask());
543    // Check for scheduling the next control-definer
544    if( n->bottom_type() == Type::CONTROL )
545      // Warm up next pile of heuristic bits
546      needed_for_next_call(n, next_call, bbs);
547
548    // Children of projections are now all ready
549    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
550      Node* m = n->fast_out(j); // Get user
551      if( bbs[m->_idx] != this ) continue;
552      if( m->is_Phi() ) continue;
553      if( !--ready_cnt[m->_idx] )
554        worklist.push(m);
555    }
556
557  }
558
559  // Act as if the call defines the Frame Pointer.
560  // Certainly the FP is alive and well after the call.
561  regs.Insert(matcher.c_frame_pointer());
562
563  // Set all registers killed and not already defined by the call.
564  uint r_cnt = mcall->tf()->range()->cnt();
565  int op = mcall->ideal_Opcode();
566  MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
567  bbs.map(proj->_idx,this);
568  _nodes.insert(node_cnt++, proj);
569
570  // Select the right register save policy.
571  const char * save_policy;
572  switch (op) {
573    case Op_CallRuntime:
574    case Op_CallLeaf:
575    case Op_CallLeafNoFP:
576      // Calling C code so use C calling convention
577      save_policy = matcher._c_reg_save_policy;
578      break;
579
580    case Op_CallStaticJava:
581    case Op_CallDynamicJava:
582      // Calling Java code so use Java calling convention
583      save_policy = matcher._register_save_policy;
584      break;
585
586    default:
587      ShouldNotReachHere();
588  }
589
590  // When using CallRuntime mark SOE registers as killed by the call
591  // so values that could show up in the RegisterMap aren't live in a
592  // callee saved register since the register wouldn't know where to
593  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
594  // have debug info on them.  Strictly speaking this only needs to be
595  // done for oops since idealreg2debugmask takes care of debug info
596  // references but there no way to handle oops differently than other
597  // pointers as far as the kill mask goes.
598  bool exclude_soe = op == Op_CallRuntime;
599
600  // If the call is a MethodHandle invoke, we need to exclude the
601  // register which is used to save the SP value over MH invokes from
602  // the mask.  Otherwise this register could be used for
603  // deoptimization information.
604  if (op == Op_CallStaticJava) {
605    MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
606    if (mcallstaticjava->_method_handle_invoke)
607      proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
608  }
609
610  // Fill in the kill mask for the call
611  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
612    if( !regs.Member(r) ) {     // Not already defined by the call
613      // Save-on-call register?
614      if ((save_policy[r] == 'C') ||
615          (save_policy[r] == 'A') ||
616          ((save_policy[r] == 'E') && exclude_soe)) {
617        proj->_rout.Insert(r);
618      }
619    }
620  }
621
622  return node_cnt;
623}
624
625
626//------------------------------schedule_local---------------------------------
627// Topological sort within a block.  Someday become a real scheduler.
628bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
629  // Already "sorted" are the block start Node (as the first entry), and
630  // the block-ending Node and any trailing control projections.  We leave
631  // these alone.  PhiNodes and ParmNodes are made to follow the block start
632  // Node.  Everything else gets topo-sorted.
633
634#ifndef PRODUCT
635    if (cfg->trace_opto_pipelining()) {
636      tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
637      for (uint i = 0;i < _nodes.size();i++) {
638        tty->print("# ");
639        _nodes[i]->fast_dump();
640      }
641      tty->print_cr("#");
642    }
643#endif
644
645  // RootNode is already sorted
646  if( _nodes.size() == 1 ) return true;
647
648  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
649  uint node_cnt = end_idx();
650  uint phi_cnt = 1;
651  uint i;
652  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
653    Node *n = _nodes[i];
654    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
655        (n->is_Proj()  && n->in(0) == head()) ) {
656      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
657      _nodes.map(i,_nodes[phi_cnt]);
658      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
659    } else {                    // All others
660      // Count block-local inputs to 'n'
661      uint cnt = n->len();      // Input count
662      uint local = 0;
663      for( uint j=0; j<cnt; j++ ) {
664        Node *m = n->in(j);
665        if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
666          local++;              // One more block-local input
667      }
668      ready_cnt[n->_idx] = local; // Count em up
669
670      // A few node types require changing a required edge to a precedence edge
671      // before allocation.
672      if( UseConcMarkSweepGC || UseG1GC ) {
673        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
674          // Note: Required edges with an index greater than oper_input_base
675          // are not supported by the allocator.
676          // Note2: Can only depend on unmatched edge being last,
677          // can not depend on its absolute position.
678          Node *oop_store = n->in(n->req() - 1);
679          n->del_req(n->req() - 1);
680          n->add_prec(oop_store);
681          assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
682        }
683      }
684      if( n->is_Mach() && n->req() > TypeFunc::Parms &&
685          (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
686           n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
687        // MemBarAcquire could be created without Precedent edge.
688        // del_req() replaces the specified edge with the last input edge
689        // and then removes the last edge. If the specified edge > number of
690        // edges the last edge will be moved outside of the input edges array
691        // and the edge will be lost. This is why this code should be
692        // executed only when Precedent (== TypeFunc::Parms) edge is present.
693        Node *x = n->in(TypeFunc::Parms);
694        n->del_req(TypeFunc::Parms);
695        n->add_prec(x);
696      }
697    }
698  }
699  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
700    ready_cnt[_nodes[i2]->_idx] = 0;
701
702  // All the prescheduled guys do not hold back internal nodes
703  uint i3;
704  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
705    Node *n = _nodes[i3];       // Get pre-scheduled
706    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
707      Node* m = n->fast_out(j);
708      if( cfg->_bbs[m->_idx] ==this ) // Local-block user
709        ready_cnt[m->_idx]--;   // Fix ready count
710    }
711  }
712
713  Node_List delay;
714  // Make a worklist
715  Node_List worklist;
716  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
717    Node *m = _nodes[i4];
718    if( !ready_cnt[m->_idx] ) {   // Zero ready count?
719      if (m->is_iteratively_computed()) {
720        // Push induction variable increments last to allow other uses
721        // of the phi to be scheduled first. The select() method breaks
722        // ties in scheduling by worklist order.
723        delay.push(m);
724      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
725        // Force the CreateEx to the top of the list so it's processed
726        // first and ends up at the start of the block.
727        worklist.insert(0, m);
728      } else {
729        worklist.push(m);         // Then on to worklist!
730      }
731    }
732  }
733  while (delay.size()) {
734    Node* d = delay.pop();
735    worklist.push(d);
736  }
737
738  // Warm up the 'next_call' heuristic bits
739  needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
740
741#ifndef PRODUCT
742    if (cfg->trace_opto_pipelining()) {
743      for (uint j=0; j<_nodes.size(); j++) {
744        Node     *n = _nodes[j];
745        int     idx = n->_idx;
746        tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
747        tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
748        tty->print("%4d: %s\n", idx, n->Name());
749      }
750    }
751#endif
752
753  // Pull from worklist and schedule
754  while( worklist.size() ) {    // Worklist is not ready
755
756#ifndef PRODUCT
757    if (cfg->trace_opto_pipelining()) {
758      tty->print("#   ready list:");
759      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
760        Node *n = worklist[i];      // Get Node on worklist
761        tty->print(" %d", n->_idx);
762      }
763      tty->cr();
764    }
765#endif
766
767    // Select and pop a ready guy from worklist
768    Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
769    _nodes.map(phi_cnt++,n);    // Schedule him next
770
771#ifndef PRODUCT
772    if (cfg->trace_opto_pipelining()) {
773      tty->print("#    select %d: %s", n->_idx, n->Name());
774      tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
775      n->dump();
776      if (Verbose) {
777        tty->print("#   ready list:");
778        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
779          Node *n = worklist[i];      // Get Node on worklist
780          tty->print(" %d", n->_idx);
781        }
782        tty->cr();
783      }
784    }
785
786#endif
787    if( n->is_MachCall() ) {
788      MachCallNode *mcall = n->as_MachCall();
789      phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
790      continue;
791    }
792    // Children are now all ready
793    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
794      Node* m = n->fast_out(i5); // Get user
795      if( cfg->_bbs[m->_idx] != this ) continue;
796      if( m->is_Phi() ) continue;
797      if( !--ready_cnt[m->_idx] )
798        worklist.push(m);
799    }
800  }
801
802  if( phi_cnt != end_idx() ) {
803    // did not schedule all.  Retry, Bailout, or Die
804    Compile* C = matcher.C;
805    if (C->subsume_loads() == true && !C->failing()) {
806      // Retry with subsume_loads == false
807      // If this is the first failure, the sentinel string will "stick"
808      // to the Compile object, and the C2Compiler will see it and retry.
809      C->record_failure(C2Compiler::retry_no_subsuming_loads());
810    }
811    // assert( phi_cnt == end_idx(), "did not schedule all" );
812    return false;
813  }
814
815#ifndef PRODUCT
816  if (cfg->trace_opto_pipelining()) {
817    tty->print_cr("#");
818    tty->print_cr("# after schedule_local");
819    for (uint i = 0;i < _nodes.size();i++) {
820      tty->print("# ");
821      _nodes[i]->fast_dump();
822    }
823    tty->cr();
824  }
825#endif
826
827
828  return true;
829}
830
831//--------------------------catch_cleanup_fix_all_inputs-----------------------
832static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
833  for (uint l = 0; l < use->len(); l++) {
834    if (use->in(l) == old_def) {
835      if (l < use->req()) {
836        use->set_req(l, new_def);
837      } else {
838        use->rm_prec(l);
839        use->add_prec(new_def);
840        l--;
841      }
842    }
843  }
844}
845
846//------------------------------catch_cleanup_find_cloned_def------------------
847static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
848  assert( use_blk != def_blk, "Inter-block cleanup only");
849
850  // The use is some block below the Catch.  Find and return the clone of the def
851  // that dominates the use. If there is no clone in a dominating block, then
852  // create a phi for the def in a dominating block.
853
854  // Find which successor block dominates this use.  The successor
855  // blocks must all be single-entry (from the Catch only; I will have
856  // split blocks to make this so), hence they all dominate.
857  while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
858    use_blk = use_blk->_idom;
859
860  // Find the successor
861  Node *fixup = NULL;
862
863  uint j;
864  for( j = 0; j < def_blk->_num_succs; j++ )
865    if( use_blk == def_blk->_succs[j] )
866      break;
867
868  if( j == def_blk->_num_succs ) {
869    // Block at same level in dom-tree is not a successor.  It needs a
870    // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
871    Node_Array inputs = new Node_List(Thread::current()->resource_area());
872    for(uint k = 1; k < use_blk->num_preds(); k++) {
873      inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
874    }
875
876    // Check to see if the use_blk already has an identical phi inserted.
877    // If it exists, it will be at the first position since all uses of a
878    // def are processed together.
879    Node *phi = use_blk->_nodes[1];
880    if( phi->is_Phi() ) {
881      fixup = phi;
882      for (uint k = 1; k < use_blk->num_preds(); k++) {
883        if (phi->in(k) != inputs[k]) {
884          // Not a match
885          fixup = NULL;
886          break;
887        }
888      }
889    }
890
891    // If an existing PhiNode was not found, make a new one.
892    if (fixup == NULL) {
893      Node *new_phi = PhiNode::make(use_blk->head(), def);
894      use_blk->_nodes.insert(1, new_phi);
895      bbs.map(new_phi->_idx, use_blk);
896      for (uint k = 1; k < use_blk->num_preds(); k++) {
897        new_phi->set_req(k, inputs[k]);
898      }
899      fixup = new_phi;
900    }
901
902  } else {
903    // Found the use just below the Catch.  Make it use the clone.
904    fixup = use_blk->_nodes[n_clone_idx];
905  }
906
907  return fixup;
908}
909
910//--------------------------catch_cleanup_intra_block--------------------------
911// Fix all input edges in use that reference "def".  The use is in the same
912// block as the def and both have been cloned in each successor block.
913static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
914
915  // Both the use and def have been cloned. For each successor block,
916  // get the clone of the use, and make its input the clone of the def
917  // found in that block.
918
919  uint use_idx = blk->find_node(use);
920  uint offset_idx = use_idx - beg;
921  for( uint k = 0; k < blk->_num_succs; k++ ) {
922    // Get clone in each successor block
923    Block *sb = blk->_succs[k];
924    Node *clone = sb->_nodes[offset_idx+1];
925    assert( clone->Opcode() == use->Opcode(), "" );
926
927    // Make use-clone reference the def-clone
928    catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
929  }
930}
931
932//------------------------------catch_cleanup_inter_block---------------------
933// Fix all input edges in use that reference "def".  The use is in a different
934// block than the def.
935static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
936  if( !use_blk ) return;        // Can happen if the use is a precedence edge
937
938  Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
939  catch_cleanup_fix_all_inputs(use, def, new_def);
940}
941
942//------------------------------call_catch_cleanup-----------------------------
943// If we inserted any instructions between a Call and his CatchNode,
944// clone the instructions on all paths below the Catch.
945void Block::call_catch_cleanup(Block_Array &bbs) {
946
947  // End of region to clone
948  uint end = end_idx();
949  if( !_nodes[end]->is_Catch() ) return;
950  // Start of region to clone
951  uint beg = end;
952  while( _nodes[beg-1]->Opcode() != Op_MachProj ||
953        !_nodes[beg-1]->in(0)->is_Call() ) {
954    beg--;
955    assert(beg > 0,"Catch cleanup walking beyond block boundary");
956  }
957  // Range of inserted instructions is [beg, end)
958  if( beg == end ) return;
959
960  // Clone along all Catch output paths.  Clone area between the 'beg' and
961  // 'end' indices.
962  for( uint i = 0; i < _num_succs; i++ ) {
963    Block *sb = _succs[i];
964    // Clone the entire area; ignoring the edge fixup for now.
965    for( uint j = end; j > beg; j-- ) {
966      // It is safe here to clone a node with anti_dependence
967      // since clones dominate on each path.
968      Node *clone = _nodes[j-1]->clone();
969      sb->_nodes.insert( 1, clone );
970      bbs.map(clone->_idx,sb);
971    }
972  }
973
974
975  // Fixup edges.  Check the def-use info per cloned Node
976  for(uint i2 = beg; i2 < end; i2++ ) {
977    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
978    Node *n = _nodes[i2];        // Node that got cloned
979    // Need DU safe iterator because of edge manipulation in calls.
980    Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
981    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
982      out->push(n->fast_out(j1));
983    }
984    uint max = out->size();
985    for (uint j = 0; j < max; j++) {// For all users
986      Node *use = out->pop();
987      Block *buse = bbs[use->_idx];
988      if( use->is_Phi() ) {
989        for( uint k = 1; k < use->req(); k++ )
990          if( use->in(k) == n ) {
991            Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
992            use->set_req(k, fixup);
993          }
994      } else {
995        if (this == buse) {
996          catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
997        } else {
998          catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
999        }
1000      }
1001    } // End for all users
1002
1003  } // End of for all Nodes in cloned area
1004
1005  // Remove the now-dead cloned ops
1006  for(uint i3 = beg; i3 < end; i3++ ) {
1007    _nodes[beg]->disconnect_inputs(NULL);
1008    _nodes.remove(beg);
1009  }
1010
1011  // If the successor blocks have a CreateEx node, move it back to the top
1012  for(uint i4 = 0; i4 < _num_succs; i4++ ) {
1013    Block *sb = _succs[i4];
1014    uint new_cnt = end - beg;
1015    // Remove any newly created, but dead, nodes.
1016    for( uint j = new_cnt; j > 0; j-- ) {
1017      Node *n = sb->_nodes[j];
1018      if (n->outcnt() == 0 &&
1019          (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1020        n->disconnect_inputs(NULL);
1021        sb->_nodes.remove(j);
1022        new_cnt--;
1023      }
1024    }
1025    // If any newly created nodes remain, move the CreateEx node to the top
1026    if (new_cnt > 0) {
1027      Node *cex = sb->_nodes[1+new_cnt];
1028      if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1029        sb->_nodes.remove(1+new_cnt);
1030        sb->_nodes.insert(1,cex);
1031      }
1032    }
1033  }
1034}
1035