lcm.cpp revision 1499:e9ff18c4ace7
1/*
2 * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Optimization - Graph Style
26
27#include "incls/_precompiled.incl"
28#include "incls/_lcm.cpp.incl"
29
30//------------------------------implicit_null_check----------------------------
31// Detect implicit-null-check opportunities.  Basically, find NULL checks
32// with suitable memory ops nearby.  Use the memory op to do the NULL check.
33// I can generate a memory op if there is not one nearby.
34// The proj is the control projection for the not-null case.
35// The val is the pointer being checked for nullness or
36// decodeHeapOop_not_null node if it did not fold into address.
37void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
38  // Assume if null check need for 0 offset then always needed
39  // Intel solaris doesn't support any null checks yet and no
40  // mechanism exists (yet) to set the switches at an os_cpu level
41  if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
42
43  // Make sure the ptr-is-null path appears to be uncommon!
44  float f = end()->as_MachIf()->_prob;
45  if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
46  if( f > PROB_UNLIKELY_MAG(4) ) return;
47
48  uint bidx = 0;                // Capture index of value into memop
49  bool was_store;               // Memory op is a store op
50
51  // Get the successor block for if the test ptr is non-null
52  Block* not_null_block;  // this one goes with the proj
53  Block* null_block;
54  if (_nodes[_nodes.size()-1] == proj) {
55    null_block     = _succs[0];
56    not_null_block = _succs[1];
57  } else {
58    assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
59    not_null_block = _succs[0];
60    null_block     = _succs[1];
61  }
62  while (null_block->is_Empty() == Block::empty_with_goto) {
63    null_block     = null_block->_succs[0];
64  }
65
66  // Search the exception block for an uncommon trap.
67  // (See Parse::do_if and Parse::do_ifnull for the reason
68  // we need an uncommon trap.  Briefly, we need a way to
69  // detect failure of this optimization, as in 6366351.)
70  {
71    bool found_trap = false;
72    for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
73      Node* nn = null_block->_nodes[i1];
74      if (nn->is_MachCall() &&
75          nn->as_MachCall()->entry_point() ==
76          SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
77        const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
78        if (trtype->isa_int() && trtype->is_int()->is_con()) {
79          jint tr_con = trtype->is_int()->get_con();
80          Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
81          Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
82          assert((int)reason < (int)BitsPerInt, "recode bit map");
83          if (is_set_nth_bit(allowed_reasons, (int) reason)
84              && action != Deoptimization::Action_none) {
85            // This uncommon trap is sure to recompile, eventually.
86            // When that happens, C->too_many_traps will prevent
87            // this transformation from happening again.
88            found_trap = true;
89          }
90        }
91        break;
92      }
93    }
94    if (!found_trap) {
95      // We did not find an uncommon trap.
96      return;
97    }
98  }
99
100  // Check for decodeHeapOop_not_null node which did not fold into address
101  bool is_decoden = ((intptr_t)val) & 1;
102  val = (Node*)(((intptr_t)val) & ~1);
103
104  assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
105         (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
106
107  // Search the successor block for a load or store who's base value is also
108  // the tested value.  There may be several.
109  Node_List *out = new Node_List(Thread::current()->resource_area());
110  MachNode *best = NULL;        // Best found so far
111  for (DUIterator i = val->outs(); val->has_out(i); i++) {
112    Node *m = val->out(i);
113    if( !m->is_Mach() ) continue;
114    MachNode *mach = m->as_Mach();
115    was_store = false;
116    switch( mach->ideal_Opcode() ) {
117    case Op_LoadB:
118    case Op_LoadUS:
119    case Op_LoadD:
120    case Op_LoadF:
121    case Op_LoadI:
122    case Op_LoadL:
123    case Op_LoadP:
124    case Op_LoadN:
125    case Op_LoadS:
126    case Op_LoadKlass:
127    case Op_LoadNKlass:
128    case Op_LoadRange:
129    case Op_LoadD_unaligned:
130    case Op_LoadL_unaligned:
131      assert(mach->in(2) == val, "should be address");
132      break;
133    case Op_StoreB:
134    case Op_StoreC:
135    case Op_StoreCM:
136    case Op_StoreD:
137    case Op_StoreF:
138    case Op_StoreI:
139    case Op_StoreL:
140    case Op_StoreP:
141    case Op_StoreN:
142      was_store = true;         // Memory op is a store op
143      // Stores will have their address in slot 2 (memory in slot 1).
144      // If the value being nul-checked is in another slot, it means we
145      // are storing the checked value, which does NOT check the value!
146      if( mach->in(2) != val ) continue;
147      break;                    // Found a memory op?
148    case Op_StrComp:
149    case Op_StrEquals:
150    case Op_StrIndexOf:
151    case Op_AryEq:
152      // Not a legit memory op for implicit null check regardless of
153      // embedded loads
154      continue;
155    default:                    // Also check for embedded loads
156      if( !mach->needs_anti_dependence_check() )
157        continue;               // Not an memory op; skip it
158      {
159        // Check that value is used in memory address in
160        // instructions with embedded load (CmpP val1,(val2+off)).
161        Node* base;
162        Node* index;
163        const MachOper* oper = mach->memory_inputs(base, index);
164        if (oper == NULL || oper == (MachOper*)-1) {
165          continue;             // Not an memory op; skip it
166        }
167        if (val == base ||
168            val == index && val->bottom_type()->isa_narrowoop()) {
169          break;                // Found it
170        } else {
171          continue;             // Skip it
172        }
173      }
174      break;
175    }
176    // check if the offset is not too high for implicit exception
177    {
178      intptr_t offset = 0;
179      const TypePtr *adr_type = NULL;  // Do not need this return value here
180      const Node* base = mach->get_base_and_disp(offset, adr_type);
181      if (base == NULL || base == NodeSentinel) {
182        // Narrow oop address doesn't have base, only index
183        if( val->bottom_type()->isa_narrowoop() &&
184            MacroAssembler::needs_explicit_null_check(offset) )
185          continue;             // Give up if offset is beyond page size
186        // cannot reason about it; is probably not implicit null exception
187      } else {
188        const TypePtr* tptr;
189        if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
190          // 32-bits narrow oop can be the base of address expressions
191          tptr = base->bottom_type()->make_ptr();
192        } else {
193          // only regular oops are expected here
194          tptr = base->bottom_type()->is_ptr();
195        }
196        // Give up if offset is not a compile-time constant
197        if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
198          continue;
199        offset += tptr->_offset; // correct if base is offseted
200        if( MacroAssembler::needs_explicit_null_check(offset) )
201          continue;             // Give up is reference is beyond 4K page size
202      }
203    }
204
205    // Check ctrl input to see if the null-check dominates the memory op
206    Block *cb = cfg->_bbs[mach->_idx];
207    cb = cb->_idom;             // Always hoist at least 1 block
208    if( !was_store ) {          // Stores can be hoisted only one block
209      while( cb->_dom_depth > (_dom_depth + 1))
210        cb = cb->_idom;         // Hoist loads as far as we want
211      // The non-null-block should dominate the memory op, too. Live
212      // range spilling will insert a spill in the non-null-block if it is
213      // needs to spill the memory op for an implicit null check.
214      if (cb->_dom_depth == (_dom_depth + 1)) {
215        if (cb != not_null_block) continue;
216        cb = cb->_idom;
217      }
218    }
219    if( cb != this ) continue;
220
221    // Found a memory user; see if it can be hoisted to check-block
222    uint vidx = 0;              // Capture index of value into memop
223    uint j;
224    for( j = mach->req()-1; j > 0; j-- ) {
225      if( mach->in(j) == val ) {
226        vidx = j;
227        // Ignore DecodeN val which could be hoisted to where needed.
228        if( is_decoden ) continue;
229      }
230      // Block of memory-op input
231      Block *inb = cfg->_bbs[mach->in(j)->_idx];
232      Block *b = this;          // Start from nul check
233      while( b != inb && b->_dom_depth > inb->_dom_depth )
234        b = b->_idom;           // search upwards for input
235      // See if input dominates null check
236      if( b != inb )
237        break;
238    }
239    if( j > 0 )
240      continue;
241    Block *mb = cfg->_bbs[mach->_idx];
242    // Hoisting stores requires more checks for the anti-dependence case.
243    // Give up hoisting if we have to move the store past any load.
244    if( was_store ) {
245      Block *b = mb;            // Start searching here for a local load
246      // mach use (faulting) trying to hoist
247      // n might be blocker to hoisting
248      while( b != this ) {
249        uint k;
250        for( k = 1; k < b->_nodes.size(); k++ ) {
251          Node *n = b->_nodes[k];
252          if( n->needs_anti_dependence_check() &&
253              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
254            break;              // Found anti-dependent load
255        }
256        if( k < b->_nodes.size() )
257          break;                // Found anti-dependent load
258        // Make sure control does not do a merge (would have to check allpaths)
259        if( b->num_preds() != 2 ) break;
260        b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
261      }
262      if( b != this ) continue;
263    }
264
265    // Make sure this memory op is not already being used for a NullCheck
266    Node *e = mb->end();
267    if( e->is_MachNullCheck() && e->in(1) == mach )
268      continue;                 // Already being used as a NULL check
269
270    // Found a candidate!  Pick one with least dom depth - the highest
271    // in the dom tree should be closest to the null check.
272    if( !best ||
273        cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
274      best = mach;
275      bidx = vidx;
276
277    }
278  }
279  // No candidate!
280  if( !best ) return;
281
282  // ---- Found an implicit null check
283  extern int implicit_null_checks;
284  implicit_null_checks++;
285
286  if( is_decoden ) {
287    // Check if we need to hoist decodeHeapOop_not_null first.
288    Block *valb = cfg->_bbs[val->_idx];
289    if( this != valb && this->_dom_depth < valb->_dom_depth ) {
290      // Hoist it up to the end of the test block.
291      valb->find_remove(val);
292      this->add_inst(val);
293      cfg->_bbs.map(val->_idx,this);
294      // DecodeN on x86 may kill flags. Check for flag-killing projections
295      // that also need to be hoisted.
296      for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
297        Node* n = val->fast_out(j);
298        if( n->Opcode() == Op_MachProj ) {
299          cfg->_bbs[n->_idx]->find_remove(n);
300          this->add_inst(n);
301          cfg->_bbs.map(n->_idx,this);
302        }
303      }
304    }
305  }
306  // Hoist the memory candidate up to the end of the test block.
307  Block *old_block = cfg->_bbs[best->_idx];
308  old_block->find_remove(best);
309  add_inst(best);
310  cfg->_bbs.map(best->_idx,this);
311
312  // Move the control dependence
313  if (best->in(0) && best->in(0) == old_block->_nodes[0])
314    best->set_req(0, _nodes[0]);
315
316  // Check for flag-killing projections that also need to be hoisted
317  // Should be DU safe because no edge updates.
318  for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
319    Node* n = best->fast_out(j);
320    if( n->Opcode() == Op_MachProj ) {
321      cfg->_bbs[n->_idx]->find_remove(n);
322      add_inst(n);
323      cfg->_bbs.map(n->_idx,this);
324    }
325  }
326
327  Compile *C = cfg->C;
328  // proj==Op_True --> ne test; proj==Op_False --> eq test.
329  // One of two graph shapes got matched:
330  //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
331  //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
332  // NULL checks are always branch-if-eq.  If we see a IfTrue projection
333  // then we are replacing a 'ne' test with a 'eq' NULL check test.
334  // We need to flip the projections to keep the same semantics.
335  if( proj->Opcode() == Op_IfTrue ) {
336    // Swap order of projections in basic block to swap branch targets
337    Node *tmp1 = _nodes[end_idx()+1];
338    Node *tmp2 = _nodes[end_idx()+2];
339    _nodes.map(end_idx()+1, tmp2);
340    _nodes.map(end_idx()+2, tmp1);
341    Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
342    tmp1->replace_by(tmp);
343    tmp2->replace_by(tmp1);
344    tmp->replace_by(tmp2);
345    tmp->destruct();
346  }
347
348  // Remove the existing null check; use a new implicit null check instead.
349  // Since schedule-local needs precise def-use info, we need to correct
350  // it as well.
351  Node *old_tst = proj->in(0);
352  MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
353  _nodes.map(end_idx(),nul_chk);
354  cfg->_bbs.map(nul_chk->_idx,this);
355  // Redirect users of old_test to nul_chk
356  for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
357    old_tst->last_out(i2)->set_req(0, nul_chk);
358  // Clean-up any dead code
359  for (uint i3 = 0; i3 < old_tst->req(); i3++)
360    old_tst->set_req(i3, NULL);
361
362  cfg->latency_from_uses(nul_chk);
363  cfg->latency_from_uses(best);
364}
365
366
367//------------------------------select-----------------------------------------
368// Select a nice fellow from the worklist to schedule next. If there is only
369// one choice, then use it. Projections take top priority for correctness
370// reasons - if I see a projection, then it is next.  There are a number of
371// other special cases, for instructions that consume condition codes, et al.
372// These are chosen immediately. Some instructions are required to immediately
373// precede the last instruction in the block, and these are taken last. Of the
374// remaining cases (most), choose the instruction with the greatest latency
375// (that is, the most number of pseudo-cycles required to the end of the
376// routine). If there is a tie, choose the instruction with the most inputs.
377Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
378
379  // If only a single entry on the stack, use it
380  uint cnt = worklist.size();
381  if (cnt == 1) {
382    Node *n = worklist[0];
383    worklist.map(0,worklist.pop());
384    return n;
385  }
386
387  uint choice  = 0; // Bigger is most important
388  uint latency = 0; // Bigger is scheduled first
389  uint score   = 0; // Bigger is better
390  int idx = -1;     // Index in worklist
391
392  for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
393    // Order in worklist is used to break ties.
394    // See caller for how this is used to delay scheduling
395    // of induction variable increments to after the other
396    // uses of the phi are scheduled.
397    Node *n = worklist[i];      // Get Node on worklist
398
399    int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
400    if( n->is_Proj() ||         // Projections always win
401        n->Opcode()== Op_Con || // So does constant 'Top'
402        iop == Op_CreateEx ||   // Create-exception must start block
403        iop == Op_CheckCastPP
404        ) {
405      worklist.map(i,worklist.pop());
406      return n;
407    }
408
409    // Final call in a block must be adjacent to 'catch'
410    Node *e = end();
411    if( e->is_Catch() && e->in(0)->in(0) == n )
412      continue;
413
414    // Memory op for an implicit null check has to be at the end of the block
415    if( e->is_MachNullCheck() && e->in(1) == n )
416      continue;
417
418    uint n_choice  = 2;
419
420    // See if this instruction is consumed by a branch. If so, then (as the
421    // branch is the last instruction in the basic block) force it to the
422    // end of the basic block
423    if ( must_clone[iop] ) {
424      // See if any use is a branch
425      bool found_machif = false;
426
427      for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
428        Node* use = n->fast_out(j);
429
430        // The use is a conditional branch, make them adjacent
431        if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
432          found_machif = true;
433          break;
434        }
435
436        // More than this instruction pending for successor to be ready,
437        // don't choose this if other opportunities are ready
438        if (ready_cnt[use->_idx] > 1)
439          n_choice = 1;
440      }
441
442      // loop terminated, prefer not to use this instruction
443      if (found_machif)
444        continue;
445    }
446
447    // See if this has a predecessor that is "must_clone", i.e. sets the
448    // condition code. If so, choose this first
449    for (uint j = 0; j < n->req() ; j++) {
450      Node *inn = n->in(j);
451      if (inn) {
452        if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
453          n_choice = 3;
454          break;
455        }
456      }
457    }
458
459    // MachTemps should be scheduled last so they are near their uses
460    if (n->is_MachTemp()) {
461      n_choice = 1;
462    }
463
464    uint n_latency = cfg->_node_latency.at_grow(n->_idx);
465    uint n_score   = n->req();   // Many inputs get high score to break ties
466
467    // Keep best latency found
468    if( choice < n_choice ||
469        ( choice == n_choice &&
470          ( latency < n_latency ||
471            ( latency == n_latency &&
472              ( score < n_score ))))) {
473      choice  = n_choice;
474      latency = n_latency;
475      score   = n_score;
476      idx     = i;               // Also keep index in worklist
477    }
478  } // End of for all ready nodes in worklist
479
480  assert(idx >= 0, "index should be set");
481  Node *n = worklist[(uint)idx];      // Get the winner
482
483  worklist.map((uint)idx, worklist.pop());     // Compress worklist
484  return n;
485}
486
487
488//------------------------------set_next_call----------------------------------
489void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
490  if( next_call.test_set(n->_idx) ) return;
491  for( uint i=0; i<n->len(); i++ ) {
492    Node *m = n->in(i);
493    if( !m ) continue;  // must see all nodes in block that precede call
494    if( bbs[m->_idx] == this )
495      set_next_call( m, next_call, bbs );
496  }
497}
498
499//------------------------------needed_for_next_call---------------------------
500// Set the flag 'next_call' for each Node that is needed for the next call to
501// be scheduled.  This flag lets me bias scheduling so Nodes needed for the
502// next subroutine call get priority - basically it moves things NOT needed
503// for the next call till after the call.  This prevents me from trying to
504// carry lots of stuff live across a call.
505void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
506  // Find the next control-defining Node in this block
507  Node* call = NULL;
508  for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
509    Node* m = this_call->fast_out(i);
510    if( bbs[m->_idx] == this && // Local-block user
511        m != this_call &&       // Not self-start node
512        m->is_Call() )
513      call = m;
514      break;
515  }
516  if (call == NULL)  return;    // No next call (e.g., block end is near)
517  // Set next-call for all inputs to this call
518  set_next_call(call, next_call, bbs);
519}
520
521//------------------------------sched_call-------------------------------------
522uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
523  RegMask regs;
524
525  // Schedule all the users of the call right now.  All the users are
526  // projection Nodes, so they must be scheduled next to the call.
527  // Collect all the defined registers.
528  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
529    Node* n = mcall->fast_out(i);
530    assert( n->Opcode()==Op_MachProj, "" );
531    --ready_cnt[n->_idx];
532    assert( !ready_cnt[n->_idx], "" );
533    // Schedule next to call
534    _nodes.map(node_cnt++, n);
535    // Collect defined registers
536    regs.OR(n->out_RegMask());
537    // Check for scheduling the next control-definer
538    if( n->bottom_type() == Type::CONTROL )
539      // Warm up next pile of heuristic bits
540      needed_for_next_call(n, next_call, bbs);
541
542    // Children of projections are now all ready
543    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
544      Node* m = n->fast_out(j); // Get user
545      if( bbs[m->_idx] != this ) continue;
546      if( m->is_Phi() ) continue;
547      if( !--ready_cnt[m->_idx] )
548        worklist.push(m);
549    }
550
551  }
552
553  // Act as if the call defines the Frame Pointer.
554  // Certainly the FP is alive and well after the call.
555  regs.Insert(matcher.c_frame_pointer());
556
557  // Set all registers killed and not already defined by the call.
558  uint r_cnt = mcall->tf()->range()->cnt();
559  int op = mcall->ideal_Opcode();
560  MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
561  bbs.map(proj->_idx,this);
562  _nodes.insert(node_cnt++, proj);
563
564  // Select the right register save policy.
565  const char * save_policy;
566  switch (op) {
567    case Op_CallRuntime:
568    case Op_CallLeaf:
569    case Op_CallLeafNoFP:
570      // Calling C code so use C calling convention
571      save_policy = matcher._c_reg_save_policy;
572      break;
573
574    case Op_CallStaticJava:
575    case Op_CallDynamicJava:
576      // Calling Java code so use Java calling convention
577      save_policy = matcher._register_save_policy;
578      break;
579
580    default:
581      ShouldNotReachHere();
582  }
583
584  // When using CallRuntime mark SOE registers as killed by the call
585  // so values that could show up in the RegisterMap aren't live in a
586  // callee saved register since the register wouldn't know where to
587  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
588  // have debug info on them.  Strictly speaking this only needs to be
589  // done for oops since idealreg2debugmask takes care of debug info
590  // references but there no way to handle oops differently than other
591  // pointers as far as the kill mask goes.
592  bool exclude_soe = op == Op_CallRuntime;
593
594  // If the call is a MethodHandle invoke, we need to exclude the
595  // register which is used to save the SP value over MH invokes from
596  // the mask.  Otherwise this register could be used for
597  // deoptimization information.
598  if (op == Op_CallStaticJava) {
599    MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
600    if (mcallstaticjava->_method_handle_invoke)
601      proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
602  }
603
604  // Fill in the kill mask for the call
605  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
606    if( !regs.Member(r) ) {     // Not already defined by the call
607      // Save-on-call register?
608      if ((save_policy[r] == 'C') ||
609          (save_policy[r] == 'A') ||
610          ((save_policy[r] == 'E') && exclude_soe)) {
611        proj->_rout.Insert(r);
612      }
613    }
614  }
615
616  return node_cnt;
617}
618
619
620//------------------------------schedule_local---------------------------------
621// Topological sort within a block.  Someday become a real scheduler.
622bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
623  // Already "sorted" are the block start Node (as the first entry), and
624  // the block-ending Node and any trailing control projections.  We leave
625  // these alone.  PhiNodes and ParmNodes are made to follow the block start
626  // Node.  Everything else gets topo-sorted.
627
628#ifndef PRODUCT
629    if (cfg->trace_opto_pipelining()) {
630      tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
631      for (uint i = 0;i < _nodes.size();i++) {
632        tty->print("# ");
633        _nodes[i]->fast_dump();
634      }
635      tty->print_cr("#");
636    }
637#endif
638
639  // RootNode is already sorted
640  if( _nodes.size() == 1 ) return true;
641
642  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
643  uint node_cnt = end_idx();
644  uint phi_cnt = 1;
645  uint i;
646  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
647    Node *n = _nodes[i];
648    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
649        (n->is_Proj()  && n->in(0) == head()) ) {
650      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
651      _nodes.map(i,_nodes[phi_cnt]);
652      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
653    } else {                    // All others
654      // Count block-local inputs to 'n'
655      uint cnt = n->len();      // Input count
656      uint local = 0;
657      for( uint j=0; j<cnt; j++ ) {
658        Node *m = n->in(j);
659        if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
660          local++;              // One more block-local input
661      }
662      ready_cnt[n->_idx] = local; // Count em up
663
664      // A few node types require changing a required edge to a precedence edge
665      // before allocation.
666      if( UseConcMarkSweepGC || UseG1GC ) {
667        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
668          // Note: Required edges with an index greater than oper_input_base
669          // are not supported by the allocator.
670          // Note2: Can only depend on unmatched edge being last,
671          // can not depend on its absolute position.
672          Node *oop_store = n->in(n->req() - 1);
673          n->del_req(n->req() - 1);
674          n->add_prec(oop_store);
675          assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
676        }
677      }
678      if( n->is_Mach() && n->req() > TypeFunc::Parms &&
679          (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
680           n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
681        // MemBarAcquire could be created without Precedent edge.
682        // del_req() replaces the specified edge with the last input edge
683        // and then removes the last edge. If the specified edge > number of
684        // edges the last edge will be moved outside of the input edges array
685        // and the edge will be lost. This is why this code should be
686        // executed only when Precedent (== TypeFunc::Parms) edge is present.
687        Node *x = n->in(TypeFunc::Parms);
688        n->del_req(TypeFunc::Parms);
689        n->add_prec(x);
690      }
691    }
692  }
693  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
694    ready_cnt[_nodes[i2]->_idx] = 0;
695
696  // All the prescheduled guys do not hold back internal nodes
697  uint i3;
698  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
699    Node *n = _nodes[i3];       // Get pre-scheduled
700    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
701      Node* m = n->fast_out(j);
702      if( cfg->_bbs[m->_idx] ==this ) // Local-block user
703        ready_cnt[m->_idx]--;   // Fix ready count
704    }
705  }
706
707  Node_List delay;
708  // Make a worklist
709  Node_List worklist;
710  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
711    Node *m = _nodes[i4];
712    if( !ready_cnt[m->_idx] ) {   // Zero ready count?
713      if (m->is_iteratively_computed()) {
714        // Push induction variable increments last to allow other uses
715        // of the phi to be scheduled first. The select() method breaks
716        // ties in scheduling by worklist order.
717        delay.push(m);
718      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
719        // Force the CreateEx to the top of the list so it's processed
720        // first and ends up at the start of the block.
721        worklist.insert(0, m);
722      } else {
723        worklist.push(m);         // Then on to worklist!
724      }
725    }
726  }
727  while (delay.size()) {
728    Node* d = delay.pop();
729    worklist.push(d);
730  }
731
732  // Warm up the 'next_call' heuristic bits
733  needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
734
735#ifndef PRODUCT
736    if (cfg->trace_opto_pipelining()) {
737      for (uint j=0; j<_nodes.size(); j++) {
738        Node     *n = _nodes[j];
739        int     idx = n->_idx;
740        tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
741        tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
742        tty->print("%4d: %s\n", idx, n->Name());
743      }
744    }
745#endif
746
747  // Pull from worklist and schedule
748  while( worklist.size() ) {    // Worklist is not ready
749
750#ifndef PRODUCT
751    if (cfg->trace_opto_pipelining()) {
752      tty->print("#   ready list:");
753      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
754        Node *n = worklist[i];      // Get Node on worklist
755        tty->print(" %d", n->_idx);
756      }
757      tty->cr();
758    }
759#endif
760
761    // Select and pop a ready guy from worklist
762    Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
763    _nodes.map(phi_cnt++,n);    // Schedule him next
764
765#ifndef PRODUCT
766    if (cfg->trace_opto_pipelining()) {
767      tty->print("#    select %d: %s", n->_idx, n->Name());
768      tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
769      n->dump();
770      if (Verbose) {
771        tty->print("#   ready list:");
772        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
773          Node *n = worklist[i];      // Get Node on worklist
774          tty->print(" %d", n->_idx);
775        }
776        tty->cr();
777      }
778    }
779
780#endif
781    if( n->is_MachCall() ) {
782      MachCallNode *mcall = n->as_MachCall();
783      phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
784      continue;
785    }
786    // Children are now all ready
787    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
788      Node* m = n->fast_out(i5); // Get user
789      if( cfg->_bbs[m->_idx] != this ) continue;
790      if( m->is_Phi() ) continue;
791      if( !--ready_cnt[m->_idx] )
792        worklist.push(m);
793    }
794  }
795
796  if( phi_cnt != end_idx() ) {
797    // did not schedule all.  Retry, Bailout, or Die
798    Compile* C = matcher.C;
799    if (C->subsume_loads() == true && !C->failing()) {
800      // Retry with subsume_loads == false
801      // If this is the first failure, the sentinel string will "stick"
802      // to the Compile object, and the C2Compiler will see it and retry.
803      C->record_failure(C2Compiler::retry_no_subsuming_loads());
804    }
805    // assert( phi_cnt == end_idx(), "did not schedule all" );
806    return false;
807  }
808
809#ifndef PRODUCT
810  if (cfg->trace_opto_pipelining()) {
811    tty->print_cr("#");
812    tty->print_cr("# after schedule_local");
813    for (uint i = 0;i < _nodes.size();i++) {
814      tty->print("# ");
815      _nodes[i]->fast_dump();
816    }
817    tty->cr();
818  }
819#endif
820
821
822  return true;
823}
824
825//--------------------------catch_cleanup_fix_all_inputs-----------------------
826static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
827  for (uint l = 0; l < use->len(); l++) {
828    if (use->in(l) == old_def) {
829      if (l < use->req()) {
830        use->set_req(l, new_def);
831      } else {
832        use->rm_prec(l);
833        use->add_prec(new_def);
834        l--;
835      }
836    }
837  }
838}
839
840//------------------------------catch_cleanup_find_cloned_def------------------
841static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
842  assert( use_blk != def_blk, "Inter-block cleanup only");
843
844  // The use is some block below the Catch.  Find and return the clone of the def
845  // that dominates the use. If there is no clone in a dominating block, then
846  // create a phi for the def in a dominating block.
847
848  // Find which successor block dominates this use.  The successor
849  // blocks must all be single-entry (from the Catch only; I will have
850  // split blocks to make this so), hence they all dominate.
851  while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
852    use_blk = use_blk->_idom;
853
854  // Find the successor
855  Node *fixup = NULL;
856
857  uint j;
858  for( j = 0; j < def_blk->_num_succs; j++ )
859    if( use_blk == def_blk->_succs[j] )
860      break;
861
862  if( j == def_blk->_num_succs ) {
863    // Block at same level in dom-tree is not a successor.  It needs a
864    // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
865    Node_Array inputs = new Node_List(Thread::current()->resource_area());
866    for(uint k = 1; k < use_blk->num_preds(); k++) {
867      inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
868    }
869
870    // Check to see if the use_blk already has an identical phi inserted.
871    // If it exists, it will be at the first position since all uses of a
872    // def are processed together.
873    Node *phi = use_blk->_nodes[1];
874    if( phi->is_Phi() ) {
875      fixup = phi;
876      for (uint k = 1; k < use_blk->num_preds(); k++) {
877        if (phi->in(k) != inputs[k]) {
878          // Not a match
879          fixup = NULL;
880          break;
881        }
882      }
883    }
884
885    // If an existing PhiNode was not found, make a new one.
886    if (fixup == NULL) {
887      Node *new_phi = PhiNode::make(use_blk->head(), def);
888      use_blk->_nodes.insert(1, new_phi);
889      bbs.map(new_phi->_idx, use_blk);
890      for (uint k = 1; k < use_blk->num_preds(); k++) {
891        new_phi->set_req(k, inputs[k]);
892      }
893      fixup = new_phi;
894    }
895
896  } else {
897    // Found the use just below the Catch.  Make it use the clone.
898    fixup = use_blk->_nodes[n_clone_idx];
899  }
900
901  return fixup;
902}
903
904//--------------------------catch_cleanup_intra_block--------------------------
905// Fix all input edges in use that reference "def".  The use is in the same
906// block as the def and both have been cloned in each successor block.
907static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
908
909  // Both the use and def have been cloned. For each successor block,
910  // get the clone of the use, and make its input the clone of the def
911  // found in that block.
912
913  uint use_idx = blk->find_node(use);
914  uint offset_idx = use_idx - beg;
915  for( uint k = 0; k < blk->_num_succs; k++ ) {
916    // Get clone in each successor block
917    Block *sb = blk->_succs[k];
918    Node *clone = sb->_nodes[offset_idx+1];
919    assert( clone->Opcode() == use->Opcode(), "" );
920
921    // Make use-clone reference the def-clone
922    catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
923  }
924}
925
926//------------------------------catch_cleanup_inter_block---------------------
927// Fix all input edges in use that reference "def".  The use is in a different
928// block than the def.
929static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
930  if( !use_blk ) return;        // Can happen if the use is a precedence edge
931
932  Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
933  catch_cleanup_fix_all_inputs(use, def, new_def);
934}
935
936//------------------------------call_catch_cleanup-----------------------------
937// If we inserted any instructions between a Call and his CatchNode,
938// clone the instructions on all paths below the Catch.
939void Block::call_catch_cleanup(Block_Array &bbs) {
940
941  // End of region to clone
942  uint end = end_idx();
943  if( !_nodes[end]->is_Catch() ) return;
944  // Start of region to clone
945  uint beg = end;
946  while( _nodes[beg-1]->Opcode() != Op_MachProj ||
947        !_nodes[beg-1]->in(0)->is_Call() ) {
948    beg--;
949    assert(beg > 0,"Catch cleanup walking beyond block boundary");
950  }
951  // Range of inserted instructions is [beg, end)
952  if( beg == end ) return;
953
954  // Clone along all Catch output paths.  Clone area between the 'beg' and
955  // 'end' indices.
956  for( uint i = 0; i < _num_succs; i++ ) {
957    Block *sb = _succs[i];
958    // Clone the entire area; ignoring the edge fixup for now.
959    for( uint j = end; j > beg; j-- ) {
960      Node *clone = _nodes[j-1]->clone();
961      sb->_nodes.insert( 1, clone );
962      bbs.map(clone->_idx,sb);
963    }
964  }
965
966
967  // Fixup edges.  Check the def-use info per cloned Node
968  for(uint i2 = beg; i2 < end; i2++ ) {
969    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
970    Node *n = _nodes[i2];        // Node that got cloned
971    // Need DU safe iterator because of edge manipulation in calls.
972    Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
973    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
974      out->push(n->fast_out(j1));
975    }
976    uint max = out->size();
977    for (uint j = 0; j < max; j++) {// For all users
978      Node *use = out->pop();
979      Block *buse = bbs[use->_idx];
980      if( use->is_Phi() ) {
981        for( uint k = 1; k < use->req(); k++ )
982          if( use->in(k) == n ) {
983            Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
984            use->set_req(k, fixup);
985          }
986      } else {
987        if (this == buse) {
988          catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
989        } else {
990          catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
991        }
992      }
993    } // End for all users
994
995  } // End of for all Nodes in cloned area
996
997  // Remove the now-dead cloned ops
998  for(uint i3 = beg; i3 < end; i3++ ) {
999    _nodes[beg]->disconnect_inputs(NULL);
1000    _nodes.remove(beg);
1001  }
1002
1003  // If the successor blocks have a CreateEx node, move it back to the top
1004  for(uint i4 = 0; i4 < _num_succs; i4++ ) {
1005    Block *sb = _succs[i4];
1006    uint new_cnt = end - beg;
1007    // Remove any newly created, but dead, nodes.
1008    for( uint j = new_cnt; j > 0; j-- ) {
1009      Node *n = sb->_nodes[j];
1010      if (n->outcnt() == 0 &&
1011          (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1012        n->disconnect_inputs(NULL);
1013        sb->_nodes.remove(j);
1014        new_cnt--;
1015      }
1016    }
1017    // If any newly created nodes remain, move the CreateEx node to the top
1018    if (new_cnt > 0) {
1019      Node *cex = sb->_nodes[1+new_cnt];
1020      if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1021        sb->_nodes.remove(1+new_cnt);
1022        sb->_nodes.insert(1,cex);
1023      }
1024    }
1025  }
1026}
1027