lcm.cpp revision 113:ba764ed4b6f2
1/*
2 * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Optimization - Graph Style
26
27#include "incls/_precompiled.incl"
28#include "incls/_lcm.cpp.incl"
29
30//------------------------------implicit_null_check----------------------------
31// Detect implicit-null-check opportunities.  Basically, find NULL checks
32// with suitable memory ops nearby.  Use the memory op to do the NULL check.
33// I can generate a memory op if there is not one nearby.
34// The proj is the control projection for the not-null case.
35// The val is the pointer being checked for nullness.
36void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
37  // Assume if null check need for 0 offset then always needed
38  // Intel solaris doesn't support any null checks yet and no
39  // mechanism exists (yet) to set the switches at an os_cpu level
40  if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
41
42  // Make sure the ptr-is-null path appears to be uncommon!
43  float f = end()->as_MachIf()->_prob;
44  if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
45  if( f > PROB_UNLIKELY_MAG(4) ) return;
46
47  uint bidx = 0;                // Capture index of value into memop
48  bool was_store;               // Memory op is a store op
49
50  // Get the successor block for if the test ptr is non-null
51  Block* not_null_block;  // this one goes with the proj
52  Block* null_block;
53  if (_nodes[_nodes.size()-1] == proj) {
54    null_block     = _succs[0];
55    not_null_block = _succs[1];
56  } else {
57    assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
58    not_null_block = _succs[0];
59    null_block     = _succs[1];
60  }
61
62  // Search the exception block for an uncommon trap.
63  // (See Parse::do_if and Parse::do_ifnull for the reason
64  // we need an uncommon trap.  Briefly, we need a way to
65  // detect failure of this optimization, as in 6366351.)
66  {
67    bool found_trap = false;
68    for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
69      Node* nn = null_block->_nodes[i1];
70      if (nn->is_MachCall() &&
71          nn->as_MachCall()->entry_point() ==
72          SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
73        const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
74        if (trtype->isa_int() && trtype->is_int()->is_con()) {
75          jint tr_con = trtype->is_int()->get_con();
76          Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
77          Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
78          assert((int)reason < (int)BitsPerInt, "recode bit map");
79          if (is_set_nth_bit(allowed_reasons, (int) reason)
80              && action != Deoptimization::Action_none) {
81            // This uncommon trap is sure to recompile, eventually.
82            // When that happens, C->too_many_traps will prevent
83            // this transformation from happening again.
84            found_trap = true;
85          }
86        }
87        break;
88      }
89    }
90    if (!found_trap) {
91      // We did not find an uncommon trap.
92      return;
93    }
94  }
95
96  // Search the successor block for a load or store who's base value is also
97  // the tested value.  There may be several.
98  Node_List *out = new Node_List(Thread::current()->resource_area());
99  MachNode *best = NULL;        // Best found so far
100  for (DUIterator i = val->outs(); val->has_out(i); i++) {
101    Node *m = val->out(i);
102    if( !m->is_Mach() ) continue;
103    MachNode *mach = m->as_Mach();
104    was_store = false;
105    switch( mach->ideal_Opcode() ) {
106    case Op_LoadB:
107    case Op_LoadC:
108    case Op_LoadD:
109    case Op_LoadF:
110    case Op_LoadI:
111    case Op_LoadL:
112    case Op_LoadP:
113    case Op_LoadN:
114    case Op_LoadS:
115    case Op_LoadKlass:
116    case Op_LoadRange:
117    case Op_LoadD_unaligned:
118    case Op_LoadL_unaligned:
119      break;
120    case Op_StoreB:
121    case Op_StoreC:
122    case Op_StoreCM:
123    case Op_StoreD:
124    case Op_StoreF:
125    case Op_StoreI:
126    case Op_StoreL:
127    case Op_StoreP:
128    case Op_StoreN:
129      was_store = true;         // Memory op is a store op
130      // Stores will have their address in slot 2 (memory in slot 1).
131      // If the value being nul-checked is in another slot, it means we
132      // are storing the checked value, which does NOT check the value!
133      if( mach->in(2) != val ) continue;
134      break;                    // Found a memory op?
135    case Op_StrComp:
136      // Not a legit memory op for implicit null check regardless of
137      // embedded loads
138      continue;
139    default:                    // Also check for embedded loads
140      if( !mach->needs_anti_dependence_check() )
141        continue;               // Not an memory op; skip it
142      break;
143    }
144    // check if the offset is not too high for implicit exception
145    {
146      intptr_t offset = 0;
147      const TypePtr *adr_type = NULL;  // Do not need this return value here
148      const Node* base = mach->get_base_and_disp(offset, adr_type);
149      if (base == NULL || base == NodeSentinel) {
150        // cannot reason about it; is probably not implicit null exception
151      } else {
152        const TypePtr* tptr = base->bottom_type()->is_ptr();
153        // Give up if offset is not a compile-time constant
154        if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
155          continue;
156        offset += tptr->_offset; // correct if base is offseted
157        if( MacroAssembler::needs_explicit_null_check(offset) )
158          continue;             // Give up is reference is beyond 4K page size
159      }
160    }
161
162    // Check ctrl input to see if the null-check dominates the memory op
163    Block *cb = cfg->_bbs[mach->_idx];
164    cb = cb->_idom;             // Always hoist at least 1 block
165    if( !was_store ) {          // Stores can be hoisted only one block
166      while( cb->_dom_depth > (_dom_depth + 1))
167        cb = cb->_idom;         // Hoist loads as far as we want
168      // The non-null-block should dominate the memory op, too. Live
169      // range spilling will insert a spill in the non-null-block if it is
170      // needs to spill the memory op for an implicit null check.
171      if (cb->_dom_depth == (_dom_depth + 1)) {
172        if (cb != not_null_block) continue;
173        cb = cb->_idom;
174      }
175    }
176    if( cb != this ) continue;
177
178    // Found a memory user; see if it can be hoisted to check-block
179    uint vidx = 0;              // Capture index of value into memop
180    uint j;
181    for( j = mach->req()-1; j > 0; j-- ) {
182      if( mach->in(j) == val ) vidx = j;
183      // Block of memory-op input
184      Block *inb = cfg->_bbs[mach->in(j)->_idx];
185      Block *b = this;          // Start from nul check
186      while( b != inb && b->_dom_depth > inb->_dom_depth )
187        b = b->_idom;           // search upwards for input
188      // See if input dominates null check
189      if( b != inb )
190        break;
191    }
192    if( j > 0 )
193      continue;
194    Block *mb = cfg->_bbs[mach->_idx];
195    // Hoisting stores requires more checks for the anti-dependence case.
196    // Give up hoisting if we have to move the store past any load.
197    if( was_store ) {
198      Block *b = mb;            // Start searching here for a local load
199      // mach use (faulting) trying to hoist
200      // n might be blocker to hoisting
201      while( b != this ) {
202        uint k;
203        for( k = 1; k < b->_nodes.size(); k++ ) {
204          Node *n = b->_nodes[k];
205          if( n->needs_anti_dependence_check() &&
206              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
207            break;              // Found anti-dependent load
208        }
209        if( k < b->_nodes.size() )
210          break;                // Found anti-dependent load
211        // Make sure control does not do a merge (would have to check allpaths)
212        if( b->num_preds() != 2 ) break;
213        b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
214      }
215      if( b != this ) continue;
216    }
217
218    // Make sure this memory op is not already being used for a NullCheck
219    Node *e = mb->end();
220    if( e->is_MachNullCheck() && e->in(1) == mach )
221      continue;                 // Already being used as a NULL check
222
223    // Found a candidate!  Pick one with least dom depth - the highest
224    // in the dom tree should be closest to the null check.
225    if( !best ||
226        cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
227      best = mach;
228      bidx = vidx;
229
230    }
231  }
232  // No candidate!
233  if( !best ) return;
234
235  // ---- Found an implicit null check
236  extern int implicit_null_checks;
237  implicit_null_checks++;
238
239  // Hoist the memory candidate up to the end of the test block.
240  Block *old_block = cfg->_bbs[best->_idx];
241  old_block->find_remove(best);
242  add_inst(best);
243  cfg->_bbs.map(best->_idx,this);
244
245  // Move the control dependence
246  if (best->in(0) && best->in(0) == old_block->_nodes[0])
247    best->set_req(0, _nodes[0]);
248
249  // Check for flag-killing projections that also need to be hoisted
250  // Should be DU safe because no edge updates.
251  for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
252    Node* n = best->fast_out(j);
253    if( n->Opcode() == Op_MachProj ) {
254      cfg->_bbs[n->_idx]->find_remove(n);
255      add_inst(n);
256      cfg->_bbs.map(n->_idx,this);
257    }
258  }
259
260  Compile *C = cfg->C;
261  // proj==Op_True --> ne test; proj==Op_False --> eq test.
262  // One of two graph shapes got matched:
263  //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
264  //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
265  // NULL checks are always branch-if-eq.  If we see a IfTrue projection
266  // then we are replacing a 'ne' test with a 'eq' NULL check test.
267  // We need to flip the projections to keep the same semantics.
268  if( proj->Opcode() == Op_IfTrue ) {
269    // Swap order of projections in basic block to swap branch targets
270    Node *tmp1 = _nodes[end_idx()+1];
271    Node *tmp2 = _nodes[end_idx()+2];
272    _nodes.map(end_idx()+1, tmp2);
273    _nodes.map(end_idx()+2, tmp1);
274    Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
275    tmp1->replace_by(tmp);
276    tmp2->replace_by(tmp1);
277    tmp->replace_by(tmp2);
278    tmp->destruct();
279  }
280
281  // Remove the existing null check; use a new implicit null check instead.
282  // Since schedule-local needs precise def-use info, we need to correct
283  // it as well.
284  Node *old_tst = proj->in(0);
285  MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
286  _nodes.map(end_idx(),nul_chk);
287  cfg->_bbs.map(nul_chk->_idx,this);
288  // Redirect users of old_test to nul_chk
289  for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
290    old_tst->last_out(i2)->set_req(0, nul_chk);
291  // Clean-up any dead code
292  for (uint i3 = 0; i3 < old_tst->req(); i3++)
293    old_tst->set_req(i3, NULL);
294
295  cfg->latency_from_uses(nul_chk);
296  cfg->latency_from_uses(best);
297}
298
299
300//------------------------------select-----------------------------------------
301// Select a nice fellow from the worklist to schedule next. If there is only
302// one choice, then use it. Projections take top priority for correctness
303// reasons - if I see a projection, then it is next.  There are a number of
304// other special cases, for instructions that consume condition codes, et al.
305// These are chosen immediately. Some instructions are required to immediately
306// precede the last instruction in the block, and these are taken last. Of the
307// remaining cases (most), choose the instruction with the greatest latency
308// (that is, the most number of pseudo-cycles required to the end of the
309// routine). If there is a tie, choose the instruction with the most inputs.
310Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
311
312  // If only a single entry on the stack, use it
313  uint cnt = worklist.size();
314  if (cnt == 1) {
315    Node *n = worklist[0];
316    worklist.map(0,worklist.pop());
317    return n;
318  }
319
320  uint choice  = 0; // Bigger is most important
321  uint latency = 0; // Bigger is scheduled first
322  uint score   = 0; // Bigger is better
323  uint idx;         // Index in worklist
324
325  for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
326    // Order in worklist is used to break ties.
327    // See caller for how this is used to delay scheduling
328    // of induction variable increments to after the other
329    // uses of the phi are scheduled.
330    Node *n = worklist[i];      // Get Node on worklist
331
332    int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
333    if( n->is_Proj() ||         // Projections always win
334        n->Opcode()== Op_Con || // So does constant 'Top'
335        iop == Op_CreateEx ||   // Create-exception must start block
336        iop == Op_CheckCastPP
337        ) {
338      worklist.map(i,worklist.pop());
339      return n;
340    }
341
342    // Final call in a block must be adjacent to 'catch'
343    Node *e = end();
344    if( e->is_Catch() && e->in(0)->in(0) == n )
345      continue;
346
347    // Memory op for an implicit null check has to be at the end of the block
348    if( e->is_MachNullCheck() && e->in(1) == n )
349      continue;
350
351    uint n_choice  = 2;
352
353    // See if this instruction is consumed by a branch. If so, then (as the
354    // branch is the last instruction in the basic block) force it to the
355    // end of the basic block
356    if ( must_clone[iop] ) {
357      // See if any use is a branch
358      bool found_machif = false;
359
360      for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
361        Node* use = n->fast_out(j);
362
363        // The use is a conditional branch, make them adjacent
364        if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
365          found_machif = true;
366          break;
367        }
368
369        // More than this instruction pending for successor to be ready,
370        // don't choose this if other opportunities are ready
371        if (ready_cnt[use->_idx] > 1)
372          n_choice = 1;
373      }
374
375      // loop terminated, prefer not to use this instruction
376      if (found_machif)
377        continue;
378    }
379
380    // See if this has a predecessor that is "must_clone", i.e. sets the
381    // condition code. If so, choose this first
382    for (uint j = 0; j < n->req() ; j++) {
383      Node *inn = n->in(j);
384      if (inn) {
385        if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
386          n_choice = 3;
387          break;
388        }
389      }
390    }
391
392    // MachTemps should be scheduled last so they are near their uses
393    if (n->is_MachTemp()) {
394      n_choice = 1;
395    }
396
397    uint n_latency = cfg->_node_latency.at_grow(n->_idx);
398    uint n_score   = n->req();   // Many inputs get high score to break ties
399
400    // Keep best latency found
401    if( choice < n_choice ||
402        ( choice == n_choice &&
403          ( latency < n_latency ||
404            ( latency == n_latency &&
405              ( score < n_score ))))) {
406      choice  = n_choice;
407      latency = n_latency;
408      score   = n_score;
409      idx     = i;               // Also keep index in worklist
410    }
411  } // End of for all ready nodes in worklist
412
413  Node *n = worklist[idx];      // Get the winner
414
415  worklist.map(idx,worklist.pop());     // Compress worklist
416  return n;
417}
418
419
420//------------------------------set_next_call----------------------------------
421void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
422  if( next_call.test_set(n->_idx) ) return;
423  for( uint i=0; i<n->len(); i++ ) {
424    Node *m = n->in(i);
425    if( !m ) continue;  // must see all nodes in block that precede call
426    if( bbs[m->_idx] == this )
427      set_next_call( m, next_call, bbs );
428  }
429}
430
431//------------------------------needed_for_next_call---------------------------
432// Set the flag 'next_call' for each Node that is needed for the next call to
433// be scheduled.  This flag lets me bias scheduling so Nodes needed for the
434// next subroutine call get priority - basically it moves things NOT needed
435// for the next call till after the call.  This prevents me from trying to
436// carry lots of stuff live across a call.
437void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
438  // Find the next control-defining Node in this block
439  Node* call = NULL;
440  for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
441    Node* m = this_call->fast_out(i);
442    if( bbs[m->_idx] == this && // Local-block user
443        m != this_call &&       // Not self-start node
444        m->is_Call() )
445      call = m;
446      break;
447  }
448  if (call == NULL)  return;    // No next call (e.g., block end is near)
449  // Set next-call for all inputs to this call
450  set_next_call(call, next_call, bbs);
451}
452
453//------------------------------sched_call-------------------------------------
454uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
455  RegMask regs;
456
457  // Schedule all the users of the call right now.  All the users are
458  // projection Nodes, so they must be scheduled next to the call.
459  // Collect all the defined registers.
460  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
461    Node* n = mcall->fast_out(i);
462    assert( n->Opcode()==Op_MachProj, "" );
463    --ready_cnt[n->_idx];
464    assert( !ready_cnt[n->_idx], "" );
465    // Schedule next to call
466    _nodes.map(node_cnt++, n);
467    // Collect defined registers
468    regs.OR(n->out_RegMask());
469    // Check for scheduling the next control-definer
470    if( n->bottom_type() == Type::CONTROL )
471      // Warm up next pile of heuristic bits
472      needed_for_next_call(n, next_call, bbs);
473
474    // Children of projections are now all ready
475    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
476      Node* m = n->fast_out(j); // Get user
477      if( bbs[m->_idx] != this ) continue;
478      if( m->is_Phi() ) continue;
479      if( !--ready_cnt[m->_idx] )
480        worklist.push(m);
481    }
482
483  }
484
485  // Act as if the call defines the Frame Pointer.
486  // Certainly the FP is alive and well after the call.
487  regs.Insert(matcher.c_frame_pointer());
488
489  // Set all registers killed and not already defined by the call.
490  uint r_cnt = mcall->tf()->range()->cnt();
491  int op = mcall->ideal_Opcode();
492  MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
493  bbs.map(proj->_idx,this);
494  _nodes.insert(node_cnt++, proj);
495
496  // Select the right register save policy.
497  const char * save_policy;
498  switch (op) {
499    case Op_CallRuntime:
500    case Op_CallLeaf:
501    case Op_CallLeafNoFP:
502      // Calling C code so use C calling convention
503      save_policy = matcher._c_reg_save_policy;
504      break;
505
506    case Op_CallStaticJava:
507    case Op_CallDynamicJava:
508      // Calling Java code so use Java calling convention
509      save_policy = matcher._register_save_policy;
510      break;
511
512    default:
513      ShouldNotReachHere();
514  }
515
516  // When using CallRuntime mark SOE registers as killed by the call
517  // so values that could show up in the RegisterMap aren't live in a
518  // callee saved register since the register wouldn't know where to
519  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
520  // have debug info on them.  Strictly speaking this only needs to be
521  // done for oops since idealreg2debugmask takes care of debug info
522  // references but there no way to handle oops differently than other
523  // pointers as far as the kill mask goes.
524  bool exclude_soe = op == Op_CallRuntime;
525
526  // Fill in the kill mask for the call
527  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
528    if( !regs.Member(r) ) {     // Not already defined by the call
529      // Save-on-call register?
530      if ((save_policy[r] == 'C') ||
531          (save_policy[r] == 'A') ||
532          ((save_policy[r] == 'E') && exclude_soe)) {
533        proj->_rout.Insert(r);
534      }
535    }
536  }
537
538  return node_cnt;
539}
540
541
542//------------------------------schedule_local---------------------------------
543// Topological sort within a block.  Someday become a real scheduler.
544bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
545  // Already "sorted" are the block start Node (as the first entry), and
546  // the block-ending Node and any trailing control projections.  We leave
547  // these alone.  PhiNodes and ParmNodes are made to follow the block start
548  // Node.  Everything else gets topo-sorted.
549
550#ifndef PRODUCT
551    if (cfg->trace_opto_pipelining()) {
552      tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
553      for (uint i = 0;i < _nodes.size();i++) {
554        tty->print("# ");
555        _nodes[i]->fast_dump();
556      }
557      tty->print_cr("#");
558    }
559#endif
560
561  // RootNode is already sorted
562  if( _nodes.size() == 1 ) return true;
563
564  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
565  uint node_cnt = end_idx();
566  uint phi_cnt = 1;
567  uint i;
568  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
569    Node *n = _nodes[i];
570    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
571        (n->is_Proj()  && n->in(0) == head()) ) {
572      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
573      _nodes.map(i,_nodes[phi_cnt]);
574      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
575    } else {                    // All others
576      // Count block-local inputs to 'n'
577      uint cnt = n->len();      // Input count
578      uint local = 0;
579      for( uint j=0; j<cnt; j++ ) {
580        Node *m = n->in(j);
581        if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
582          local++;              // One more block-local input
583      }
584      ready_cnt[n->_idx] = local; // Count em up
585
586      // A few node types require changing a required edge to a precedence edge
587      // before allocation.
588      if( UseConcMarkSweepGC ) {
589        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
590          // Note: Required edges with an index greater than oper_input_base
591          // are not supported by the allocator.
592          // Note2: Can only depend on unmatched edge being last,
593          // can not depend on its absolute position.
594          Node *oop_store = n->in(n->req() - 1);
595          n->del_req(n->req() - 1);
596          n->add_prec(oop_store);
597          assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
598        }
599      }
600      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ) {
601        Node *x = n->in(TypeFunc::Parms);
602        n->del_req(TypeFunc::Parms);
603        n->add_prec(x);
604      }
605    }
606  }
607  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
608    ready_cnt[_nodes[i2]->_idx] = 0;
609
610  // All the prescheduled guys do not hold back internal nodes
611  uint i3;
612  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
613    Node *n = _nodes[i3];       // Get pre-scheduled
614    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
615      Node* m = n->fast_out(j);
616      if( cfg->_bbs[m->_idx] ==this ) // Local-block user
617        ready_cnt[m->_idx]--;   // Fix ready count
618    }
619  }
620
621  Node_List delay;
622  // Make a worklist
623  Node_List worklist;
624  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
625    Node *m = _nodes[i4];
626    if( !ready_cnt[m->_idx] ) {   // Zero ready count?
627      if (m->is_iteratively_computed()) {
628        // Push induction variable increments last to allow other uses
629        // of the phi to be scheduled first. The select() method breaks
630        // ties in scheduling by worklist order.
631        delay.push(m);
632      } else {
633        worklist.push(m);         // Then on to worklist!
634      }
635    }
636  }
637  while (delay.size()) {
638    Node* d = delay.pop();
639    worklist.push(d);
640  }
641
642  // Warm up the 'next_call' heuristic bits
643  needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
644
645#ifndef PRODUCT
646    if (cfg->trace_opto_pipelining()) {
647      for (uint j=0; j<_nodes.size(); j++) {
648        Node     *n = _nodes[j];
649        int     idx = n->_idx;
650        tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
651        tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
652        tty->print("%4d: %s\n", idx, n->Name());
653      }
654    }
655#endif
656
657  // Pull from worklist and schedule
658  while( worklist.size() ) {    // Worklist is not ready
659
660#ifndef PRODUCT
661    if (cfg->trace_opto_pipelining()) {
662      tty->print("#   ready list:");
663      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
664        Node *n = worklist[i];      // Get Node on worklist
665        tty->print(" %d", n->_idx);
666      }
667      tty->cr();
668    }
669#endif
670
671    // Select and pop a ready guy from worklist
672    Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
673    _nodes.map(phi_cnt++,n);    // Schedule him next
674
675#ifndef PRODUCT
676    if (cfg->trace_opto_pipelining()) {
677      tty->print("#    select %d: %s", n->_idx, n->Name());
678      tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
679      n->dump();
680      if (Verbose) {
681        tty->print("#   ready list:");
682        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
683          Node *n = worklist[i];      // Get Node on worklist
684          tty->print(" %d", n->_idx);
685        }
686        tty->cr();
687      }
688    }
689
690#endif
691    if( n->is_MachCall() ) {
692      MachCallNode *mcall = n->as_MachCall();
693      phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
694      continue;
695    }
696    // Children are now all ready
697    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
698      Node* m = n->fast_out(i5); // Get user
699      if( cfg->_bbs[m->_idx] != this ) continue;
700      if( m->is_Phi() ) continue;
701      if( !--ready_cnt[m->_idx] )
702        worklist.push(m);
703    }
704  }
705
706  if( phi_cnt != end_idx() ) {
707    // did not schedule all.  Retry, Bailout, or Die
708    Compile* C = matcher.C;
709    if (C->subsume_loads() == true && !C->failing()) {
710      // Retry with subsume_loads == false
711      // If this is the first failure, the sentinel string will "stick"
712      // to the Compile object, and the C2Compiler will see it and retry.
713      C->record_failure(C2Compiler::retry_no_subsuming_loads());
714    }
715    // assert( phi_cnt == end_idx(), "did not schedule all" );
716    return false;
717  }
718
719#ifndef PRODUCT
720  if (cfg->trace_opto_pipelining()) {
721    tty->print_cr("#");
722    tty->print_cr("# after schedule_local");
723    for (uint i = 0;i < _nodes.size();i++) {
724      tty->print("# ");
725      _nodes[i]->fast_dump();
726    }
727    tty->cr();
728  }
729#endif
730
731
732  return true;
733}
734
735//--------------------------catch_cleanup_fix_all_inputs-----------------------
736static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
737  for (uint l = 0; l < use->len(); l++) {
738    if (use->in(l) == old_def) {
739      if (l < use->req()) {
740        use->set_req(l, new_def);
741      } else {
742        use->rm_prec(l);
743        use->add_prec(new_def);
744        l--;
745      }
746    }
747  }
748}
749
750//------------------------------catch_cleanup_find_cloned_def------------------
751static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
752  assert( use_blk != def_blk, "Inter-block cleanup only");
753
754  // The use is some block below the Catch.  Find and return the clone of the def
755  // that dominates the use. If there is no clone in a dominating block, then
756  // create a phi for the def in a dominating block.
757
758  // Find which successor block dominates this use.  The successor
759  // blocks must all be single-entry (from the Catch only; I will have
760  // split blocks to make this so), hence they all dominate.
761  while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
762    use_blk = use_blk->_idom;
763
764  // Find the successor
765  Node *fixup = NULL;
766
767  uint j;
768  for( j = 0; j < def_blk->_num_succs; j++ )
769    if( use_blk == def_blk->_succs[j] )
770      break;
771
772  if( j == def_blk->_num_succs ) {
773    // Block at same level in dom-tree is not a successor.  It needs a
774    // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
775    Node_Array inputs = new Node_List(Thread::current()->resource_area());
776    for(uint k = 1; k < use_blk->num_preds(); k++) {
777      inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
778    }
779
780    // Check to see if the use_blk already has an identical phi inserted.
781    // If it exists, it will be at the first position since all uses of a
782    // def are processed together.
783    Node *phi = use_blk->_nodes[1];
784    if( phi->is_Phi() ) {
785      fixup = phi;
786      for (uint k = 1; k < use_blk->num_preds(); k++) {
787        if (phi->in(k) != inputs[k]) {
788          // Not a match
789          fixup = NULL;
790          break;
791        }
792      }
793    }
794
795    // If an existing PhiNode was not found, make a new one.
796    if (fixup == NULL) {
797      Node *new_phi = PhiNode::make(use_blk->head(), def);
798      use_blk->_nodes.insert(1, new_phi);
799      bbs.map(new_phi->_idx, use_blk);
800      for (uint k = 1; k < use_blk->num_preds(); k++) {
801        new_phi->set_req(k, inputs[k]);
802      }
803      fixup = new_phi;
804    }
805
806  } else {
807    // Found the use just below the Catch.  Make it use the clone.
808    fixup = use_blk->_nodes[n_clone_idx];
809  }
810
811  return fixup;
812}
813
814//--------------------------catch_cleanup_intra_block--------------------------
815// Fix all input edges in use that reference "def".  The use is in the same
816// block as the def and both have been cloned in each successor block.
817static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
818
819  // Both the use and def have been cloned. For each successor block,
820  // get the clone of the use, and make its input the clone of the def
821  // found in that block.
822
823  uint use_idx = blk->find_node(use);
824  uint offset_idx = use_idx - beg;
825  for( uint k = 0; k < blk->_num_succs; k++ ) {
826    // Get clone in each successor block
827    Block *sb = blk->_succs[k];
828    Node *clone = sb->_nodes[offset_idx+1];
829    assert( clone->Opcode() == use->Opcode(), "" );
830
831    // Make use-clone reference the def-clone
832    catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
833  }
834}
835
836//------------------------------catch_cleanup_inter_block---------------------
837// Fix all input edges in use that reference "def".  The use is in a different
838// block than the def.
839static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
840  if( !use_blk ) return;        // Can happen if the use is a precedence edge
841
842  Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
843  catch_cleanup_fix_all_inputs(use, def, new_def);
844}
845
846//------------------------------call_catch_cleanup-----------------------------
847// If we inserted any instructions between a Call and his CatchNode,
848// clone the instructions on all paths below the Catch.
849void Block::call_catch_cleanup(Block_Array &bbs) {
850
851  // End of region to clone
852  uint end = end_idx();
853  if( !_nodes[end]->is_Catch() ) return;
854  // Start of region to clone
855  uint beg = end;
856  while( _nodes[beg-1]->Opcode() != Op_MachProj ||
857        !_nodes[beg-1]->in(0)->is_Call() ) {
858    beg--;
859    assert(beg > 0,"Catch cleanup walking beyond block boundary");
860  }
861  // Range of inserted instructions is [beg, end)
862  if( beg == end ) return;
863
864  // Clone along all Catch output paths.  Clone area between the 'beg' and
865  // 'end' indices.
866  for( uint i = 0; i < _num_succs; i++ ) {
867    Block *sb = _succs[i];
868    // Clone the entire area; ignoring the edge fixup for now.
869    for( uint j = end; j > beg; j-- ) {
870      Node *clone = _nodes[j-1]->clone();
871      sb->_nodes.insert( 1, clone );
872      bbs.map(clone->_idx,sb);
873    }
874  }
875
876
877  // Fixup edges.  Check the def-use info per cloned Node
878  for(uint i2 = beg; i2 < end; i2++ ) {
879    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
880    Node *n = _nodes[i2];        // Node that got cloned
881    // Need DU safe iterator because of edge manipulation in calls.
882    Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
883    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
884      out->push(n->fast_out(j1));
885    }
886    uint max = out->size();
887    for (uint j = 0; j < max; j++) {// For all users
888      Node *use = out->pop();
889      Block *buse = bbs[use->_idx];
890      if( use->is_Phi() ) {
891        for( uint k = 1; k < use->req(); k++ )
892          if( use->in(k) == n ) {
893            Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
894            use->set_req(k, fixup);
895          }
896      } else {
897        if (this == buse) {
898          catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
899        } else {
900          catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
901        }
902      }
903    } // End for all users
904
905  } // End of for all Nodes in cloned area
906
907  // Remove the now-dead cloned ops
908  for(uint i3 = beg; i3 < end; i3++ ) {
909    _nodes[beg]->disconnect_inputs(NULL);
910    _nodes.remove(beg);
911  }
912
913  // If the successor blocks have a CreateEx node, move it back to the top
914  for(uint i4 = 0; i4 < _num_succs; i4++ ) {
915    Block *sb = _succs[i4];
916    uint new_cnt = end - beg;
917    // Remove any newly created, but dead, nodes.
918    for( uint j = new_cnt; j > 0; j-- ) {
919      Node *n = sb->_nodes[j];
920      if (n->outcnt() == 0 &&
921          (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
922        n->disconnect_inputs(NULL);
923        sb->_nodes.remove(j);
924        new_cnt--;
925      }
926    }
927    // If any newly created nodes remain, move the CreateEx node to the top
928    if (new_cnt > 0) {
929      Node *cex = sb->_nodes[1+new_cnt];
930      if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
931        sb->_nodes.remove(1+new_cnt);
932        sb->_nodes.insert(1,cex);
933      }
934    }
935  }
936}
937