graphKit.cpp revision 7890:f83851ae258e
1193323Sed/*
2193323Sed * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3193323Sed * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4193323Sed *
5193323Sed * This code is free software; you can redistribute it and/or modify it
6193323Sed * under the terms of the GNU General Public License version 2 only, as
7193323Sed * published by the Free Software Foundation.
8193323Sed *
9193323Sed * This code is distributed in the hope that it will be useful, but WITHOUT
10193323Sed * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11193323Sed * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12193323Sed * version 2 for more details (a copy is included in the LICENSE file that
13193323Sed * accompanied this code).
14193323Sed *
15193323Sed * You should have received a copy of the GNU General Public License version
16193323Sed * 2 along with this work; if not, write to the Free Software Foundation,
17193323Sed * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18193323Sed *
19193323Sed * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20239462Sdim * or visit www.oracle.com if you need additional information or have any
21218893Sdim * questions.
22223017Sdim *
23223017Sdim */
24239462Sdim
25239462Sdim#include "precompiled.hpp"
26239462Sdim#include "compiler/compileLog.hpp"
27193323Sed#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
28193323Sed#include "gc_implementation/g1/heapRegion.hpp"
29193323Sed#include "gc_interface/collectedHeap.hpp"
30193323Sed#include "memory/barrierSet.hpp"
31193323Sed#include "memory/cardTableModRefBS.hpp"
32193323Sed#include "opto/addnode.hpp"
33239462Sdim#include "opto/castnode.hpp"
34193323Sed#include "opto/convertnode.hpp"
35193323Sed#include "opto/graphKit.hpp"
36193323Sed#include "opto/idealKit.hpp"
37208599Srdivacky#include "opto/intrinsicnode.hpp"
38193323Sed#include "opto/locknode.hpp"
39193323Sed#include "opto/machnode.hpp"
40239462Sdim#include "opto/opaquenode.hpp"
41239462Sdim#include "opto/parse.hpp"
42221345Sdim#include "opto/rootnode.hpp"
43221345Sdim#include "opto/runtime.hpp"
44239462Sdim#include "runtime/deoptimization.hpp"
45221345Sdim#include "runtime/sharedRuntime.hpp"
46221345Sdim
47221345Sdim//----------------------------GraphKit-----------------------------------------
48221345Sdim// Main utility constructor.
49263508SdimGraphKit::GraphKit(JVMState* jvms)
50221345Sdim  : Phase(Phase::Parser),
51221345Sdim    _env(C->env()),
52221345Sdim    _gvn(*C->initial_gvn())
53221345Sdim{
54221345Sdim  _exceptions = jvms->map()->next_exception();
55221345Sdim  if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
56221345Sdim  set_jvms(jvms);
57221345Sdim}
58263508Sdim
59221345Sdim// Private constructor for parser.
60221345SdimGraphKit::GraphKit()
61221345Sdim  : Phase(Phase::Parser),
62221345Sdim    _env(C->env()),
63263508Sdim    _gvn(*C->initial_gvn())
64221345Sdim{
65221345Sdim  _exceptions = NULL;
66221345Sdim  set_map(NULL);
67263508Sdim  debug_only(_sp = -99);
68221345Sdim  debug_only(set_bci(-99));
69239462Sdim}
70193323Sed
71193323Sed
72193323Sed
73193323Sed//---------------------------clean_stack---------------------------------------
74239462Sdim// Clear away rubbish from the stack area of the JVM state.
75193323Sed// This destroys any arguments that may be waiting on the stack.
76221345Sdimvoid GraphKit::clean_stack(int from_sp) {
77221345Sdim  SafePointNode* map      = this->map();
78221345Sdim  JVMState*      jvms     = this->jvms();
79221345Sdim  int            stk_size = jvms->stk_size();
80263508Sdim  int            stkoff   = jvms->stkoff();
81221345Sdim  Node*          top      = this->top();
82263508Sdim  for (int i = from_sp; i < stk_size; i++) {
83221345Sdim    if (map->in(stkoff + i) != top) {
84221345Sdim      map->set_req(stkoff + i, top);
85193323Sed    }
86221345Sdim  }
87221345Sdim}
88221345Sdim
89221345Sdim
90221345Sdim//--------------------------------sync_jvms-----------------------------------
91221345Sdim// Make sure our current jvms agrees with our parse state.
92221345SdimJVMState* GraphKit::sync_jvms() const {
93263508Sdim  JVMState* jvms = this->jvms();
94221345Sdim  jvms->set_bci(bci());       // Record the new bci in the JVMState
95221345Sdim  jvms->set_sp(sp());         // Record the new sp in the JVMState
96221345Sdim  assert(jvms_in_sync(), "jvms is now in sync");
97263508Sdim  return jvms;
98221345Sdim}
99263508Sdim
100221345Sdim//--------------------------------sync_jvms_for_reexecute---------------------
101221345Sdim// Make sure our current jvms agrees with our parse state.  This version
102221345Sdim// uses the reexecute_sp for reexecuting bytecodes.
103221345SdimJVMState* GraphKit::sync_jvms_for_reexecute() {
104221345Sdim  JVMState* jvms = this->jvms();
105221345Sdim  jvms->set_bci(bci());          // Record the new bci in the JVMState
106221345Sdim  jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
107221345Sdim  return jvms;
108221345Sdim}
109221345Sdim
110221345Sdim#ifdef ASSERT
111221345Sdimbool GraphKit::jvms_in_sync() const {
112221345Sdim  Parse* parse = is_Parse();
113221345Sdim  if (parse == NULL) {
114263508Sdim    if (bci() !=      jvms()->bci())          return false;
115263508Sdim    if (sp()  != (int)jvms()->sp())           return false;
116221345Sdim    return true;
117221345Sdim  }
118193323Sed  if (jvms()->method() != parse->method())    return false;
119193323Sed  if (jvms()->bci()    != parse->bci())       return false;
120193323Sed  int jvms_sp = jvms()->sp();
121221345Sdim  if (jvms_sp          != parse->sp())        return false;
122221345Sdim  int jvms_depth = jvms()->depth();
123221345Sdim  if (jvms_depth       != parse->depth())     return false;
124193323Sed  return true;
125193323Sed}
126193323Sed
127221345Sdim// Local helper checks for special internal merge points
128221345Sdim// used to accumulate and merge exception states.
129221345Sdim// They are marked by the region's in(0) edge being the map itself.
130221345Sdim// Such merge points must never "escape" into the parser at large,
131221345Sdim// until they have been handed to gvn.transform.
132221345Sdimstatic bool is_hidden_merge(Node* reg) {
133263508Sdim  if (reg == NULL)  return false;
134221345Sdim  if (reg->is_Phi()) {
135221345Sdim    reg = reg->in(0);
136221345Sdim    if (reg == NULL)  return false;
137221345Sdim  }
138221345Sdim  return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
139221345Sdim}
140221345Sdim
141221345Sdimvoid GraphKit::verify_map() const {
142221345Sdim  if (map() == NULL)  return;  // null map is OK
143221345Sdim  assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
144221345Sdim  assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
145263508Sdim  assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
146221345Sdim}
147221345Sdim
148221345Sdimvoid GraphKit::verify_exception_state(SafePointNode* ex_map) {
149221345Sdim  assert(ex_map->next_exception() == NULL, "not already part of a chain");
150263508Sdim  assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
151221345Sdim}
152221345Sdim#endif
153263508Sdim
154221345Sdim//---------------------------stop_and_kill_map---------------------------------
155221345Sdim// Set _map to NULL, signalling a stop to further bytecode execution.
156263508Sdim// First smash the current map's control to a constant, to mark it dead.
157221345Sdimvoid GraphKit::stop_and_kill_map() {
158263508Sdim  SafePointNode* dead_map = stop();
159221345Sdim  if (dead_map != NULL) {
160221345Sdim    dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
161221345Sdim    assert(dead_map->is_killed(), "must be so marked");
162221345Sdim  }
163263508Sdim}
164263508Sdim
165221345Sdim
166221345Sdim//--------------------------------stopped--------------------------------------
167221345Sdim// Tell if _map is NULL, or control is top.
168221345Sdimbool GraphKit::stopped() {
169263508Sdim  if (map() == NULL)           return true;
170193323Sed  else if (control() == top()) return true;
171193323Sed  else                         return false;
172193323Sed}
173193323Sed
174221345Sdim
175221345Sdim//-----------------------------has_ex_handler----------------------------------
176263508Sdim// Tell if this method or any caller method has exception handlers.
177263508Sdimbool GraphKit::has_ex_handler() {
178221345Sdim  for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
179221345Sdim    if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
180263508Sdim      return true;
181221345Sdim    }
182221345Sdim  }
183221345Sdim  return false;
184193323Sed}
185263508Sdim
186221345Sdim//------------------------------save_ex_oop------------------------------------
187221345Sdim// Save an exception without blowing stack contents or other JVM state.
188221345Sdimvoid GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
189221345Sdim  assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
190218893Sdim  ex_map->add_req(ex_oop);
191193323Sed  debug_only(verify_exception_state(ex_map));
192218893Sdim}
193193323Sed
194193323Sedinline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
195218893Sdim  assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
196221345Sdim  Node* ex_oop = ex_map->in(ex_map->req()-1);
197221345Sdim  if (clear_it)  ex_map->del_req(ex_map->req()-1);
198221345Sdim  return ex_oop;
199221345Sdim}
200221345Sdim
201221345Sdim//-----------------------------saved_ex_oop------------------------------------
202221345Sdim// Recover a saved exception from its map.
203221345SdimNode* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
204221345Sdim  return common_saved_ex_oop(ex_map, false);
205221345Sdim}
206221345Sdim
207221345Sdim//--------------------------clear_saved_ex_oop---------------------------------
208221345Sdim// Erase a previously saved exception from its map.
209221345SdimNode* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
210221345Sdim  return common_saved_ex_oop(ex_map, true);
211221345Sdim}
212221345Sdim
213221345Sdim#ifdef ASSERT
214263508Sdim//---------------------------has_saved_ex_oop----------------------------------
215221345Sdim// Erase a previously saved exception from its map.
216221345Sdimbool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
217263508Sdim  return ex_map->req() == ex_map->jvms()->endoff()+1;
218221345Sdim}
219221345Sdim#endif
220221345Sdim
221263508Sdim//-------------------------make_exception_state--------------------------------
222221345Sdim// Turn the current JVM state into an exception state, appending the ex_oop.
223221345SdimSafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
224221345Sdim  sync_jvms();
225221345Sdim  SafePointNode* ex_map = stop();  // do not manipulate this map any more
226263508Sdim  set_saved_ex_oop(ex_map, ex_oop);
227193323Sed  return ex_map;
228205407Srdivacky}
229221345Sdim
230193323Sed
231218893Sdim//--------------------------add_exception_state--------------------------------
232193323Sed// Add an exception to my list of exceptions.
233221345Sdimvoid GraphKit::add_exception_state(SafePointNode* ex_map) {
234221345Sdim  if (ex_map == NULL || ex_map->control() == top()) {
235193323Sed    return;
236193323Sed  }
237193323Sed#ifdef ASSERT
238193323Sed  verify_exception_state(ex_map);
239193323Sed  if (has_exceptions()) {
240263508Sdim    assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
241221345Sdim  }
242221345Sdim#endif
243221345Sdim
244221345Sdim  // If there is already an exception of exactly this type, merge with it.
245221345Sdim  // In particular, null-checks and other low-level exceptions common up here.
246221345Sdim  Node*       ex_oop  = saved_ex_oop(ex_map);
247221345Sdim  const Type* ex_type = _gvn.type(ex_oop);
248221345Sdim  if (ex_oop == top()) {
249243830Sdim    // No action needed.
250193323Sed    return;
251193323Sed  }
252193323Sed  assert(ex_type->isa_instptr(), "exception must be an instance");
253263508Sdim  for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
254193323Sed    const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
255193323Sed    // We check sp also because call bytecodes can generate exceptions
256224145Sdim    // both before and after arguments are popped!
257224145Sdim    if (ex_type2 == ex_type
258193323Sed        && e2->_jvms->sp() == ex_map->_jvms->sp()) {
259193323Sed      combine_exception_states(ex_map, e2);
260193323Sed      return;
261224145Sdim    }
262263508Sdim  }
263263508Sdim
264263508Sdim  // No pre-existing exception of the same type.  Chain it on the list.
265193323Sed  push_exception_state(ex_map);
266218893Sdim}
267212904Sdim
268193323Sed//-----------------------add_exception_states_from-----------------------------
269193323Sedvoid GraphKit::add_exception_states_from(JVMState* jvms) {
270212904Sdim  SafePointNode* ex_map = jvms->map()->next_exception();
271212904Sdim  if (ex_map != NULL) {
272212904Sdim    jvms->map()->set_next_exception(NULL);
273193323Sed    for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
274212904Sdim      next_map = ex_map->next_exception();
275193323Sed      ex_map->set_next_exception(NULL);
276193323Sed      add_exception_state(ex_map);
277193323Sed    }
278221345Sdim  }
279193323Sed}
280193323Sed
281193323Sed//-----------------------transfer_exceptions_into_jvms-------------------------
282193323SedJVMState* GraphKit::transfer_exceptions_into_jvms() {
283195340Sed  if (map() == NULL) {
284193323Sed    // We need a JVMS to carry the exceptions, but the map has gone away.
285221345Sdim    // Create a scratch JVMS, cloned from any of the exception states...
286208599Srdivacky    if (has_exceptions()) {
287221345Sdim      _map = _exceptions;
288193323Sed      _map = clone_map();
289221345Sdim      _map->set_next_exception(NULL);
290234353Sdim      clear_saved_ex_oop(_map);
291193323Sed      debug_only(verify_map());
292223017Sdim    } else {
293193323Sed      // ...or created from scratch
294193323Sed      JVMState* jvms = new (C) JVMState(_method, NULL);
295193323Sed      jvms->set_bci(_bci);
296193323Sed      jvms->set_sp(_sp);
297193323Sed      jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
298193323Sed      set_jvms(jvms);
299195340Sed      for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
300221345Sdim      set_all_memory(top());
301193323Sed      while (map()->req() < jvms->endoff())  map()->add_req(top());
302193323Sed    }
303193323Sed    // (This is a kludge, in case you didn't notice.)
304193323Sed    set_control(top());
305193323Sed  }
306193323Sed  JVMState* jvms = sync_jvms();
307193323Sed  assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
308193323Sed  jvms->map()->set_next_exception(_exceptions);
309193323Sed  _exceptions = NULL;   // done with this set of exceptions
310221345Sdim  return jvms;
311208599Srdivacky}
312193323Sed
313221345Sdimstatic inline void add_n_reqs(Node* dstphi, Node* srcphi) {
314193323Sed  assert(is_hidden_merge(dstphi), "must be a special merge node");
315193323Sed  assert(is_hidden_merge(srcphi), "must be a special merge node");
316221345Sdim  uint limit = srcphi->req();
317193323Sed  for (uint i = PhiNode::Input; i < limit; i++) {
318193323Sed    dstphi->add_req(srcphi->in(i));
319193323Sed  }
320223017Sdim}
321193323Sedstatic inline void add_one_req(Node* dstphi, Node* src) {
322193323Sed  assert(is_hidden_merge(dstphi), "must be a special merge node");
323193323Sed  assert(!is_hidden_merge(src), "must not be a special merge node");
324193323Sed  dstphi->add_req(src);
325195340Sed}
326193323Sed
327221345Sdim//-----------------------combine_exception_states------------------------------
328208599Srdivacky// This helper function combines exception states by building phis on a
329221345Sdim// specially marked state-merging region.  These regions and phis are
330193323Sed// untransformed, and can build up gradually.  The region is marked by
331221345Sdim// having a control input of its exception map, rather than NULL.  Such
332193323Sed// regions do not appear except in this function, and in use_exception_state.
333193323Sedvoid GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
334223017Sdim  if (failing())  return;  // dying anyway...
335193323Sed  JVMState* ex_jvms = ex_map->_jvms;
336193323Sed  assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
337193323Sed  assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
338193323Sed  assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
339193323Sed  assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
340193323Sed  assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
341193323Sed  assert(ex_map->req() == phi_map->req(), "matching maps");
342221345Sdim  uint tos = ex_jvms->stkoff() + ex_jvms->sp();
343221345Sdim  Node*         hidden_merge_mark = root();
344221345Sdim  Node*         region  = phi_map->control();
345193323Sed  MergeMemNode* phi_mem = phi_map->merged_memory();
346193323Sed  MergeMemNode* ex_mem  = ex_map->merged_memory();
347193323Sed  if (region->in(0) != hidden_merge_mark) {
348193323Sed    // The control input is not (yet) a specially-marked region in phi_map.
349193323Sed    // Make it so, and build some phis.
350193323Sed    region = new RegionNode(2);
351193323Sed    _gvn.set_type(region, Type::CONTROL);
352193323Sed    region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
353221345Sdim    region->init_req(1, phi_map->control());
354193323Sed    phi_map->set_control(region);
355193323Sed    Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
356193323Sed    record_for_igvn(io_phi);
357221345Sdim    _gvn.set_type(io_phi, Type::ABIO);
358221345Sdim    phi_map->set_i_o(io_phi);
359221345Sdim    for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
360221345Sdim      Node* m = mms.memory();
361193323Sed      Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
362193323Sed      record_for_igvn(m_phi);
363239462Sdim      _gvn.set_type(m_phi, Type::MEMORY);
364193323Sed      mms.set_memory(m_phi);
365239462Sdim    }
366193323Sed  }
367193323Sed
368193323Sed  // Either or both of phi_map and ex_map might already be converted into phis.
369193323Sed  Node* ex_control = ex_map->control();
370193323Sed  // if there is special marking on ex_map also, we add multiple edges from src
371218893Sdim  bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
372212904Sdim  // how wide was the destination phi_map, originally?
373193323Sed  uint orig_width = region->req();
374193323Sed
375193323Sed  if (add_multiple) {
376221345Sdim    add_n_reqs(region, ex_control);
377221345Sdim    add_n_reqs(phi_map->i_o(), ex_map->i_o());
378263508Sdim  } else {
379193323Sed    // ex_map has no merges, so we just add single edges everywhere
380221345Sdim    add_one_req(region, ex_control);
381193323Sed    add_one_req(phi_map->i_o(), ex_map->i_o());
382193323Sed  }
383193323Sed  for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
384221345Sdim    if (mms.is_empty()) {
385221345Sdim      // get a copy of the base memory, and patch some inputs into it
386221345Sdim      const TypePtr* adr_type = mms.adr_type(C);
387193323Sed      Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
388239462Sdim      assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
389193323Sed      mms.set_memory(phi);
390193323Sed      // Prepare to append interesting stuff onto the newly sliced phi:
391193323Sed      while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
392193323Sed    }
393193323Sed    // Append stuff from ex_map:
394193323Sed    if (add_multiple) {
395193323Sed      add_n_reqs(mms.memory(), mms.memory2());
396193323Sed    } else {
397193323Sed      add_one_req(mms.memory(), mms.memory2());
398193323Sed    }
399193323Sed  }
400193323Sed  uint limit = ex_map->req();
401193323Sed  for (uint i = TypeFunc::Parms; i < limit; i++) {
402193323Sed    // Skip everything in the JVMS after tos.  (The ex_oop follows.)
403193323Sed    if (i == tos)  i = ex_jvms->monoff();
404193323Sed    Node* src = ex_map->in(i);
405221345Sdim    Node* dst = phi_map->in(i);
406221345Sdim    if (src != dst) {
407221345Sdim      PhiNode* phi;
408221345Sdim      if (dst->in(0) != region) {
409221345Sdim        dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
410221345Sdim        record_for_igvn(phi);
411221345Sdim        _gvn.set_type(phi, phi->type());
412243830Sdim        phi_map->set_req(i, dst);
413221345Sdim        // Prepare to append interesting stuff onto the new phi:
414221345Sdim        while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
415221345Sdim      } else {
416243830Sdim        assert(dst->is_Phi(), "nobody else uses a hidden region");
417243830Sdim        phi = dst->as_Phi();
418221345Sdim      }
419224145Sdim      if (add_multiple && src->in(0) == ex_control) {
420221345Sdim        // Both are phis.
421221345Sdim        add_n_reqs(dst, src);
422221345Sdim      } else {
423221345Sdim        while (dst->req() < region->req())  add_one_req(dst, src);
424193323Sed      }
425193323Sed      const Type* srctype = _gvn.type(src);
426193323Sed      if (phi->type() != srctype) {
427193323Sed        const Type* dsttype = phi->type()->meet_speculative(srctype);
428193323Sed        if (phi->type() != dsttype) {
429193323Sed          phi->set_type(dsttype);
430193323Sed          _gvn.set_type(phi, dsttype);
431193323Sed        }
432193323Sed      }
433193323Sed    }
434193323Sed  }
435193323Sed  phi_map->merge_replaced_nodes_with(ex_map);
436193323Sed}
437193323Sed
438193323Sed//--------------------------use_exception_state--------------------------------
439193323SedNode* GraphKit::use_exception_state(SafePointNode* phi_map) {
440193323Sed  if (failing()) { stop(); return top(); }
441193323Sed  Node* region = phi_map->control();
442205407Srdivacky  Node* hidden_merge_mark = root();
443221345Sdim  assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
444193323Sed  Node* ex_oop = clear_saved_ex_oop(phi_map);
445218893Sdim  if (region->in(0) == hidden_merge_mark) {
446193323Sed    // Special marking for internal ex-states.  Process the phis now.
447193323Sed    region->set_req(0, region);  // now it's an ordinary region
448193323Sed    set_jvms(phi_map->jvms());   // ...so now we can use it as a map
449193323Sed    // Note: Setting the jvms also sets the bci and sp.
450193323Sed    set_control(_gvn.transform(region));
451193323Sed    uint tos = jvms()->stkoff() + sp();
452193323Sed    for (uint i = 1; i < tos; i++) {
453193323Sed      Node* x = phi_map->in(i);
454193323Sed      if (x->in(0) == region) {
455193323Sed        assert(x->is_Phi(), "expected a special phi");
456193323Sed        phi_map->set_req(i, _gvn.transform(x));
457193323Sed      }
458193323Sed    }
459193323Sed    for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
460193323Sed      Node* x = mms.memory();
461193323Sed      if (x->in(0) == region) {
462193323Sed        assert(x->is_Phi(), "nobody else uses a hidden region");
463208599Srdivacky        mms.set_memory(_gvn.transform(x));
464193323Sed      }
465218893Sdim    }
466224145Sdim    if (ex_oop->in(0) == region) {
467224145Sdim      assert(ex_oop->is_Phi(), "expected a special phi");
468193323Sed      ex_oop = _gvn.transform(ex_oop);
469193323Sed    }
470193323Sed  } else {
471193323Sed    set_jvms(phi_map->jvms());
472193323Sed  }
473193323Sed
474212904Sdim  assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
475212904Sdim  assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
476212904Sdim  return ex_oop;
477218893Sdim}
478243830Sdim
479208599Srdivacky//---------------------------------java_bc-------------------------------------
480208599SrdivackyBytecodes::Code GraphKit::java_bc() const {
481208599Srdivacky  ciMethod* method = this->method();
482208599Srdivacky  int       bci    = this->bci();
483193323Sed  if (method != NULL && bci != InvocationEntryBci)
484193323Sed    return method->java_code_at_bci(bci);
485193323Sed  else
486193323Sed    return Bytecodes::_illegal;
487193323Sed}
488193323Sed
489193323Sedvoid GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
490206083Srdivacky                                                          bool must_throw) {
491206083Srdivacky    // if the exception capability is set, then we will generate code
492218893Sdim    // to check the JavaThread.should_post_on_exceptions flag to see
493193323Sed    // if we actually need to report exception events (for this
494193323Sed    // thread).  If we don't need to report exception events, we will
495205407Srdivacky    // take the normal fast path provided by add_exception_events.  If
496205407Srdivacky    // exception event reporting is enabled for this thread, we will
497193323Sed    // take the uncommon_trap in the BuildCutout below.
498205407Srdivacky
499205407Srdivacky    // first must access the should_post_on_exceptions_flag in this thread's JavaThread
500205407Srdivacky    Node* jthread = _gvn.transform(new ThreadLocalNode());
501205407Srdivacky    Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
502193323Sed    Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
503193323Sed
504193323Sed    // Test the should_post_on_exceptions_flag vs. 0
505193323Sed    Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
506193323Sed    Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
507193323Sed
508193323Sed    // Branch to slow_path if should_post_on_exceptions_flag was true
509263508Sdim    { BuildCutout unless(this, tst, PROB_MAX);
510263508Sdim      // Do not try anything fancy if we're notifying the VM on every throw.
511193323Sed      // Cf. case Bytecodes::_athrow in parse2.cpp.
512218893Sdim      uncommon_trap(reason, Deoptimization::Action_none,
513193323Sed                    (ciKlass*)NULL, (char*)NULL, must_throw);
514221345Sdim    }
515226633Sdim
516193323Sed}
517221345Sdim
518221345Sdim//------------------------------builtin_throw----------------------------------
519221345Sdimvoid GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
520221345Sdim  bool must_throw = true;
521221345Sdim
522193323Sed  if (env()->jvmti_can_post_on_exceptions()) {
523221345Sdim    // check if we must post exception events, take uncommon trap if so
524221345Sdim    uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
525221345Sdim    // here if should_post_on_exceptions is false
526221345Sdim    // continue on with the normal codegen
527221345Sdim  }
528221345Sdim
529221345Sdim  // If this particular condition has not yet happened at this
530193323Sed  // bytecode, then use the uncommon trap mechanism, and allow for
531221345Sdim  // a future recompilation if several traps occur here.
532193323Sed  // If the throw is hot, try to use a more complicated inline mechanism
533218893Sdim  // which keeps execution inside the compiled code.
534193323Sed  bool treat_throw_as_hot = false;
535193323Sed  ciMethodData* md = method()->method_data();
536193323Sed
537221345Sdim  if (ProfileTraps) {
538221345Sdim    if (too_many_traps(reason)) {
539221345Sdim      treat_throw_as_hot = true;
540221345Sdim    }
541221345Sdim    // (If there is no MDO at all, assume it is early in
542221345Sdim    // execution, and that any deopts are part of the
543221345Sdim    // startup transient, and don't need to be remembered.)
544193323Sed
545193323Sed    // Also, if there is a local exception handler, treat all throws
546193323Sed    // as hot if there has been at least one in this method.
547193323Sed    if (C->trap_count(reason) != 0
548193323Sed        && method()->method_data()->trap_count(reason) != 0
549193323Sed        && has_ex_handler()) {
550193323Sed        treat_throw_as_hot = true;
551193323Sed    }
552193323Sed  }
553193323Sed
554263508Sdim  // If this throw happens frequently, an uncommon trap might cause
555221345Sdim  // a performance pothole.  If there is a local exception handler,
556243830Sdim  // and if this particular bytecode appears to be deoptimizing often,
557221345Sdim  // let us handle the throw inline, with a preconstructed instance.
558218893Sdim  // Note:   If the deopt count has blown up, the uncommon trap
559193323Sed  // runtime is going to flush this nmethod, not matter what.
560263508Sdim  if (treat_throw_as_hot
561221345Sdim      && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
562221345Sdim    // If the throw is local, we use a pre-existing instance and
563221345Sdim    // punt on the backtrace.  This would lead to a missing backtrace
564221345Sdim    // (a repeat of 4292742) if the backtrace object is ever asked
565221345Sdim    // for its backtrace.
566221345Sdim    // Fixing this remaining case of 4292742 requires some flavor of
567221345Sdim    // escape analysis.  Leave that for the future.
568193323Sed    ciInstance* ex_obj = NULL;
569193323Sed    switch (reason) {
570193323Sed    case Deoptimization::Reason_null_check:
571221345Sdim      ex_obj = env()->NullPointerException_instance();
572221345Sdim      break;
573221345Sdim    case Deoptimization::Reason_div0_check:
574263508Sdim      ex_obj = env()->ArithmeticException_instance();
575221345Sdim      break;
576221345Sdim    case Deoptimization::Reason_range_check:
577221345Sdim      ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
578221345Sdim      break;
579221345Sdim    case Deoptimization::Reason_class_check:
580221345Sdim      if (java_bc() == Bytecodes::_aastore) {
581263508Sdim        ex_obj = env()->ArrayStoreException_instance();
582221345Sdim      } else {
583221345Sdim        ex_obj = env()->ClassCastException_instance();
584221345Sdim      }
585221345Sdim      break;
586221345Sdim    }
587193323Sed    if (failing()) { stop(); return; }  // exception allocation might fail
588193323Sed    if (ex_obj != NULL) {
589193323Sed      // Cheat with a preallocated exception object.
590193323Sed      if (C->log() != NULL)
591193323Sed        C->log()->elem("hot_throw preallocated='1' reason='%s'",
592193323Sed                       Deoptimization::trap_reason_name(reason));
593193323Sed      const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
594193323Sed      Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
595193323Sed
596193323Sed      // Clear the detail message of the preallocated exception object.
597193323Sed      // Weblogic sometimes mutates the detail message of exceptions
598193323Sed      // using reflection.
599193323Sed      int offset = java_lang_Throwable::get_detailMessage_offset();
600193323Sed      const TypePtr* adr_typ = ex_con->add_offset(offset);
601193323Sed
602193323Sed      Node *adr = basic_plus_adr(ex_node, ex_node, offset);
603193323Sed      const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
604193323Sed      // Conservatively release stores of object references.
605193323Sed      Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
606193323Sed
607193323Sed      add_exception_state(make_exception_state(ex_node));
608193323Sed      return;
609193323Sed    }
610193323Sed  }
611193323Sed
612193323Sed  // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
613193323Sed  // It won't be much cheaper than bailing to the interp., since we'll
614193323Sed  // have to pass up all the debug-info, and the runtime will have to
615193323Sed  // create the stack trace.
616193323Sed
617221345Sdim  // Usual case:  Bail to interpreter.
618193323Sed  // Reserve the right to recompile if we haven't seen anything yet.
619193323Sed
620193323Sed  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
621193323Sed  Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
622193323Sed  if (treat_throw_as_hot
623193323Sed      && (method()->method_data()->trap_recompiled_at(bci(), m)
624193323Sed          || C->too_many_traps(reason))) {
625193323Sed    // We cannot afford to take more traps here.  Suffer in the interpreter.
626193323Sed    if (C->log() != NULL)
627193323Sed      C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
628218893Sdim                     Deoptimization::trap_reason_name(reason),
629193323Sed                     C->trap_count(reason));
630193323Sed    action = Deoptimization::Action_none;
631193323Sed  }
632193323Sed
633193323Sed  // "must_throw" prunes the JVM state to include only the stack, if there
634193323Sed  // are no local exception handlers.  This should cut down on register
635193323Sed  // allocation time and code size, by drastically reducing the number
636193323Sed  // of in-edges on the call to the uncommon trap.
637193323Sed
638218893Sdim  uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
639193323Sed}
640193323Sed
641210299Sed
642210299Sed//----------------------------PreserveJVMState---------------------------------
643210299SedPreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
644193323Sed  debug_only(kit->verify_map());
645218893Sdim  _kit    = kit;
646193323Sed  _map    = kit->map();   // preserve the map
647208599Srdivacky  _sp     = kit->sp();
648221345Sdim  kit->set_map(clone_map ? kit->clone_map() : NULL);
649221345Sdim#ifdef ASSERT
650193323Sed  _bci    = kit->bci();
651239462Sdim  Parse* parser = kit->is_Parse();
652193323Sed  int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
653193323Sed  _block  = block;
654193323Sed#endif
655193323Sed}
656193323SedPreserveJVMState::~PreserveJVMState() {
657193323Sed  GraphKit* kit = _kit;
658221345Sdim#ifdef ASSERT
659193323Sed  assert(kit->bci() == _bci, "bci must not shift");
660218893Sdim  Parse* parser = kit->is_Parse();
661193323Sed  int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
662193323Sed  assert(block == _block,    "block must not shift");
663218893Sdim#endif
664193323Sed  kit->set_map(_map);
665193323Sed  kit->set_sp(_sp);
666193323Sed}
667193323Sed
668193323Sed
669193323Sed//-----------------------------BuildCutout-------------------------------------
670193323SedBuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
671218893Sdim  : PreserveJVMState(kit)
672193323Sed{
673193323Sed  assert(p->is_Con() || p->is_Bool(), "test must be a bool");
674193323Sed  SafePointNode* outer_map = _map;   // preserved map is caller's
675193323Sed  SafePointNode* inner_map = kit->map();
676221345Sdim  IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
677198090Srdivacky  outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
678193323Sed  inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
679193323Sed}
680193323SedBuildCutout::~BuildCutout() {
681198090Srdivacky  GraphKit* kit = _kit;
682193323Sed  assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
683193323Sed}
684193323Sed
685193323Sed//---------------------------PreserveReexecuteState----------------------------
686193323SedPreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
687193323Sed  assert(!kit->stopped(), "must call stopped() before");
688221345Sdim  _kit    =    kit;
689193323Sed  _sp     =    kit->sp();
690193323Sed  _reexecute = kit->jvms()->_reexecute;
691193323Sed}
692193323SedPreserveReexecuteState::~PreserveReexecuteState() {
693193323Sed  if (_kit->stopped()) return;
694218893Sdim  _kit->jvms()->_reexecute = _reexecute;
695193323Sed  _kit->set_sp(_sp);
696193323Sed}
697193323Sed
698193323Sed//------------------------------clone_map--------------------------------------
699193323Sed// Implementation of PreserveJVMState
700221345Sdim//
701198090Srdivacky// Only clone_map(...) here. If this function is only used in the
702193323Sed// PreserveJVMState class we may want to get rid of this extra
703193323Sed// function eventually and do it all there.
704193323Sed
705193323SedSafePointNode* GraphKit::clone_map() {
706218893Sdim  if (map() == NULL)  return NULL;
707198090Srdivacky
708193323Sed  // Clone the memory edge first
709218893Sdim  Node* mem = MergeMemNode::make(map()->memory());
710193323Sed  gvn().set_type_bottom(mem);
711193323Sed
712218893Sdim  SafePointNode *clonemap = (SafePointNode*)map()->clone();
713193323Sed  JVMState* jvms = this->jvms();
714193323Sed  JVMState* clonejvms = jvms->clone_shallow(C);
715193323Sed  clonemap->set_memory(mem);
716193323Sed  clonemap->set_jvms(clonejvms);
717193323Sed  clonejvms->set_map(clonemap);
718193323Sed  record_for_igvn(clonemap);
719193323Sed  gvn().set_type_bottom(clonemap);
720193323Sed  return clonemap;
721193323Sed}
722193323Sed
723193323Sed
724193323Sed//-----------------------------set_map_clone-----------------------------------
725193323Sedvoid GraphKit::set_map_clone(SafePointNode* m) {
726193323Sed  _map = m;
727193323Sed  _map = clone_map();
728193323Sed  _map->set_next_exception(NULL);
729218893Sdim  debug_only(verify_map());
730210299Sed}
731210299Sed
732210299Sed
733210299Sed//----------------------------kill_dead_locals---------------------------------
734210299Sed// Detect any locals which are known to be dead, and force them to top.
735210299Sedvoid GraphKit::kill_dead_locals() {
736218893Sdim  // Consult the liveness information for the locals.  If any
737193323Sed  // of them are unused, then they can be replaced by top().  This
738218893Sdim  // should help register allocation time and cut down on the size
739208599Srdivacky  // of the deoptimization information.
740221345Sdim
741221345Sdim  // This call is made from many of the bytecode handling
742193323Sed  // subroutines called from the Big Switch in do_one_bytecode.
743239462Sdim  // Every bytecode which might include a slow path is responsible
744193323Sed  // for killing its dead locals.  The more consistent we
745193323Sed  // are about killing deads, the fewer useless phis will be
746193323Sed  // constructed for them at various merge points.
747193323Sed
748193323Sed  // bci can be -1 (InvocationEntryBci).  We return the entry
749208599Srdivacky  // liveness for the method.
750208599Srdivacky
751193323Sed  if (method() == NULL || method()->code_size() == 0) {
752193323Sed    // We are building a graph for a call to a native method.
753218893Sdim    // All locals are live.
754193323Sed    return;
755193323Sed  }
756193323Sed
757218893Sdim  ResourceMark rm;
758193323Sed
759193323Sed  // Consult the liveness information for the locals.  If any
760193323Sed  // of them are unused, then they can be replaced by top().  This
761193323Sed  // should help register allocation time and cut down on the size
762193323Sed  // of the deoptimization information.
763193323Sed  MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
764193323Sed
765193323Sed  int len = (int)live_locals.size();
766193323Sed  assert(len <= jvms()->loc_size(), "too many live locals");
767193323Sed  for (int local = 0; local < len; local++) {
768193323Sed    if (!live_locals.at(local)) {
769221345Sdim      set_local(local, top());
770198090Srdivacky    }
771193323Sed  }
772193323Sed}
773193323Sed
774193323Sed#ifdef ASSERT
775198090Srdivacky//-------------------------dead_locals_are_killed------------------------------
776193323Sed// Return true if all dead locals are set to top in the map.
777193323Sed// Used to assert "clean" debug info at various points.
778193323Sedbool GraphKit::dead_locals_are_killed() {
779193323Sed  if (method() == NULL || method()->code_size() == 0) {
780193323Sed    // No locals need to be dead, so all is as it should be.
781193323Sed    return true;
782221345Sdim  }
783193323Sed
784193323Sed  // Make sure somebody called kill_dead_locals upstream.
785193323Sed  ResourceMark rm;
786193323Sed  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
787193323Sed    if (jvms->loc_size() == 0)  continue;  // no locals to consult
788193323Sed    SafePointNode* map = jvms->map();
789193323Sed    ciMethod* method = jvms->method();
790193323Sed    int       bci    = jvms->bci();
791193323Sed    if (jvms == this->jvms()) {
792193323Sed      bci = this->bci();  // it might not yet be synched
793193323Sed    }
794193323Sed    MethodLivenessResult live_locals = method->liveness_at_bci(bci);
795193323Sed    int len = (int)live_locals.size();
796193323Sed    if (!live_locals.is_valid() || len == 0)
797193323Sed      // This method is trivial, or is poisoned by a breakpoint.
798193323Sed      return true;
799193323Sed    assert(len == jvms->loc_size(), "live map consistent with locals map");
800193323Sed    for (int local = 0; local < len; local++) {
801221345Sdim      if (!live_locals.at(local) && map->local(jvms, local) != top()) {
802202375Srdivacky        if (PrintMiscellaneous && (Verbose || WizardMode)) {
803193323Sed          tty->print_cr("Zombie local %d: ", local);
804193323Sed          jvms->dump();
805193323Sed        }
806193323Sed        return false;
807263508Sdim      }
808263508Sdim    }
809263508Sdim  }
810221345Sdim  return true;
811263508Sdim}
812221345Sdim
813221345Sdim#endif //ASSERT
814221345Sdim
815221345Sdim// Helper function for enforcing certain bytecodes to reexecute if
816221345Sdim// deoptimization happens
817221345Sdimstatic bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
818221345Sdim  ciMethod* cur_method = jvms->method();
819263508Sdim  int       cur_bci   = jvms->bci();
820221345Sdim  if (cur_method != NULL && cur_bci != InvocationEntryBci) {
821221345Sdim    Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
822221345Sdim    return Interpreter::bytecode_should_reexecute(code) ||
823221345Sdim           is_anewarray && code == Bytecodes::_multianewarray;
824221345Sdim    // Reexecute _multianewarray bytecode which was replaced with
825221345Sdim    // sequence of [a]newarray. See Parse::do_multianewarray().
826221345Sdim    //
827221345Sdim    // Note: interpreter should not have it set since this optimization
828221345Sdim    // is limited by dimensions and guarded by flag so in some cases
829221345Sdim    // multianewarray() runtime calls will be generated and
830221345Sdim    // the bytecode should not be reexecutes (stack will not be reset).
831221345Sdim  } else
832221345Sdim    return false;
833221345Sdim}
834263508Sdim
835221345Sdim// Helper function for adding JVMState and debug information to node
836221345Sdimvoid GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
837221345Sdim  // Add the safepoint edges to the call (or other safepoint).
838263508Sdim
839193323Sed  // Make sure dead locals are set to top.  This
840193323Sed  // should help register allocation time and cut down on the size
841193323Sed  // of the deoptimization information.
842193323Sed  assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
843193323Sed
844193323Sed  // Walk the inline list to fill in the correct set of JVMState's
845193323Sed  // Also fill in the associated edges for each JVMState.
846221345Sdim
847193323Sed  // If the bytecode needs to be reexecuted we need to put
848193323Sed  // the arguments back on the stack.
849193323Sed  const bool should_reexecute = jvms()->should_reexecute();
850193323Sed  JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
851193323Sed
852193323Sed  // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
853193323Sed  // undefined if the bci is different.  This is normal for Parse but it
854193323Sed  // should not happen for LibraryCallKit because only one bci is processed.
855193323Sed  assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
856193323Sed         "in LibraryCallKit the reexecute bit should not change");
857193323Sed
858263508Sdim  // If we are guaranteed to throw, we can prune everything but the
859221345Sdim  // input to the current bytecode.
860193323Sed  bool can_prune_locals = false;
861193323Sed  uint stack_slots_not_pruned = 0;
862239462Sdim  int inputs = 0, depth = 0;
863239462Sdim  if (must_throw) {
864239462Sdim    assert(method() == youngest_jvms->method(), "sanity");
865239462Sdim    if (compute_stack_effects(inputs, depth)) {
866193323Sed      can_prune_locals = true;
867239462Sdim      stack_slots_not_pruned = inputs;
868239462Sdim    }
869193323Sed  }
870193323Sed
871193323Sed  if (env()->should_retain_local_variables()) {
872193323Sed    // At any safepoint, this method can get breakpointed, which would
873193323Sed    // then require an immediate deoptimization.
874193323Sed    can_prune_locals = false;  // do not prune locals
875221345Sdim    stack_slots_not_pruned = 0;
876221345Sdim  }
877221345Sdim
878193323Sed  // do not scribble on the input jvms
879193323Sed  JVMState* out_jvms = youngest_jvms->clone_deep(C);
880239462Sdim  call->set_jvms(out_jvms); // Start jvms list for call node
881
882  // For a known set of bytecodes, the interpreter should reexecute them if
883  // deoptimization happens. We set the reexecute state for them here
884  if (out_jvms->is_reexecute_undefined() && //don't change if already specified
885      should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
886    out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
887  }
888
889  // Presize the call:
890  DEBUG_ONLY(uint non_debug_edges = call->req());
891  call->add_req_batch(top(), youngest_jvms->debug_depth());
892  assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
893
894  // Set up edges so that the call looks like this:
895  //  Call [state:] ctl io mem fptr retadr
896  //       [parms:] parm0 ... parmN
897  //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
898  //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
899  //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
900  // Note that caller debug info precedes callee debug info.
901
902  // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
903  uint debug_ptr = call->req();
904
905  // Loop over the map input edges associated with jvms, add them
906  // to the call node, & reset all offsets to match call node array.
907  for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
908    uint debug_end   = debug_ptr;
909    uint debug_start = debug_ptr - in_jvms->debug_size();
910    debug_ptr = debug_start;  // back up the ptr
911
912    uint p = debug_start;  // walks forward in [debug_start, debug_end)
913    uint j, k, l;
914    SafePointNode* in_map = in_jvms->map();
915    out_jvms->set_map(call);
916
917    if (can_prune_locals) {
918      assert(in_jvms->method() == out_jvms->method(), "sanity");
919      // If the current throw can reach an exception handler in this JVMS,
920      // then we must keep everything live that can reach that handler.
921      // As a quick and dirty approximation, we look for any handlers at all.
922      if (in_jvms->method()->has_exception_handlers()) {
923        can_prune_locals = false;
924      }
925    }
926
927    // Add the Locals
928    k = in_jvms->locoff();
929    l = in_jvms->loc_size();
930    out_jvms->set_locoff(p);
931    if (!can_prune_locals) {
932      for (j = 0; j < l; j++)
933        call->set_req(p++, in_map->in(k+j));
934    } else {
935      p += l;  // already set to top above by add_req_batch
936    }
937
938    // Add the Expression Stack
939    k = in_jvms->stkoff();
940    l = in_jvms->sp();
941    out_jvms->set_stkoff(p);
942    if (!can_prune_locals) {
943      for (j = 0; j < l; j++)
944        call->set_req(p++, in_map->in(k+j));
945    } else if (can_prune_locals && stack_slots_not_pruned != 0) {
946      // Divide stack into {S0,...,S1}, where S0 is set to top.
947      uint s1 = stack_slots_not_pruned;
948      stack_slots_not_pruned = 0;  // for next iteration
949      if (s1 > l)  s1 = l;
950      uint s0 = l - s1;
951      p += s0;  // skip the tops preinstalled by add_req_batch
952      for (j = s0; j < l; j++)
953        call->set_req(p++, in_map->in(k+j));
954    } else {
955      p += l;  // already set to top above by add_req_batch
956    }
957
958    // Add the Monitors
959    k = in_jvms->monoff();
960    l = in_jvms->mon_size();
961    out_jvms->set_monoff(p);
962    for (j = 0; j < l; j++)
963      call->set_req(p++, in_map->in(k+j));
964
965    // Copy any scalar object fields.
966    k = in_jvms->scloff();
967    l = in_jvms->scl_size();
968    out_jvms->set_scloff(p);
969    for (j = 0; j < l; j++)
970      call->set_req(p++, in_map->in(k+j));
971
972    // Finish the new jvms.
973    out_jvms->set_endoff(p);
974
975    assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
976    assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
977    assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
978    assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
979    assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
980    assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
981
982    // Update the two tail pointers in parallel.
983    out_jvms = out_jvms->caller();
984    in_jvms  = in_jvms->caller();
985  }
986
987  assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
988
989  // Test the correctness of JVMState::debug_xxx accessors:
990  assert(call->jvms()->debug_start() == non_debug_edges, "");
991  assert(call->jvms()->debug_end()   == call->req(), "");
992  assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
993}
994
995bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
996  Bytecodes::Code code = java_bc();
997  if (code == Bytecodes::_wide) {
998    code = method()->java_code_at_bci(bci() + 1);
999  }
1000
1001  BasicType rtype = T_ILLEGAL;
1002  int       rsize = 0;
1003
1004  if (code != Bytecodes::_illegal) {
1005    depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1006    rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1007    if (rtype < T_CONFLICT)
1008      rsize = type2size[rtype];
1009  }
1010
1011  switch (code) {
1012  case Bytecodes::_illegal:
1013    return false;
1014
1015  case Bytecodes::_ldc:
1016  case Bytecodes::_ldc_w:
1017  case Bytecodes::_ldc2_w:
1018    inputs = 0;
1019    break;
1020
1021  case Bytecodes::_dup:         inputs = 1;  break;
1022  case Bytecodes::_dup_x1:      inputs = 2;  break;
1023  case Bytecodes::_dup_x2:      inputs = 3;  break;
1024  case Bytecodes::_dup2:        inputs = 2;  break;
1025  case Bytecodes::_dup2_x1:     inputs = 3;  break;
1026  case Bytecodes::_dup2_x2:     inputs = 4;  break;
1027  case Bytecodes::_swap:        inputs = 2;  break;
1028  case Bytecodes::_arraylength: inputs = 1;  break;
1029
1030  case Bytecodes::_getstatic:
1031  case Bytecodes::_putstatic:
1032  case Bytecodes::_getfield:
1033  case Bytecodes::_putfield:
1034    {
1035      bool ignored_will_link;
1036      ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1037      int      size  = field->type()->size();
1038      bool is_get = (depth >= 0), is_static = (depth & 1);
1039      inputs = (is_static ? 0 : 1);
1040      if (is_get) {
1041        depth = size - inputs;
1042      } else {
1043        inputs += size;        // putxxx pops the value from the stack
1044        depth = - inputs;
1045      }
1046    }
1047    break;
1048
1049  case Bytecodes::_invokevirtual:
1050  case Bytecodes::_invokespecial:
1051  case Bytecodes::_invokestatic:
1052  case Bytecodes::_invokedynamic:
1053  case Bytecodes::_invokeinterface:
1054    {
1055      bool ignored_will_link;
1056      ciSignature* declared_signature = NULL;
1057      ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1058      assert(declared_signature != NULL, "cannot be null");
1059      inputs   = declared_signature->arg_size_for_bc(code);
1060      int size = declared_signature->return_type()->size();
1061      depth = size - inputs;
1062    }
1063    break;
1064
1065  case Bytecodes::_multianewarray:
1066    {
1067      ciBytecodeStream iter(method());
1068      iter.reset_to_bci(bci());
1069      iter.next();
1070      inputs = iter.get_dimensions();
1071      assert(rsize == 1, "");
1072      depth = rsize - inputs;
1073    }
1074    break;
1075
1076  case Bytecodes::_ireturn:
1077  case Bytecodes::_lreturn:
1078  case Bytecodes::_freturn:
1079  case Bytecodes::_dreturn:
1080  case Bytecodes::_areturn:
1081    assert(rsize = -depth, "");
1082    inputs = rsize;
1083    break;
1084
1085  case Bytecodes::_jsr:
1086  case Bytecodes::_jsr_w:
1087    inputs = 0;
1088    depth  = 1;                  // S.B. depth=1, not zero
1089    break;
1090
1091  default:
1092    // bytecode produces a typed result
1093    inputs = rsize - depth;
1094    assert(inputs >= 0, "");
1095    break;
1096  }
1097
1098#ifdef ASSERT
1099  // spot check
1100  int outputs = depth + inputs;
1101  assert(outputs >= 0, "sanity");
1102  switch (code) {
1103  case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1104  case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1105  case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1106  case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1107  case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1108  }
1109#endif //ASSERT
1110
1111  return true;
1112}
1113
1114
1115
1116//------------------------------basic_plus_adr---------------------------------
1117Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1118  // short-circuit a common case
1119  if (offset == intcon(0))  return ptr;
1120  return _gvn.transform( new AddPNode(base, ptr, offset) );
1121}
1122
1123Node* GraphKit::ConvI2L(Node* offset) {
1124  // short-circuit a common case
1125  jint offset_con = find_int_con(offset, Type::OffsetBot);
1126  if (offset_con != Type::OffsetBot) {
1127    return longcon((jlong) offset_con);
1128  }
1129  return _gvn.transform( new ConvI2LNode(offset));
1130}
1131
1132Node* GraphKit::ConvI2UL(Node* offset) {
1133  juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1134  if (offset_con != (juint) Type::OffsetBot) {
1135    return longcon((julong) offset_con);
1136  }
1137  Node* conv = _gvn.transform( new ConvI2LNode(offset));
1138  Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1139  return _gvn.transform( new AndLNode(conv, mask) );
1140}
1141
1142Node* GraphKit::ConvL2I(Node* offset) {
1143  // short-circuit a common case
1144  jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1145  if (offset_con != (jlong)Type::OffsetBot) {
1146    return intcon((int) offset_con);
1147  }
1148  return _gvn.transform( new ConvL2INode(offset));
1149}
1150
1151//-------------------------load_object_klass-----------------------------------
1152Node* GraphKit::load_object_klass(Node* obj) {
1153  // Special-case a fresh allocation to avoid building nodes:
1154  Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1155  if (akls != NULL)  return akls;
1156  Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1157  return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1158}
1159
1160//-------------------------load_array_length-----------------------------------
1161Node* GraphKit::load_array_length(Node* array) {
1162  // Special-case a fresh allocation to avoid building nodes:
1163  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1164  Node *alen;
1165  if (alloc == NULL) {
1166    Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1167    alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1168  } else {
1169    alen = alloc->Ideal_length();
1170    Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1171    if (ccast != alen) {
1172      alen = _gvn.transform(ccast);
1173    }
1174  }
1175  return alen;
1176}
1177
1178//------------------------------do_null_check----------------------------------
1179// Helper function to do a NULL pointer check.  Returned value is
1180// the incoming address with NULL casted away.  You are allowed to use the
1181// not-null value only if you are control dependent on the test.
1182extern int explicit_null_checks_inserted,
1183           explicit_null_checks_elided;
1184Node* GraphKit::null_check_common(Node* value, BasicType type,
1185                                  // optional arguments for variations:
1186                                  bool assert_null,
1187                                  Node* *null_control,
1188                                  bool speculative) {
1189  assert(!assert_null || null_control == NULL, "not both at once");
1190  if (stopped())  return top();
1191  if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1192    // For some performance testing, we may wish to suppress null checking.
1193    value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1194    return value;
1195  }
1196  explicit_null_checks_inserted++;
1197
1198  // Construct NULL check
1199  Node *chk = NULL;
1200  switch(type) {
1201    case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1202    case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1203    case T_ARRAY  : // fall through
1204      type = T_OBJECT;  // simplify further tests
1205    case T_OBJECT : {
1206      const Type *t = _gvn.type( value );
1207
1208      const TypeOopPtr* tp = t->isa_oopptr();
1209      if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1210          // Only for do_null_check, not any of its siblings:
1211          && !assert_null && null_control == NULL) {
1212        // Usually, any field access or invocation on an unloaded oop type
1213        // will simply fail to link, since the statically linked class is
1214        // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1215        // the static class is loaded but the sharper oop type is not.
1216        // Rather than checking for this obscure case in lots of places,
1217        // we simply observe that a null check on an unloaded class
1218        // will always be followed by a nonsense operation, so we
1219        // can just issue the uncommon trap here.
1220        // Our access to the unloaded class will only be correct
1221        // after it has been loaded and initialized, which requires
1222        // a trip through the interpreter.
1223#ifndef PRODUCT
1224        if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1225#endif
1226        uncommon_trap(Deoptimization::Reason_unloaded,
1227                      Deoptimization::Action_reinterpret,
1228                      tp->klass(), "!loaded");
1229        return top();
1230      }
1231
1232      if (assert_null) {
1233        // See if the type is contained in NULL_PTR.
1234        // If so, then the value is already null.
1235        if (t->higher_equal(TypePtr::NULL_PTR)) {
1236          explicit_null_checks_elided++;
1237          return value;           // Elided null assert quickly!
1238        }
1239      } else {
1240        // See if mixing in the NULL pointer changes type.
1241        // If so, then the NULL pointer was not allowed in the original
1242        // type.  In other words, "value" was not-null.
1243        if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1244          // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1245          explicit_null_checks_elided++;
1246          return value;           // Elided null check quickly!
1247        }
1248      }
1249      chk = new CmpPNode( value, null() );
1250      break;
1251    }
1252
1253    default:
1254      fatal(err_msg_res("unexpected type: %s", type2name(type)));
1255  }
1256  assert(chk != NULL, "sanity check");
1257  chk = _gvn.transform(chk);
1258
1259  BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1260  BoolNode *btst = new BoolNode( chk, btest);
1261  Node   *tst = _gvn.transform( btst );
1262
1263  //-----------
1264  // if peephole optimizations occurred, a prior test existed.
1265  // If a prior test existed, maybe it dominates as we can avoid this test.
1266  if (tst != btst && type == T_OBJECT) {
1267    // At this point we want to scan up the CFG to see if we can
1268    // find an identical test (and so avoid this test altogether).
1269    Node *cfg = control();
1270    int depth = 0;
1271    while( depth < 16 ) {       // Limit search depth for speed
1272      if( cfg->Opcode() == Op_IfTrue &&
1273          cfg->in(0)->in(1) == tst ) {
1274        // Found prior test.  Use "cast_not_null" to construct an identical
1275        // CastPP (and hence hash to) as already exists for the prior test.
1276        // Return that casted value.
1277        if (assert_null) {
1278          replace_in_map(value, null());
1279          return null();  // do not issue the redundant test
1280        }
1281        Node *oldcontrol = control();
1282        set_control(cfg);
1283        Node *res = cast_not_null(value);
1284        set_control(oldcontrol);
1285        explicit_null_checks_elided++;
1286        return res;
1287      }
1288      cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1289      if (cfg == NULL)  break;  // Quit at region nodes
1290      depth++;
1291    }
1292  }
1293
1294  //-----------
1295  // Branch to failure if null
1296  float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1297  Deoptimization::DeoptReason reason;
1298  if (assert_null) {
1299    reason = Deoptimization::Reason_null_assert;
1300  } else if (type == T_OBJECT) {
1301    reason = Deoptimization::reason_null_check(speculative);
1302  } else {
1303    reason = Deoptimization::Reason_div0_check;
1304  }
1305  // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1306  // ciMethodData::has_trap_at will return a conservative -1 if any
1307  // must-be-null assertion has failed.  This could cause performance
1308  // problems for a method after its first do_null_assert failure.
1309  // Consider using 'Reason_class_check' instead?
1310
1311  // To cause an implicit null check, we set the not-null probability
1312  // to the maximum (PROB_MAX).  For an explicit check the probability
1313  // is set to a smaller value.
1314  if (null_control != NULL || too_many_traps(reason)) {
1315    // probability is less likely
1316    ok_prob =  PROB_LIKELY_MAG(3);
1317  } else if (!assert_null &&
1318             (ImplicitNullCheckThreshold > 0) &&
1319             method() != NULL &&
1320             (method()->method_data()->trap_count(reason)
1321              >= (uint)ImplicitNullCheckThreshold)) {
1322    ok_prob =  PROB_LIKELY_MAG(3);
1323  }
1324
1325  if (null_control != NULL) {
1326    IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1327    Node* null_true = _gvn.transform( new IfFalseNode(iff));
1328    set_control(      _gvn.transform( new IfTrueNode(iff)));
1329    if (null_true == top())
1330      explicit_null_checks_elided++;
1331    (*null_control) = null_true;
1332  } else {
1333    BuildCutout unless(this, tst, ok_prob);
1334    // Check for optimizer eliding test at parse time
1335    if (stopped()) {
1336      // Failure not possible; do not bother making uncommon trap.
1337      explicit_null_checks_elided++;
1338    } else if (assert_null) {
1339      uncommon_trap(reason,
1340                    Deoptimization::Action_make_not_entrant,
1341                    NULL, "assert_null");
1342    } else {
1343      replace_in_map(value, zerocon(type));
1344      builtin_throw(reason);
1345    }
1346  }
1347
1348  // Must throw exception, fall-thru not possible?
1349  if (stopped()) {
1350    return top();               // No result
1351  }
1352
1353  if (assert_null) {
1354    // Cast obj to null on this path.
1355    replace_in_map(value, zerocon(type));
1356    return zerocon(type);
1357  }
1358
1359  // Cast obj to not-null on this path, if there is no null_control.
1360  // (If there is a null_control, a non-null value may come back to haunt us.)
1361  if (type == T_OBJECT) {
1362    Node* cast = cast_not_null(value, false);
1363    if (null_control == NULL || (*null_control) == top())
1364      replace_in_map(value, cast);
1365    value = cast;
1366  }
1367
1368  return value;
1369}
1370
1371
1372//------------------------------cast_not_null----------------------------------
1373// Cast obj to not-null on this path
1374Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1375  const Type *t = _gvn.type(obj);
1376  const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1377  // Object is already not-null?
1378  if( t == t_not_null ) return obj;
1379
1380  Node *cast = new CastPPNode(obj,t_not_null);
1381  cast->init_req(0, control());
1382  cast = _gvn.transform( cast );
1383
1384  // Scan for instances of 'obj' in the current JVM mapping.
1385  // These instances are known to be not-null after the test.
1386  if (do_replace_in_map)
1387    replace_in_map(obj, cast);
1388
1389  return cast;                  // Return casted value
1390}
1391
1392
1393//--------------------------replace_in_map-------------------------------------
1394void GraphKit::replace_in_map(Node* old, Node* neww) {
1395  if (old == neww) {
1396    return;
1397  }
1398
1399  map()->replace_edge(old, neww);
1400
1401  // Note: This operation potentially replaces any edge
1402  // on the map.  This includes locals, stack, and monitors
1403  // of the current (innermost) JVM state.
1404
1405  // don't let inconsistent types from profiling escape this
1406  // method
1407
1408  const Type* told = _gvn.type(old);
1409  const Type* tnew = _gvn.type(neww);
1410
1411  if (!tnew->higher_equal(told)) {
1412    return;
1413  }
1414
1415  map()->record_replaced_node(old, neww);
1416}
1417
1418
1419//=============================================================================
1420//--------------------------------memory---------------------------------------
1421Node* GraphKit::memory(uint alias_idx) {
1422  MergeMemNode* mem = merged_memory();
1423  Node* p = mem->memory_at(alias_idx);
1424  _gvn.set_type(p, Type::MEMORY);  // must be mapped
1425  return p;
1426}
1427
1428//-----------------------------reset_memory------------------------------------
1429Node* GraphKit::reset_memory() {
1430  Node* mem = map()->memory();
1431  // do not use this node for any more parsing!
1432  debug_only( map()->set_memory((Node*)NULL) );
1433  return _gvn.transform( mem );
1434}
1435
1436//------------------------------set_all_memory---------------------------------
1437void GraphKit::set_all_memory(Node* newmem) {
1438  Node* mergemem = MergeMemNode::make(newmem);
1439  gvn().set_type_bottom(mergemem);
1440  map()->set_memory(mergemem);
1441}
1442
1443//------------------------------set_all_memory_call----------------------------
1444void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1445  Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1446  set_all_memory(newmem);
1447}
1448
1449//=============================================================================
1450//
1451// parser factory methods for MemNodes
1452//
1453// These are layered on top of the factory methods in LoadNode and StoreNode,
1454// and integrate with the parser's memory state and _gvn engine.
1455//
1456
1457// factory methods in "int adr_idx"
1458Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1459                          int adr_idx,
1460                          MemNode::MemOrd mo, bool require_atomic_access) {
1461  assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1462  const TypePtr* adr_type = NULL; // debug-mode-only argument
1463  debug_only(adr_type = C->get_adr_type(adr_idx));
1464  Node* mem = memory(adr_idx);
1465  Node* ld;
1466  if (require_atomic_access && bt == T_LONG) {
1467    ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo);
1468  } else if (require_atomic_access && bt == T_DOUBLE) {
1469    ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo);
1470  } else {
1471    ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo);
1472  }
1473  ld = _gvn.transform(ld);
1474  if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1475    // Improve graph before escape analysis and boxing elimination.
1476    record_for_igvn(ld);
1477  }
1478  return ld;
1479}
1480
1481Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1482                                int adr_idx,
1483                                MemNode::MemOrd mo,
1484                                bool require_atomic_access) {
1485  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1486  const TypePtr* adr_type = NULL;
1487  debug_only(adr_type = C->get_adr_type(adr_idx));
1488  Node *mem = memory(adr_idx);
1489  Node* st;
1490  if (require_atomic_access && bt == T_LONG) {
1491    st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1492  } else if (require_atomic_access && bt == T_DOUBLE) {
1493    st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1494  } else {
1495    st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1496  }
1497  st = _gvn.transform(st);
1498  set_memory(st, adr_idx);
1499  // Back-to-back stores can only remove intermediate store with DU info
1500  // so push on worklist for optimizer.
1501  if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1502    record_for_igvn(st);
1503
1504  return st;
1505}
1506
1507
1508void GraphKit::pre_barrier(bool do_load,
1509                           Node* ctl,
1510                           Node* obj,
1511                           Node* adr,
1512                           uint  adr_idx,
1513                           Node* val,
1514                           const TypeOopPtr* val_type,
1515                           Node* pre_val,
1516                           BasicType bt) {
1517
1518  BarrierSet* bs = Universe::heap()->barrier_set();
1519  set_control(ctl);
1520  switch (bs->kind()) {
1521    case BarrierSet::G1SATBCT:
1522    case BarrierSet::G1SATBCTLogging:
1523      g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1524      break;
1525
1526    case BarrierSet::CardTableModRef:
1527    case BarrierSet::CardTableExtension:
1528    case BarrierSet::ModRef:
1529      break;
1530
1531    default      :
1532      ShouldNotReachHere();
1533
1534  }
1535}
1536
1537bool GraphKit::can_move_pre_barrier() const {
1538  BarrierSet* bs = Universe::heap()->barrier_set();
1539  switch (bs->kind()) {
1540    case BarrierSet::G1SATBCT:
1541    case BarrierSet::G1SATBCTLogging:
1542      return true; // Can move it if no safepoint
1543
1544    case BarrierSet::CardTableModRef:
1545    case BarrierSet::CardTableExtension:
1546    case BarrierSet::ModRef:
1547      return true; // There is no pre-barrier
1548
1549    default      :
1550      ShouldNotReachHere();
1551  }
1552  return false;
1553}
1554
1555void GraphKit::post_barrier(Node* ctl,
1556                            Node* store,
1557                            Node* obj,
1558                            Node* adr,
1559                            uint  adr_idx,
1560                            Node* val,
1561                            BasicType bt,
1562                            bool use_precise) {
1563  BarrierSet* bs = Universe::heap()->barrier_set();
1564  set_control(ctl);
1565  switch (bs->kind()) {
1566    case BarrierSet::G1SATBCT:
1567    case BarrierSet::G1SATBCTLogging:
1568      g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1569      break;
1570
1571    case BarrierSet::CardTableModRef:
1572    case BarrierSet::CardTableExtension:
1573      write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1574      break;
1575
1576    case BarrierSet::ModRef:
1577      break;
1578
1579    default      :
1580      ShouldNotReachHere();
1581
1582  }
1583}
1584
1585Node* GraphKit::store_oop(Node* ctl,
1586                          Node* obj,
1587                          Node* adr,
1588                          const TypePtr* adr_type,
1589                          Node* val,
1590                          const TypeOopPtr* val_type,
1591                          BasicType bt,
1592                          bool use_precise,
1593                          MemNode::MemOrd mo) {
1594  // Transformation of a value which could be NULL pointer (CastPP #NULL)
1595  // could be delayed during Parse (for example, in adjust_map_after_if()).
1596  // Execute transformation here to avoid barrier generation in such case.
1597  if (_gvn.type(val) == TypePtr::NULL_PTR)
1598    val = _gvn.makecon(TypePtr::NULL_PTR);
1599
1600  set_control(ctl);
1601  if (stopped()) return top(); // Dead path ?
1602
1603  assert(bt == T_OBJECT, "sanity");
1604  assert(val != NULL, "not dead path");
1605  uint adr_idx = C->get_alias_index(adr_type);
1606  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1607
1608  pre_barrier(true /* do_load */,
1609              control(), obj, adr, adr_idx, val, val_type,
1610              NULL /* pre_val */,
1611              bt);
1612
1613  Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo);
1614  post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1615  return store;
1616}
1617
1618// Could be an array or object we don't know at compile time (unsafe ref.)
1619Node* GraphKit::store_oop_to_unknown(Node* ctl,
1620                             Node* obj,   // containing obj
1621                             Node* adr,  // actual adress to store val at
1622                             const TypePtr* adr_type,
1623                             Node* val,
1624                             BasicType bt,
1625                             MemNode::MemOrd mo) {
1626  Compile::AliasType* at = C->alias_type(adr_type);
1627  const TypeOopPtr* val_type = NULL;
1628  if (adr_type->isa_instptr()) {
1629    if (at->field() != NULL) {
1630      // known field.  This code is a copy of the do_put_xxx logic.
1631      ciField* field = at->field();
1632      if (!field->type()->is_loaded()) {
1633        val_type = TypeInstPtr::BOTTOM;
1634      } else {
1635        val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1636      }
1637    }
1638  } else if (adr_type->isa_aryptr()) {
1639    val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1640  }
1641  if (val_type == NULL) {
1642    val_type = TypeInstPtr::BOTTOM;
1643  }
1644  return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo);
1645}
1646
1647
1648//-------------------------array_element_address-------------------------
1649Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1650                                      const TypeInt* sizetype) {
1651  uint shift  = exact_log2(type2aelembytes(elembt));
1652  uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1653
1654  // short-circuit a common case (saves lots of confusing waste motion)
1655  jint idx_con = find_int_con(idx, -1);
1656  if (idx_con >= 0) {
1657    intptr_t offset = header + ((intptr_t)idx_con << shift);
1658    return basic_plus_adr(ary, offset);
1659  }
1660
1661  // must be correct type for alignment purposes
1662  Node* base  = basic_plus_adr(ary, header);
1663#ifdef _LP64
1664  // The scaled index operand to AddP must be a clean 64-bit value.
1665  // Java allows a 32-bit int to be incremented to a negative
1666  // value, which appears in a 64-bit register as a large
1667  // positive number.  Using that large positive number as an
1668  // operand in pointer arithmetic has bad consequences.
1669  // On the other hand, 32-bit overflow is rare, and the possibility
1670  // can often be excluded, if we annotate the ConvI2L node with
1671  // a type assertion that its value is known to be a small positive
1672  // number.  (The prior range check has ensured this.)
1673  // This assertion is used by ConvI2LNode::Ideal.
1674  int index_max = max_jint - 1;  // array size is max_jint, index is one less
1675  if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1676  const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1677  idx = _gvn.transform( new ConvI2LNode(idx, lidxtype) );
1678#endif
1679  Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1680  return basic_plus_adr(ary, base, scale);
1681}
1682
1683//-------------------------load_array_element-------------------------
1684Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1685  const Type* elemtype = arytype->elem();
1686  BasicType elembt = elemtype->array_element_basic_type();
1687  Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1688  Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1689  return ld;
1690}
1691
1692//-------------------------set_arguments_for_java_call-------------------------
1693// Arguments (pre-popped from the stack) are taken from the JVMS.
1694void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1695  // Add the call arguments:
1696  uint nargs = call->method()->arg_size();
1697  for (uint i = 0; i < nargs; i++) {
1698    Node* arg = argument(i);
1699    call->init_req(i + TypeFunc::Parms, arg);
1700  }
1701}
1702
1703//---------------------------set_edges_for_java_call---------------------------
1704// Connect a newly created call into the current JVMS.
1705// A return value node (if any) is returned from set_edges_for_java_call.
1706void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1707
1708  // Add the predefined inputs:
1709  call->init_req( TypeFunc::Control, control() );
1710  call->init_req( TypeFunc::I_O    , i_o() );
1711  call->init_req( TypeFunc::Memory , reset_memory() );
1712  call->init_req( TypeFunc::FramePtr, frameptr() );
1713  call->init_req( TypeFunc::ReturnAdr, top() );
1714
1715  add_safepoint_edges(call, must_throw);
1716
1717  Node* xcall = _gvn.transform(call);
1718
1719  if (xcall == top()) {
1720    set_control(top());
1721    return;
1722  }
1723  assert(xcall == call, "call identity is stable");
1724
1725  // Re-use the current map to produce the result.
1726
1727  set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1728  set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1729  set_all_memory_call(xcall, separate_io_proj);
1730
1731  //return xcall;   // no need, caller already has it
1732}
1733
1734Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1735  if (stopped())  return top();  // maybe the call folded up?
1736
1737  // Capture the return value, if any.
1738  Node* ret;
1739  if (call->method() == NULL ||
1740      call->method()->return_type()->basic_type() == T_VOID)
1741        ret = top();
1742  else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1743
1744  // Note:  Since any out-of-line call can produce an exception,
1745  // we always insert an I_O projection from the call into the result.
1746
1747  make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1748
1749  if (separate_io_proj) {
1750    // The caller requested separate projections be used by the fall
1751    // through and exceptional paths, so replace the projections for
1752    // the fall through path.
1753    set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1754    set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1755  }
1756  return ret;
1757}
1758
1759//--------------------set_predefined_input_for_runtime_call--------------------
1760// Reading and setting the memory state is way conservative here.
1761// The real problem is that I am not doing real Type analysis on memory,
1762// so I cannot distinguish card mark stores from other stores.  Across a GC
1763// point the Store Barrier and the card mark memory has to agree.  I cannot
1764// have a card mark store and its barrier split across the GC point from
1765// either above or below.  Here I get that to happen by reading ALL of memory.
1766// A better answer would be to separate out card marks from other memory.
1767// For now, return the input memory state, so that it can be reused
1768// after the call, if this call has restricted memory effects.
1769Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1770  // Set fixed predefined input arguments
1771  Node* memory = reset_memory();
1772  call->init_req( TypeFunc::Control,   control()  );
1773  call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1774  call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1775  call->init_req( TypeFunc::FramePtr,  frameptr() );
1776  call->init_req( TypeFunc::ReturnAdr, top()      );
1777  return memory;
1778}
1779
1780//-------------------set_predefined_output_for_runtime_call--------------------
1781// Set control and memory (not i_o) from the call.
1782// If keep_mem is not NULL, use it for the output state,
1783// except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1784// If hook_mem is NULL, this call produces no memory effects at all.
1785// If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1786// then only that memory slice is taken from the call.
1787// In the last case, we must put an appropriate memory barrier before
1788// the call, so as to create the correct anti-dependencies on loads
1789// preceding the call.
1790void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1791                                                      Node* keep_mem,
1792                                                      const TypePtr* hook_mem) {
1793  // no i/o
1794  set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1795  if (keep_mem) {
1796    // First clone the existing memory state
1797    set_all_memory(keep_mem);
1798    if (hook_mem != NULL) {
1799      // Make memory for the call
1800      Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1801      // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1802      // We also use hook_mem to extract specific effects from arraycopy stubs.
1803      set_memory(mem, hook_mem);
1804    }
1805    // ...else the call has NO memory effects.
1806
1807    // Make sure the call advertises its memory effects precisely.
1808    // This lets us build accurate anti-dependences in gcm.cpp.
1809    assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1810           "call node must be constructed correctly");
1811  } else {
1812    assert(hook_mem == NULL, "");
1813    // This is not a "slow path" call; all memory comes from the call.
1814    set_all_memory_call(call);
1815  }
1816}
1817
1818
1819// Replace the call with the current state of the kit.
1820void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1821  JVMState* ejvms = NULL;
1822  if (has_exceptions()) {
1823    ejvms = transfer_exceptions_into_jvms();
1824  }
1825
1826  ReplacedNodes replaced_nodes = map()->replaced_nodes();
1827  ReplacedNodes replaced_nodes_exception;
1828  Node* ex_ctl = top();
1829
1830  SafePointNode* final_state = stop();
1831
1832  // Find all the needed outputs of this call
1833  CallProjections callprojs;
1834  call->extract_projections(&callprojs, true);
1835
1836  Node* init_mem = call->in(TypeFunc::Memory);
1837  Node* final_mem = final_state->in(TypeFunc::Memory);
1838  Node* final_ctl = final_state->in(TypeFunc::Control);
1839  Node* final_io = final_state->in(TypeFunc::I_O);
1840
1841  // Replace all the old call edges with the edges from the inlining result
1842  if (callprojs.fallthrough_catchproj != NULL) {
1843    C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1844  }
1845  if (callprojs.fallthrough_memproj != NULL) {
1846    if (final_mem->is_MergeMem()) {
1847      // Parser's exits MergeMem was not transformed but may be optimized
1848      final_mem = _gvn.transform(final_mem);
1849    }
1850    C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1851  }
1852  if (callprojs.fallthrough_ioproj != NULL) {
1853    C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1854  }
1855
1856  // Replace the result with the new result if it exists and is used
1857  if (callprojs.resproj != NULL && result != NULL) {
1858    C->gvn_replace_by(callprojs.resproj, result);
1859  }
1860
1861  if (ejvms == NULL) {
1862    // No exception edges to simply kill off those paths
1863    if (callprojs.catchall_catchproj != NULL) {
1864      C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1865    }
1866    if (callprojs.catchall_memproj != NULL) {
1867      C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1868    }
1869    if (callprojs.catchall_ioproj != NULL) {
1870      C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1871    }
1872    // Replace the old exception object with top
1873    if (callprojs.exobj != NULL) {
1874      C->gvn_replace_by(callprojs.exobj, C->top());
1875    }
1876  } else {
1877    GraphKit ekit(ejvms);
1878
1879    // Load my combined exception state into the kit, with all phis transformed:
1880    SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1881    replaced_nodes_exception = ex_map->replaced_nodes();
1882
1883    Node* ex_oop = ekit.use_exception_state(ex_map);
1884
1885    if (callprojs.catchall_catchproj != NULL) {
1886      C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1887      ex_ctl = ekit.control();
1888    }
1889    if (callprojs.catchall_memproj != NULL) {
1890      C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1891    }
1892    if (callprojs.catchall_ioproj != NULL) {
1893      C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1894    }
1895
1896    // Replace the old exception object with the newly created one
1897    if (callprojs.exobj != NULL) {
1898      C->gvn_replace_by(callprojs.exobj, ex_oop);
1899    }
1900  }
1901
1902  // Disconnect the call from the graph
1903  call->disconnect_inputs(NULL, C);
1904  C->gvn_replace_by(call, C->top());
1905
1906  // Clean up any MergeMems that feed other MergeMems since the
1907  // optimizer doesn't like that.
1908  if (final_mem->is_MergeMem()) {
1909    Node_List wl;
1910    for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1911      Node* m = i.get();
1912      if (m->is_MergeMem() && !wl.contains(m)) {
1913        wl.push(m);
1914      }
1915    }
1916    while (wl.size()  > 0) {
1917      _gvn.transform(wl.pop());
1918    }
1919  }
1920
1921  if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1922    replaced_nodes.apply(C, final_ctl);
1923  }
1924  if (!ex_ctl->is_top() && do_replaced_nodes) {
1925    replaced_nodes_exception.apply(C, ex_ctl);
1926  }
1927}
1928
1929
1930//------------------------------increment_counter------------------------------
1931// for statistics: increment a VM counter by 1
1932
1933void GraphKit::increment_counter(address counter_addr) {
1934  Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1935  increment_counter(adr1);
1936}
1937
1938void GraphKit::increment_counter(Node* counter_addr) {
1939  int adr_type = Compile::AliasIdxRaw;
1940  Node* ctrl = control();
1941  Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1942  Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1943  store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1944}
1945
1946
1947//------------------------------uncommon_trap----------------------------------
1948// Bail out to the interpreter in mid-method.  Implemented by calling the
1949// uncommon_trap blob.  This helper function inserts a runtime call with the
1950// right debug info.
1951void GraphKit::uncommon_trap(int trap_request,
1952                             ciKlass* klass, const char* comment,
1953                             bool must_throw,
1954                             bool keep_exact_action) {
1955  if (failing())  stop();
1956  if (stopped())  return; // trap reachable?
1957
1958  // Note:  If ProfileTraps is true, and if a deopt. actually
1959  // occurs here, the runtime will make sure an MDO exists.  There is
1960  // no need to call method()->ensure_method_data() at this point.
1961
1962  // Set the stack pointer to the right value for reexecution:
1963  set_sp(reexecute_sp());
1964
1965#ifdef ASSERT
1966  if (!must_throw) {
1967    // Make sure the stack has at least enough depth to execute
1968    // the current bytecode.
1969    int inputs, ignored_depth;
1970    if (compute_stack_effects(inputs, ignored_depth)) {
1971      assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1972             Bytecodes::name(java_bc()), sp(), inputs));
1973    }
1974  }
1975#endif
1976
1977  Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1978  Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1979
1980  switch (action) {
1981  case Deoptimization::Action_maybe_recompile:
1982  case Deoptimization::Action_reinterpret:
1983    // Temporary fix for 6529811 to allow virtual calls to be sure they
1984    // get the chance to go from mono->bi->mega
1985    if (!keep_exact_action &&
1986        Deoptimization::trap_request_index(trap_request) < 0 &&
1987        too_many_recompiles(reason)) {
1988      // This BCI is causing too many recompilations.
1989      if (C->log() != NULL) {
1990        C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
1991                Deoptimization::trap_reason_name(reason),
1992                Deoptimization::trap_action_name(action));
1993      }
1994      action = Deoptimization::Action_none;
1995      trap_request = Deoptimization::make_trap_request(reason, action);
1996    } else {
1997      C->set_trap_can_recompile(true);
1998    }
1999    break;
2000  case Deoptimization::Action_make_not_entrant:
2001    C->set_trap_can_recompile(true);
2002    break;
2003#ifdef ASSERT
2004  case Deoptimization::Action_none:
2005  case Deoptimization::Action_make_not_compilable:
2006    break;
2007  default:
2008    fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
2009    break;
2010#endif
2011  }
2012
2013  if (TraceOptoParse) {
2014    char buf[100];
2015    tty->print_cr("Uncommon trap %s at bci:%d",
2016                  Deoptimization::format_trap_request(buf, sizeof(buf),
2017                                                      trap_request), bci());
2018  }
2019
2020  CompileLog* log = C->log();
2021  if (log != NULL) {
2022    int kid = (klass == NULL)? -1: log->identify(klass);
2023    log->begin_elem("uncommon_trap bci='%d'", bci());
2024    char buf[100];
2025    log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2026                                                          trap_request));
2027    if (kid >= 0)         log->print(" klass='%d'", kid);
2028    if (comment != NULL)  log->print(" comment='%s'", comment);
2029    log->end_elem();
2030  }
2031
2032  // Make sure any guarding test views this path as very unlikely
2033  Node *i0 = control()->in(0);
2034  if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2035    IfNode *iff = i0->as_If();
2036    float f = iff->_prob;   // Get prob
2037    if (control()->Opcode() == Op_IfTrue) {
2038      if (f > PROB_UNLIKELY_MAG(4))
2039        iff->_prob = PROB_MIN;
2040    } else {
2041      if (f < PROB_LIKELY_MAG(4))
2042        iff->_prob = PROB_MAX;
2043    }
2044  }
2045
2046  // Clear out dead values from the debug info.
2047  kill_dead_locals();
2048
2049  // Now insert the uncommon trap subroutine call
2050  address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2051  const TypePtr* no_memory_effects = NULL;
2052  // Pass the index of the class to be loaded
2053  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2054                                 (must_throw ? RC_MUST_THROW : 0),
2055                                 OptoRuntime::uncommon_trap_Type(),
2056                                 call_addr, "uncommon_trap", no_memory_effects,
2057                                 intcon(trap_request));
2058  assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2059         "must extract request correctly from the graph");
2060  assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2061
2062  call->set_req(TypeFunc::ReturnAdr, returnadr());
2063  // The debug info is the only real input to this call.
2064
2065  // Halt-and-catch fire here.  The above call should never return!
2066  HaltNode* halt = new HaltNode(control(), frameptr());
2067  _gvn.set_type_bottom(halt);
2068  root()->add_req(halt);
2069
2070  stop_and_kill_map();
2071}
2072
2073
2074//--------------------------just_allocated_object------------------------------
2075// Report the object that was just allocated.
2076// It must be the case that there are no intervening safepoints.
2077// We use this to determine if an object is so "fresh" that
2078// it does not require card marks.
2079Node* GraphKit::just_allocated_object(Node* current_control) {
2080  if (C->recent_alloc_ctl() == current_control)
2081    return C->recent_alloc_obj();
2082  return NULL;
2083}
2084
2085
2086void GraphKit::round_double_arguments(ciMethod* dest_method) {
2087  // (Note:  TypeFunc::make has a cache that makes this fast.)
2088  const TypeFunc* tf    = TypeFunc::make(dest_method);
2089  int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2090  for (int j = 0; j < nargs; j++) {
2091    const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2092    if( targ->basic_type() == T_DOUBLE ) {
2093      // If any parameters are doubles, they must be rounded before
2094      // the call, dstore_rounding does gvn.transform
2095      Node *arg = argument(j);
2096      arg = dstore_rounding(arg);
2097      set_argument(j, arg);
2098    }
2099  }
2100}
2101
2102/**
2103 * Record profiling data exact_kls for Node n with the type system so
2104 * that it can propagate it (speculation)
2105 *
2106 * @param n          node that the type applies to
2107 * @param exact_kls  type from profiling
2108 * @param maybe_null did profiling see null?
2109 *
2110 * @return           node with improved type
2111 */
2112Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null) {
2113  const Type* current_type = _gvn.type(n);
2114  assert(UseTypeSpeculation, "type speculation must be on");
2115
2116  const TypePtr* speculative = current_type->speculative();
2117
2118  // Should the klass from the profile be recorded in the speculative type?
2119  if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2120    const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2121    const TypeOopPtr* xtype = tklass->as_instance_type();
2122    assert(xtype->klass_is_exact(), "Should be exact");
2123    // Any reason to believe n is not null (from this profiling or a previous one)?
2124    const TypePtr* ptr = (maybe_null && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2125    // record the new speculative type's depth
2126    speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2127    speculative = speculative->with_inline_depth(jvms()->depth());
2128  } else if (current_type->would_improve_ptr(maybe_null)) {
2129    // Profiling report that null was never seen so we can change the
2130    // speculative type to non null ptr.
2131    assert(!maybe_null, "nothing to improve");
2132    if (speculative == NULL) {
2133      speculative = TypePtr::NOTNULL;
2134    } else {
2135      const TypePtr* ptr = TypePtr::NOTNULL;
2136      speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2137    }
2138  }
2139
2140  if (speculative != current_type->speculative()) {
2141    // Build a type with a speculative type (what we think we know
2142    // about the type but will need a guard when we use it)
2143    const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2144    // We're changing the type, we need a new CheckCast node to carry
2145    // the new type. The new type depends on the control: what
2146    // profiling tells us is only valid from here as far as we can
2147    // tell.
2148    Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2149    cast = _gvn.transform(cast);
2150    replace_in_map(n, cast);
2151    n = cast;
2152  }
2153
2154  return n;
2155}
2156
2157/**
2158 * Record profiling data from receiver profiling at an invoke with the
2159 * type system so that it can propagate it (speculation)
2160 *
2161 * @param n  receiver node
2162 *
2163 * @return   node with improved type
2164 */
2165Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2166  if (!UseTypeSpeculation) {
2167    return n;
2168  }
2169  ciKlass* exact_kls = profile_has_unique_klass();
2170  bool maybe_null = true;
2171  if (java_bc() == Bytecodes::_checkcast ||
2172      java_bc() == Bytecodes::_instanceof ||
2173      java_bc() == Bytecodes::_aastore) {
2174    ciProfileData* data = method()->method_data()->bci_to_data(bci());
2175    bool maybe_null = data == NULL ? true : data->as_BitData()->null_seen();
2176  }
2177  return record_profile_for_speculation(n, exact_kls, maybe_null);
2178  return n;
2179}
2180
2181/**
2182 * Record profiling data from argument profiling at an invoke with the
2183 * type system so that it can propagate it (speculation)
2184 *
2185 * @param dest_method  target method for the call
2186 * @param bc           what invoke bytecode is this?
2187 */
2188void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2189  if (!UseTypeSpeculation) {
2190    return;
2191  }
2192  const TypeFunc* tf    = TypeFunc::make(dest_method);
2193  int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2194  int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2195  for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2196    const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2197    if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2198      bool maybe_null = true;
2199      ciKlass* better_type = NULL;
2200      if (method()->argument_profiled_type(bci(), i, better_type, maybe_null)) {
2201        record_profile_for_speculation(argument(j), better_type, maybe_null);
2202      }
2203      i++;
2204    }
2205  }
2206}
2207
2208/**
2209 * Record profiling data from parameter profiling at an invoke with
2210 * the type system so that it can propagate it (speculation)
2211 */
2212void GraphKit::record_profiled_parameters_for_speculation() {
2213  if (!UseTypeSpeculation) {
2214    return;
2215  }
2216  for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2217    if (_gvn.type(local(i))->isa_oopptr()) {
2218      bool maybe_null = true;
2219      ciKlass* better_type = NULL;
2220      if (method()->parameter_profiled_type(j, better_type, maybe_null)) {
2221        record_profile_for_speculation(local(i), better_type, maybe_null);
2222      }
2223      j++;
2224    }
2225  }
2226}
2227
2228/**
2229 * Record profiling data from return value profiling at an invoke with
2230 * the type system so that it can propagate it (speculation)
2231 */
2232void GraphKit::record_profiled_return_for_speculation() {
2233  if (!UseTypeSpeculation) {
2234    return;
2235  }
2236  bool maybe_null = true;
2237  ciKlass* better_type = NULL;
2238  if (method()->return_profiled_type(bci(), better_type, maybe_null)) {
2239    // If profiling reports a single type for the return value,
2240    // feed it to the type system so it can propagate it as a
2241    // speculative type
2242    record_profile_for_speculation(stack(sp()-1), better_type, maybe_null);
2243  }
2244}
2245
2246void GraphKit::round_double_result(ciMethod* dest_method) {
2247  // A non-strict method may return a double value which has an extended
2248  // exponent, but this must not be visible in a caller which is 'strict'
2249  // If a strict caller invokes a non-strict callee, round a double result
2250
2251  BasicType result_type = dest_method->return_type()->basic_type();
2252  assert( method() != NULL, "must have caller context");
2253  if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2254    // Destination method's return value is on top of stack
2255    // dstore_rounding() does gvn.transform
2256    Node *result = pop_pair();
2257    result = dstore_rounding(result);
2258    push_pair(result);
2259  }
2260}
2261
2262// rounding for strict float precision conformance
2263Node* GraphKit::precision_rounding(Node* n) {
2264  return UseStrictFP && _method->flags().is_strict()
2265    && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2266    ? _gvn.transform( new RoundFloatNode(0, n) )
2267    : n;
2268}
2269
2270// rounding for strict double precision conformance
2271Node* GraphKit::dprecision_rounding(Node *n) {
2272  return UseStrictFP && _method->flags().is_strict()
2273    && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2274    ? _gvn.transform( new RoundDoubleNode(0, n) )
2275    : n;
2276}
2277
2278// rounding for non-strict double stores
2279Node* GraphKit::dstore_rounding(Node* n) {
2280  return Matcher::strict_fp_requires_explicit_rounding
2281    && UseSSE <= 1
2282    ? _gvn.transform( new RoundDoubleNode(0, n) )
2283    : n;
2284}
2285
2286//=============================================================================
2287// Generate a fast path/slow path idiom.  Graph looks like:
2288// [foo] indicates that 'foo' is a parameter
2289//
2290//              [in]     NULL
2291//                 \    /
2292//                  CmpP
2293//                  Bool ne
2294//                   If
2295//                  /  \
2296//              True    False-<2>
2297//              / |
2298//             /  cast_not_null
2299//           Load  |    |   ^
2300//        [fast_test]   |   |
2301// gvn to   opt_test    |   |
2302//          /    \      |  <1>
2303//      True     False  |
2304//        |         \\  |
2305//   [slow_call]     \[fast_result]
2306//    Ctl   Val       \      \
2307//     |               \      \
2308//    Catch       <1>   \      \
2309//   /    \        ^     \      \
2310//  Ex    No_Ex    |      \      \
2311//  |       \   \  |       \ <2>  \
2312//  ...      \  [slow_res] |  |    \   [null_result]
2313//            \         \--+--+---  |  |
2314//             \           | /    \ | /
2315//              --------Region     Phi
2316//
2317//=============================================================================
2318// Code is structured as a series of driver functions all called 'do_XXX' that
2319// call a set of helper functions.  Helper functions first, then drivers.
2320
2321//------------------------------null_check_oop---------------------------------
2322// Null check oop.  Set null-path control into Region in slot 3.
2323// Make a cast-not-nullness use the other not-null control.  Return cast.
2324Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2325                               bool never_see_null,
2326                               bool safe_for_replace,
2327                               bool speculative) {
2328  // Initial NULL check taken path
2329  (*null_control) = top();
2330  Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2331
2332  // Generate uncommon_trap:
2333  if (never_see_null && (*null_control) != top()) {
2334    // If we see an unexpected null at a check-cast we record it and force a
2335    // recompile; the offending check-cast will be compiled to handle NULLs.
2336    // If we see more than one offending BCI, then all checkcasts in the
2337    // method will be compiled to handle NULLs.
2338    PreserveJVMState pjvms(this);
2339    set_control(*null_control);
2340    replace_in_map(value, null());
2341    Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2342    uncommon_trap(reason,
2343                  Deoptimization::Action_make_not_entrant);
2344    (*null_control) = top();    // NULL path is dead
2345  }
2346  if ((*null_control) == top() && safe_for_replace) {
2347    replace_in_map(value, cast);
2348  }
2349
2350  // Cast away null-ness on the result
2351  return cast;
2352}
2353
2354//------------------------------opt_iff----------------------------------------
2355// Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2356// Return slow-path control.
2357Node* GraphKit::opt_iff(Node* region, Node* iff) {
2358  IfNode *opt_iff = _gvn.transform(iff)->as_If();
2359
2360  // Fast path taken; set region slot 2
2361  Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2362  region->init_req(2,fast_taken); // Capture fast-control
2363
2364  // Fast path not-taken, i.e. slow path
2365  Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2366  return slow_taken;
2367}
2368
2369//-----------------------------make_runtime_call-------------------------------
2370Node* GraphKit::make_runtime_call(int flags,
2371                                  const TypeFunc* call_type, address call_addr,
2372                                  const char* call_name,
2373                                  const TypePtr* adr_type,
2374                                  // The following parms are all optional.
2375                                  // The first NULL ends the list.
2376                                  Node* parm0, Node* parm1,
2377                                  Node* parm2, Node* parm3,
2378                                  Node* parm4, Node* parm5,
2379                                  Node* parm6, Node* parm7) {
2380  // Slow-path call
2381  bool is_leaf = !(flags & RC_NO_LEAF);
2382  bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2383  if (call_name == NULL) {
2384    assert(!is_leaf, "must supply name for leaf");
2385    call_name = OptoRuntime::stub_name(call_addr);
2386  }
2387  CallNode* call;
2388  if (!is_leaf) {
2389    call = new CallStaticJavaNode(call_type, call_addr, call_name,
2390                                           bci(), adr_type);
2391  } else if (flags & RC_NO_FP) {
2392    call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2393  } else {
2394    call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2395  }
2396
2397  // The following is similar to set_edges_for_java_call,
2398  // except that the memory effects of the call are restricted to AliasIdxRaw.
2399
2400  // Slow path call has no side-effects, uses few values
2401  bool wide_in  = !(flags & RC_NARROW_MEM);
2402  bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2403
2404  Node* prev_mem = NULL;
2405  if (wide_in) {
2406    prev_mem = set_predefined_input_for_runtime_call(call);
2407  } else {
2408    assert(!wide_out, "narrow in => narrow out");
2409    Node* narrow_mem = memory(adr_type);
2410    prev_mem = reset_memory();
2411    map()->set_memory(narrow_mem);
2412    set_predefined_input_for_runtime_call(call);
2413  }
2414
2415  // Hook each parm in order.  Stop looking at the first NULL.
2416  if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2417  if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2418  if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2419  if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2420  if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2421  if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2422  if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2423  if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2424    /* close each nested if ===> */  } } } } } } } }
2425  assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2426
2427  if (!is_leaf) {
2428    // Non-leaves can block and take safepoints:
2429    add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2430  }
2431  // Non-leaves can throw exceptions:
2432  if (has_io) {
2433    call->set_req(TypeFunc::I_O, i_o());
2434  }
2435
2436  if (flags & RC_UNCOMMON) {
2437    // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2438    // (An "if" probability corresponds roughly to an unconditional count.
2439    // Sort of.)
2440    call->set_cnt(PROB_UNLIKELY_MAG(4));
2441  }
2442
2443  Node* c = _gvn.transform(call);
2444  assert(c == call, "cannot disappear");
2445
2446  if (wide_out) {
2447    // Slow path call has full side-effects.
2448    set_predefined_output_for_runtime_call(call);
2449  } else {
2450    // Slow path call has few side-effects, and/or sets few values.
2451    set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2452  }
2453
2454  if (has_io) {
2455    set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2456  }
2457  return call;
2458
2459}
2460
2461//------------------------------merge_memory-----------------------------------
2462// Merge memory from one path into the current memory state.
2463void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2464  for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2465    Node* old_slice = mms.force_memory();
2466    Node* new_slice = mms.memory2();
2467    if (old_slice != new_slice) {
2468      PhiNode* phi;
2469      if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2470        if (mms.is_empty()) {
2471          // clone base memory Phi's inputs for this memory slice
2472          assert(old_slice == mms.base_memory(), "sanity");
2473          phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2474          _gvn.set_type(phi, Type::MEMORY);
2475          for (uint i = 1; i < phi->req(); i++) {
2476            phi->init_req(i, old_slice->in(i));
2477          }
2478        } else {
2479          phi = old_slice->as_Phi(); // Phi was generated already
2480        }
2481      } else {
2482        phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2483        _gvn.set_type(phi, Type::MEMORY);
2484      }
2485      phi->set_req(new_path, new_slice);
2486      mms.set_memory(phi);
2487    }
2488  }
2489}
2490
2491//------------------------------make_slow_call_ex------------------------------
2492// Make the exception handler hookups for the slow call
2493void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2494  if (stopped())  return;
2495
2496  // Make a catch node with just two handlers:  fall-through and catch-all
2497  Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2498  Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2499  Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2500  Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2501
2502  { PreserveJVMState pjvms(this);
2503    set_control(excp);
2504    set_i_o(i_o);
2505
2506    if (excp != top()) {
2507      if (deoptimize) {
2508        // Deoptimize if an exception is caught. Don't construct exception state in this case.
2509        uncommon_trap(Deoptimization::Reason_unhandled,
2510                      Deoptimization::Action_none);
2511      } else {
2512        // Create an exception state also.
2513        // Use an exact type if the caller has specified a specific exception.
2514        const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2515        Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2516        add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2517      }
2518    }
2519  }
2520
2521  // Get the no-exception control from the CatchNode.
2522  set_control(norm);
2523}
2524
2525static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2526  Node* cmp = NULL;
2527  switch(bt) {
2528  case T_INT: cmp = new CmpINode(in1, in2); break;
2529  case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2530  default: fatal(err_msg("unexpected comparison type %s", type2name(bt)));
2531  }
2532  gvn->transform(cmp);
2533  Node* bol = gvn->transform(new BoolNode(cmp, test));
2534  IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2535  gvn->transform(iff);
2536  if (!bol->is_Con()) gvn->record_for_igvn(iff);
2537  return iff;
2538}
2539
2540
2541//-------------------------------gen_subtype_check-----------------------------
2542// Generate a subtyping check.  Takes as input the subtype and supertype.
2543// Returns 2 values: sets the default control() to the true path and returns
2544// the false path.  Only reads invariant memory; sets no (visible) memory.
2545// The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2546// but that's not exposed to the optimizer.  This call also doesn't take in an
2547// Object; if you wish to check an Object you need to load the Object's class
2548// prior to coming here.
2549Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2550  Compile* C = gvn->C;
2551  // Fast check for identical types, perhaps identical constants.
2552  // The types can even be identical non-constants, in cases
2553  // involving Array.newInstance, Object.clone, etc.
2554  if (subklass == superklass)
2555    return C->top();             // false path is dead; no test needed.
2556
2557  if (gvn->type(superklass)->singleton()) {
2558    ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2559    ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2560
2561    // In the common case of an exact superklass, try to fold up the
2562    // test before generating code.  You may ask, why not just generate
2563    // the code and then let it fold up?  The answer is that the generated
2564    // code will necessarily include null checks, which do not always
2565    // completely fold away.  If they are also needless, then they turn
2566    // into a performance loss.  Example:
2567    //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2568    // Here, the type of 'fa' is often exact, so the store check
2569    // of fa[1]=x will fold up, without testing the nullness of x.
2570    switch (C->static_subtype_check(superk, subk)) {
2571    case Compile::SSC_always_false:
2572      {
2573        Node* always_fail = *ctrl;
2574        *ctrl = gvn->C->top();
2575        return always_fail;
2576      }
2577    case Compile::SSC_always_true:
2578      return C->top();
2579    case Compile::SSC_easy_test:
2580      {
2581        // Just do a direct pointer compare and be done.
2582        IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2583        *ctrl = gvn->transform(new IfTrueNode(iff));
2584        return gvn->transform(new IfFalseNode(iff));
2585      }
2586    case Compile::SSC_full_test:
2587      break;
2588    default:
2589      ShouldNotReachHere();
2590    }
2591  }
2592
2593  // %%% Possible further optimization:  Even if the superklass is not exact,
2594  // if the subklass is the unique subtype of the superklass, the check
2595  // will always succeed.  We could leave a dependency behind to ensure this.
2596
2597  // First load the super-klass's check-offset
2598  Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2599  Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2600  Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2601  int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2602  bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2603
2604  // Load from the sub-klass's super-class display list, or a 1-word cache of
2605  // the secondary superclass list, or a failing value with a sentinel offset
2606  // if the super-klass is an interface or exceptionally deep in the Java
2607  // hierarchy and we have to scan the secondary superclass list the hard way.
2608  // Worst-case type is a little odd: NULL is allowed as a result (usually
2609  // klass loads can never produce a NULL).
2610  Node *chk_off_X = chk_off;
2611#ifdef _LP64
2612  chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2613#endif
2614  Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2615  // For some types like interfaces the following loadKlass is from a 1-word
2616  // cache which is mutable so can't use immutable memory.  Other
2617  // types load from the super-class display table which is immutable.
2618  m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2619  Node *kmem = might_be_cache ? m : C->immutable_memory();
2620  Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2621
2622  // Compile speed common case: ARE a subtype and we canNOT fail
2623  if( superklass == nkls )
2624    return C->top();             // false path is dead; no test needed.
2625
2626  // See if we get an immediate positive hit.  Happens roughly 83% of the
2627  // time.  Test to see if the value loaded just previously from the subklass
2628  // is exactly the superklass.
2629  IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2630  Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2631  *ctrl = gvn->transform(new IfFalseNode(iff1));
2632
2633  // Compile speed common case: Check for being deterministic right now.  If
2634  // chk_off is a constant and not equal to cacheoff then we are NOT a
2635  // subklass.  In this case we need exactly the 1 test above and we can
2636  // return those results immediately.
2637  if (!might_be_cache) {
2638    Node* not_subtype_ctrl = *ctrl;
2639    *ctrl = iftrue1; // We need exactly the 1 test above
2640    return not_subtype_ctrl;
2641  }
2642
2643  // Gather the various success & failures here
2644  RegionNode *r_ok_subtype = new RegionNode(4);
2645  gvn->record_for_igvn(r_ok_subtype);
2646  RegionNode *r_not_subtype = new RegionNode(3);
2647  gvn->record_for_igvn(r_not_subtype);
2648
2649  r_ok_subtype->init_req(1, iftrue1);
2650
2651  // Check for immediate negative hit.  Happens roughly 11% of the time (which
2652  // is roughly 63% of the remaining cases).  Test to see if the loaded
2653  // check-offset points into the subklass display list or the 1-element
2654  // cache.  If it points to the display (and NOT the cache) and the display
2655  // missed then it's not a subtype.
2656  Node *cacheoff = gvn->intcon(cacheoff_con);
2657  IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2658  r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2659  *ctrl = gvn->transform(new IfFalseNode(iff2));
2660
2661  // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2662  // No performance impact (too rare) but allows sharing of secondary arrays
2663  // which has some footprint reduction.
2664  IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2665  r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2666  *ctrl = gvn->transform(new IfFalseNode(iff3));
2667
2668  // -- Roads not taken here: --
2669  // We could also have chosen to perform the self-check at the beginning
2670  // of this code sequence, as the assembler does.  This would not pay off
2671  // the same way, since the optimizer, unlike the assembler, can perform
2672  // static type analysis to fold away many successful self-checks.
2673  // Non-foldable self checks work better here in second position, because
2674  // the initial primary superclass check subsumes a self-check for most
2675  // types.  An exception would be a secondary type like array-of-interface,
2676  // which does not appear in its own primary supertype display.
2677  // Finally, we could have chosen to move the self-check into the
2678  // PartialSubtypeCheckNode, and from there out-of-line in a platform
2679  // dependent manner.  But it is worthwhile to have the check here,
2680  // where it can be perhaps be optimized.  The cost in code space is
2681  // small (register compare, branch).
2682
2683  // Now do a linear scan of the secondary super-klass array.  Again, no real
2684  // performance impact (too rare) but it's gotta be done.
2685  // Since the code is rarely used, there is no penalty for moving it
2686  // out of line, and it can only improve I-cache density.
2687  // The decision to inline or out-of-line this final check is platform
2688  // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2689  Node* psc = gvn->transform(
2690    new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2691
2692  IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2693  r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2694  r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2695
2696  // Return false path; set default control to true path.
2697  *ctrl = gvn->transform(r_ok_subtype);
2698  return gvn->transform(r_not_subtype);
2699}
2700
2701// Profile-driven exact type check:
2702Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2703                                    float prob,
2704                                    Node* *casted_receiver) {
2705  const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2706  Node* recv_klass = load_object_klass(receiver);
2707  Node* want_klass = makecon(tklass);
2708  Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2709  Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2710  IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2711  set_control( _gvn.transform( new IfTrueNode (iff) ));
2712  Node* fail = _gvn.transform( new IfFalseNode(iff) );
2713
2714  const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2715  assert(recv_xtype->klass_is_exact(), "");
2716
2717  // Subsume downstream occurrences of receiver with a cast to
2718  // recv_xtype, since now we know what the type will be.
2719  Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2720  (*casted_receiver) = _gvn.transform(cast);
2721  // (User must make the replace_in_map call.)
2722
2723  return fail;
2724}
2725
2726
2727//------------------------------seems_never_null-------------------------------
2728// Use null_seen information if it is available from the profile.
2729// If we see an unexpected null at a type check we record it and force a
2730// recompile; the offending check will be recompiled to handle NULLs.
2731// If we see several offending BCIs, then all checks in the
2732// method will be recompiled.
2733bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2734  speculating = !_gvn.type(obj)->speculative_maybe_null();
2735  Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2736  if (UncommonNullCast               // Cutout for this technique
2737      && obj != null()               // And not the -Xcomp stupid case?
2738      && !too_many_traps(reason)
2739      ) {
2740    if (speculating) {
2741      return true;
2742    }
2743    if (data == NULL)
2744      // Edge case:  no mature data.  Be optimistic here.
2745      return true;
2746    // If the profile has not seen a null, assume it won't happen.
2747    assert(java_bc() == Bytecodes::_checkcast ||
2748           java_bc() == Bytecodes::_instanceof ||
2749           java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2750    return !data->as_BitData()->null_seen();
2751  }
2752  speculating = false;
2753  return false;
2754}
2755
2756//------------------------maybe_cast_profiled_receiver-------------------------
2757// If the profile has seen exactly one type, narrow to exactly that type.
2758// Subsequent type checks will always fold up.
2759Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2760                                             ciKlass* require_klass,
2761                                             ciKlass* spec_klass,
2762                                             bool safe_for_replace) {
2763  if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2764
2765  Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2766
2767  // Make sure we haven't already deoptimized from this tactic.
2768  if (too_many_traps(reason) || too_many_recompiles(reason))
2769    return NULL;
2770
2771  // (No, this isn't a call, but it's enough like a virtual call
2772  // to use the same ciMethod accessor to get the profile info...)
2773  // If we have a speculative type use it instead of profiling (which
2774  // may not help us)
2775  ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2776  if (exact_kls != NULL) {// no cast failures here
2777    if (require_klass == NULL ||
2778        C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2779      // If we narrow the type to match what the type profile sees or
2780      // the speculative type, we can then remove the rest of the
2781      // cast.
2782      // This is a win, even if the exact_kls is very specific,
2783      // because downstream operations, such as method calls,
2784      // will often benefit from the sharper type.
2785      Node* exact_obj = not_null_obj; // will get updated in place...
2786      Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2787                                            &exact_obj);
2788      { PreserveJVMState pjvms(this);
2789        set_control(slow_ctl);
2790        uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2791      }
2792      if (safe_for_replace) {
2793        replace_in_map(not_null_obj, exact_obj);
2794      }
2795      return exact_obj;
2796    }
2797    // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2798  }
2799
2800  return NULL;
2801}
2802
2803/**
2804 * Cast obj to type and emit guard unless we had too many traps here
2805 * already
2806 *
2807 * @param obj       node being casted
2808 * @param type      type to cast the node to
2809 * @param not_null  true if we know node cannot be null
2810 */
2811Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2812                                        ciKlass* type,
2813                                        bool not_null,
2814                                        SafePointNode* sfpt) {
2815  // type == NULL if profiling tells us this object is always null
2816  if (type != NULL) {
2817    Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2818    Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2819    ciMethod* trap_method = (sfpt == NULL) ? method() : sfpt->jvms()->method();
2820    int trap_bci = (sfpt == NULL) ? bci() : sfpt->jvms()->bci();
2821
2822    if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2823        !C->too_many_traps(trap_method, trap_bci, class_reason) &&
2824        !C->too_many_recompiles(trap_method, trap_bci, class_reason)) {
2825      Node* not_null_obj = NULL;
2826      // not_null is true if we know the object is not null and
2827      // there's no need for a null check
2828      if (!not_null) {
2829        Node* null_ctl = top();
2830        not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2831        assert(null_ctl->is_top(), "no null control here");
2832      } else {
2833        not_null_obj = obj;
2834      }
2835
2836      Node* exact_obj = not_null_obj;
2837      ciKlass* exact_kls = type;
2838      Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2839                                            &exact_obj);
2840      if (sfpt != NULL) {
2841        GraphKit kit(sfpt->jvms());
2842        PreserveJVMState pjvms(&kit);
2843        kit.set_control(slow_ctl);
2844        kit.uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2845      } else {
2846        PreserveJVMState pjvms(this);
2847        set_control(slow_ctl);
2848        uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2849      }
2850      replace_in_map(not_null_obj, exact_obj);
2851      obj = exact_obj;
2852    }
2853  } else {
2854    if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2855        !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2856      Node* exact_obj = null_assert(obj);
2857      replace_in_map(obj, exact_obj);
2858      obj = exact_obj;
2859    }
2860  }
2861  return obj;
2862}
2863
2864//-------------------------------gen_instanceof--------------------------------
2865// Generate an instance-of idiom.  Used by both the instance-of bytecode
2866// and the reflective instance-of call.
2867Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2868  kill_dead_locals();           // Benefit all the uncommon traps
2869  assert( !stopped(), "dead parse path should be checked in callers" );
2870  assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2871         "must check for not-null not-dead klass in callers");
2872
2873  // Make the merge point
2874  enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2875  RegionNode* region = new RegionNode(PATH_LIMIT);
2876  Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2877  C->set_has_split_ifs(true); // Has chance for split-if optimization
2878
2879  ciProfileData* data = NULL;
2880  if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2881    data = method()->method_data()->bci_to_data(bci());
2882  }
2883  bool speculative_not_null = false;
2884  bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2885                         && seems_never_null(obj, data, speculative_not_null));
2886
2887  // Null check; get casted pointer; set region slot 3
2888  Node* null_ctl = top();
2889  Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2890
2891  // If not_null_obj is dead, only null-path is taken
2892  if (stopped()) {              // Doing instance-of on a NULL?
2893    set_control(null_ctl);
2894    return intcon(0);
2895  }
2896  region->init_req(_null_path, null_ctl);
2897  phi   ->init_req(_null_path, intcon(0)); // Set null path value
2898  if (null_ctl == top()) {
2899    // Do this eagerly, so that pattern matches like is_diamond_phi
2900    // will work even during parsing.
2901    assert(_null_path == PATH_LIMIT-1, "delete last");
2902    region->del_req(_null_path);
2903    phi   ->del_req(_null_path);
2904  }
2905
2906  // Do we know the type check always succeed?
2907  bool known_statically = false;
2908  if (_gvn.type(superklass)->singleton()) {
2909    ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2910    ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2911    if (subk != NULL && subk->is_loaded()) {
2912      int static_res = C->static_subtype_check(superk, subk);
2913      known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2914    }
2915  }
2916
2917  if (known_statically && UseTypeSpeculation) {
2918    // If we know the type check always succeeds then we don't use the
2919    // profiling data at this bytecode. Don't lose it, feed it to the
2920    // type system as a speculative type.
2921    not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2922  } else {
2923    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2924    // We may not have profiling here or it may not help us. If we
2925    // have a speculative type use it to perform an exact cast.
2926    ciKlass* spec_obj_type = obj_type->speculative_type();
2927    if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2928      Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2929      if (stopped()) {            // Profile disagrees with this path.
2930        set_control(null_ctl);    // Null is the only remaining possibility.
2931        return intcon(0);
2932      }
2933      if (cast_obj != NULL) {
2934        not_null_obj = cast_obj;
2935      }
2936    }
2937  }
2938
2939  // Load the object's klass
2940  Node* obj_klass = load_object_klass(not_null_obj);
2941
2942  // Generate the subtype check
2943  Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2944
2945  // Plug in the success path to the general merge in slot 1.
2946  region->init_req(_obj_path, control());
2947  phi   ->init_req(_obj_path, intcon(1));
2948
2949  // Plug in the failing path to the general merge in slot 2.
2950  region->init_req(_fail_path, not_subtype_ctrl);
2951  phi   ->init_req(_fail_path, intcon(0));
2952
2953  // Return final merged results
2954  set_control( _gvn.transform(region) );
2955  record_for_igvn(region);
2956  return _gvn.transform(phi);
2957}
2958
2959//-------------------------------gen_checkcast---------------------------------
2960// Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2961// array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2962// uncommon-trap paths work.  Adjust stack after this call.
2963// If failure_control is supplied and not null, it is filled in with
2964// the control edge for the cast failure.  Otherwise, an appropriate
2965// uncommon trap or exception is thrown.
2966Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2967                              Node* *failure_control) {
2968  kill_dead_locals();           // Benefit all the uncommon traps
2969  const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2970  const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2971
2972  // Fast cutout:  Check the case that the cast is vacuously true.
2973  // This detects the common cases where the test will short-circuit
2974  // away completely.  We do this before we perform the null check,
2975  // because if the test is going to turn into zero code, we don't
2976  // want a residual null check left around.  (Causes a slowdown,
2977  // for example, in some objArray manipulations, such as a[i]=a[j].)
2978  if (tk->singleton()) {
2979    const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2980    if (objtp != NULL && objtp->klass() != NULL) {
2981      switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
2982      case Compile::SSC_always_true:
2983        // If we know the type check always succeed then we don't use
2984        // the profiling data at this bytecode. Don't lose it, feed it
2985        // to the type system as a speculative type.
2986        return record_profiled_receiver_for_speculation(obj);
2987      case Compile::SSC_always_false:
2988        // It needs a null check because a null will *pass* the cast check.
2989        // A non-null value will always produce an exception.
2990        return null_assert(obj);
2991      }
2992    }
2993  }
2994
2995  ciProfileData* data = NULL;
2996  bool safe_for_replace = false;
2997  if (failure_control == NULL) {        // use MDO in regular case only
2998    assert(java_bc() == Bytecodes::_aastore ||
2999           java_bc() == Bytecodes::_checkcast,
3000           "interpreter profiles type checks only for these BCs");
3001    data = method()->method_data()->bci_to_data(bci());
3002    safe_for_replace = true;
3003  }
3004
3005  // Make the merge point
3006  enum { _obj_path = 1, _null_path, PATH_LIMIT };
3007  RegionNode* region = new RegionNode(PATH_LIMIT);
3008  Node*       phi    = new PhiNode(region, toop);
3009  C->set_has_split_ifs(true); // Has chance for split-if optimization
3010
3011  // Use null-cast information if it is available
3012  bool speculative_not_null = false;
3013  bool never_see_null = ((failure_control == NULL)  // regular case only
3014                         && seems_never_null(obj, data, speculative_not_null));
3015
3016  // Null check; get casted pointer; set region slot 3
3017  Node* null_ctl = top();
3018  Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3019
3020  // If not_null_obj is dead, only null-path is taken
3021  if (stopped()) {              // Doing instance-of on a NULL?
3022    set_control(null_ctl);
3023    return null();
3024  }
3025  region->init_req(_null_path, null_ctl);
3026  phi   ->init_req(_null_path, null());  // Set null path value
3027  if (null_ctl == top()) {
3028    // Do this eagerly, so that pattern matches like is_diamond_phi
3029    // will work even during parsing.
3030    assert(_null_path == PATH_LIMIT-1, "delete last");
3031    region->del_req(_null_path);
3032    phi   ->del_req(_null_path);
3033  }
3034
3035  Node* cast_obj = NULL;
3036  if (tk->klass_is_exact()) {
3037    // The following optimization tries to statically cast the speculative type of the object
3038    // (for example obtained during profiling) to the type of the superklass and then do a
3039    // dynamic check that the type of the object is what we expect. To work correctly
3040    // for checkcast and aastore the type of superklass should be exact.
3041    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3042    // We may not have profiling here or it may not help us. If we have
3043    // a speculative type use it to perform an exact cast.
3044    ciKlass* spec_obj_type = obj_type->speculative_type();
3045    if (spec_obj_type != NULL ||
3046        (data != NULL &&
3047         // Counter has never been decremented (due to cast failure).
3048         // ...This is a reasonable thing to expect.  It is true of
3049         // all casts inserted by javac to implement generic types.
3050         data->as_CounterData()->count() >= 0)) {
3051      cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3052      if (cast_obj != NULL) {
3053        if (failure_control != NULL) // failure is now impossible
3054          (*failure_control) = top();
3055        // adjust the type of the phi to the exact klass:
3056        phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3057      }
3058    }
3059  }
3060
3061  if (cast_obj == NULL) {
3062    // Load the object's klass
3063    Node* obj_klass = load_object_klass(not_null_obj);
3064
3065    // Generate the subtype check
3066    Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3067
3068    // Plug in success path into the merge
3069    cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3070    // Failure path ends in uncommon trap (or may be dead - failure impossible)
3071    if (failure_control == NULL) {
3072      if (not_subtype_ctrl != top()) { // If failure is possible
3073        PreserveJVMState pjvms(this);
3074        set_control(not_subtype_ctrl);
3075        builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3076      }
3077    } else {
3078      (*failure_control) = not_subtype_ctrl;
3079    }
3080  }
3081
3082  region->init_req(_obj_path, control());
3083  phi   ->init_req(_obj_path, cast_obj);
3084
3085  // A merge of NULL or Casted-NotNull obj
3086  Node* res = _gvn.transform(phi);
3087
3088  // Note I do NOT always 'replace_in_map(obj,result)' here.
3089  //  if( tk->klass()->can_be_primary_super()  )
3090    // This means that if I successfully store an Object into an array-of-String
3091    // I 'forget' that the Object is really now known to be a String.  I have to
3092    // do this because we don't have true union types for interfaces - if I store
3093    // a Baz into an array-of-Interface and then tell the optimizer it's an
3094    // Interface, I forget that it's also a Baz and cannot do Baz-like field
3095    // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3096  //  replace_in_map( obj, res );
3097
3098  // Return final merged results
3099  set_control( _gvn.transform(region) );
3100  record_for_igvn(region);
3101  return res;
3102}
3103
3104//------------------------------next_monitor-----------------------------------
3105// What number should be given to the next monitor?
3106int GraphKit::next_monitor() {
3107  int current = jvms()->monitor_depth()* C->sync_stack_slots();
3108  int next = current + C->sync_stack_slots();
3109  // Keep the toplevel high water mark current:
3110  if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3111  return current;
3112}
3113
3114//------------------------------insert_mem_bar---------------------------------
3115// Memory barrier to avoid floating things around
3116// The membar serves as a pinch point between both control and all memory slices.
3117Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3118  MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3119  mb->init_req(TypeFunc::Control, control());
3120  mb->init_req(TypeFunc::Memory,  reset_memory());
3121  Node* membar = _gvn.transform(mb);
3122  set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3123  set_all_memory_call(membar);
3124  return membar;
3125}
3126
3127//-------------------------insert_mem_bar_volatile----------------------------
3128// Memory barrier to avoid floating things around
3129// The membar serves as a pinch point between both control and memory(alias_idx).
3130// If you want to make a pinch point on all memory slices, do not use this
3131// function (even with AliasIdxBot); use insert_mem_bar() instead.
3132Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3133  // When Parse::do_put_xxx updates a volatile field, it appends a series
3134  // of MemBarVolatile nodes, one for *each* volatile field alias category.
3135  // The first membar is on the same memory slice as the field store opcode.
3136  // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3137  // All the other membars (for other volatile slices, including AliasIdxBot,
3138  // which stands for all unknown volatile slices) are control-dependent
3139  // on the first membar.  This prevents later volatile loads or stores
3140  // from sliding up past the just-emitted store.
3141
3142  MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3143  mb->set_req(TypeFunc::Control,control());
3144  if (alias_idx == Compile::AliasIdxBot) {
3145    mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3146  } else {
3147    assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3148    mb->set_req(TypeFunc::Memory, memory(alias_idx));
3149  }
3150  Node* membar = _gvn.transform(mb);
3151  set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3152  if (alias_idx == Compile::AliasIdxBot) {
3153    merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3154  } else {
3155    set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3156  }
3157  return membar;
3158}
3159
3160//------------------------------shared_lock------------------------------------
3161// Emit locking code.
3162FastLockNode* GraphKit::shared_lock(Node* obj) {
3163  // bci is either a monitorenter bc or InvocationEntryBci
3164  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3165  assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3166
3167  if( !GenerateSynchronizationCode )
3168    return NULL;                // Not locking things?
3169  if (stopped())                // Dead monitor?
3170    return NULL;
3171
3172  assert(dead_locals_are_killed(), "should kill locals before sync. point");
3173
3174  // Box the stack location
3175  Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3176  Node* mem = reset_memory();
3177
3178  FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3179  if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3180    // Create the counters for this fast lock.
3181    flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3182  }
3183
3184  // Create the rtm counters for this fast lock if needed.
3185  flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3186
3187  // Add monitor to debug info for the slow path.  If we block inside the
3188  // slow path and de-opt, we need the monitor hanging around
3189  map()->push_monitor( flock );
3190
3191  const TypeFunc *tf = LockNode::lock_type();
3192  LockNode *lock = new LockNode(C, tf);
3193
3194  lock->init_req( TypeFunc::Control, control() );
3195  lock->init_req( TypeFunc::Memory , mem );
3196  lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3197  lock->init_req( TypeFunc::FramePtr, frameptr() );
3198  lock->init_req( TypeFunc::ReturnAdr, top() );
3199
3200  lock->init_req(TypeFunc::Parms + 0, obj);
3201  lock->init_req(TypeFunc::Parms + 1, box);
3202  lock->init_req(TypeFunc::Parms + 2, flock);
3203  add_safepoint_edges(lock);
3204
3205  lock = _gvn.transform( lock )->as_Lock();
3206
3207  // lock has no side-effects, sets few values
3208  set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3209
3210  insert_mem_bar(Op_MemBarAcquireLock);
3211
3212  // Add this to the worklist so that the lock can be eliminated
3213  record_for_igvn(lock);
3214
3215#ifndef PRODUCT
3216  if (PrintLockStatistics) {
3217    // Update the counter for this lock.  Don't bother using an atomic
3218    // operation since we don't require absolute accuracy.
3219    lock->create_lock_counter(map()->jvms());
3220    increment_counter(lock->counter()->addr());
3221  }
3222#endif
3223
3224  return flock;
3225}
3226
3227
3228//------------------------------shared_unlock----------------------------------
3229// Emit unlocking code.
3230void GraphKit::shared_unlock(Node* box, Node* obj) {
3231  // bci is either a monitorenter bc or InvocationEntryBci
3232  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3233  assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3234
3235  if( !GenerateSynchronizationCode )
3236    return;
3237  if (stopped()) {               // Dead monitor?
3238    map()->pop_monitor();        // Kill monitor from debug info
3239    return;
3240  }
3241
3242  // Memory barrier to avoid floating things down past the locked region
3243  insert_mem_bar(Op_MemBarReleaseLock);
3244
3245  const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3246  UnlockNode *unlock = new UnlockNode(C, tf);
3247#ifdef ASSERT
3248  unlock->set_dbg_jvms(sync_jvms());
3249#endif
3250  uint raw_idx = Compile::AliasIdxRaw;
3251  unlock->init_req( TypeFunc::Control, control() );
3252  unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3253  unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3254  unlock->init_req( TypeFunc::FramePtr, frameptr() );
3255  unlock->init_req( TypeFunc::ReturnAdr, top() );
3256
3257  unlock->init_req(TypeFunc::Parms + 0, obj);
3258  unlock->init_req(TypeFunc::Parms + 1, box);
3259  unlock = _gvn.transform(unlock)->as_Unlock();
3260
3261  Node* mem = reset_memory();
3262
3263  // unlock has no side-effects, sets few values
3264  set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3265
3266  // Kill monitor from debug info
3267  map()->pop_monitor( );
3268}
3269
3270//-------------------------------get_layout_helper-----------------------------
3271// If the given klass is a constant or known to be an array,
3272// fetch the constant layout helper value into constant_value
3273// and return (Node*)NULL.  Otherwise, load the non-constant
3274// layout helper value, and return the node which represents it.
3275// This two-faced routine is useful because allocation sites
3276// almost always feature constant types.
3277Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3278  const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3279  if (!StressReflectiveCode && inst_klass != NULL) {
3280    ciKlass* klass = inst_klass->klass();
3281    bool    xklass = inst_klass->klass_is_exact();
3282    if (xklass || klass->is_array_klass()) {
3283      jint lhelper = klass->layout_helper();
3284      if (lhelper != Klass::_lh_neutral_value) {
3285        constant_value = lhelper;
3286        return (Node*) NULL;
3287      }
3288    }
3289  }
3290  constant_value = Klass::_lh_neutral_value;  // put in a known value
3291  Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3292  return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3293}
3294
3295// We just put in an allocate/initialize with a big raw-memory effect.
3296// Hook selected additional alias categories on the initialization.
3297static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3298                                MergeMemNode* init_in_merge,
3299                                Node* init_out_raw) {
3300  DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3301  assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3302
3303  Node* prevmem = kit.memory(alias_idx);
3304  init_in_merge->set_memory_at(alias_idx, prevmem);
3305  kit.set_memory(init_out_raw, alias_idx);
3306}
3307
3308//---------------------------set_output_for_allocation-------------------------
3309Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3310                                          const TypeOopPtr* oop_type,
3311                                          bool deoptimize_on_exception) {
3312  int rawidx = Compile::AliasIdxRaw;
3313  alloc->set_req( TypeFunc::FramePtr, frameptr() );
3314  add_safepoint_edges(alloc);
3315  Node* allocx = _gvn.transform(alloc);
3316  set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3317  // create memory projection for i_o
3318  set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3319  make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3320
3321  // create a memory projection as for the normal control path
3322  Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3323  set_memory(malloc, rawidx);
3324
3325  // a normal slow-call doesn't change i_o, but an allocation does
3326  // we create a separate i_o projection for the normal control path
3327  set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3328  Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3329
3330  // put in an initialization barrier
3331  InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3332                                                 rawoop)->as_Initialize();
3333  assert(alloc->initialization() == init,  "2-way macro link must work");
3334  assert(init ->allocation()     == alloc, "2-way macro link must work");
3335  {
3336    // Extract memory strands which may participate in the new object's
3337    // initialization, and source them from the new InitializeNode.
3338    // This will allow us to observe initializations when they occur,
3339    // and link them properly (as a group) to the InitializeNode.
3340    assert(init->in(InitializeNode::Memory) == malloc, "");
3341    MergeMemNode* minit_in = MergeMemNode::make(malloc);
3342    init->set_req(InitializeNode::Memory, minit_in);
3343    record_for_igvn(minit_in); // fold it up later, if possible
3344    Node* minit_out = memory(rawidx);
3345    assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3346    if (oop_type->isa_aryptr()) {
3347      const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3348      int            elemidx  = C->get_alias_index(telemref);
3349      hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3350    } else if (oop_type->isa_instptr()) {
3351      ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3352      for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3353        ciField* field = ik->nonstatic_field_at(i);
3354        if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3355          continue;  // do not bother to track really large numbers of fields
3356        // Find (or create) the alias category for this field:
3357        int fieldidx = C->alias_type(field)->index();
3358        hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3359      }
3360    }
3361  }
3362
3363  // Cast raw oop to the real thing...
3364  Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3365  javaoop = _gvn.transform(javaoop);
3366  C->set_recent_alloc(control(), javaoop);
3367  assert(just_allocated_object(control()) == javaoop, "just allocated");
3368
3369#ifdef ASSERT
3370  { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3371    assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3372           "Ideal_allocation works");
3373    assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3374           "Ideal_allocation works");
3375    if (alloc->is_AllocateArray()) {
3376      assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3377             "Ideal_allocation works");
3378      assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3379             "Ideal_allocation works");
3380    } else {
3381      assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3382    }
3383  }
3384#endif //ASSERT
3385
3386  return javaoop;
3387}
3388
3389//---------------------------new_instance--------------------------------------
3390// This routine takes a klass_node which may be constant (for a static type)
3391// or may be non-constant (for reflective code).  It will work equally well
3392// for either, and the graph will fold nicely if the optimizer later reduces
3393// the type to a constant.
3394// The optional arguments are for specialized use by intrinsics:
3395//  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3396//  - If 'return_size_val', report the the total object size to the caller.
3397//  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3398Node* GraphKit::new_instance(Node* klass_node,
3399                             Node* extra_slow_test,
3400                             Node* *return_size_val,
3401                             bool deoptimize_on_exception) {
3402  // Compute size in doublewords
3403  // The size is always an integral number of doublewords, represented
3404  // as a positive bytewise size stored in the klass's layout_helper.
3405  // The layout_helper also encodes (in a low bit) the need for a slow path.
3406  jint  layout_con = Klass::_lh_neutral_value;
3407  Node* layout_val = get_layout_helper(klass_node, layout_con);
3408  int   layout_is_con = (layout_val == NULL);
3409
3410  if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3411  // Generate the initial go-slow test.  It's either ALWAYS (return a
3412  // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3413  // case) a computed value derived from the layout_helper.
3414  Node* initial_slow_test = NULL;
3415  if (layout_is_con) {
3416    assert(!StressReflectiveCode, "stress mode does not use these paths");
3417    bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3418    initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3419
3420  } else {   // reflective case
3421    // This reflective path is used by Unsafe.allocateInstance.
3422    // (It may be stress-tested by specifying StressReflectiveCode.)
3423    // Basically, we want to get into the VM is there's an illegal argument.
3424    Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3425    initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3426    if (extra_slow_test != intcon(0)) {
3427      initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3428    }
3429    // (Macro-expander will further convert this to a Bool, if necessary.)
3430  }
3431
3432  // Find the size in bytes.  This is easy; it's the layout_helper.
3433  // The size value must be valid even if the slow path is taken.
3434  Node* size = NULL;
3435  if (layout_is_con) {
3436    size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3437  } else {   // reflective case
3438    // This reflective path is used by clone and Unsafe.allocateInstance.
3439    size = ConvI2X(layout_val);
3440
3441    // Clear the low bits to extract layout_helper_size_in_bytes:
3442    assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3443    Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3444    size = _gvn.transform( new AndXNode(size, mask) );
3445  }
3446  if (return_size_val != NULL) {
3447    (*return_size_val) = size;
3448  }
3449
3450  // This is a precise notnull oop of the klass.
3451  // (Actually, it need not be precise if this is a reflective allocation.)
3452  // It's what we cast the result to.
3453  const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3454  if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3455  const TypeOopPtr* oop_type = tklass->as_instance_type();
3456
3457  // Now generate allocation code
3458
3459  // The entire memory state is needed for slow path of the allocation
3460  // since GC and deoptimization can happened.
3461  Node *mem = reset_memory();
3462  set_all_memory(mem); // Create new memory state
3463
3464  AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3465                                         control(), mem, i_o(),
3466                                         size, klass_node,
3467                                         initial_slow_test);
3468
3469  return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3470}
3471
3472//-------------------------------new_array-------------------------------------
3473// helper for both newarray and anewarray
3474// The 'length' parameter is (obviously) the length of the array.
3475// See comments on new_instance for the meaning of the other arguments.
3476Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3477                          Node* length,         // number of array elements
3478                          int   nargs,          // number of arguments to push back for uncommon trap
3479                          Node* *return_size_val,
3480                          bool deoptimize_on_exception) {
3481  jint  layout_con = Klass::_lh_neutral_value;
3482  Node* layout_val = get_layout_helper(klass_node, layout_con);
3483  int   layout_is_con = (layout_val == NULL);
3484
3485  if (!layout_is_con && !StressReflectiveCode &&
3486      !too_many_traps(Deoptimization::Reason_class_check)) {
3487    // This is a reflective array creation site.
3488    // Optimistically assume that it is a subtype of Object[],
3489    // so that we can fold up all the address arithmetic.
3490    layout_con = Klass::array_layout_helper(T_OBJECT);
3491    Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3492    Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3493    { BuildCutout unless(this, bol_lh, PROB_MAX);
3494      inc_sp(nargs);
3495      uncommon_trap(Deoptimization::Reason_class_check,
3496                    Deoptimization::Action_maybe_recompile);
3497    }
3498    layout_val = NULL;
3499    layout_is_con = true;
3500  }
3501
3502  // Generate the initial go-slow test.  Make sure we do not overflow
3503  // if length is huge (near 2Gig) or negative!  We do not need
3504  // exact double-words here, just a close approximation of needed
3505  // double-words.  We can't add any offset or rounding bits, lest we
3506  // take a size -1 of bytes and make it positive.  Use an unsigned
3507  // compare, so negative sizes look hugely positive.
3508  int fast_size_limit = FastAllocateSizeLimit;
3509  if (layout_is_con) {
3510    assert(!StressReflectiveCode, "stress mode does not use these paths");
3511    // Increase the size limit if we have exact knowledge of array type.
3512    int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3513    fast_size_limit <<= (LogBytesPerLong - log2_esize);
3514  }
3515
3516  Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3517  Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3518  if (initial_slow_test->is_Bool()) {
3519    // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3520    initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3521  }
3522
3523  // --- Size Computation ---
3524  // array_size = round_to_heap(array_header + (length << elem_shift));
3525  // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3526  // and round_to(x, y) == ((x + y-1) & ~(y-1))
3527  // The rounding mask is strength-reduced, if possible.
3528  int round_mask = MinObjAlignmentInBytes - 1;
3529  Node* header_size = NULL;
3530  int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3531  // (T_BYTE has the weakest alignment and size restrictions...)
3532  if (layout_is_con) {
3533    int       hsize  = Klass::layout_helper_header_size(layout_con);
3534    int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3535    BasicType etype  = Klass::layout_helper_element_type(layout_con);
3536    if ((round_mask & ~right_n_bits(eshift)) == 0)
3537      round_mask = 0;  // strength-reduce it if it goes away completely
3538    assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3539    assert(header_size_min <= hsize, "generic minimum is smallest");
3540    header_size_min = hsize;
3541    header_size = intcon(hsize + round_mask);
3542  } else {
3543    Node* hss   = intcon(Klass::_lh_header_size_shift);
3544    Node* hsm   = intcon(Klass::_lh_header_size_mask);
3545    Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3546    hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3547    Node* mask  = intcon(round_mask);
3548    header_size = _gvn.transform( new AddINode(hsize, mask) );
3549  }
3550
3551  Node* elem_shift = NULL;
3552  if (layout_is_con) {
3553    int eshift = Klass::layout_helper_log2_element_size(layout_con);
3554    if (eshift != 0)
3555      elem_shift = intcon(eshift);
3556  } else {
3557    // There is no need to mask or shift this value.
3558    // The semantics of LShiftINode include an implicit mask to 0x1F.
3559    assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3560    elem_shift = layout_val;
3561  }
3562
3563  // Transition to native address size for all offset calculations:
3564  Node* lengthx = ConvI2X(length);
3565  Node* headerx = ConvI2X(header_size);
3566#ifdef _LP64
3567  { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3568    if (tllen != NULL && tllen->_lo < 0) {
3569      // Add a manual constraint to a positive range.  Cf. array_element_address.
3570      jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3571      if (size_max > tllen->_hi)  size_max = tllen->_hi;
3572      const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3573      lengthx = _gvn.transform( new ConvI2LNode(length, tlcon));
3574    }
3575  }
3576#endif
3577
3578  // Combine header size (plus rounding) and body size.  Then round down.
3579  // This computation cannot overflow, because it is used only in two
3580  // places, one where the length is sharply limited, and the other
3581  // after a successful allocation.
3582  Node* abody = lengthx;
3583  if (elem_shift != NULL)
3584    abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3585  Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3586  if (round_mask != 0) {
3587    Node* mask = MakeConX(~round_mask);
3588    size       = _gvn.transform( new AndXNode(size, mask) );
3589  }
3590  // else if round_mask == 0, the size computation is self-rounding
3591
3592  if (return_size_val != NULL) {
3593    // This is the size
3594    (*return_size_val) = size;
3595  }
3596
3597  // Now generate allocation code
3598
3599  // The entire memory state is needed for slow path of the allocation
3600  // since GC and deoptimization can happened.
3601  Node *mem = reset_memory();
3602  set_all_memory(mem); // Create new memory state
3603
3604  // Create the AllocateArrayNode and its result projections
3605  AllocateArrayNode* alloc
3606    = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3607                            control(), mem, i_o(),
3608                            size, klass_node,
3609                            initial_slow_test,
3610                            length);
3611
3612  // Cast to correct type.  Note that the klass_node may be constant or not,
3613  // and in the latter case the actual array type will be inexact also.
3614  // (This happens via a non-constant argument to inline_native_newArray.)
3615  // In any case, the value of klass_node provides the desired array type.
3616  const TypeInt* length_type = _gvn.find_int_type(length);
3617  const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3618  if (ary_type->isa_aryptr() && length_type != NULL) {
3619    // Try to get a better type than POS for the size
3620    ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3621  }
3622
3623  Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3624
3625  // Cast length on remaining path to be as narrow as possible
3626  if (map()->find_edge(length) >= 0) {
3627    Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3628    if (ccast != length) {
3629      _gvn.set_type_bottom(ccast);
3630      record_for_igvn(ccast);
3631      replace_in_map(length, ccast);
3632    }
3633  }
3634
3635  return javaoop;
3636}
3637
3638// The following "Ideal_foo" functions are placed here because they recognize
3639// the graph shapes created by the functions immediately above.
3640
3641//---------------------------Ideal_allocation----------------------------------
3642// Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3643AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3644  if (ptr == NULL) {     // reduce dumb test in callers
3645    return NULL;
3646  }
3647  if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3648    ptr = ptr->in(1);
3649    if (ptr == NULL) return NULL;
3650  }
3651  // Return NULL for allocations with several casts:
3652  //   j.l.reflect.Array.newInstance(jobject, jint)
3653  //   Object.clone()
3654  // to keep more precise type from last cast.
3655  if (ptr->is_Proj()) {
3656    Node* allo = ptr->in(0);
3657    if (allo != NULL && allo->is_Allocate()) {
3658      return allo->as_Allocate();
3659    }
3660  }
3661  // Report failure to match.
3662  return NULL;
3663}
3664
3665// Fancy version which also strips off an offset (and reports it to caller).
3666AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3667                                             intptr_t& offset) {
3668  Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3669  if (base == NULL)  return NULL;
3670  return Ideal_allocation(base, phase);
3671}
3672
3673// Trace Initialize <- Proj[Parm] <- Allocate
3674AllocateNode* InitializeNode::allocation() {
3675  Node* rawoop = in(InitializeNode::RawAddress);
3676  if (rawoop->is_Proj()) {
3677    Node* alloc = rawoop->in(0);
3678    if (alloc->is_Allocate()) {
3679      return alloc->as_Allocate();
3680    }
3681  }
3682  return NULL;
3683}
3684
3685// Trace Allocate -> Proj[Parm] -> Initialize
3686InitializeNode* AllocateNode::initialization() {
3687  ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3688  if (rawoop == NULL)  return NULL;
3689  for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3690    Node* init = rawoop->fast_out(i);
3691    if (init->is_Initialize()) {
3692      assert(init->as_Initialize()->allocation() == this, "2-way link");
3693      return init->as_Initialize();
3694    }
3695  }
3696  return NULL;
3697}
3698
3699//----------------------------- loop predicates ---------------------------
3700
3701//------------------------------add_predicate_impl----------------------------
3702void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3703  // Too many traps seen?
3704  if (too_many_traps(reason)) {
3705#ifdef ASSERT
3706    if (TraceLoopPredicate) {
3707      int tc = C->trap_count(reason);
3708      tty->print("too many traps=%s tcount=%d in ",
3709                    Deoptimization::trap_reason_name(reason), tc);
3710      method()->print(); // which method has too many predicate traps
3711      tty->cr();
3712    }
3713#endif
3714    // We cannot afford to take more traps here,
3715    // do not generate predicate.
3716    return;
3717  }
3718
3719  Node *cont    = _gvn.intcon(1);
3720  Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3721  Node *bol     = _gvn.transform(new Conv2BNode(opq));
3722  IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3723  Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3724  C->add_predicate_opaq(opq);
3725  {
3726    PreserveJVMState pjvms(this);
3727    set_control(iffalse);
3728    inc_sp(nargs);
3729    uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3730  }
3731  Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3732  set_control(iftrue);
3733}
3734
3735//------------------------------add_predicate---------------------------------
3736void GraphKit::add_predicate(int nargs) {
3737  if (UseLoopPredicate) {
3738    add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3739  }
3740  // loop's limit check predicate should be near the loop.
3741  if (LoopLimitCheck) {
3742    add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3743  }
3744}
3745
3746//----------------------------- store barriers ----------------------------
3747#define __ ideal.
3748
3749void GraphKit::sync_kit(IdealKit& ideal) {
3750  set_all_memory(__ merged_memory());
3751  set_i_o(__ i_o());
3752  set_control(__ ctrl());
3753}
3754
3755void GraphKit::final_sync(IdealKit& ideal) {
3756  // Final sync IdealKit and graphKit.
3757  sync_kit(ideal);
3758}
3759
3760Node* GraphKit::byte_map_base_node() {
3761  // Get base of card map
3762  CardTableModRefBS* ct = (CardTableModRefBS*)(Universe::heap()->barrier_set());
3763  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code");
3764  if (ct->byte_map_base != NULL) {
3765    return makecon(TypeRawPtr::make((address)ct->byte_map_base));
3766  } else {
3767    return null();
3768  }
3769}
3770
3771// vanilla/CMS post barrier
3772// Insert a write-barrier store.  This is to let generational GC work; we have
3773// to flag all oop-stores before the next GC point.
3774void GraphKit::write_barrier_post(Node* oop_store,
3775                                  Node* obj,
3776                                  Node* adr,
3777                                  uint  adr_idx,
3778                                  Node* val,
3779                                  bool use_precise) {
3780  // No store check needed if we're storing a NULL or an old object
3781  // (latter case is probably a string constant). The concurrent
3782  // mark sweep garbage collector, however, needs to have all nonNull
3783  // oop updates flagged via card-marks.
3784  if (val != NULL && val->is_Con()) {
3785    // must be either an oop or NULL
3786    const Type* t = val->bottom_type();
3787    if (t == TypePtr::NULL_PTR || t == Type::TOP)
3788      // stores of null never (?) need barriers
3789      return;
3790  }
3791
3792  if (use_ReduceInitialCardMarks()
3793      && obj == just_allocated_object(control())) {
3794    // We can skip marks on a freshly-allocated object in Eden.
3795    // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3796    // That routine informs GC to take appropriate compensating steps,
3797    // upon a slow-path allocation, so as to make this card-mark
3798    // elision safe.
3799    return;
3800  }
3801
3802  if (!use_precise) {
3803    // All card marks for a (non-array) instance are in one place:
3804    adr = obj;
3805  }
3806  // (Else it's an array (or unknown), and we want more precise card marks.)
3807  assert(adr != NULL, "");
3808
3809  IdealKit ideal(this, true);
3810
3811  // Convert the pointer to an int prior to doing math on it
3812  Node* cast = __ CastPX(__ ctrl(), adr);
3813
3814  // Divide by card size
3815  assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3816         "Only one we handle so far.");
3817  Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3818
3819  // Combine card table base and card offset
3820  Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3821
3822  // Get the alias_index for raw card-mark memory
3823  int adr_type = Compile::AliasIdxRaw;
3824  Node*   zero = __ ConI(0); // Dirty card value
3825  BasicType bt = T_BYTE;
3826
3827  if (UseCondCardMark) {
3828    // The classic GC reference write barrier is typically implemented
3829    // as a store into the global card mark table.  Unfortunately
3830    // unconditional stores can result in false sharing and excessive
3831    // coherence traffic as well as false transactional aborts.
3832    // UseCondCardMark enables MP "polite" conditional card mark
3833    // stores.  In theory we could relax the load from ctrl() to
3834    // no_ctrl, but that doesn't buy much latitude.
3835    Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3836    __ if_then(card_val, BoolTest::ne, zero);
3837  }
3838
3839  // Smash zero into card
3840  if( !UseConcMarkSweepGC ) {
3841    __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered);
3842  } else {
3843    // Specialized path for CM store barrier
3844    __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3845  }
3846
3847  if (UseCondCardMark) {
3848    __ end_if();
3849  }
3850
3851  // Final sync IdealKit and GraphKit.
3852  final_sync(ideal);
3853}
3854/*
3855 * Determine if the G1 pre-barrier can be removed. The pre-barrier is
3856 * required by SATB to make sure all objects live at the start of the
3857 * marking are kept alive, all reference updates need to any previous
3858 * reference stored before writing.
3859 *
3860 * If the previous value is NULL there is no need to save the old value.
3861 * References that are NULL are filtered during runtime by the barrier
3862 * code to avoid unnecessary queuing.
3863 *
3864 * However in the case of newly allocated objects it might be possible to
3865 * prove that the reference about to be overwritten is NULL during compile
3866 * time and avoid adding the barrier code completely.
3867 *
3868 * The compiler needs to determine that the object in which a field is about
3869 * to be written is newly allocated, and that no prior store to the same field
3870 * has happened since the allocation.
3871 *
3872 * Returns true if the pre-barrier can be removed
3873 */
3874bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr,
3875                                         BasicType bt, uint adr_idx) {
3876  intptr_t offset = 0;
3877  Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
3878  AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
3879
3880  if (offset == Type::OffsetBot) {
3881    return false; // cannot unalias unless there are precise offsets
3882  }
3883
3884  if (alloc == NULL) {
3885    return false; // No allocation found
3886  }
3887
3888  intptr_t size_in_bytes = type2aelembytes(bt);
3889
3890  Node* mem = memory(adr_idx); // start searching here...
3891
3892  for (int cnt = 0; cnt < 50; cnt++) {
3893
3894    if (mem->is_Store()) {
3895
3896      Node* st_adr = mem->in(MemNode::Address);
3897      intptr_t st_offset = 0;
3898      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
3899
3900      if (st_base == NULL) {
3901        break; // inscrutable pointer
3902      }
3903
3904      // Break we have found a store with same base and offset as ours so break
3905      if (st_base == base && st_offset == offset) {
3906        break;
3907      }
3908
3909      if (st_offset != offset && st_offset != Type::OffsetBot) {
3910        const int MAX_STORE = BytesPerLong;
3911        if (st_offset >= offset + size_in_bytes ||
3912            st_offset <= offset - MAX_STORE ||
3913            st_offset <= offset - mem->as_Store()->memory_size()) {
3914          // Success:  The offsets are provably independent.
3915          // (You may ask, why not just test st_offset != offset and be done?
3916          // The answer is that stores of different sizes can co-exist
3917          // in the same sequence of RawMem effects.  We sometimes initialize
3918          // a whole 'tile' of array elements with a single jint or jlong.)
3919          mem = mem->in(MemNode::Memory);
3920          continue; // advance through independent store memory
3921        }
3922      }
3923
3924      if (st_base != base
3925          && MemNode::detect_ptr_independence(base, alloc, st_base,
3926                                              AllocateNode::Ideal_allocation(st_base, phase),
3927                                              phase)) {
3928        // Success:  The bases are provably independent.
3929        mem = mem->in(MemNode::Memory);
3930        continue; // advance through independent store memory
3931      }
3932    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
3933
3934      InitializeNode* st_init = mem->in(0)->as_Initialize();
3935      AllocateNode* st_alloc = st_init->allocation();
3936
3937      // Make sure that we are looking at the same allocation site.
3938      // The alloc variable is guaranteed to not be null here from earlier check.
3939      if (alloc == st_alloc) {
3940        // Check that the initialization is storing NULL so that no previous store
3941        // has been moved up and directly write a reference
3942        Node* captured_store = st_init->find_captured_store(offset,
3943                                                            type2aelembytes(T_OBJECT),
3944                                                            phase);
3945        if (captured_store == NULL || captured_store == st_init->zero_memory()) {
3946          return true;
3947        }
3948      }
3949    }
3950
3951    // Unless there is an explicit 'continue', we must bail out here,
3952    // because 'mem' is an inscrutable memory state (e.g., a call).
3953    break;
3954  }
3955
3956  return false;
3957}
3958
3959// G1 pre/post barriers
3960void GraphKit::g1_write_barrier_pre(bool do_load,
3961                                    Node* obj,
3962                                    Node* adr,
3963                                    uint alias_idx,
3964                                    Node* val,
3965                                    const TypeOopPtr* val_type,
3966                                    Node* pre_val,
3967                                    BasicType bt) {
3968
3969  // Some sanity checks
3970  // Note: val is unused in this routine.
3971
3972  if (do_load) {
3973    // We need to generate the load of the previous value
3974    assert(obj != NULL, "must have a base");
3975    assert(adr != NULL, "where are loading from?");
3976    assert(pre_val == NULL, "loaded already?");
3977    assert(val_type != NULL, "need a type");
3978
3979    if (use_ReduceInitialCardMarks()
3980        && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
3981      return;
3982    }
3983
3984  } else {
3985    // In this case both val_type and alias_idx are unused.
3986    assert(pre_val != NULL, "must be loaded already");
3987    // Nothing to be done if pre_val is null.
3988    if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
3989    assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3990  }
3991  assert(bt == T_OBJECT, "or we shouldn't be here");
3992
3993  IdealKit ideal(this, true);
3994
3995  Node* tls = __ thread(); // ThreadLocalStorage
3996
3997  Node* no_ctrl = NULL;
3998  Node* no_base = __ top();
3999  Node* zero  = __ ConI(0);
4000  Node* zeroX = __ ConX(0);
4001
4002  float likely  = PROB_LIKELY(0.999);
4003  float unlikely  = PROB_UNLIKELY(0.999);
4004
4005  BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4006  assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
4007
4008  // Offsets into the thread
4009  const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4010                                          PtrQueue::byte_offset_of_active());
4011  const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4012                                          PtrQueue::byte_offset_of_index());
4013  const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4014                                          PtrQueue::byte_offset_of_buf());
4015
4016  // Now the actual pointers into the thread
4017  Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4018  Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4019  Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4020
4021  // Now some of the values
4022  Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4023
4024  // if (!marking)
4025  __ if_then(marking, BoolTest::ne, zero, unlikely); {
4026    BasicType index_bt = TypeX_X->basic_type();
4027    assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
4028    Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4029
4030    if (do_load) {
4031      // load original value
4032      // alias_idx correct??
4033      pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4034    }
4035
4036    // if (pre_val != NULL)
4037    __ if_then(pre_val, BoolTest::ne, null()); {
4038      Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4039
4040      // is the queue for this thread full?
4041      __ if_then(index, BoolTest::ne, zeroX, likely); {
4042
4043        // decrement the index
4044        Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4045
4046        // Now get the buffer location we will log the previous value into and store it
4047        Node *log_addr = __ AddP(no_base, buffer, next_index);
4048        __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4049        // update the index
4050        __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4051
4052      } __ else_(); {
4053
4054        // logging buffer is full, call the runtime
4055        const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4056        __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4057      } __ end_if();  // (!index)
4058    } __ end_if();  // (pre_val != NULL)
4059  } __ end_if();  // (!marking)
4060
4061  // Final sync IdealKit and GraphKit.
4062  final_sync(ideal);
4063}
4064
4065/*
4066 * G1 similar to any GC with a Young Generation requires a way to keep track of
4067 * references from Old Generation to Young Generation to make sure all live
4068 * objects are found. G1 also requires to keep track of object references
4069 * between different regions to enable evacuation of old regions, which is done
4070 * as part of mixed collections. References are tracked in remembered sets and
4071 * is continuously updated as reference are written to with the help of the
4072 * post-barrier.
4073 *
4074 * To reduce the number of updates to the remembered set the post-barrier
4075 * filters updates to fields in objects located in the Young Generation,
4076 * the same region as the reference, when the NULL is being written or
4077 * if the card is already marked as dirty by an earlier write.
4078 *
4079 * Under certain circumstances it is possible to avoid generating the
4080 * post-barrier completely if it is possible during compile time to prove
4081 * the object is newly allocated and that no safepoint exists between the
4082 * allocation and the store.
4083 *
4084 * In the case of slow allocation the allocation code must handle the barrier
4085 * as part of the allocation in the case the allocated object is not located
4086 * in the nursery, this would happen for humongous objects. This is similar to
4087 * how CMS is required to handle this case, see the comments for the method
4088 * CollectedHeap::new_store_pre_barrier and OptoRuntime::new_store_pre_barrier.
4089 * A deferred card mark is required for these objects and handled in the above
4090 * mentioned methods.
4091 *
4092 * Returns true if the post barrier can be removed
4093 */
4094bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store,
4095                                          Node* adr) {
4096  intptr_t      offset = 0;
4097  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
4098  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
4099
4100  if (offset == Type::OffsetBot) {
4101    return false; // cannot unalias unless there are precise offsets
4102  }
4103
4104  if (alloc == NULL) {
4105     return false; // No allocation found
4106  }
4107
4108  // Start search from Store node
4109  Node* mem = store->in(MemNode::Control);
4110  if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4111
4112    InitializeNode* st_init = mem->in(0)->as_Initialize();
4113    AllocateNode*  st_alloc = st_init->allocation();
4114
4115    // Make sure we are looking at the same allocation
4116    if (alloc == st_alloc) {
4117      return true;
4118    }
4119  }
4120
4121  return false;
4122}
4123
4124//
4125// Update the card table and add card address to the queue
4126//
4127void GraphKit::g1_mark_card(IdealKit& ideal,
4128                            Node* card_adr,
4129                            Node* oop_store,
4130                            uint oop_alias_idx,
4131                            Node* index,
4132                            Node* index_adr,
4133                            Node* buffer,
4134                            const TypeFunc* tf) {
4135
4136  Node* zero  = __ ConI(0);
4137  Node* zeroX = __ ConX(0);
4138  Node* no_base = __ top();
4139  BasicType card_bt = T_BYTE;
4140  // Smash zero into card. MUST BE ORDERED WRT TO STORE
4141  __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
4142
4143  //  Now do the queue work
4144  __ if_then(index, BoolTest::ne, zeroX); {
4145
4146    Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4147    Node* log_addr = __ AddP(no_base, buffer, next_index);
4148
4149    // Order, see storeCM.
4150    __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4151    __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4152
4153  } __ else_(); {
4154    __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4155  } __ end_if();
4156
4157}
4158
4159void GraphKit::g1_write_barrier_post(Node* oop_store,
4160                                     Node* obj,
4161                                     Node* adr,
4162                                     uint alias_idx,
4163                                     Node* val,
4164                                     BasicType bt,
4165                                     bool use_precise) {
4166  // If we are writing a NULL then we need no post barrier
4167
4168  if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4169    // Must be NULL
4170    const Type* t = val->bottom_type();
4171    assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4172    // No post barrier if writing NULLx
4173    return;
4174  }
4175
4176  if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) {
4177    // We can skip marks on a freshly-allocated object in Eden.
4178    // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
4179    // That routine informs GC to take appropriate compensating steps,
4180    // upon a slow-path allocation, so as to make this card-mark
4181    // elision safe.
4182    return;
4183  }
4184
4185  if (use_ReduceInitialCardMarks()
4186      && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) {
4187    return;
4188  }
4189
4190  if (!use_precise) {
4191    // All card marks for a (non-array) instance are in one place:
4192    adr = obj;
4193  }
4194  // (Else it's an array (or unknown), and we want more precise card marks.)
4195  assert(adr != NULL, "");
4196
4197  IdealKit ideal(this, true);
4198
4199  Node* tls = __ thread(); // ThreadLocalStorage
4200
4201  Node* no_base = __ top();
4202  float likely  = PROB_LIKELY(0.999);
4203  float unlikely  = PROB_UNLIKELY(0.999);
4204  Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
4205  Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
4206  Node* zeroX = __ ConX(0);
4207
4208  // Get the alias_index for raw card-mark memory
4209  const TypePtr* card_type = TypeRawPtr::BOTTOM;
4210
4211  const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4212
4213  // Offsets into the thread
4214  const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4215                                     PtrQueue::byte_offset_of_index());
4216  const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4217                                     PtrQueue::byte_offset_of_buf());
4218
4219  // Pointers into the thread
4220
4221  Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4222  Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4223
4224  // Now some values
4225  // Use ctrl to avoid hoisting these values past a safepoint, which could
4226  // potentially reset these fields in the JavaThread.
4227  Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4228  Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4229
4230  // Convert the store obj pointer to an int prior to doing math on it
4231  // Must use ctrl to prevent "integerized oop" existing across safepoint
4232  Node* cast =  __ CastPX(__ ctrl(), adr);
4233
4234  // Divide pointer by card size
4235  Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4236
4237  // Combine card table base and card offset
4238  Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4239
4240  // If we know the value being stored does it cross regions?
4241
4242  if (val != NULL) {
4243    // Does the store cause us to cross regions?
4244
4245    // Should be able to do an unsigned compare of region_size instead of
4246    // and extra shift. Do we have an unsigned compare??
4247    // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4248    Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4249
4250    // if (xor_res == 0) same region so skip
4251    __ if_then(xor_res, BoolTest::ne, zeroX); {
4252
4253      // No barrier if we are storing a NULL
4254      __ if_then(val, BoolTest::ne, null(), unlikely); {
4255
4256        // Ok must mark the card if not already dirty
4257
4258        // load the original value of the card
4259        Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4260
4261        __ if_then(card_val, BoolTest::ne, young_card); {
4262          sync_kit(ideal);
4263          // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4264          insert_mem_bar(Op_MemBarVolatile, oop_store);
4265          __ sync_kit(this);
4266
4267          Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4268          __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4269            g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4270          } __ end_if();
4271        } __ end_if();
4272      } __ end_if();
4273    } __ end_if();
4274  } else {
4275    // Object.clone() instrinsic uses this path.
4276    g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4277  }
4278
4279  // Final sync IdealKit and GraphKit.
4280  final_sync(ideal);
4281}
4282#undef __
4283
4284
4285
4286Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
4287  if (java_lang_String::has_offset_field()) {
4288    int offset_offset = java_lang_String::offset_offset_in_bytes();
4289    const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4290                                                       false, NULL, 0);
4291    const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4292    int offset_field_idx = C->get_alias_index(offset_field_type);
4293    return make_load(ctrl,
4294                     basic_plus_adr(str, str, offset_offset),
4295                     TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
4296  } else {
4297    return intcon(0);
4298  }
4299}
4300
4301Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4302  if (java_lang_String::has_count_field()) {
4303    int count_offset = java_lang_String::count_offset_in_bytes();
4304    const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4305                                                       false, NULL, 0);
4306    const TypePtr* count_field_type = string_type->add_offset(count_offset);
4307    int count_field_idx = C->get_alias_index(count_field_type);
4308    return make_load(ctrl,
4309                     basic_plus_adr(str, str, count_offset),
4310                     TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
4311  } else {
4312    return load_array_length(load_String_value(ctrl, str));
4313  }
4314}
4315
4316Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4317  int value_offset = java_lang_String::value_offset_in_bytes();
4318  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4319                                                     false, NULL, 0);
4320  const TypePtr* value_field_type = string_type->add_offset(value_offset);
4321  const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
4322                                                   TypeAry::make(TypeInt::CHAR,TypeInt::POS),
4323                                                   ciTypeArrayKlass::make(T_CHAR), true, 0);
4324  int value_field_idx = C->get_alias_index(value_field_type);
4325  Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4326                         value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4327  // String.value field is known to be @Stable.
4328  if (UseImplicitStableValues) {
4329    load = cast_array_to_stable(load, value_type);
4330  }
4331  return load;
4332}
4333
4334void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
4335  int offset_offset = java_lang_String::offset_offset_in_bytes();
4336  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4337                                                     false, NULL, 0);
4338  const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4339  int offset_field_idx = C->get_alias_index(offset_field_type);
4340  store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
4341                  value, T_INT, offset_field_idx, MemNode::unordered);
4342}
4343
4344void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4345  int value_offset = java_lang_String::value_offset_in_bytes();
4346  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4347                                                     false, NULL, 0);
4348  const TypePtr* value_field_type = string_type->add_offset(value_offset);
4349
4350  store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4351      value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
4352}
4353
4354void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
4355  int count_offset = java_lang_String::count_offset_in_bytes();
4356  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4357                                                     false, NULL, 0);
4358  const TypePtr* count_field_type = string_type->add_offset(count_offset);
4359  int count_field_idx = C->get_alias_index(count_field_type);
4360  store_to_memory(ctrl, basic_plus_adr(str, count_offset),
4361                  value, T_INT, count_field_idx, MemNode::unordered);
4362}
4363
4364Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4365  // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4366  // assumption of CCP analysis.
4367  return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4368}
4369