graphKit.cpp revision 605:98cb887364d3
1/*
2 * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_graphKit.cpp.incl"
27
28//----------------------------GraphKit-----------------------------------------
29// Main utility constructor.
30GraphKit::GraphKit(JVMState* jvms)
31  : Phase(Phase::Parser),
32    _env(C->env()),
33    _gvn(*C->initial_gvn())
34{
35  _exceptions = jvms->map()->next_exception();
36  if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
37  set_jvms(jvms);
38}
39
40// Private constructor for parser.
41GraphKit::GraphKit()
42  : Phase(Phase::Parser),
43    _env(C->env()),
44    _gvn(*C->initial_gvn())
45{
46  _exceptions = NULL;
47  set_map(NULL);
48  debug_only(_sp = -99);
49  debug_only(set_bci(-99));
50}
51
52
53
54//---------------------------clean_stack---------------------------------------
55// Clear away rubbish from the stack area of the JVM state.
56// This destroys any arguments that may be waiting on the stack.
57void GraphKit::clean_stack(int from_sp) {
58  SafePointNode* map      = this->map();
59  JVMState*      jvms     = this->jvms();
60  int            stk_size = jvms->stk_size();
61  int            stkoff   = jvms->stkoff();
62  Node*          top      = this->top();
63  for (int i = from_sp; i < stk_size; i++) {
64    if (map->in(stkoff + i) != top) {
65      map->set_req(stkoff + i, top);
66    }
67  }
68}
69
70
71//--------------------------------sync_jvms-----------------------------------
72// Make sure our current jvms agrees with our parse state.
73JVMState* GraphKit::sync_jvms() const {
74  JVMState* jvms = this->jvms();
75  jvms->set_bci(bci());       // Record the new bci in the JVMState
76  jvms->set_sp(sp());         // Record the new sp in the JVMState
77  assert(jvms_in_sync(), "jvms is now in sync");
78  return jvms;
79}
80
81#ifdef ASSERT
82bool GraphKit::jvms_in_sync() const {
83  Parse* parse = is_Parse();
84  if (parse == NULL) {
85    if (bci() !=      jvms()->bci())          return false;
86    if (sp()  != (int)jvms()->sp())           return false;
87    return true;
88  }
89  if (jvms()->method() != parse->method())    return false;
90  if (jvms()->bci()    != parse->bci())       return false;
91  int jvms_sp = jvms()->sp();
92  if (jvms_sp          != parse->sp())        return false;
93  int jvms_depth = jvms()->depth();
94  if (jvms_depth       != parse->depth())     return false;
95  return true;
96}
97
98// Local helper checks for special internal merge points
99// used to accumulate and merge exception states.
100// They are marked by the region's in(0) edge being the map itself.
101// Such merge points must never "escape" into the parser at large,
102// until they have been handed to gvn.transform.
103static bool is_hidden_merge(Node* reg) {
104  if (reg == NULL)  return false;
105  if (reg->is_Phi()) {
106    reg = reg->in(0);
107    if (reg == NULL)  return false;
108  }
109  return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
110}
111
112void GraphKit::verify_map() const {
113  if (map() == NULL)  return;  // null map is OK
114  assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
115  assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
116  assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
117}
118
119void GraphKit::verify_exception_state(SafePointNode* ex_map) {
120  assert(ex_map->next_exception() == NULL, "not already part of a chain");
121  assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
122}
123#endif
124
125//---------------------------stop_and_kill_map---------------------------------
126// Set _map to NULL, signalling a stop to further bytecode execution.
127// First smash the current map's control to a constant, to mark it dead.
128void GraphKit::stop_and_kill_map() {
129  SafePointNode* dead_map = stop();
130  if (dead_map != NULL) {
131    dead_map->disconnect_inputs(NULL); // Mark the map as killed.
132    assert(dead_map->is_killed(), "must be so marked");
133  }
134}
135
136
137//--------------------------------stopped--------------------------------------
138// Tell if _map is NULL, or control is top.
139bool GraphKit::stopped() {
140  if (map() == NULL)           return true;
141  else if (control() == top()) return true;
142  else                         return false;
143}
144
145
146//-----------------------------has_ex_handler----------------------------------
147// Tell if this method or any caller method has exception handlers.
148bool GraphKit::has_ex_handler() {
149  for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
150    if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
151      return true;
152    }
153  }
154  return false;
155}
156
157//------------------------------save_ex_oop------------------------------------
158// Save an exception without blowing stack contents or other JVM state.
159void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
160  assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
161  ex_map->add_req(ex_oop);
162  debug_only(verify_exception_state(ex_map));
163}
164
165inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
166  assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
167  Node* ex_oop = ex_map->in(ex_map->req()-1);
168  if (clear_it)  ex_map->del_req(ex_map->req()-1);
169  return ex_oop;
170}
171
172//-----------------------------saved_ex_oop------------------------------------
173// Recover a saved exception from its map.
174Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
175  return common_saved_ex_oop(ex_map, false);
176}
177
178//--------------------------clear_saved_ex_oop---------------------------------
179// Erase a previously saved exception from its map.
180Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
181  return common_saved_ex_oop(ex_map, true);
182}
183
184#ifdef ASSERT
185//---------------------------has_saved_ex_oop----------------------------------
186// Erase a previously saved exception from its map.
187bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
188  return ex_map->req() == ex_map->jvms()->endoff()+1;
189}
190#endif
191
192//-------------------------make_exception_state--------------------------------
193// Turn the current JVM state into an exception state, appending the ex_oop.
194SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
195  sync_jvms();
196  SafePointNode* ex_map = stop();  // do not manipulate this map any more
197  set_saved_ex_oop(ex_map, ex_oop);
198  return ex_map;
199}
200
201
202//--------------------------add_exception_state--------------------------------
203// Add an exception to my list of exceptions.
204void GraphKit::add_exception_state(SafePointNode* ex_map) {
205  if (ex_map == NULL || ex_map->control() == top()) {
206    return;
207  }
208#ifdef ASSERT
209  verify_exception_state(ex_map);
210  if (has_exceptions()) {
211    assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
212  }
213#endif
214
215  // If there is already an exception of exactly this type, merge with it.
216  // In particular, null-checks and other low-level exceptions common up here.
217  Node*       ex_oop  = saved_ex_oop(ex_map);
218  const Type* ex_type = _gvn.type(ex_oop);
219  if (ex_oop == top()) {
220    // No action needed.
221    return;
222  }
223  assert(ex_type->isa_instptr(), "exception must be an instance");
224  for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
225    const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
226    // We check sp also because call bytecodes can generate exceptions
227    // both before and after arguments are popped!
228    if (ex_type2 == ex_type
229        && e2->_jvms->sp() == ex_map->_jvms->sp()) {
230      combine_exception_states(ex_map, e2);
231      return;
232    }
233  }
234
235  // No pre-existing exception of the same type.  Chain it on the list.
236  push_exception_state(ex_map);
237}
238
239//-----------------------add_exception_states_from-----------------------------
240void GraphKit::add_exception_states_from(JVMState* jvms) {
241  SafePointNode* ex_map = jvms->map()->next_exception();
242  if (ex_map != NULL) {
243    jvms->map()->set_next_exception(NULL);
244    for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
245      next_map = ex_map->next_exception();
246      ex_map->set_next_exception(NULL);
247      add_exception_state(ex_map);
248    }
249  }
250}
251
252//-----------------------transfer_exceptions_into_jvms-------------------------
253JVMState* GraphKit::transfer_exceptions_into_jvms() {
254  if (map() == NULL) {
255    // We need a JVMS to carry the exceptions, but the map has gone away.
256    // Create a scratch JVMS, cloned from any of the exception states...
257    if (has_exceptions()) {
258      _map = _exceptions;
259      _map = clone_map();
260      _map->set_next_exception(NULL);
261      clear_saved_ex_oop(_map);
262      debug_only(verify_map());
263    } else {
264      // ...or created from scratch
265      JVMState* jvms = new (C) JVMState(_method, NULL);
266      jvms->set_bci(_bci);
267      jvms->set_sp(_sp);
268      jvms->set_map(new (C, TypeFunc::Parms) SafePointNode(TypeFunc::Parms, jvms));
269      set_jvms(jvms);
270      for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
271      set_all_memory(top());
272      while (map()->req() < jvms->endoff())  map()->add_req(top());
273    }
274    // (This is a kludge, in case you didn't notice.)
275    set_control(top());
276  }
277  JVMState* jvms = sync_jvms();
278  assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
279  jvms->map()->set_next_exception(_exceptions);
280  _exceptions = NULL;   // done with this set of exceptions
281  return jvms;
282}
283
284static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
285  assert(is_hidden_merge(dstphi), "must be a special merge node");
286  assert(is_hidden_merge(srcphi), "must be a special merge node");
287  uint limit = srcphi->req();
288  for (uint i = PhiNode::Input; i < limit; i++) {
289    dstphi->add_req(srcphi->in(i));
290  }
291}
292static inline void add_one_req(Node* dstphi, Node* src) {
293  assert(is_hidden_merge(dstphi), "must be a special merge node");
294  assert(!is_hidden_merge(src), "must not be a special merge node");
295  dstphi->add_req(src);
296}
297
298//-----------------------combine_exception_states------------------------------
299// This helper function combines exception states by building phis on a
300// specially marked state-merging region.  These regions and phis are
301// untransformed, and can build up gradually.  The region is marked by
302// having a control input of its exception map, rather than NULL.  Such
303// regions do not appear except in this function, and in use_exception_state.
304void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
305  if (failing())  return;  // dying anyway...
306  JVMState* ex_jvms = ex_map->_jvms;
307  assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
308  assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
309  assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
310  assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
311  assert(ex_map->req() == phi_map->req(), "matching maps");
312  uint tos = ex_jvms->stkoff() + ex_jvms->sp();
313  Node*         hidden_merge_mark = root();
314  Node*         region  = phi_map->control();
315  MergeMemNode* phi_mem = phi_map->merged_memory();
316  MergeMemNode* ex_mem  = ex_map->merged_memory();
317  if (region->in(0) != hidden_merge_mark) {
318    // The control input is not (yet) a specially-marked region in phi_map.
319    // Make it so, and build some phis.
320    region = new (C, 2) RegionNode(2);
321    _gvn.set_type(region, Type::CONTROL);
322    region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
323    region->init_req(1, phi_map->control());
324    phi_map->set_control(region);
325    Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
326    record_for_igvn(io_phi);
327    _gvn.set_type(io_phi, Type::ABIO);
328    phi_map->set_i_o(io_phi);
329    for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
330      Node* m = mms.memory();
331      Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
332      record_for_igvn(m_phi);
333      _gvn.set_type(m_phi, Type::MEMORY);
334      mms.set_memory(m_phi);
335    }
336  }
337
338  // Either or both of phi_map and ex_map might already be converted into phis.
339  Node* ex_control = ex_map->control();
340  // if there is special marking on ex_map also, we add multiple edges from src
341  bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
342  // how wide was the destination phi_map, originally?
343  uint orig_width = region->req();
344
345  if (add_multiple) {
346    add_n_reqs(region, ex_control);
347    add_n_reqs(phi_map->i_o(), ex_map->i_o());
348  } else {
349    // ex_map has no merges, so we just add single edges everywhere
350    add_one_req(region, ex_control);
351    add_one_req(phi_map->i_o(), ex_map->i_o());
352  }
353  for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
354    if (mms.is_empty()) {
355      // get a copy of the base memory, and patch some inputs into it
356      const TypePtr* adr_type = mms.adr_type(C);
357      Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
358      assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
359      mms.set_memory(phi);
360      // Prepare to append interesting stuff onto the newly sliced phi:
361      while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
362    }
363    // Append stuff from ex_map:
364    if (add_multiple) {
365      add_n_reqs(mms.memory(), mms.memory2());
366    } else {
367      add_one_req(mms.memory(), mms.memory2());
368    }
369  }
370  uint limit = ex_map->req();
371  for (uint i = TypeFunc::Parms; i < limit; i++) {
372    // Skip everything in the JVMS after tos.  (The ex_oop follows.)
373    if (i == tos)  i = ex_jvms->monoff();
374    Node* src = ex_map->in(i);
375    Node* dst = phi_map->in(i);
376    if (src != dst) {
377      PhiNode* phi;
378      if (dst->in(0) != region) {
379        dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
380        record_for_igvn(phi);
381        _gvn.set_type(phi, phi->type());
382        phi_map->set_req(i, dst);
383        // Prepare to append interesting stuff onto the new phi:
384        while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
385      } else {
386        assert(dst->is_Phi(), "nobody else uses a hidden region");
387        phi = (PhiNode*)dst;
388      }
389      if (add_multiple && src->in(0) == ex_control) {
390        // Both are phis.
391        add_n_reqs(dst, src);
392      } else {
393        while (dst->req() < region->req())  add_one_req(dst, src);
394      }
395      const Type* srctype = _gvn.type(src);
396      if (phi->type() != srctype) {
397        const Type* dsttype = phi->type()->meet(srctype);
398        if (phi->type() != dsttype) {
399          phi->set_type(dsttype);
400          _gvn.set_type(phi, dsttype);
401        }
402      }
403    }
404  }
405}
406
407//--------------------------use_exception_state--------------------------------
408Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
409  if (failing()) { stop(); return top(); }
410  Node* region = phi_map->control();
411  Node* hidden_merge_mark = root();
412  assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
413  Node* ex_oop = clear_saved_ex_oop(phi_map);
414  if (region->in(0) == hidden_merge_mark) {
415    // Special marking for internal ex-states.  Process the phis now.
416    region->set_req(0, region);  // now it's an ordinary region
417    set_jvms(phi_map->jvms());   // ...so now we can use it as a map
418    // Note: Setting the jvms also sets the bci and sp.
419    set_control(_gvn.transform(region));
420    uint tos = jvms()->stkoff() + sp();
421    for (uint i = 1; i < tos; i++) {
422      Node* x = phi_map->in(i);
423      if (x->in(0) == region) {
424        assert(x->is_Phi(), "expected a special phi");
425        phi_map->set_req(i, _gvn.transform(x));
426      }
427    }
428    for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
429      Node* x = mms.memory();
430      if (x->in(0) == region) {
431        assert(x->is_Phi(), "nobody else uses a hidden region");
432        mms.set_memory(_gvn.transform(x));
433      }
434    }
435    if (ex_oop->in(0) == region) {
436      assert(ex_oop->is_Phi(), "expected a special phi");
437      ex_oop = _gvn.transform(ex_oop);
438    }
439  } else {
440    set_jvms(phi_map->jvms());
441  }
442
443  assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
444  assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
445  return ex_oop;
446}
447
448//---------------------------------java_bc-------------------------------------
449Bytecodes::Code GraphKit::java_bc() const {
450  ciMethod* method = this->method();
451  int       bci    = this->bci();
452  if (method != NULL && bci != InvocationEntryBci)
453    return method->java_code_at_bci(bci);
454  else
455    return Bytecodes::_illegal;
456}
457
458//------------------------------builtin_throw----------------------------------
459void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
460  bool must_throw = true;
461
462  if (JvmtiExport::can_post_exceptions()) {
463    // Do not try anything fancy if we're notifying the VM on every throw.
464    // Cf. case Bytecodes::_athrow in parse2.cpp.
465    uncommon_trap(reason, Deoptimization::Action_none,
466                  (ciKlass*)NULL, (char*)NULL, must_throw);
467    return;
468  }
469
470  // If this particular condition has not yet happened at this
471  // bytecode, then use the uncommon trap mechanism, and allow for
472  // a future recompilation if several traps occur here.
473  // If the throw is hot, try to use a more complicated inline mechanism
474  // which keeps execution inside the compiled code.
475  bool treat_throw_as_hot = false;
476  ciMethodData* md = method()->method_data();
477
478  if (ProfileTraps) {
479    if (too_many_traps(reason)) {
480      treat_throw_as_hot = true;
481    }
482    // (If there is no MDO at all, assume it is early in
483    // execution, and that any deopts are part of the
484    // startup transient, and don't need to be remembered.)
485
486    // Also, if there is a local exception handler, treat all throws
487    // as hot if there has been at least one in this method.
488    if (C->trap_count(reason) != 0
489        && method()->method_data()->trap_count(reason) != 0
490        && has_ex_handler()) {
491        treat_throw_as_hot = true;
492    }
493  }
494
495  // If this throw happens frequently, an uncommon trap might cause
496  // a performance pothole.  If there is a local exception handler,
497  // and if this particular bytecode appears to be deoptimizing often,
498  // let us handle the throw inline, with a preconstructed instance.
499  // Note:   If the deopt count has blown up, the uncommon trap
500  // runtime is going to flush this nmethod, not matter what.
501  if (treat_throw_as_hot
502      && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
503    // If the throw is local, we use a pre-existing instance and
504    // punt on the backtrace.  This would lead to a missing backtrace
505    // (a repeat of 4292742) if the backtrace object is ever asked
506    // for its backtrace.
507    // Fixing this remaining case of 4292742 requires some flavor of
508    // escape analysis.  Leave that for the future.
509    ciInstance* ex_obj = NULL;
510    switch (reason) {
511    case Deoptimization::Reason_null_check:
512      ex_obj = env()->NullPointerException_instance();
513      break;
514    case Deoptimization::Reason_div0_check:
515      ex_obj = env()->ArithmeticException_instance();
516      break;
517    case Deoptimization::Reason_range_check:
518      ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
519      break;
520    case Deoptimization::Reason_class_check:
521      if (java_bc() == Bytecodes::_aastore) {
522        ex_obj = env()->ArrayStoreException_instance();
523      } else {
524        ex_obj = env()->ClassCastException_instance();
525      }
526      break;
527    }
528    if (failing()) { stop(); return; }  // exception allocation might fail
529    if (ex_obj != NULL) {
530      // Cheat with a preallocated exception object.
531      if (C->log() != NULL)
532        C->log()->elem("hot_throw preallocated='1' reason='%s'",
533                       Deoptimization::trap_reason_name(reason));
534      const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
535      Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
536
537      // Clear the detail message of the preallocated exception object.
538      // Weblogic sometimes mutates the detail message of exceptions
539      // using reflection.
540      int offset = java_lang_Throwable::get_detailMessage_offset();
541      const TypePtr* adr_typ = ex_con->add_offset(offset);
542
543      Node *adr = basic_plus_adr(ex_node, ex_node, offset);
544      Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), ex_con, T_OBJECT);
545
546      add_exception_state(make_exception_state(ex_node));
547      return;
548    }
549  }
550
551  // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
552  // It won't be much cheaper than bailing to the interp., since we'll
553  // have to pass up all the debug-info, and the runtime will have to
554  // create the stack trace.
555
556  // Usual case:  Bail to interpreter.
557  // Reserve the right to recompile if we haven't seen anything yet.
558
559  Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
560  if (treat_throw_as_hot
561      && (method()->method_data()->trap_recompiled_at(bci())
562          || C->too_many_traps(reason))) {
563    // We cannot afford to take more traps here.  Suffer in the interpreter.
564    if (C->log() != NULL)
565      C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
566                     Deoptimization::trap_reason_name(reason),
567                     C->trap_count(reason));
568    action = Deoptimization::Action_none;
569  }
570
571  // "must_throw" prunes the JVM state to include only the stack, if there
572  // are no local exception handlers.  This should cut down on register
573  // allocation time and code size, by drastically reducing the number
574  // of in-edges on the call to the uncommon trap.
575
576  uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
577}
578
579
580//----------------------------PreserveJVMState---------------------------------
581PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
582  debug_only(kit->verify_map());
583  _kit    = kit;
584  _map    = kit->map();   // preserve the map
585  _sp     = kit->sp();
586  kit->set_map(clone_map ? kit->clone_map() : NULL);
587#ifdef ASSERT
588  _bci    = kit->bci();
589  Parse* parser = kit->is_Parse();
590  int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
591  _block  = block;
592#endif
593}
594PreserveJVMState::~PreserveJVMState() {
595  GraphKit* kit = _kit;
596#ifdef ASSERT
597  assert(kit->bci() == _bci, "bci must not shift");
598  Parse* parser = kit->is_Parse();
599  int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
600  assert(block == _block,    "block must not shift");
601#endif
602  kit->set_map(_map);
603  kit->set_sp(_sp);
604}
605
606
607//-----------------------------BuildCutout-------------------------------------
608BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
609  : PreserveJVMState(kit)
610{
611  assert(p->is_Con() || p->is_Bool(), "test must be a bool");
612  SafePointNode* outer_map = _map;   // preserved map is caller's
613  SafePointNode* inner_map = kit->map();
614  IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
615  outer_map->set_control(kit->gvn().transform( new (kit->C, 1) IfTrueNode(iff) ));
616  inner_map->set_control(kit->gvn().transform( new (kit->C, 1) IfFalseNode(iff) ));
617}
618BuildCutout::~BuildCutout() {
619  GraphKit* kit = _kit;
620  assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
621}
622
623
624//------------------------------clone_map--------------------------------------
625// Implementation of PreserveJVMState
626//
627// Only clone_map(...) here. If this function is only used in the
628// PreserveJVMState class we may want to get rid of this extra
629// function eventually and do it all there.
630
631SafePointNode* GraphKit::clone_map() {
632  if (map() == NULL)  return NULL;
633
634  // Clone the memory edge first
635  Node* mem = MergeMemNode::make(C, map()->memory());
636  gvn().set_type_bottom(mem);
637
638  SafePointNode *clonemap = (SafePointNode*)map()->clone();
639  JVMState* jvms = this->jvms();
640  JVMState* clonejvms = jvms->clone_shallow(C);
641  clonemap->set_memory(mem);
642  clonemap->set_jvms(clonejvms);
643  clonejvms->set_map(clonemap);
644  record_for_igvn(clonemap);
645  gvn().set_type_bottom(clonemap);
646  return clonemap;
647}
648
649
650//-----------------------------set_map_clone-----------------------------------
651void GraphKit::set_map_clone(SafePointNode* m) {
652  _map = m;
653  _map = clone_map();
654  _map->set_next_exception(NULL);
655  debug_only(verify_map());
656}
657
658
659//----------------------------kill_dead_locals---------------------------------
660// Detect any locals which are known to be dead, and force them to top.
661void GraphKit::kill_dead_locals() {
662  // Consult the liveness information for the locals.  If any
663  // of them are unused, then they can be replaced by top().  This
664  // should help register allocation time and cut down on the size
665  // of the deoptimization information.
666
667  // This call is made from many of the bytecode handling
668  // subroutines called from the Big Switch in do_one_bytecode.
669  // Every bytecode which might include a slow path is responsible
670  // for killing its dead locals.  The more consistent we
671  // are about killing deads, the fewer useless phis will be
672  // constructed for them at various merge points.
673
674  // bci can be -1 (InvocationEntryBci).  We return the entry
675  // liveness for the method.
676
677  if (method() == NULL || method()->code_size() == 0) {
678    // We are building a graph for a call to a native method.
679    // All locals are live.
680    return;
681  }
682
683  ResourceMark rm;
684
685  // Consult the liveness information for the locals.  If any
686  // of them are unused, then they can be replaced by top().  This
687  // should help register allocation time and cut down on the size
688  // of the deoptimization information.
689  MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
690
691  int len = (int)live_locals.size();
692  assert(len <= jvms()->loc_size(), "too many live locals");
693  for (int local = 0; local < len; local++) {
694    if (!live_locals.at(local)) {
695      set_local(local, top());
696    }
697  }
698}
699
700#ifdef ASSERT
701//-------------------------dead_locals_are_killed------------------------------
702// Return true if all dead locals are set to top in the map.
703// Used to assert "clean" debug info at various points.
704bool GraphKit::dead_locals_are_killed() {
705  if (method() == NULL || method()->code_size() == 0) {
706    // No locals need to be dead, so all is as it should be.
707    return true;
708  }
709
710  // Make sure somebody called kill_dead_locals upstream.
711  ResourceMark rm;
712  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
713    if (jvms->loc_size() == 0)  continue;  // no locals to consult
714    SafePointNode* map = jvms->map();
715    ciMethod* method = jvms->method();
716    int       bci    = jvms->bci();
717    if (jvms == this->jvms()) {
718      bci = this->bci();  // it might not yet be synched
719    }
720    MethodLivenessResult live_locals = method->liveness_at_bci(bci);
721    int len = (int)live_locals.size();
722    if (!live_locals.is_valid() || len == 0)
723      // This method is trivial, or is poisoned by a breakpoint.
724      return true;
725    assert(len == jvms->loc_size(), "live map consistent with locals map");
726    for (int local = 0; local < len; local++) {
727      if (!live_locals.at(local) && map->local(jvms, local) != top()) {
728        if (PrintMiscellaneous && (Verbose || WizardMode)) {
729          tty->print_cr("Zombie local %d: ", local);
730          jvms->dump();
731        }
732        return false;
733      }
734    }
735  }
736  return true;
737}
738
739#endif //ASSERT
740
741// Helper function for adding JVMState and debug information to node
742void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
743  // Add the safepoint edges to the call (or other safepoint).
744
745  // Make sure dead locals are set to top.  This
746  // should help register allocation time and cut down on the size
747  // of the deoptimization information.
748  assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
749
750  // Walk the inline list to fill in the correct set of JVMState's
751  // Also fill in the associated edges for each JVMState.
752
753  JVMState* youngest_jvms = sync_jvms();
754
755  // Do we need debug info here?  If it is a SafePoint and this method
756  // cannot de-opt, then we do NOT need any debug info.
757  bool full_info = (C->deopt_happens() || call->Opcode() != Op_SafePoint);
758
759  // If we are guaranteed to throw, we can prune everything but the
760  // input to the current bytecode.
761  bool can_prune_locals = false;
762  uint stack_slots_not_pruned = 0;
763  int inputs = 0, depth = 0;
764  if (must_throw) {
765    assert(method() == youngest_jvms->method(), "sanity");
766    if (compute_stack_effects(inputs, depth)) {
767      can_prune_locals = true;
768      stack_slots_not_pruned = inputs;
769    }
770  }
771
772  if (JvmtiExport::can_examine_or_deopt_anywhere()) {
773    // At any safepoint, this method can get breakpointed, which would
774    // then require an immediate deoptimization.
775    full_info = true;
776    can_prune_locals = false;  // do not prune locals
777    stack_slots_not_pruned = 0;
778  }
779
780  // do not scribble on the input jvms
781  JVMState* out_jvms = youngest_jvms->clone_deep(C);
782  call->set_jvms(out_jvms); // Start jvms list for call node
783
784  // Presize the call:
785  debug_only(uint non_debug_edges = call->req());
786  call->add_req_batch(top(), youngest_jvms->debug_depth());
787  assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
788
789  // Set up edges so that the call looks like this:
790  //  Call [state:] ctl io mem fptr retadr
791  //       [parms:] parm0 ... parmN
792  //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
793  //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
794  //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
795  // Note that caller debug info precedes callee debug info.
796
797  // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
798  uint debug_ptr = call->req();
799
800  // Loop over the map input edges associated with jvms, add them
801  // to the call node, & reset all offsets to match call node array.
802  for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
803    uint debug_end   = debug_ptr;
804    uint debug_start = debug_ptr - in_jvms->debug_size();
805    debug_ptr = debug_start;  // back up the ptr
806
807    uint p = debug_start;  // walks forward in [debug_start, debug_end)
808    uint j, k, l;
809    SafePointNode* in_map = in_jvms->map();
810    out_jvms->set_map(call);
811
812    if (can_prune_locals) {
813      assert(in_jvms->method() == out_jvms->method(), "sanity");
814      // If the current throw can reach an exception handler in this JVMS,
815      // then we must keep everything live that can reach that handler.
816      // As a quick and dirty approximation, we look for any handlers at all.
817      if (in_jvms->method()->has_exception_handlers()) {
818        can_prune_locals = false;
819      }
820    }
821
822    // Add the Locals
823    k = in_jvms->locoff();
824    l = in_jvms->loc_size();
825    out_jvms->set_locoff(p);
826    if (full_info && !can_prune_locals) {
827      for (j = 0; j < l; j++)
828        call->set_req(p++, in_map->in(k+j));
829    } else {
830      p += l;  // already set to top above by add_req_batch
831    }
832
833    // Add the Expression Stack
834    k = in_jvms->stkoff();
835    l = in_jvms->sp();
836    out_jvms->set_stkoff(p);
837    if (full_info && !can_prune_locals) {
838      for (j = 0; j < l; j++)
839        call->set_req(p++, in_map->in(k+j));
840    } else if (can_prune_locals && stack_slots_not_pruned != 0) {
841      // Divide stack into {S0,...,S1}, where S0 is set to top.
842      uint s1 = stack_slots_not_pruned;
843      stack_slots_not_pruned = 0;  // for next iteration
844      if (s1 > l)  s1 = l;
845      uint s0 = l - s1;
846      p += s0;  // skip the tops preinstalled by add_req_batch
847      for (j = s0; j < l; j++)
848        call->set_req(p++, in_map->in(k+j));
849    } else {
850      p += l;  // already set to top above by add_req_batch
851    }
852
853    // Add the Monitors
854    k = in_jvms->monoff();
855    l = in_jvms->mon_size();
856    out_jvms->set_monoff(p);
857    for (j = 0; j < l; j++)
858      call->set_req(p++, in_map->in(k+j));
859
860    // Copy any scalar object fields.
861    k = in_jvms->scloff();
862    l = in_jvms->scl_size();
863    out_jvms->set_scloff(p);
864    for (j = 0; j < l; j++)
865      call->set_req(p++, in_map->in(k+j));
866
867    // Finish the new jvms.
868    out_jvms->set_endoff(p);
869
870    assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
871    assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
872    assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
873    assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
874    assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
875    assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
876
877    // Update the two tail pointers in parallel.
878    out_jvms = out_jvms->caller();
879    in_jvms  = in_jvms->caller();
880  }
881
882  assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
883
884  // Test the correctness of JVMState::debug_xxx accessors:
885  assert(call->jvms()->debug_start() == non_debug_edges, "");
886  assert(call->jvms()->debug_end()   == call->req(), "");
887  assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
888}
889
890bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
891  Bytecodes::Code code = java_bc();
892  if (code == Bytecodes::_wide) {
893    code = method()->java_code_at_bci(bci() + 1);
894  }
895
896  BasicType rtype = T_ILLEGAL;
897  int       rsize = 0;
898
899  if (code != Bytecodes::_illegal) {
900    depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
901    rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
902    if (rtype < T_CONFLICT)
903      rsize = type2size[rtype];
904  }
905
906  switch (code) {
907  case Bytecodes::_illegal:
908    return false;
909
910  case Bytecodes::_ldc:
911  case Bytecodes::_ldc_w:
912  case Bytecodes::_ldc2_w:
913    inputs = 0;
914    break;
915
916  case Bytecodes::_dup:         inputs = 1;  break;
917  case Bytecodes::_dup_x1:      inputs = 2;  break;
918  case Bytecodes::_dup_x2:      inputs = 3;  break;
919  case Bytecodes::_dup2:        inputs = 2;  break;
920  case Bytecodes::_dup2_x1:     inputs = 3;  break;
921  case Bytecodes::_dup2_x2:     inputs = 4;  break;
922  case Bytecodes::_swap:        inputs = 2;  break;
923  case Bytecodes::_arraylength: inputs = 1;  break;
924
925  case Bytecodes::_getstatic:
926  case Bytecodes::_putstatic:
927  case Bytecodes::_getfield:
928  case Bytecodes::_putfield:
929    {
930      bool is_get = (depth >= 0), is_static = (depth & 1);
931      bool ignore;
932      ciBytecodeStream iter(method());
933      iter.reset_to_bci(bci());
934      iter.next();
935      ciField* field = iter.get_field(ignore);
936      int      size  = field->type()->size();
937      inputs  = (is_static ? 0 : 1);
938      if (is_get) {
939        depth = size - inputs;
940      } else {
941        inputs += size;        // putxxx pops the value from the stack
942        depth = - inputs;
943      }
944    }
945    break;
946
947  case Bytecodes::_invokevirtual:
948  case Bytecodes::_invokespecial:
949  case Bytecodes::_invokestatic:
950  case Bytecodes::_invokeinterface:
951    {
952      bool is_static = (depth == 0);
953      bool ignore;
954      ciBytecodeStream iter(method());
955      iter.reset_to_bci(bci());
956      iter.next();
957      ciMethod* method = iter.get_method(ignore);
958      inputs = method->arg_size_no_receiver();
959      if (!is_static)  inputs += 1;
960      int size = method->return_type()->size();
961      depth = size - inputs;
962    }
963    break;
964
965  case Bytecodes::_multianewarray:
966    {
967      ciBytecodeStream iter(method());
968      iter.reset_to_bci(bci());
969      iter.next();
970      inputs = iter.get_dimensions();
971      assert(rsize == 1, "");
972      depth = rsize - inputs;
973    }
974    break;
975
976  case Bytecodes::_ireturn:
977  case Bytecodes::_lreturn:
978  case Bytecodes::_freturn:
979  case Bytecodes::_dreturn:
980  case Bytecodes::_areturn:
981    assert(rsize = -depth, "");
982    inputs = rsize;
983    break;
984
985  case Bytecodes::_jsr:
986  case Bytecodes::_jsr_w:
987    inputs = 0;
988    depth  = 1;                  // S.B. depth=1, not zero
989    break;
990
991  default:
992    // bytecode produces a typed result
993    inputs = rsize - depth;
994    assert(inputs >= 0, "");
995    break;
996  }
997
998#ifdef ASSERT
999  // spot check
1000  int outputs = depth + inputs;
1001  assert(outputs >= 0, "sanity");
1002  switch (code) {
1003  case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1004  case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1005  case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1006  case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1007  case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1008  }
1009#endif //ASSERT
1010
1011  return true;
1012}
1013
1014
1015
1016//------------------------------basic_plus_adr---------------------------------
1017Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1018  // short-circuit a common case
1019  if (offset == intcon(0))  return ptr;
1020  return _gvn.transform( new (C, 4) AddPNode(base, ptr, offset) );
1021}
1022
1023Node* GraphKit::ConvI2L(Node* offset) {
1024  // short-circuit a common case
1025  jint offset_con = find_int_con(offset, Type::OffsetBot);
1026  if (offset_con != Type::OffsetBot) {
1027    return longcon((long) offset_con);
1028  }
1029  return _gvn.transform( new (C, 2) ConvI2LNode(offset));
1030}
1031Node* GraphKit::ConvL2I(Node* offset) {
1032  // short-circuit a common case
1033  jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1034  if (offset_con != (jlong)Type::OffsetBot) {
1035    return intcon((int) offset_con);
1036  }
1037  return _gvn.transform( new (C, 2) ConvL2INode(offset));
1038}
1039
1040//-------------------------load_object_klass-----------------------------------
1041Node* GraphKit::load_object_klass(Node* obj) {
1042  // Special-case a fresh allocation to avoid building nodes:
1043  Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1044  if (akls != NULL)  return akls;
1045  Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1046  return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1047}
1048
1049//-------------------------load_array_length-----------------------------------
1050Node* GraphKit::load_array_length(Node* array) {
1051  // Special-case a fresh allocation to avoid building nodes:
1052  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1053  Node *alen;
1054  if (alloc == NULL) {
1055    Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1056    alen = _gvn.transform( new (C, 3) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1057  } else {
1058    alen = alloc->Ideal_length();
1059    Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_aryptr(), &_gvn);
1060    if (ccast != alen) {
1061      alen = _gvn.transform(ccast);
1062    }
1063  }
1064  return alen;
1065}
1066
1067//------------------------------do_null_check----------------------------------
1068// Helper function to do a NULL pointer check.  Returned value is
1069// the incoming address with NULL casted away.  You are allowed to use the
1070// not-null value only if you are control dependent on the test.
1071extern int explicit_null_checks_inserted,
1072           explicit_null_checks_elided;
1073Node* GraphKit::null_check_common(Node* value, BasicType type,
1074                                  // optional arguments for variations:
1075                                  bool assert_null,
1076                                  Node* *null_control) {
1077  assert(!assert_null || null_control == NULL, "not both at once");
1078  if (stopped())  return top();
1079  if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1080    // For some performance testing, we may wish to suppress null checking.
1081    value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1082    return value;
1083  }
1084  explicit_null_checks_inserted++;
1085
1086  // Construct NULL check
1087  Node *chk = NULL;
1088  switch(type) {
1089    case T_LONG   : chk = new (C, 3) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1090    case T_INT    : chk = new (C, 3) CmpINode( value, _gvn.intcon(0)); break;
1091    case T_ARRAY  : // fall through
1092      type = T_OBJECT;  // simplify further tests
1093    case T_OBJECT : {
1094      const Type *t = _gvn.type( value );
1095
1096      const TypeInstPtr* tp = t->isa_instptr();
1097      if (tp != NULL && !tp->klass()->is_loaded()
1098          // Only for do_null_check, not any of its siblings:
1099          && !assert_null && null_control == NULL) {
1100        // Usually, any field access or invocation on an unloaded oop type
1101        // will simply fail to link, since the statically linked class is
1102        // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1103        // the static class is loaded but the sharper oop type is not.
1104        // Rather than checking for this obscure case in lots of places,
1105        // we simply observe that a null check on an unloaded class
1106        // will always be followed by a nonsense operation, so we
1107        // can just issue the uncommon trap here.
1108        // Our access to the unloaded class will only be correct
1109        // after it has been loaded and initialized, which requires
1110        // a trip through the interpreter.
1111#ifndef PRODUCT
1112        if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1113#endif
1114        uncommon_trap(Deoptimization::Reason_unloaded,
1115                      Deoptimization::Action_reinterpret,
1116                      tp->klass(), "!loaded");
1117        return top();
1118      }
1119
1120      if (assert_null) {
1121        // See if the type is contained in NULL_PTR.
1122        // If so, then the value is already null.
1123        if (t->higher_equal(TypePtr::NULL_PTR)) {
1124          explicit_null_checks_elided++;
1125          return value;           // Elided null assert quickly!
1126        }
1127      } else {
1128        // See if mixing in the NULL pointer changes type.
1129        // If so, then the NULL pointer was not allowed in the original
1130        // type.  In other words, "value" was not-null.
1131        if (t->meet(TypePtr::NULL_PTR) != t) {
1132          // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1133          explicit_null_checks_elided++;
1134          return value;           // Elided null check quickly!
1135        }
1136      }
1137      chk = new (C, 3) CmpPNode( value, null() );
1138      break;
1139    }
1140
1141    default      : ShouldNotReachHere();
1142  }
1143  assert(chk != NULL, "sanity check");
1144  chk = _gvn.transform(chk);
1145
1146  BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1147  BoolNode *btst = new (C, 2) BoolNode( chk, btest);
1148  Node   *tst = _gvn.transform( btst );
1149
1150  //-----------
1151  // if peephole optimizations occurred, a prior test existed.
1152  // If a prior test existed, maybe it dominates as we can avoid this test.
1153  if (tst != btst && type == T_OBJECT) {
1154    // At this point we want to scan up the CFG to see if we can
1155    // find an identical test (and so avoid this test altogether).
1156    Node *cfg = control();
1157    int depth = 0;
1158    while( depth < 16 ) {       // Limit search depth for speed
1159      if( cfg->Opcode() == Op_IfTrue &&
1160          cfg->in(0)->in(1) == tst ) {
1161        // Found prior test.  Use "cast_not_null" to construct an identical
1162        // CastPP (and hence hash to) as already exists for the prior test.
1163        // Return that casted value.
1164        if (assert_null) {
1165          replace_in_map(value, null());
1166          return null();  // do not issue the redundant test
1167        }
1168        Node *oldcontrol = control();
1169        set_control(cfg);
1170        Node *res = cast_not_null(value);
1171        set_control(oldcontrol);
1172        explicit_null_checks_elided++;
1173        return res;
1174      }
1175      cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1176      if (cfg == NULL)  break;  // Quit at region nodes
1177      depth++;
1178    }
1179  }
1180
1181  //-----------
1182  // Branch to failure if null
1183  float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1184  Deoptimization::DeoptReason reason;
1185  if (assert_null)
1186    reason = Deoptimization::Reason_null_assert;
1187  else if (type == T_OBJECT)
1188    reason = Deoptimization::Reason_null_check;
1189  else
1190    reason = Deoptimization::Reason_div0_check;
1191
1192  // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1193  // ciMethodData::has_trap_at will return a conservative -1 if any
1194  // must-be-null assertion has failed.  This could cause performance
1195  // problems for a method after its first do_null_assert failure.
1196  // Consider using 'Reason_class_check' instead?
1197
1198  // To cause an implicit null check, we set the not-null probability
1199  // to the maximum (PROB_MAX).  For an explicit check the probability
1200  // is set to a smaller value.
1201  if (null_control != NULL || too_many_traps(reason)) {
1202    // probability is less likely
1203    ok_prob =  PROB_LIKELY_MAG(3);
1204  } else if (!assert_null &&
1205             (ImplicitNullCheckThreshold > 0) &&
1206             method() != NULL &&
1207             (method()->method_data()->trap_count(reason)
1208              >= (uint)ImplicitNullCheckThreshold)) {
1209    ok_prob =  PROB_LIKELY_MAG(3);
1210  }
1211
1212  if (null_control != NULL) {
1213    IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1214    Node* null_true = _gvn.transform( new (C, 1) IfFalseNode(iff));
1215    set_control(      _gvn.transform( new (C, 1) IfTrueNode(iff)));
1216    if (null_true == top())
1217      explicit_null_checks_elided++;
1218    (*null_control) = null_true;
1219  } else {
1220    BuildCutout unless(this, tst, ok_prob);
1221    // Check for optimizer eliding test at parse time
1222    if (stopped()) {
1223      // Failure not possible; do not bother making uncommon trap.
1224      explicit_null_checks_elided++;
1225    } else if (assert_null) {
1226      uncommon_trap(reason,
1227                    Deoptimization::Action_make_not_entrant,
1228                    NULL, "assert_null");
1229    } else {
1230      replace_in_map(value, zerocon(type));
1231      builtin_throw(reason);
1232    }
1233  }
1234
1235  // Must throw exception, fall-thru not possible?
1236  if (stopped()) {
1237    return top();               // No result
1238  }
1239
1240  if (assert_null) {
1241    // Cast obj to null on this path.
1242    replace_in_map(value, zerocon(type));
1243    return zerocon(type);
1244  }
1245
1246  // Cast obj to not-null on this path, if there is no null_control.
1247  // (If there is a null_control, a non-null value may come back to haunt us.)
1248  if (type == T_OBJECT) {
1249    Node* cast = cast_not_null(value, false);
1250    if (null_control == NULL || (*null_control) == top())
1251      replace_in_map(value, cast);
1252    value = cast;
1253  }
1254
1255  return value;
1256}
1257
1258
1259//------------------------------cast_not_null----------------------------------
1260// Cast obj to not-null on this path
1261Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1262  const Type *t = _gvn.type(obj);
1263  const Type *t_not_null = t->join(TypePtr::NOTNULL);
1264  // Object is already not-null?
1265  if( t == t_not_null ) return obj;
1266
1267  Node *cast = new (C, 2) CastPPNode(obj,t_not_null);
1268  cast->init_req(0, control());
1269  cast = _gvn.transform( cast );
1270
1271  // Scan for instances of 'obj' in the current JVM mapping.
1272  // These instances are known to be not-null after the test.
1273  if (do_replace_in_map)
1274    replace_in_map(obj, cast);
1275
1276  return cast;                  // Return casted value
1277}
1278
1279
1280//--------------------------replace_in_map-------------------------------------
1281void GraphKit::replace_in_map(Node* old, Node* neww) {
1282  this->map()->replace_edge(old, neww);
1283
1284  // Note: This operation potentially replaces any edge
1285  // on the map.  This includes locals, stack, and monitors
1286  // of the current (innermost) JVM state.
1287
1288  // We can consider replacing in caller maps.
1289  // The idea would be that an inlined function's null checks
1290  // can be shared with the entire inlining tree.
1291  // The expense of doing this is that the PreserveJVMState class
1292  // would have to preserve caller states too, with a deep copy.
1293}
1294
1295
1296
1297//=============================================================================
1298//--------------------------------memory---------------------------------------
1299Node* GraphKit::memory(uint alias_idx) {
1300  MergeMemNode* mem = merged_memory();
1301  Node* p = mem->memory_at(alias_idx);
1302  _gvn.set_type(p, Type::MEMORY);  // must be mapped
1303  return p;
1304}
1305
1306//-----------------------------reset_memory------------------------------------
1307Node* GraphKit::reset_memory() {
1308  Node* mem = map()->memory();
1309  // do not use this node for any more parsing!
1310  debug_only( map()->set_memory((Node*)NULL) );
1311  return _gvn.transform( mem );
1312}
1313
1314//------------------------------set_all_memory---------------------------------
1315void GraphKit::set_all_memory(Node* newmem) {
1316  Node* mergemem = MergeMemNode::make(C, newmem);
1317  gvn().set_type_bottom(mergemem);
1318  map()->set_memory(mergemem);
1319}
1320
1321//------------------------------set_all_memory_call----------------------------
1322void GraphKit::set_all_memory_call(Node* call) {
1323  Node* newmem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
1324  set_all_memory(newmem);
1325}
1326
1327//=============================================================================
1328//
1329// parser factory methods for MemNodes
1330//
1331// These are layered on top of the factory methods in LoadNode and StoreNode,
1332// and integrate with the parser's memory state and _gvn engine.
1333//
1334
1335// factory methods in "int adr_idx"
1336Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1337                          int adr_idx,
1338                          bool require_atomic_access) {
1339  assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1340  const TypePtr* adr_type = NULL; // debug-mode-only argument
1341  debug_only(adr_type = C->get_adr_type(adr_idx));
1342  Node* mem = memory(adr_idx);
1343  Node* ld;
1344  if (require_atomic_access && bt == T_LONG) {
1345    ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
1346  } else {
1347    ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
1348  }
1349  return _gvn.transform(ld);
1350}
1351
1352Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1353                                int adr_idx,
1354                                bool require_atomic_access) {
1355  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1356  const TypePtr* adr_type = NULL;
1357  debug_only(adr_type = C->get_adr_type(adr_idx));
1358  Node *mem = memory(adr_idx);
1359  Node* st;
1360  if (require_atomic_access && bt == T_LONG) {
1361    st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
1362  } else {
1363    st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
1364  }
1365  st = _gvn.transform(st);
1366  set_memory(st, adr_idx);
1367  // Back-to-back stores can only remove intermediate store with DU info
1368  // so push on worklist for optimizer.
1369  if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1370    record_for_igvn(st);
1371
1372  return st;
1373}
1374
1375void GraphKit::pre_barrier(Node* ctl,
1376                           Node* obj,
1377                           Node* adr,
1378                           uint adr_idx,
1379                           Node *val,
1380                           const Type* val_type,
1381                           BasicType bt) {
1382  BarrierSet* bs = Universe::heap()->barrier_set();
1383  set_control(ctl);
1384  switch (bs->kind()) {
1385    case BarrierSet::G1SATBCT:
1386    case BarrierSet::G1SATBCTLogging:
1387        g1_write_barrier_pre(obj, adr, adr_idx, val, val_type, bt);
1388      break;
1389
1390    case BarrierSet::CardTableModRef:
1391    case BarrierSet::CardTableExtension:
1392    case BarrierSet::ModRef:
1393      break;
1394
1395    case BarrierSet::Other:
1396    default      :
1397      ShouldNotReachHere();
1398
1399  }
1400}
1401
1402void GraphKit::post_barrier(Node* ctl,
1403                            Node* store,
1404                            Node* obj,
1405                            Node* adr,
1406                            uint adr_idx,
1407                            Node *val,
1408                            BasicType bt,
1409                            bool use_precise) {
1410  BarrierSet* bs = Universe::heap()->barrier_set();
1411  set_control(ctl);
1412  switch (bs->kind()) {
1413    case BarrierSet::G1SATBCT:
1414    case BarrierSet::G1SATBCTLogging:
1415        g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1416      break;
1417
1418    case BarrierSet::CardTableModRef:
1419    case BarrierSet::CardTableExtension:
1420      write_barrier_post(store, obj, adr, val, use_precise);
1421      break;
1422
1423    case BarrierSet::ModRef:
1424      break;
1425
1426    case BarrierSet::Other:
1427    default      :
1428      ShouldNotReachHere();
1429
1430  }
1431}
1432
1433Node* GraphKit::store_oop_to_object(Node* ctl,
1434                                    Node* obj,
1435                                    Node* adr,
1436                                    const TypePtr* adr_type,
1437                                    Node *val,
1438                                    const Type* val_type,
1439                                    BasicType bt) {
1440  uint adr_idx = C->get_alias_index(adr_type);
1441  Node* store;
1442  pre_barrier(ctl, obj, adr, adr_idx, val, val_type, bt);
1443  store = store_to_memory(control(), adr, val, bt, adr_idx);
1444  post_barrier(control(), store, obj, adr, adr_idx, val, bt, false);
1445  return store;
1446}
1447
1448Node* GraphKit::store_oop_to_array(Node* ctl,
1449                                   Node* obj,
1450                                   Node* adr,
1451                                   const TypePtr* adr_type,
1452                                   Node *val,
1453                                   const Type* val_type,
1454                                   BasicType bt) {
1455  uint adr_idx = C->get_alias_index(adr_type);
1456  Node* store;
1457  pre_barrier(ctl, obj, adr, adr_idx, val, val_type, bt);
1458  store = store_to_memory(control(), adr, val, bt, adr_idx);
1459  post_barrier(control(), store, obj, adr, adr_idx, val, bt, true);
1460  return store;
1461}
1462
1463Node* GraphKit::store_oop_to_unknown(Node* ctl,
1464                                     Node* obj,
1465                                     Node* adr,
1466                                     const TypePtr* adr_type,
1467                                     Node *val,
1468                                     const Type* val_type,
1469                                     BasicType bt) {
1470  uint adr_idx = C->get_alias_index(adr_type);
1471  Node* store;
1472  pre_barrier(ctl, obj, adr, adr_idx, val, val_type, bt);
1473  store = store_to_memory(control(), adr, val, bt, adr_idx);
1474  post_barrier(control(), store, obj, adr, adr_idx, val, bt, true);
1475  return store;
1476}
1477
1478
1479//-------------------------array_element_address-------------------------
1480Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1481                                      const TypeInt* sizetype) {
1482  uint shift  = exact_log2(type2aelembytes(elembt));
1483  uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1484
1485  // short-circuit a common case (saves lots of confusing waste motion)
1486  jint idx_con = find_int_con(idx, -1);
1487  if (idx_con >= 0) {
1488    intptr_t offset = header + ((intptr_t)idx_con << shift);
1489    return basic_plus_adr(ary, offset);
1490  }
1491
1492  // must be correct type for alignment purposes
1493  Node* base  = basic_plus_adr(ary, header);
1494#ifdef _LP64
1495  // The scaled index operand to AddP must be a clean 64-bit value.
1496  // Java allows a 32-bit int to be incremented to a negative
1497  // value, which appears in a 64-bit register as a large
1498  // positive number.  Using that large positive number as an
1499  // operand in pointer arithmetic has bad consequences.
1500  // On the other hand, 32-bit overflow is rare, and the possibility
1501  // can often be excluded, if we annotate the ConvI2L node with
1502  // a type assertion that its value is known to be a small positive
1503  // number.  (The prior range check has ensured this.)
1504  // This assertion is used by ConvI2LNode::Ideal.
1505  int index_max = max_jint - 1;  // array size is max_jint, index is one less
1506  if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1507  const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1508  idx = _gvn.transform( new (C, 2) ConvI2LNode(idx, lidxtype) );
1509#endif
1510  Node* scale = _gvn.transform( new (C, 3) LShiftXNode(idx, intcon(shift)) );
1511  return basic_plus_adr(ary, base, scale);
1512}
1513
1514//-------------------------load_array_element-------------------------
1515Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1516  const Type* elemtype = arytype->elem();
1517  BasicType elembt = elemtype->array_element_basic_type();
1518  Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1519  Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
1520  return ld;
1521}
1522
1523//-------------------------set_arguments_for_java_call-------------------------
1524// Arguments (pre-popped from the stack) are taken from the JVMS.
1525void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1526  // Add the call arguments:
1527  uint nargs = call->method()->arg_size();
1528  for (uint i = 0; i < nargs; i++) {
1529    Node* arg = argument(i);
1530    call->init_req(i + TypeFunc::Parms, arg);
1531  }
1532}
1533
1534//---------------------------set_edges_for_java_call---------------------------
1535// Connect a newly created call into the current JVMS.
1536// A return value node (if any) is returned from set_edges_for_java_call.
1537void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw) {
1538
1539  // Add the predefined inputs:
1540  call->init_req( TypeFunc::Control, control() );
1541  call->init_req( TypeFunc::I_O    , i_o() );
1542  call->init_req( TypeFunc::Memory , reset_memory() );
1543  call->init_req( TypeFunc::FramePtr, frameptr() );
1544  call->init_req( TypeFunc::ReturnAdr, top() );
1545
1546  add_safepoint_edges(call, must_throw);
1547
1548  Node* xcall = _gvn.transform(call);
1549
1550  if (xcall == top()) {
1551    set_control(top());
1552    return;
1553  }
1554  assert(xcall == call, "call identity is stable");
1555
1556  // Re-use the current map to produce the result.
1557
1558  set_control(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Control)));
1559  set_i_o(    _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O    )));
1560  set_all_memory_call(xcall);
1561
1562  //return xcall;   // no need, caller already has it
1563}
1564
1565Node* GraphKit::set_results_for_java_call(CallJavaNode* call) {
1566  if (stopped())  return top();  // maybe the call folded up?
1567
1568  // Capture the return value, if any.
1569  Node* ret;
1570  if (call->method() == NULL ||
1571      call->method()->return_type()->basic_type() == T_VOID)
1572        ret = top();
1573  else  ret = _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
1574
1575  // Note:  Since any out-of-line call can produce an exception,
1576  // we always insert an I_O projection from the call into the result.
1577
1578  make_slow_call_ex(call, env()->Throwable_klass(), false);
1579
1580  return ret;
1581}
1582
1583//--------------------set_predefined_input_for_runtime_call--------------------
1584// Reading and setting the memory state is way conservative here.
1585// The real problem is that I am not doing real Type analysis on memory,
1586// so I cannot distinguish card mark stores from other stores.  Across a GC
1587// point the Store Barrier and the card mark memory has to agree.  I cannot
1588// have a card mark store and its barrier split across the GC point from
1589// either above or below.  Here I get that to happen by reading ALL of memory.
1590// A better answer would be to separate out card marks from other memory.
1591// For now, return the input memory state, so that it can be reused
1592// after the call, if this call has restricted memory effects.
1593Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1594  // Set fixed predefined input arguments
1595  Node* memory = reset_memory();
1596  call->init_req( TypeFunc::Control,   control()  );
1597  call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1598  call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1599  call->init_req( TypeFunc::FramePtr,  frameptr() );
1600  call->init_req( TypeFunc::ReturnAdr, top()      );
1601  return memory;
1602}
1603
1604//-------------------set_predefined_output_for_runtime_call--------------------
1605// Set control and memory (not i_o) from the call.
1606// If keep_mem is not NULL, use it for the output state,
1607// except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1608// If hook_mem is NULL, this call produces no memory effects at all.
1609// If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1610// then only that memory slice is taken from the call.
1611// In the last case, we must put an appropriate memory barrier before
1612// the call, so as to create the correct anti-dependencies on loads
1613// preceding the call.
1614void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1615                                                      Node* keep_mem,
1616                                                      const TypePtr* hook_mem) {
1617  // no i/o
1618  set_control(_gvn.transform( new (C, 1) ProjNode(call,TypeFunc::Control) ));
1619  if (keep_mem) {
1620    // First clone the existing memory state
1621    set_all_memory(keep_mem);
1622    if (hook_mem != NULL) {
1623      // Make memory for the call
1624      Node* mem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
1625      // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1626      // We also use hook_mem to extract specific effects from arraycopy stubs.
1627      set_memory(mem, hook_mem);
1628    }
1629    // ...else the call has NO memory effects.
1630
1631    // Make sure the call advertises its memory effects precisely.
1632    // This lets us build accurate anti-dependences in gcm.cpp.
1633    assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1634           "call node must be constructed correctly");
1635  } else {
1636    assert(hook_mem == NULL, "");
1637    // This is not a "slow path" call; all memory comes from the call.
1638    set_all_memory_call(call);
1639  }
1640}
1641
1642//------------------------------increment_counter------------------------------
1643// for statistics: increment a VM counter by 1
1644
1645void GraphKit::increment_counter(address counter_addr) {
1646  Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1647  increment_counter(adr1);
1648}
1649
1650void GraphKit::increment_counter(Node* counter_addr) {
1651  int adr_type = Compile::AliasIdxRaw;
1652  Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
1653  Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
1654  store_to_memory( NULL, counter_addr, incr, T_INT, adr_type );
1655}
1656
1657
1658//------------------------------uncommon_trap----------------------------------
1659// Bail out to the interpreter in mid-method.  Implemented by calling the
1660// uncommon_trap blob.  This helper function inserts a runtime call with the
1661// right debug info.
1662void GraphKit::uncommon_trap(int trap_request,
1663                             ciKlass* klass, const char* comment,
1664                             bool must_throw,
1665                             bool keep_exact_action) {
1666  if (failing())  stop();
1667  if (stopped())  return; // trap reachable?
1668
1669  // Note:  If ProfileTraps is true, and if a deopt. actually
1670  // occurs here, the runtime will make sure an MDO exists.  There is
1671  // no need to call method()->build_method_data() at this point.
1672
1673#ifdef ASSERT
1674  if (!must_throw) {
1675    // Make sure the stack has at least enough depth to execute
1676    // the current bytecode.
1677    int inputs, ignore;
1678    if (compute_stack_effects(inputs, ignore)) {
1679      assert(sp() >= inputs, "must have enough JVMS stack to execute");
1680      // It is a frequent error in library_call.cpp to issue an
1681      // uncommon trap with the _sp value already popped.
1682    }
1683  }
1684#endif
1685
1686  Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1687  Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1688
1689  switch (action) {
1690  case Deoptimization::Action_maybe_recompile:
1691  case Deoptimization::Action_reinterpret:
1692    // Temporary fix for 6529811 to allow virtual calls to be sure they
1693    // get the chance to go from mono->bi->mega
1694    if (!keep_exact_action &&
1695        Deoptimization::trap_request_index(trap_request) < 0 &&
1696        too_many_recompiles(reason)) {
1697      // This BCI is causing too many recompilations.
1698      action = Deoptimization::Action_none;
1699      trap_request = Deoptimization::make_trap_request(reason, action);
1700    } else {
1701      C->set_trap_can_recompile(true);
1702    }
1703    break;
1704  case Deoptimization::Action_make_not_entrant:
1705    C->set_trap_can_recompile(true);
1706    break;
1707#ifdef ASSERT
1708  case Deoptimization::Action_none:
1709  case Deoptimization::Action_make_not_compilable:
1710    break;
1711  default:
1712    assert(false, "bad action");
1713#endif
1714  }
1715
1716  if (TraceOptoParse) {
1717    char buf[100];
1718    tty->print_cr("Uncommon trap %s at bci:%d",
1719                  Deoptimization::format_trap_request(buf, sizeof(buf),
1720                                                      trap_request), bci());
1721  }
1722
1723  CompileLog* log = C->log();
1724  if (log != NULL) {
1725    int kid = (klass == NULL)? -1: log->identify(klass);
1726    log->begin_elem("uncommon_trap bci='%d'", bci());
1727    char buf[100];
1728    log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
1729                                                          trap_request));
1730    if (kid >= 0)         log->print(" klass='%d'", kid);
1731    if (comment != NULL)  log->print(" comment='%s'", comment);
1732    log->end_elem();
1733  }
1734
1735  // Make sure any guarding test views this path as very unlikely
1736  Node *i0 = control()->in(0);
1737  if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
1738    IfNode *iff = i0->as_If();
1739    float f = iff->_prob;   // Get prob
1740    if (control()->Opcode() == Op_IfTrue) {
1741      if (f > PROB_UNLIKELY_MAG(4))
1742        iff->_prob = PROB_MIN;
1743    } else {
1744      if (f < PROB_LIKELY_MAG(4))
1745        iff->_prob = PROB_MAX;
1746    }
1747  }
1748
1749  // Clear out dead values from the debug info.
1750  kill_dead_locals();
1751
1752  // Now insert the uncommon trap subroutine call
1753  address call_addr = SharedRuntime::uncommon_trap_blob()->instructions_begin();
1754  const TypePtr* no_memory_effects = NULL;
1755  // Pass the index of the class to be loaded
1756  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
1757                                 (must_throw ? RC_MUST_THROW : 0),
1758                                 OptoRuntime::uncommon_trap_Type(),
1759                                 call_addr, "uncommon_trap", no_memory_effects,
1760                                 intcon(trap_request));
1761  assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
1762         "must extract request correctly from the graph");
1763  assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
1764
1765  call->set_req(TypeFunc::ReturnAdr, returnadr());
1766  // The debug info is the only real input to this call.
1767
1768  // Halt-and-catch fire here.  The above call should never return!
1769  HaltNode* halt = new(C, TypeFunc::Parms) HaltNode(control(), frameptr());
1770  _gvn.set_type_bottom(halt);
1771  root()->add_req(halt);
1772
1773  stop_and_kill_map();
1774}
1775
1776
1777//--------------------------just_allocated_object------------------------------
1778// Report the object that was just allocated.
1779// It must be the case that there are no intervening safepoints.
1780// We use this to determine if an object is so "fresh" that
1781// it does not require card marks.
1782Node* GraphKit::just_allocated_object(Node* current_control) {
1783  if (C->recent_alloc_ctl() == current_control)
1784    return C->recent_alloc_obj();
1785  return NULL;
1786}
1787
1788
1789//------------------------------store_barrier----------------------------------
1790// Insert a write-barrier store.  This is to let generational GC work; we have
1791// to flag all oop-stores before the next GC point.
1792void GraphKit::write_barrier_post(Node* oop_store, Node* obj, Node* adr,
1793                                  Node* val, bool use_precise) {
1794  // No store check needed if we're storing a NULL or an old object
1795  // (latter case is probably a string constant). The concurrent
1796  // mark sweep garbage collector, however, needs to have all nonNull
1797  // oop updates flagged via card-marks.
1798  if (val != NULL && val->is_Con()) {
1799    // must be either an oop or NULL
1800    const Type* t = val->bottom_type();
1801    if (t == TypePtr::NULL_PTR || t == Type::TOP)
1802      // stores of null never (?) need barriers
1803      return;
1804    ciObject* con = t->is_oopptr()->const_oop();
1805    if (con != NULL
1806        && con->is_perm()
1807        && Universe::heap()->can_elide_permanent_oop_store_barriers())
1808      // no store barrier needed, because no old-to-new ref created
1809      return;
1810  }
1811
1812  if (use_ReduceInitialCardMarks()
1813      && obj == just_allocated_object(control())) {
1814    // We can skip marks on a freshly-allocated object.
1815    // Keep this code in sync with do_eager_card_mark in runtime.cpp.
1816    // That routine eagerly marks the occasional object which is produced
1817    // by the slow path, so that we don't have to do it here.
1818    return;
1819  }
1820
1821  if (!use_precise) {
1822    // All card marks for a (non-array) instance are in one place:
1823    adr = obj;
1824  }
1825  // (Else it's an array (or unknown), and we want more precise card marks.)
1826  assert(adr != NULL, "");
1827
1828  // Get the alias_index for raw card-mark memory
1829  int adr_type = Compile::AliasIdxRaw;
1830  // Convert the pointer to an int prior to doing math on it
1831  Node* cast = _gvn.transform(new (C, 2) CastP2XNode(control(), adr));
1832  // Divide by card size
1833  assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
1834         "Only one we handle so far.");
1835  CardTableModRefBS* ct =
1836    (CardTableModRefBS*)(Universe::heap()->barrier_set());
1837  Node *b = _gvn.transform(new (C, 3) URShiftXNode( cast, _gvn.intcon(CardTableModRefBS::card_shift) ));
1838  // We store into a byte array, so do not bother to left-shift by zero
1839  Node *c = byte_map_base_node();
1840  // Combine
1841  Node *sb_ctl = control();
1842  Node *sb_adr = _gvn.transform(new (C, 4) AddPNode( top()/*no base ptr*/, c, b ));
1843  Node *sb_val = _gvn.intcon(0);
1844  // Smash zero into card
1845  if( !UseConcMarkSweepGC ) {
1846    BasicType bt = T_BYTE;
1847    store_to_memory(sb_ctl, sb_adr, sb_val, bt, adr_type);
1848  } else {
1849    // Specialized path for CM store barrier
1850    cms_card_mark( sb_ctl, sb_adr, sb_val, oop_store);
1851  }
1852}
1853
1854// Specialized path for CMS store barrier
1855void GraphKit::cms_card_mark(Node* ctl, Node* adr, Node* val, Node *oop_store) {
1856  BasicType bt = T_BYTE;
1857  int adr_idx = Compile::AliasIdxRaw;
1858  Node* mem = memory(adr_idx);
1859
1860  // The type input is NULL in PRODUCT builds
1861  const TypePtr* type = NULL;
1862  debug_only(type = C->get_adr_type(adr_idx));
1863
1864  // Add required edge to oop_store, optimizer does not support precedence edges.
1865  // Convert required edge to precedence edge before allocation.
1866  Node *store = _gvn.transform( new (C, 5) StoreCMNode(ctl, mem, adr, type, val, oop_store) );
1867  set_memory(store, adr_idx);
1868
1869  // For CMS, back-to-back card-marks can only remove the first one
1870  // and this requires DU info.  Push on worklist for optimizer.
1871  if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1872    record_for_igvn(store);
1873}
1874
1875
1876void GraphKit::round_double_arguments(ciMethod* dest_method) {
1877  // (Note:  TypeFunc::make has a cache that makes this fast.)
1878  const TypeFunc* tf    = TypeFunc::make(dest_method);
1879  int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
1880  for (int j = 0; j < nargs; j++) {
1881    const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
1882    if( targ->basic_type() == T_DOUBLE ) {
1883      // If any parameters are doubles, they must be rounded before
1884      // the call, dstore_rounding does gvn.transform
1885      Node *arg = argument(j);
1886      arg = dstore_rounding(arg);
1887      set_argument(j, arg);
1888    }
1889  }
1890}
1891
1892void GraphKit::round_double_result(ciMethod* dest_method) {
1893  // A non-strict method may return a double value which has an extended
1894  // exponent, but this must not be visible in a caller which is 'strict'
1895  // If a strict caller invokes a non-strict callee, round a double result
1896
1897  BasicType result_type = dest_method->return_type()->basic_type();
1898  assert( method() != NULL, "must have caller context");
1899  if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
1900    // Destination method's return value is on top of stack
1901    // dstore_rounding() does gvn.transform
1902    Node *result = pop_pair();
1903    result = dstore_rounding(result);
1904    push_pair(result);
1905  }
1906}
1907
1908// rounding for strict float precision conformance
1909Node* GraphKit::precision_rounding(Node* n) {
1910  return UseStrictFP && _method->flags().is_strict()
1911    && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
1912    ? _gvn.transform( new (C, 2) RoundFloatNode(0, n) )
1913    : n;
1914}
1915
1916// rounding for strict double precision conformance
1917Node* GraphKit::dprecision_rounding(Node *n) {
1918  return UseStrictFP && _method->flags().is_strict()
1919    && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
1920    ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
1921    : n;
1922}
1923
1924// rounding for non-strict double stores
1925Node* GraphKit::dstore_rounding(Node* n) {
1926  return Matcher::strict_fp_requires_explicit_rounding
1927    && UseSSE <= 1
1928    ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
1929    : n;
1930}
1931
1932//=============================================================================
1933// Generate a fast path/slow path idiom.  Graph looks like:
1934// [foo] indicates that 'foo' is a parameter
1935//
1936//              [in]     NULL
1937//                 \    /
1938//                  CmpP
1939//                  Bool ne
1940//                   If
1941//                  /  \
1942//              True    False-<2>
1943//              / |
1944//             /  cast_not_null
1945//           Load  |    |   ^
1946//        [fast_test]   |   |
1947// gvn to   opt_test    |   |
1948//          /    \      |  <1>
1949//      True     False  |
1950//        |         \\  |
1951//   [slow_call]     \[fast_result]
1952//    Ctl   Val       \      \
1953//     |               \      \
1954//    Catch       <1>   \      \
1955//   /    \        ^     \      \
1956//  Ex    No_Ex    |      \      \
1957//  |       \   \  |       \ <2>  \
1958//  ...      \  [slow_res] |  |    \   [null_result]
1959//            \         \--+--+---  |  |
1960//             \           | /    \ | /
1961//              --------Region     Phi
1962//
1963//=============================================================================
1964// Code is structured as a series of driver functions all called 'do_XXX' that
1965// call a set of helper functions.  Helper functions first, then drivers.
1966
1967//------------------------------null_check_oop---------------------------------
1968// Null check oop.  Set null-path control into Region in slot 3.
1969// Make a cast-not-nullness use the other not-null control.  Return cast.
1970Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
1971                               bool never_see_null) {
1972  // Initial NULL check taken path
1973  (*null_control) = top();
1974  Node* cast = null_check_common(value, T_OBJECT, false, null_control);
1975
1976  // Generate uncommon_trap:
1977  if (never_see_null && (*null_control) != top()) {
1978    // If we see an unexpected null at a check-cast we record it and force a
1979    // recompile; the offending check-cast will be compiled to handle NULLs.
1980    // If we see more than one offending BCI, then all checkcasts in the
1981    // method will be compiled to handle NULLs.
1982    PreserveJVMState pjvms(this);
1983    set_control(*null_control);
1984    replace_in_map(value, null());
1985    uncommon_trap(Deoptimization::Reason_null_check,
1986                  Deoptimization::Action_make_not_entrant);
1987    (*null_control) = top();    // NULL path is dead
1988  }
1989
1990  // Cast away null-ness on the result
1991  return cast;
1992}
1993
1994//------------------------------opt_iff----------------------------------------
1995// Optimize the fast-check IfNode.  Set the fast-path region slot 2.
1996// Return slow-path control.
1997Node* GraphKit::opt_iff(Node* region, Node* iff) {
1998  IfNode *opt_iff = _gvn.transform(iff)->as_If();
1999
2000  // Fast path taken; set region slot 2
2001  Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_iff) );
2002  region->init_req(2,fast_taken); // Capture fast-control
2003
2004  // Fast path not-taken, i.e. slow path
2005  Node *slow_taken = _gvn.transform( new (C, 1) IfTrueNode(opt_iff) );
2006  return slow_taken;
2007}
2008
2009//-----------------------------make_runtime_call-------------------------------
2010Node* GraphKit::make_runtime_call(int flags,
2011                                  const TypeFunc* call_type, address call_addr,
2012                                  const char* call_name,
2013                                  const TypePtr* adr_type,
2014                                  // The following parms are all optional.
2015                                  // The first NULL ends the list.
2016                                  Node* parm0, Node* parm1,
2017                                  Node* parm2, Node* parm3,
2018                                  Node* parm4, Node* parm5,
2019                                  Node* parm6, Node* parm7) {
2020  // Slow-path call
2021  int size = call_type->domain()->cnt();
2022  bool is_leaf = !(flags & RC_NO_LEAF);
2023  bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2024  if (call_name == NULL) {
2025    assert(!is_leaf, "must supply name for leaf");
2026    call_name = OptoRuntime::stub_name(call_addr);
2027  }
2028  CallNode* call;
2029  if (!is_leaf) {
2030    call = new(C, size) CallStaticJavaNode(call_type, call_addr, call_name,
2031                                           bci(), adr_type);
2032  } else if (flags & RC_NO_FP) {
2033    call = new(C, size) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2034  } else {
2035    call = new(C, size) CallLeafNode(call_type, call_addr, call_name, adr_type);
2036  }
2037
2038  // The following is similar to set_edges_for_java_call,
2039  // except that the memory effects of the call are restricted to AliasIdxRaw.
2040
2041  // Slow path call has no side-effects, uses few values
2042  bool wide_in  = !(flags & RC_NARROW_MEM);
2043  bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2044
2045  Node* prev_mem = NULL;
2046  if (wide_in) {
2047    prev_mem = set_predefined_input_for_runtime_call(call);
2048  } else {
2049    assert(!wide_out, "narrow in => narrow out");
2050    Node* narrow_mem = memory(adr_type);
2051    prev_mem = reset_memory();
2052    map()->set_memory(narrow_mem);
2053    set_predefined_input_for_runtime_call(call);
2054  }
2055
2056  // Hook each parm in order.  Stop looking at the first NULL.
2057  if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2058  if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2059  if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2060  if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2061  if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2062  if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2063  if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2064  if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2065    /* close each nested if ===> */  } } } } } } } }
2066  assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2067
2068  if (!is_leaf) {
2069    // Non-leaves can block and take safepoints:
2070    add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2071  }
2072  // Non-leaves can throw exceptions:
2073  if (has_io) {
2074    call->set_req(TypeFunc::I_O, i_o());
2075  }
2076
2077  if (flags & RC_UNCOMMON) {
2078    // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2079    // (An "if" probability corresponds roughly to an unconditional count.
2080    // Sort of.)
2081    call->set_cnt(PROB_UNLIKELY_MAG(4));
2082  }
2083
2084  Node* c = _gvn.transform(call);
2085  assert(c == call, "cannot disappear");
2086
2087  if (wide_out) {
2088    // Slow path call has full side-effects.
2089    set_predefined_output_for_runtime_call(call);
2090  } else {
2091    // Slow path call has few side-effects, and/or sets few values.
2092    set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2093  }
2094
2095  if (has_io) {
2096    set_i_o(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O)));
2097  }
2098  return call;
2099
2100}
2101
2102//------------------------------merge_memory-----------------------------------
2103// Merge memory from one path into the current memory state.
2104void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2105  for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2106    Node* old_slice = mms.force_memory();
2107    Node* new_slice = mms.memory2();
2108    if (old_slice != new_slice) {
2109      PhiNode* phi;
2110      if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2111        phi = new_slice->as_Phi();
2112        #ifdef ASSERT
2113        if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2114          old_slice = old_slice->in(new_path);
2115        // Caller is responsible for ensuring that any pre-existing
2116        // phis are already aware of old memory.
2117        int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2118        assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2119        #endif
2120        mms.set_memory(phi);
2121      } else {
2122        phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2123        _gvn.set_type(phi, Type::MEMORY);
2124        phi->set_req(new_path, new_slice);
2125        mms.set_memory(_gvn.transform(phi));  // assume it is complete
2126      }
2127    }
2128  }
2129}
2130
2131//------------------------------make_slow_call_ex------------------------------
2132// Make the exception handler hookups for the slow call
2133void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2134  if (stopped())  return;
2135
2136  // Make a catch node with just two handlers:  fall-through and catch-all
2137  Node* i_o  = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2138  Node* catc = _gvn.transform( new (C, 2) CatchNode(control(), i_o, 2) );
2139  Node* norm = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2140  Node* excp = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2141
2142  { PreserveJVMState pjvms(this);
2143    set_control(excp);
2144    set_i_o(i_o);
2145
2146    if (excp != top()) {
2147      // Create an exception state also.
2148      // Use an exact type if the caller has specified a specific exception.
2149      const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2150      Node*       ex_oop  = new (C, 2) CreateExNode(ex_type, control(), i_o);
2151      add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2152    }
2153  }
2154
2155  // Get the no-exception control from the CatchNode.
2156  set_control(norm);
2157}
2158
2159
2160//-------------------------------gen_subtype_check-----------------------------
2161// Generate a subtyping check.  Takes as input the subtype and supertype.
2162// Returns 2 values: sets the default control() to the true path and returns
2163// the false path.  Only reads invariant memory; sets no (visible) memory.
2164// The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2165// but that's not exposed to the optimizer.  This call also doesn't take in an
2166// Object; if you wish to check an Object you need to load the Object's class
2167// prior to coming here.
2168Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2169  // Fast check for identical types, perhaps identical constants.
2170  // The types can even be identical non-constants, in cases
2171  // involving Array.newInstance, Object.clone, etc.
2172  if (subklass == superklass)
2173    return top();             // false path is dead; no test needed.
2174
2175  if (_gvn.type(superklass)->singleton()) {
2176    ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2177    ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2178
2179    // In the common case of an exact superklass, try to fold up the
2180    // test before generating code.  You may ask, why not just generate
2181    // the code and then let it fold up?  The answer is that the generated
2182    // code will necessarily include null checks, which do not always
2183    // completely fold away.  If they are also needless, then they turn
2184    // into a performance loss.  Example:
2185    //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2186    // Here, the type of 'fa' is often exact, so the store check
2187    // of fa[1]=x will fold up, without testing the nullness of x.
2188    switch (static_subtype_check(superk, subk)) {
2189    case SSC_always_false:
2190      {
2191        Node* always_fail = control();
2192        set_control(top());
2193        return always_fail;
2194      }
2195    case SSC_always_true:
2196      return top();
2197    case SSC_easy_test:
2198      {
2199        // Just do a direct pointer compare and be done.
2200        Node* cmp = _gvn.transform( new(C, 3) CmpPNode(subklass, superklass) );
2201        Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
2202        IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2203        set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ) );
2204        return       _gvn.transform( new(C, 1) IfFalseNode(iff) );
2205      }
2206    case SSC_full_test:
2207      break;
2208    default:
2209      ShouldNotReachHere();
2210    }
2211  }
2212
2213  // %%% Possible further optimization:  Even if the superklass is not exact,
2214  // if the subklass is the unique subtype of the superklass, the check
2215  // will always succeed.  We could leave a dependency behind to ensure this.
2216
2217  // First load the super-klass's check-offset
2218  Node *p1 = basic_plus_adr( superklass, superklass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() );
2219  Node *chk_off = _gvn.transform( new (C, 3) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
2220  int cacheoff_con = sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes();
2221  bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2222
2223  // Load from the sub-klass's super-class display list, or a 1-word cache of
2224  // the secondary superclass list, or a failing value with a sentinel offset
2225  // if the super-klass is an interface or exceptionally deep in the Java
2226  // hierarchy and we have to scan the secondary superclass list the hard way.
2227  // Worst-case type is a little odd: NULL is allowed as a result (usually
2228  // klass loads can never produce a NULL).
2229  Node *chk_off_X = ConvI2X(chk_off);
2230  Node *p2 = _gvn.transform( new (C, 4) AddPNode(subklass,subklass,chk_off_X) );
2231  // For some types like interfaces the following loadKlass is from a 1-word
2232  // cache which is mutable so can't use immutable memory.  Other
2233  // types load from the super-class display table which is immutable.
2234  Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2235  Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2236
2237  // Compile speed common case: ARE a subtype and we canNOT fail
2238  if( superklass == nkls )
2239    return top();             // false path is dead; no test needed.
2240
2241  // See if we get an immediate positive hit.  Happens roughly 83% of the
2242  // time.  Test to see if the value loaded just previously from the subklass
2243  // is exactly the superklass.
2244  Node *cmp1 = _gvn.transform( new (C, 3) CmpPNode( superklass, nkls ) );
2245  Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp1, BoolTest::eq ) );
2246  IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2247  Node *iftrue1 = _gvn.transform( new (C, 1) IfTrueNode ( iff1 ) );
2248  set_control(    _gvn.transform( new (C, 1) IfFalseNode( iff1 ) ) );
2249
2250  // Compile speed common case: Check for being deterministic right now.  If
2251  // chk_off is a constant and not equal to cacheoff then we are NOT a
2252  // subklass.  In this case we need exactly the 1 test above and we can
2253  // return those results immediately.
2254  if (!might_be_cache) {
2255    Node* not_subtype_ctrl = control();
2256    set_control(iftrue1); // We need exactly the 1 test above
2257    return not_subtype_ctrl;
2258  }
2259
2260  // Gather the various success & failures here
2261  RegionNode *r_ok_subtype = new (C, 4) RegionNode(4);
2262  record_for_igvn(r_ok_subtype);
2263  RegionNode *r_not_subtype = new (C, 3) RegionNode(3);
2264  record_for_igvn(r_not_subtype);
2265
2266  r_ok_subtype->init_req(1, iftrue1);
2267
2268  // Check for immediate negative hit.  Happens roughly 11% of the time (which
2269  // is roughly 63% of the remaining cases).  Test to see if the loaded
2270  // check-offset points into the subklass display list or the 1-element
2271  // cache.  If it points to the display (and NOT the cache) and the display
2272  // missed then it's not a subtype.
2273  Node *cacheoff = _gvn.intcon(cacheoff_con);
2274  Node *cmp2 = _gvn.transform( new (C, 3) CmpINode( chk_off, cacheoff ) );
2275  Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmp2, BoolTest::ne ) );
2276  IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2277  r_not_subtype->init_req(1, _gvn.transform( new (C, 1) IfTrueNode (iff2) ) );
2278  set_control(                _gvn.transform( new (C, 1) IfFalseNode(iff2) ) );
2279
2280  // Check for self.  Very rare to get here, but its taken 1/3 the time.
2281  // No performance impact (too rare) but allows sharing of secondary arrays
2282  // which has some footprint reduction.
2283  Node *cmp3 = _gvn.transform( new (C, 3) CmpPNode( subklass, superklass ) );
2284  Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmp3, BoolTest::eq ) );
2285  IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2286  r_ok_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode ( iff3 ) ) );
2287  set_control(               _gvn.transform( new (C, 1) IfFalseNode( iff3 ) ) );
2288
2289  // Now do a linear scan of the secondary super-klass array.  Again, no real
2290  // performance impact (too rare) but it's gotta be done.
2291  // (The stub also contains the self-check of subklass == superklass.
2292  // Since the code is rarely used, there is no penalty for moving it
2293  // out of line, and it can only improve I-cache density.)
2294  Node* psc = _gvn.transform(
2295    new (C, 3) PartialSubtypeCheckNode(control(), subklass, superklass) );
2296
2297  Node *cmp4 = _gvn.transform( new (C, 3) CmpPNode( psc, null() ) );
2298  Node *bol4 = _gvn.transform( new (C, 2) BoolNode( cmp4, BoolTest::ne ) );
2299  IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2300  r_not_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode (iff4) ) );
2301  r_ok_subtype ->init_req(3, _gvn.transform( new (C, 1) IfFalseNode(iff4) ) );
2302
2303  // Return false path; set default control to true path.
2304  set_control( _gvn.transform(r_ok_subtype) );
2305  return _gvn.transform(r_not_subtype);
2306}
2307
2308//----------------------------static_subtype_check-----------------------------
2309// Shortcut important common cases when superklass is exact:
2310// (0) superklass is java.lang.Object (can occur in reflective code)
2311// (1) subklass is already limited to a subtype of superklass => always ok
2312// (2) subklass does not overlap with superklass => always fail
2313// (3) superklass has NO subtypes and we can check with a simple compare.
2314int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2315  if (StressReflectiveCode) {
2316    return SSC_full_test;       // Let caller generate the general case.
2317  }
2318
2319  if (superk == env()->Object_klass()) {
2320    return SSC_always_true;     // (0) this test cannot fail
2321  }
2322
2323  ciType* superelem = superk;
2324  if (superelem->is_array_klass())
2325    superelem = superelem->as_array_klass()->base_element_type();
2326
2327  if (!subk->is_interface()) {  // cannot trust static interface types yet
2328    if (subk->is_subtype_of(superk)) {
2329      return SSC_always_true;   // (1) false path dead; no dynamic test needed
2330    }
2331    if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2332        !superk->is_subtype_of(subk)) {
2333      return SSC_always_false;
2334    }
2335  }
2336
2337  // If casting to an instance klass, it must have no subtypes
2338  if (superk->is_interface()) {
2339    // Cannot trust interfaces yet.
2340    // %%% S.B. superk->nof_implementors() == 1
2341  } else if (superelem->is_instance_klass()) {
2342    ciInstanceKlass* ik = superelem->as_instance_klass();
2343    if (!ik->has_subklass() && !ik->is_interface()) {
2344      if (!ik->is_final()) {
2345        // Add a dependency if there is a chance of a later subclass.
2346        C->dependencies()->assert_leaf_type(ik);
2347      }
2348      return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2349    }
2350  } else {
2351    // A primitive array type has no subtypes.
2352    return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2353  }
2354
2355  return SSC_full_test;
2356}
2357
2358// Profile-driven exact type check:
2359Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2360                                    float prob,
2361                                    Node* *casted_receiver) {
2362  const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2363  Node* recv_klass = load_object_klass(receiver);
2364  Node* want_klass = makecon(tklass);
2365  Node* cmp = _gvn.transform( new(C, 3) CmpPNode(recv_klass, want_klass) );
2366  Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
2367  IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2368  set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ));
2369  Node* fail = _gvn.transform( new(C, 1) IfFalseNode(iff) );
2370
2371  const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2372  assert(recv_xtype->klass_is_exact(), "");
2373
2374  // Subsume downstream occurrences of receiver with a cast to
2375  // recv_xtype, since now we know what the type will be.
2376  Node* cast = new(C, 2) CheckCastPPNode(control(), receiver, recv_xtype);
2377  (*casted_receiver) = _gvn.transform(cast);
2378  // (User must make the replace_in_map call.)
2379
2380  return fail;
2381}
2382
2383
2384//-------------------------------gen_instanceof--------------------------------
2385// Generate an instance-of idiom.  Used by both the instance-of bytecode
2386// and the reflective instance-of call.
2387Node* GraphKit::gen_instanceof( Node *subobj, Node* superklass ) {
2388  C->set_has_split_ifs(true); // Has chance for split-if optimization
2389  assert( !stopped(), "dead parse path should be checked in callers" );
2390  assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2391         "must check for not-null not-dead klass in callers");
2392
2393  // Make the merge point
2394  enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2395  RegionNode* region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2396  Node*       phi    = new(C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
2397  C->set_has_split_ifs(true); // Has chance for split-if optimization
2398
2399  // Null check; get casted pointer; set region slot 3
2400  Node* null_ctl = top();
2401  Node* not_null_obj = null_check_oop(subobj, &null_ctl);
2402
2403  // If not_null_obj is dead, only null-path is taken
2404  if (stopped()) {              // Doing instance-of on a NULL?
2405    set_control(null_ctl);
2406    return intcon(0);
2407  }
2408  region->init_req(_null_path, null_ctl);
2409  phi   ->init_req(_null_path, intcon(0)); // Set null path value
2410
2411  // Load the object's klass
2412  Node* obj_klass = load_object_klass(not_null_obj);
2413
2414  // Generate the subtype check
2415  Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2416
2417  // Plug in the success path to the general merge in slot 1.
2418  region->init_req(_obj_path, control());
2419  phi   ->init_req(_obj_path, intcon(1));
2420
2421  // Plug in the failing path to the general merge in slot 2.
2422  region->init_req(_fail_path, not_subtype_ctrl);
2423  phi   ->init_req(_fail_path, intcon(0));
2424
2425  // Return final merged results
2426  set_control( _gvn.transform(region) );
2427  record_for_igvn(region);
2428  return _gvn.transform(phi);
2429}
2430
2431//-------------------------------gen_checkcast---------------------------------
2432// Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2433// array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2434// uncommon-trap paths work.  Adjust stack after this call.
2435// If failure_control is supplied and not null, it is filled in with
2436// the control edge for the cast failure.  Otherwise, an appropriate
2437// uncommon trap or exception is thrown.
2438Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2439                              Node* *failure_control) {
2440  kill_dead_locals();           // Benefit all the uncommon traps
2441  const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2442  const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2443
2444  // Fast cutout:  Check the case that the cast is vacuously true.
2445  // This detects the common cases where the test will short-circuit
2446  // away completely.  We do this before we perform the null check,
2447  // because if the test is going to turn into zero code, we don't
2448  // want a residual null check left around.  (Causes a slowdown,
2449  // for example, in some objArray manipulations, such as a[i]=a[j].)
2450  if (tk->singleton()) {
2451    const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2452    if (objtp != NULL && objtp->klass() != NULL) {
2453      switch (static_subtype_check(tk->klass(), objtp->klass())) {
2454      case SSC_always_true:
2455        return obj;
2456      case SSC_always_false:
2457        // It needs a null check because a null will *pass* the cast check.
2458        // A non-null value will always produce an exception.
2459        return do_null_assert(obj, T_OBJECT);
2460      }
2461    }
2462  }
2463
2464  ciProfileData* data = NULL;
2465  if (failure_control == NULL) {        // use MDO in regular case only
2466    assert(java_bc() == Bytecodes::_aastore ||
2467           java_bc() == Bytecodes::_checkcast,
2468           "interpreter profiles type checks only for these BCs");
2469    data = method()->method_data()->bci_to_data(bci());
2470  }
2471
2472  // Make the merge point
2473  enum { _obj_path = 1, _null_path, PATH_LIMIT };
2474  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2475  Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, toop);
2476  C->set_has_split_ifs(true); // Has chance for split-if optimization
2477
2478  // Use null-cast information if it is available
2479  bool never_see_null = false;
2480  // If we see an unexpected null at a check-cast we record it and force a
2481  // recompile; the offending check-cast will be compiled to handle NULLs.
2482  // If we see several offending BCIs, then all checkcasts in the
2483  // method will be compiled to handle NULLs.
2484  if (UncommonNullCast            // Cutout for this technique
2485      && failure_control == NULL  // regular case
2486      && obj != null()            // And not the -Xcomp stupid case?
2487      && !too_many_traps(Deoptimization::Reason_null_check)) {
2488    // Finally, check the "null_seen" bit from the interpreter.
2489    if (data == NULL || !data->as_BitData()->null_seen()) {
2490      never_see_null = true;
2491    }
2492  }
2493
2494  // Null check; get casted pointer; set region slot 3
2495  Node* null_ctl = top();
2496  Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2497
2498  // If not_null_obj is dead, only null-path is taken
2499  if (stopped()) {              // Doing instance-of on a NULL?
2500    set_control(null_ctl);
2501    return null();
2502  }
2503  region->init_req(_null_path, null_ctl);
2504  phi   ->init_req(_null_path, null());  // Set null path value
2505
2506  Node* cast_obj = NULL;        // the casted version of the object
2507
2508  // If the profile has seen exactly one type, narrow to that type.
2509  // (The subsequent subtype check will always fold up.)
2510  if (UseTypeProfile && TypeProfileCasts && data != NULL &&
2511      // Counter has never been decremented (due to cast failure).
2512      // ...This is a reasonable thing to expect.  It is true of
2513      // all casts inserted by javac to implement generic types.
2514      data->as_CounterData()->count() >= 0 &&
2515      !too_many_traps(Deoptimization::Reason_class_check)) {
2516    // (No, this isn't a call, but it's enough like a virtual call
2517    // to use the same ciMethod accessor to get the profile info...)
2518    ciCallProfile profile = method()->call_profile_at_bci(bci());
2519    if (profile.count() >= 0 &&         // no cast failures here
2520        profile.has_receiver(0) &&
2521        profile.morphism() == 1) {
2522      ciKlass* exact_kls = profile.receiver(0);
2523      int ssc = static_subtype_check(tk->klass(), exact_kls);
2524      if (ssc == SSC_always_true) {
2525        // If we narrow the type to match what the type profile sees,
2526        // we can then remove the rest of the cast.
2527        // This is a win, even if the exact_kls is very specific,
2528        // because downstream operations, such as method calls,
2529        // will often benefit from the sharper type.
2530        Node* exact_obj = not_null_obj; // will get updated in place...
2531        Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2532                                              &exact_obj);
2533        { PreserveJVMState pjvms(this);
2534          set_control(slow_ctl);
2535          uncommon_trap(Deoptimization::Reason_class_check,
2536                        Deoptimization::Action_maybe_recompile);
2537        }
2538        if (failure_control != NULL) // failure is now impossible
2539          (*failure_control) = top();
2540        replace_in_map(not_null_obj, exact_obj);
2541        // adjust the type of the phi to the exact klass:
2542        phi->raise_bottom_type(_gvn.type(exact_obj)->meet(TypePtr::NULL_PTR));
2543        cast_obj = exact_obj;
2544      }
2545      // assert(cast_obj != NULL)... except maybe the profile lied to us.
2546    }
2547  }
2548
2549  if (cast_obj == NULL) {
2550    // Load the object's klass
2551    Node* obj_klass = load_object_klass(not_null_obj);
2552
2553    // Generate the subtype check
2554    Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
2555
2556    // Plug in success path into the merge
2557    cast_obj = _gvn.transform(new (C, 2) CheckCastPPNode(control(),
2558                                                         not_null_obj, toop));
2559    // Failure path ends in uncommon trap (or may be dead - failure impossible)
2560    if (failure_control == NULL) {
2561      if (not_subtype_ctrl != top()) { // If failure is possible
2562        PreserveJVMState pjvms(this);
2563        set_control(not_subtype_ctrl);
2564        builtin_throw(Deoptimization::Reason_class_check, obj_klass);
2565      }
2566    } else {
2567      (*failure_control) = not_subtype_ctrl;
2568    }
2569  }
2570
2571  region->init_req(_obj_path, control());
2572  phi   ->init_req(_obj_path, cast_obj);
2573
2574  // A merge of NULL or Casted-NotNull obj
2575  Node* res = _gvn.transform(phi);
2576
2577  // Note I do NOT always 'replace_in_map(obj,result)' here.
2578  //  if( tk->klass()->can_be_primary_super()  )
2579    // This means that if I successfully store an Object into an array-of-String
2580    // I 'forget' that the Object is really now known to be a String.  I have to
2581    // do this because we don't have true union types for interfaces - if I store
2582    // a Baz into an array-of-Interface and then tell the optimizer it's an
2583    // Interface, I forget that it's also a Baz and cannot do Baz-like field
2584    // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
2585  //  replace_in_map( obj, res );
2586
2587  // Return final merged results
2588  set_control( _gvn.transform(region) );
2589  record_for_igvn(region);
2590  return res;
2591}
2592
2593//------------------------------next_monitor-----------------------------------
2594// What number should be given to the next monitor?
2595int GraphKit::next_monitor() {
2596  int current = jvms()->monitor_depth()* C->sync_stack_slots();
2597  int next = current + C->sync_stack_slots();
2598  // Keep the toplevel high water mark current:
2599  if (C->fixed_slots() < next)  C->set_fixed_slots(next);
2600  return current;
2601}
2602
2603//------------------------------insert_mem_bar---------------------------------
2604// Memory barrier to avoid floating things around
2605// The membar serves as a pinch point between both control and all memory slices.
2606Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
2607  MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
2608  mb->init_req(TypeFunc::Control, control());
2609  mb->init_req(TypeFunc::Memory,  reset_memory());
2610  Node* membar = _gvn.transform(mb);
2611  set_control(_gvn.transform(new (C, 1) ProjNode(membar,TypeFunc::Control) ));
2612  set_all_memory_call(membar);
2613  return membar;
2614}
2615
2616//-------------------------insert_mem_bar_volatile----------------------------
2617// Memory barrier to avoid floating things around
2618// The membar serves as a pinch point between both control and memory(alias_idx).
2619// If you want to make a pinch point on all memory slices, do not use this
2620// function (even with AliasIdxBot); use insert_mem_bar() instead.
2621Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
2622  // When Parse::do_put_xxx updates a volatile field, it appends a series
2623  // of MemBarVolatile nodes, one for *each* volatile field alias category.
2624  // The first membar is on the same memory slice as the field store opcode.
2625  // This forces the membar to follow the store.  (Bug 6500685 broke this.)
2626  // All the other membars (for other volatile slices, including AliasIdxBot,
2627  // which stands for all unknown volatile slices) are control-dependent
2628  // on the first membar.  This prevents later volatile loads or stores
2629  // from sliding up past the just-emitted store.
2630
2631  MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
2632  mb->set_req(TypeFunc::Control,control());
2633  if (alias_idx == Compile::AliasIdxBot) {
2634    mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
2635  } else {
2636    assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
2637    mb->set_req(TypeFunc::Memory, memory(alias_idx));
2638  }
2639  Node* membar = _gvn.transform(mb);
2640  set_control(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Control)));
2641  if (alias_idx == Compile::AliasIdxBot) {
2642    merged_memory()->set_base_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)));
2643  } else {
2644    set_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)),alias_idx);
2645  }
2646  return membar;
2647}
2648
2649//------------------------------shared_lock------------------------------------
2650// Emit locking code.
2651FastLockNode* GraphKit::shared_lock(Node* obj) {
2652  // bci is either a monitorenter bc or InvocationEntryBci
2653  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2654  assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2655
2656  if( !GenerateSynchronizationCode )
2657    return NULL;                // Not locking things?
2658  if (stopped())                // Dead monitor?
2659    return NULL;
2660
2661  assert(dead_locals_are_killed(), "should kill locals before sync. point");
2662
2663  // Box the stack location
2664  Node* box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
2665  Node* mem = reset_memory();
2666
2667  FastLockNode * flock = _gvn.transform(new (C, 3) FastLockNode(0, obj, box) )->as_FastLock();
2668  if (PrintPreciseBiasedLockingStatistics) {
2669    // Create the counters for this fast lock.
2670    flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
2671  }
2672  // Add monitor to debug info for the slow path.  If we block inside the
2673  // slow path and de-opt, we need the monitor hanging around
2674  map()->push_monitor( flock );
2675
2676  const TypeFunc *tf = LockNode::lock_type();
2677  LockNode *lock = new (C, tf->domain()->cnt()) LockNode(C, tf);
2678
2679  lock->init_req( TypeFunc::Control, control() );
2680  lock->init_req( TypeFunc::Memory , mem );
2681  lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2682  lock->init_req( TypeFunc::FramePtr, frameptr() );
2683  lock->init_req( TypeFunc::ReturnAdr, top() );
2684
2685  lock->init_req(TypeFunc::Parms + 0, obj);
2686  lock->init_req(TypeFunc::Parms + 1, box);
2687  lock->init_req(TypeFunc::Parms + 2, flock);
2688  add_safepoint_edges(lock);
2689
2690  lock = _gvn.transform( lock )->as_Lock();
2691
2692  // lock has no side-effects, sets few values
2693  set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
2694
2695  insert_mem_bar(Op_MemBarAcquire);
2696
2697  // Add this to the worklist so that the lock can be eliminated
2698  record_for_igvn(lock);
2699
2700#ifndef PRODUCT
2701  if (PrintLockStatistics) {
2702    // Update the counter for this lock.  Don't bother using an atomic
2703    // operation since we don't require absolute accuracy.
2704    lock->create_lock_counter(map()->jvms());
2705    int adr_type = Compile::AliasIdxRaw;
2706    Node* counter_addr = makecon(TypeRawPtr::make(lock->counter()->addr()));
2707    Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
2708    Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
2709    store_to_memory(control(), counter_addr, incr, T_INT, adr_type);
2710  }
2711#endif
2712
2713  return flock;
2714}
2715
2716
2717//------------------------------shared_unlock----------------------------------
2718// Emit unlocking code.
2719void GraphKit::shared_unlock(Node* box, Node* obj) {
2720  // bci is either a monitorenter bc or InvocationEntryBci
2721  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2722  assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2723
2724  if( !GenerateSynchronizationCode )
2725    return;
2726  if (stopped()) {               // Dead monitor?
2727    map()->pop_monitor();        // Kill monitor from debug info
2728    return;
2729  }
2730
2731  // Memory barrier to avoid floating things down past the locked region
2732  insert_mem_bar(Op_MemBarRelease);
2733
2734  const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
2735  UnlockNode *unlock = new (C, tf->domain()->cnt()) UnlockNode(C, tf);
2736  uint raw_idx = Compile::AliasIdxRaw;
2737  unlock->init_req( TypeFunc::Control, control() );
2738  unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
2739  unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2740  unlock->init_req( TypeFunc::FramePtr, frameptr() );
2741  unlock->init_req( TypeFunc::ReturnAdr, top() );
2742
2743  unlock->init_req(TypeFunc::Parms + 0, obj);
2744  unlock->init_req(TypeFunc::Parms + 1, box);
2745  unlock = _gvn.transform(unlock)->as_Unlock();
2746
2747  Node* mem = reset_memory();
2748
2749  // unlock has no side-effects, sets few values
2750  set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
2751
2752  // Kill monitor from debug info
2753  map()->pop_monitor( );
2754}
2755
2756//-------------------------------get_layout_helper-----------------------------
2757// If the given klass is a constant or known to be an array,
2758// fetch the constant layout helper value into constant_value
2759// and return (Node*)NULL.  Otherwise, load the non-constant
2760// layout helper value, and return the node which represents it.
2761// This two-faced routine is useful because allocation sites
2762// almost always feature constant types.
2763Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
2764  const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
2765  if (!StressReflectiveCode && inst_klass != NULL) {
2766    ciKlass* klass = inst_klass->klass();
2767    bool    xklass = inst_klass->klass_is_exact();
2768    if (xklass || klass->is_array_klass()) {
2769      jint lhelper = klass->layout_helper();
2770      if (lhelper != Klass::_lh_neutral_value) {
2771        constant_value = lhelper;
2772        return (Node*) NULL;
2773      }
2774    }
2775  }
2776  constant_value = Klass::_lh_neutral_value;  // put in a known value
2777  Node* lhp = basic_plus_adr(klass_node, klass_node, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc));
2778  return make_load(NULL, lhp, TypeInt::INT, T_INT);
2779}
2780
2781// We just put in an allocate/initialize with a big raw-memory effect.
2782// Hook selected additional alias categories on the initialization.
2783static void hook_memory_on_init(GraphKit& kit, int alias_idx,
2784                                MergeMemNode* init_in_merge,
2785                                Node* init_out_raw) {
2786  DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
2787  assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
2788
2789  Node* prevmem = kit.memory(alias_idx);
2790  init_in_merge->set_memory_at(alias_idx, prevmem);
2791  kit.set_memory(init_out_raw, alias_idx);
2792}
2793
2794//---------------------------set_output_for_allocation-------------------------
2795Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
2796                                          const TypeOopPtr* oop_type,
2797                                          bool raw_mem_only) {
2798  int rawidx = Compile::AliasIdxRaw;
2799  alloc->set_req( TypeFunc::FramePtr, frameptr() );
2800  add_safepoint_edges(alloc);
2801  Node* allocx = _gvn.transform(alloc);
2802  set_control( _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Control) ) );
2803  // create memory projection for i_o
2804  set_memory ( _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
2805  make_slow_call_ex(allocx, env()->OutOfMemoryError_klass(), true);
2806
2807  // create a memory projection as for the normal control path
2808  Node* malloc = _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Memory));
2809  set_memory(malloc, rawidx);
2810
2811  // a normal slow-call doesn't change i_o, but an allocation does
2812  // we create a separate i_o projection for the normal control path
2813  set_i_o(_gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::I_O, false) ) );
2814  Node* rawoop = _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Parms) );
2815
2816  // put in an initialization barrier
2817  InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
2818                                                 rawoop)->as_Initialize();
2819  assert(alloc->initialization() == init,  "2-way macro link must work");
2820  assert(init ->allocation()     == alloc, "2-way macro link must work");
2821  if (ReduceFieldZeroing && !raw_mem_only) {
2822    // Extract memory strands which may participate in the new object's
2823    // initialization, and source them from the new InitializeNode.
2824    // This will allow us to observe initializations when they occur,
2825    // and link them properly (as a group) to the InitializeNode.
2826    assert(init->in(InitializeNode::Memory) == malloc, "");
2827    MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
2828    init->set_req(InitializeNode::Memory, minit_in);
2829    record_for_igvn(minit_in); // fold it up later, if possible
2830    Node* minit_out = memory(rawidx);
2831    assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
2832    if (oop_type->isa_aryptr()) {
2833      const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
2834      int            elemidx  = C->get_alias_index(telemref);
2835      hook_memory_on_init(*this, elemidx, minit_in, minit_out);
2836    } else if (oop_type->isa_instptr()) {
2837      ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
2838      for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
2839        ciField* field = ik->nonstatic_field_at(i);
2840        if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
2841          continue;  // do not bother to track really large numbers of fields
2842        // Find (or create) the alias category for this field:
2843        int fieldidx = C->alias_type(field)->index();
2844        hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
2845      }
2846    }
2847  }
2848
2849  // Cast raw oop to the real thing...
2850  Node* javaoop = new (C, 2) CheckCastPPNode(control(), rawoop, oop_type);
2851  javaoop = _gvn.transform(javaoop);
2852  C->set_recent_alloc(control(), javaoop);
2853  assert(just_allocated_object(control()) == javaoop, "just allocated");
2854
2855#ifdef ASSERT
2856  { // Verify that the AllocateNode::Ideal_allocation recognizers work:
2857    assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
2858           "Ideal_allocation works");
2859    assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
2860           "Ideal_allocation works");
2861    if (alloc->is_AllocateArray()) {
2862      assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
2863             "Ideal_allocation works");
2864      assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
2865             "Ideal_allocation works");
2866    } else {
2867      assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
2868    }
2869  }
2870#endif //ASSERT
2871
2872  return javaoop;
2873}
2874
2875//---------------------------new_instance--------------------------------------
2876// This routine takes a klass_node which may be constant (for a static type)
2877// or may be non-constant (for reflective code).  It will work equally well
2878// for either, and the graph will fold nicely if the optimizer later reduces
2879// the type to a constant.
2880// The optional arguments are for specialized use by intrinsics:
2881//  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
2882//  - If 'raw_mem_only', do not cast the result to an oop.
2883//  - If 'return_size_val', report the the total object size to the caller.
2884Node* GraphKit::new_instance(Node* klass_node,
2885                             Node* extra_slow_test,
2886                             bool raw_mem_only, // affect only raw memory
2887                             Node* *return_size_val) {
2888  // Compute size in doublewords
2889  // The size is always an integral number of doublewords, represented
2890  // as a positive bytewise size stored in the klass's layout_helper.
2891  // The layout_helper also encodes (in a low bit) the need for a slow path.
2892  jint  layout_con = Klass::_lh_neutral_value;
2893  Node* layout_val = get_layout_helper(klass_node, layout_con);
2894  int   layout_is_con = (layout_val == NULL);
2895
2896  if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
2897  // Generate the initial go-slow test.  It's either ALWAYS (return a
2898  // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
2899  // case) a computed value derived from the layout_helper.
2900  Node* initial_slow_test = NULL;
2901  if (layout_is_con) {
2902    assert(!StressReflectiveCode, "stress mode does not use these paths");
2903    bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
2904    initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
2905
2906  } else {   // reflective case
2907    // This reflective path is used by Unsafe.allocateInstance.
2908    // (It may be stress-tested by specifying StressReflectiveCode.)
2909    // Basically, we want to get into the VM is there's an illegal argument.
2910    Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
2911    initial_slow_test = _gvn.transform( new (C, 3) AndINode(layout_val, bit) );
2912    if (extra_slow_test != intcon(0)) {
2913      initial_slow_test = _gvn.transform( new (C, 3) OrINode(initial_slow_test, extra_slow_test) );
2914    }
2915    // (Macro-expander will further convert this to a Bool, if necessary.)
2916  }
2917
2918  // Find the size in bytes.  This is easy; it's the layout_helper.
2919  // The size value must be valid even if the slow path is taken.
2920  Node* size = NULL;
2921  if (layout_is_con) {
2922    size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
2923  } else {   // reflective case
2924    // This reflective path is used by clone and Unsafe.allocateInstance.
2925    size = ConvI2X(layout_val);
2926
2927    // Clear the low bits to extract layout_helper_size_in_bytes:
2928    assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
2929    Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
2930    size = _gvn.transform( new (C, 3) AndXNode(size, mask) );
2931  }
2932  if (return_size_val != NULL) {
2933    (*return_size_val) = size;
2934  }
2935
2936  // This is a precise notnull oop of the klass.
2937  // (Actually, it need not be precise if this is a reflective allocation.)
2938  // It's what we cast the result to.
2939  const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
2940  if (!tklass)  tklass = TypeKlassPtr::OBJECT;
2941  const TypeOopPtr* oop_type = tklass->as_instance_type();
2942
2943  // Now generate allocation code
2944
2945  // The entire memory state is needed for slow path of the allocation
2946  // since GC and deoptimization can happened.
2947  Node *mem = reset_memory();
2948  set_all_memory(mem); // Create new memory state
2949
2950  AllocateNode* alloc
2951    = new (C, AllocateNode::ParmLimit)
2952        AllocateNode(C, AllocateNode::alloc_type(),
2953                     control(), mem, i_o(),
2954                     size, klass_node,
2955                     initial_slow_test);
2956
2957  return set_output_for_allocation(alloc, oop_type, raw_mem_only);
2958}
2959
2960//-------------------------------new_array-------------------------------------
2961// helper for both newarray and anewarray
2962// The 'length' parameter is (obviously) the length of the array.
2963// See comments on new_instance for the meaning of the other arguments.
2964Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
2965                          Node* length,         // number of array elements
2966                          bool raw_mem_only,    // affect only raw memory
2967                          Node* *return_size_val) {
2968  jint  layout_con = Klass::_lh_neutral_value;
2969  Node* layout_val = get_layout_helper(klass_node, layout_con);
2970  int   layout_is_con = (layout_val == NULL);
2971
2972  if (!layout_is_con && !StressReflectiveCode &&
2973      !too_many_traps(Deoptimization::Reason_class_check)) {
2974    // This is a reflective array creation site.
2975    // Optimistically assume that it is a subtype of Object[],
2976    // so that we can fold up all the address arithmetic.
2977    layout_con = Klass::array_layout_helper(T_OBJECT);
2978    Node* cmp_lh = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(layout_con)) );
2979    Node* bol_lh = _gvn.transform( new(C, 2) BoolNode(cmp_lh, BoolTest::eq) );
2980    { BuildCutout unless(this, bol_lh, PROB_MAX);
2981      uncommon_trap(Deoptimization::Reason_class_check,
2982                    Deoptimization::Action_maybe_recompile);
2983    }
2984    layout_val = NULL;
2985    layout_is_con = true;
2986  }
2987
2988  // Generate the initial go-slow test.  Make sure we do not overflow
2989  // if length is huge (near 2Gig) or negative!  We do not need
2990  // exact double-words here, just a close approximation of needed
2991  // double-words.  We can't add any offset or rounding bits, lest we
2992  // take a size -1 of bytes and make it positive.  Use an unsigned
2993  // compare, so negative sizes look hugely positive.
2994  int fast_size_limit = FastAllocateSizeLimit;
2995  if (layout_is_con) {
2996    assert(!StressReflectiveCode, "stress mode does not use these paths");
2997    // Increase the size limit if we have exact knowledge of array type.
2998    int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
2999    fast_size_limit <<= (LogBytesPerLong - log2_esize);
3000  }
3001
3002  Node* initial_slow_cmp  = _gvn.transform( new (C, 3) CmpUNode( length, intcon( fast_size_limit ) ) );
3003  Node* initial_slow_test = _gvn.transform( new (C, 2) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3004  if (initial_slow_test->is_Bool()) {
3005    // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3006    initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3007  }
3008
3009  // --- Size Computation ---
3010  // array_size = round_to_heap(array_header + (length << elem_shift));
3011  // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3012  // and round_to(x, y) == ((x + y-1) & ~(y-1))
3013  // The rounding mask is strength-reduced, if possible.
3014  int round_mask = MinObjAlignmentInBytes - 1;
3015  Node* header_size = NULL;
3016  int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3017  // (T_BYTE has the weakest alignment and size restrictions...)
3018  if (layout_is_con) {
3019    int       hsize  = Klass::layout_helper_header_size(layout_con);
3020    int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3021    BasicType etype  = Klass::layout_helper_element_type(layout_con);
3022    if ((round_mask & ~right_n_bits(eshift)) == 0)
3023      round_mask = 0;  // strength-reduce it if it goes away completely
3024    assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3025    assert(header_size_min <= hsize, "generic minimum is smallest");
3026    header_size_min = hsize;
3027    header_size = intcon(hsize + round_mask);
3028  } else {
3029    Node* hss   = intcon(Klass::_lh_header_size_shift);
3030    Node* hsm   = intcon(Klass::_lh_header_size_mask);
3031    Node* hsize = _gvn.transform( new(C, 3) URShiftINode(layout_val, hss) );
3032    hsize       = _gvn.transform( new(C, 3) AndINode(hsize, hsm) );
3033    Node* mask  = intcon(round_mask);
3034    header_size = _gvn.transform( new(C, 3) AddINode(hsize, mask) );
3035  }
3036
3037  Node* elem_shift = NULL;
3038  if (layout_is_con) {
3039    int eshift = Klass::layout_helper_log2_element_size(layout_con);
3040    if (eshift != 0)
3041      elem_shift = intcon(eshift);
3042  } else {
3043    // There is no need to mask or shift this value.
3044    // The semantics of LShiftINode include an implicit mask to 0x1F.
3045    assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3046    elem_shift = layout_val;
3047  }
3048
3049  // Transition to native address size for all offset calculations:
3050  Node* lengthx = ConvI2X(length);
3051  Node* headerx = ConvI2X(header_size);
3052#ifdef _LP64
3053  { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3054    if (tllen != NULL && tllen->_lo < 0) {
3055      // Add a manual constraint to a positive range.  Cf. array_element_address.
3056      jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3057      if (size_max > tllen->_hi)  size_max = tllen->_hi;
3058      const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3059      lengthx = _gvn.transform( new (C, 2) ConvI2LNode(length, tlcon));
3060    }
3061  }
3062#endif
3063
3064  // Combine header size (plus rounding) and body size.  Then round down.
3065  // This computation cannot overflow, because it is used only in two
3066  // places, one where the length is sharply limited, and the other
3067  // after a successful allocation.
3068  Node* abody = lengthx;
3069  if (elem_shift != NULL)
3070    abody     = _gvn.transform( new(C, 3) LShiftXNode(lengthx, elem_shift) );
3071  Node* size  = _gvn.transform( new(C, 3) AddXNode(headerx, abody) );
3072  if (round_mask != 0) {
3073    Node* mask = MakeConX(~round_mask);
3074    size       = _gvn.transform( new(C, 3) AndXNode(size, mask) );
3075  }
3076  // else if round_mask == 0, the size computation is self-rounding
3077
3078  if (return_size_val != NULL) {
3079    // This is the size
3080    (*return_size_val) = size;
3081  }
3082
3083  // Now generate allocation code
3084
3085  // The entire memory state is needed for slow path of the allocation
3086  // since GC and deoptimization can happened.
3087  Node *mem = reset_memory();
3088  set_all_memory(mem); // Create new memory state
3089
3090  // Create the AllocateArrayNode and its result projections
3091  AllocateArrayNode* alloc
3092    = new (C, AllocateArrayNode::ParmLimit)
3093        AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
3094                          control(), mem, i_o(),
3095                          size, klass_node,
3096                          initial_slow_test,
3097                          length);
3098
3099  // Cast to correct type.  Note that the klass_node may be constant or not,
3100  // and in the latter case the actual array type will be inexact also.
3101  // (This happens via a non-constant argument to inline_native_newArray.)
3102  // In any case, the value of klass_node provides the desired array type.
3103  const TypeInt* length_type = _gvn.find_int_type(length);
3104  const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3105  if (ary_type->isa_aryptr() && length_type != NULL) {
3106    // Try to get a better type than POS for the size
3107    ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3108  }
3109
3110  Node* javaoop = set_output_for_allocation(alloc, ary_type, raw_mem_only);
3111
3112  // Cast length on remaining path to be as narrow as possible
3113  if (map()->find_edge(length) >= 0) {
3114    Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3115    if (ccast != length) {
3116      _gvn.set_type_bottom(ccast);
3117      record_for_igvn(ccast);
3118      replace_in_map(length, ccast);
3119    }
3120  }
3121
3122  return javaoop;
3123}
3124
3125// The following "Ideal_foo" functions are placed here because they recognize
3126// the graph shapes created by the functions immediately above.
3127
3128//---------------------------Ideal_allocation----------------------------------
3129// Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3130AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3131  if (ptr == NULL) {     // reduce dumb test in callers
3132    return NULL;
3133  }
3134  if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
3135    ptr = ptr->in(1);
3136    if (ptr == NULL)  return NULL;
3137  }
3138  if (ptr->is_Proj()) {
3139    Node* allo = ptr->in(0);
3140    if (allo != NULL && allo->is_Allocate()) {
3141      return allo->as_Allocate();
3142    }
3143  }
3144  // Report failure to match.
3145  return NULL;
3146}
3147
3148// Fancy version which also strips off an offset (and reports it to caller).
3149AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3150                                             intptr_t& offset) {
3151  Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3152  if (base == NULL)  return NULL;
3153  return Ideal_allocation(base, phase);
3154}
3155
3156// Trace Initialize <- Proj[Parm] <- Allocate
3157AllocateNode* InitializeNode::allocation() {
3158  Node* rawoop = in(InitializeNode::RawAddress);
3159  if (rawoop->is_Proj()) {
3160    Node* alloc = rawoop->in(0);
3161    if (alloc->is_Allocate()) {
3162      return alloc->as_Allocate();
3163    }
3164  }
3165  return NULL;
3166}
3167
3168// Trace Allocate -> Proj[Parm] -> Initialize
3169InitializeNode* AllocateNode::initialization() {
3170  ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3171  if (rawoop == NULL)  return NULL;
3172  for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3173    Node* init = rawoop->fast_out(i);
3174    if (init->is_Initialize()) {
3175      assert(init->as_Initialize()->allocation() == this, "2-way link");
3176      return init->as_Initialize();
3177    }
3178  }
3179  return NULL;
3180}
3181
3182void GraphKit::g1_write_barrier_pre(Node* obj,
3183                                    Node* adr,
3184                                    uint alias_idx,
3185                                    Node* val,
3186                                    const Type* val_type,
3187                                    BasicType bt) {
3188  IdealKit ideal(gvn(), control(), merged_memory(), true);
3189#define __ ideal.
3190  __ declares_done();
3191
3192  Node* thread = __ thread();
3193
3194  Node* no_ctrl = NULL;
3195  Node* no_base = __ top();
3196  Node* zero = __ ConI(0);
3197
3198  float likely  = PROB_LIKELY(0.999);
3199  float unlikely  = PROB_UNLIKELY(0.999);
3200
3201  BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3202  assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3203
3204  // Offsets into the thread
3205  const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3206                                          PtrQueue::byte_offset_of_active());
3207  const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3208                                          PtrQueue::byte_offset_of_index());
3209  const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3210                                          PtrQueue::byte_offset_of_buf());
3211  // Now the actual pointers into the thread
3212
3213  // set_control( ctl);
3214
3215  Node* marking_adr = __ AddP(no_base, thread, __ ConX(marking_offset));
3216  Node* buffer_adr  = __ AddP(no_base, thread, __ ConX(buffer_offset));
3217  Node* index_adr   = __ AddP(no_base, thread, __ ConX(index_offset));
3218
3219  // Now some of the values
3220
3221  Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3222
3223  // if (!marking)
3224  __ if_then(marking, BoolTest::ne, zero); {
3225    Node* index   = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3226
3227    const Type* t1 = adr->bottom_type();
3228    const Type* t2 = val->bottom_type();
3229
3230    Node* orig = __ load(no_ctrl, adr, val_type, bt, alias_idx);
3231    // if (orig != NULL)
3232    __ if_then(orig, BoolTest::ne, null()); {
3233      Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3234
3235      // load original value
3236      // alias_idx correct??
3237
3238      // is the queue for this thread full?
3239      __ if_then(index, BoolTest::ne, zero, likely); {
3240
3241        // decrement the index
3242        Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
3243        Node* next_indexX = next_index;
3244#ifdef _LP64
3245          // We could refine the type for what it's worth
3246          // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3247          next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3248#endif // _LP64
3249
3250        // Now get the buffer location we will log the original value into and store it
3251
3252        Node *log_addr = __ AddP(no_base, buffer, next_indexX);
3253        // __ store(__ ctrl(), log_addr, orig, T_OBJECT, C->get_alias_index(TypeOopPtr::BOTTOM));
3254        __ store(__ ctrl(), log_addr, orig, T_OBJECT, Compile::AliasIdxRaw);
3255
3256
3257        // update the index
3258        // __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3259        // This is a hack to force this store to occur before the oop store that is coming up
3260        __ store(__ ctrl(), index_adr, next_index, T_INT, C->get_alias_index(TypeOopPtr::BOTTOM));
3261
3262      } __ else_(); {
3263
3264        // logging buffer is full, call the runtime
3265        const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3266        // __ make_leaf_call(tf, OptoRuntime::g1_wb_pre_Java(), "g1_wb_pre", orig, thread);
3267        __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", orig, thread);
3268      } __ end_if();
3269    } __ end_if();
3270  } __ end_if();
3271
3272  __ drain_delay_transform();
3273  set_control( __ ctrl());
3274  set_all_memory( __ merged_memory());
3275
3276#undef __
3277}
3278
3279//
3280// Update the card table and add card address to the queue
3281//
3282void GraphKit::g1_mark_card(IdealKit* ideal, Node* card_adr, Node* store,  Node* index, Node* index_adr, Node* buffer, const TypeFunc* tf) {
3283#define __ ideal->
3284  Node* zero = __ ConI(0);
3285  Node* no_base = __ top();
3286  BasicType card_bt = T_BYTE;
3287  // Smash zero into card. MUST BE ORDERED WRT TO STORE
3288  __ storeCM(__ ctrl(), card_adr, zero, store, card_bt, Compile::AliasIdxRaw);
3289
3290  //  Now do the queue work
3291  __ if_then(index, BoolTest::ne, zero); {
3292
3293    Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
3294    Node* next_indexX = next_index;
3295#ifdef _LP64
3296    // We could refine the type for what it's worth
3297    // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3298    next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3299#endif // _LP64
3300    Node* log_addr = __ AddP(no_base, buffer, next_indexX);
3301
3302    __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
3303    __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3304
3305  } __ else_(); {
3306    __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3307  } __ end_if();
3308#undef __
3309}
3310
3311void GraphKit::g1_write_barrier_post(Node* store,
3312                                     Node* obj,
3313                                     Node* adr,
3314                                     uint alias_idx,
3315                                     Node* val,
3316                                     BasicType bt,
3317                                     bool use_precise) {
3318  // If we are writing a NULL then we need no post barrier
3319
3320  if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3321    // Must be NULL
3322    const Type* t = val->bottom_type();
3323    assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3324    // No post barrier if writing NULLx
3325    return;
3326  }
3327
3328  if (!use_precise) {
3329    // All card marks for a (non-array) instance are in one place:
3330    adr = obj;
3331  }
3332  // (Else it's an array (or unknown), and we want more precise card marks.)
3333  assert(adr != NULL, "");
3334
3335  IdealKit ideal(gvn(), control(), merged_memory(), true);
3336#define __ ideal.
3337  __ declares_done();
3338
3339  Node* thread = __ thread();
3340
3341  Node* no_ctrl = NULL;
3342  Node* no_base = __ top();
3343  float likely  = PROB_LIKELY(0.999);
3344  float unlikely  = PROB_UNLIKELY(0.999);
3345  Node* zero = __ ConI(0);
3346  Node* zeroX = __ ConX(0);
3347
3348  // Get the alias_index for raw card-mark memory
3349  const TypePtr* card_type = TypeRawPtr::BOTTOM;
3350
3351  const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3352
3353  // Offsets into the thread
3354  const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3355                                     PtrQueue::byte_offset_of_index());
3356  const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3357                                     PtrQueue::byte_offset_of_buf());
3358
3359  // Pointers into the thread
3360
3361  Node* buffer_adr = __ AddP(no_base, thread, __ ConX(buffer_offset));
3362  Node* index_adr =  __ AddP(no_base, thread, __ ConX(index_offset));
3363
3364  // Now some values
3365
3366  Node* index  = __ load(no_ctrl, index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3367  Node* buffer = __ load(no_ctrl, buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3368
3369
3370  // Convert the store obj pointer to an int prior to doing math on it
3371  // Use addr not obj gets accurate card marks
3372
3373  // Node* cast = __ CastPX(no_ctrl, adr /* obj */);
3374
3375  // Must use ctrl to prevent "integerized oop" existing across safepoint
3376  Node* cast =  __ CastPX(__ ctrl(), ( use_precise ? adr : obj ));
3377
3378  // Divide pointer by card size
3379  Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3380
3381  // Combine card table base and card offset
3382  Node *card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3383
3384  // If we know the value being stored does it cross regions?
3385
3386  if (val != NULL) {
3387    // Does the store cause us to cross regions?
3388
3389    // Should be able to do an unsigned compare of region_size instead of
3390    // and extra shift. Do we have an unsigned compare??
3391    // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
3392    Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
3393
3394    // if (xor_res == 0) same region so skip
3395    __ if_then(xor_res, BoolTest::ne, zeroX); {
3396
3397      // No barrier if we are storing a NULL
3398      __ if_then(val, BoolTest::ne, null(), unlikely); {
3399
3400        // Ok must mark the card if not already dirty
3401
3402        // load the original value of the card
3403        Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
3404
3405        __ if_then(card_val, BoolTest::ne, zero); {
3406          g1_mark_card(&ideal, card_adr, store, index, index_adr, buffer, tf);
3407        } __ end_if();
3408      } __ end_if();
3409    } __ end_if();
3410  } else {
3411    g1_mark_card(&ideal, card_adr, store, index, index_adr, buffer, tf);
3412  }
3413
3414
3415  __ drain_delay_transform();
3416  set_control( __ ctrl());
3417  set_all_memory( __ merged_memory());
3418#undef __
3419
3420}
3421