graphKit.cpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
28#include "gc_implementation/g1/heapRegion.hpp"
29#include "gc_interface/collectedHeap.hpp"
30#include "memory/barrierSet.hpp"
31#include "memory/cardTableModRefBS.hpp"
32#include "opto/addnode.hpp"
33#include "opto/graphKit.hpp"
34#include "opto/idealKit.hpp"
35#include "opto/locknode.hpp"
36#include "opto/machnode.hpp"
37#include "opto/parse.hpp"
38#include "opto/rootnode.hpp"
39#include "opto/runtime.hpp"
40#include "runtime/deoptimization.hpp"
41#include "runtime/sharedRuntime.hpp"
42
43//----------------------------GraphKit-----------------------------------------
44// Main utility constructor.
45GraphKit::GraphKit(JVMState* jvms)
46  : Phase(Phase::Parser),
47    _env(C->env()),
48    _gvn(*C->initial_gvn())
49{
50  _exceptions = jvms->map()->next_exception();
51  if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
52  set_jvms(jvms);
53}
54
55// Private constructor for parser.
56GraphKit::GraphKit()
57  : Phase(Phase::Parser),
58    _env(C->env()),
59    _gvn(*C->initial_gvn())
60{
61  _exceptions = NULL;
62  set_map(NULL);
63  debug_only(_sp = -99);
64  debug_only(set_bci(-99));
65}
66
67
68
69//---------------------------clean_stack---------------------------------------
70// Clear away rubbish from the stack area of the JVM state.
71// This destroys any arguments that may be waiting on the stack.
72void GraphKit::clean_stack(int from_sp) {
73  SafePointNode* map      = this->map();
74  JVMState*      jvms     = this->jvms();
75  int            stk_size = jvms->stk_size();
76  int            stkoff   = jvms->stkoff();
77  Node*          top      = this->top();
78  for (int i = from_sp; i < stk_size; i++) {
79    if (map->in(stkoff + i) != top) {
80      map->set_req(stkoff + i, top);
81    }
82  }
83}
84
85
86//--------------------------------sync_jvms-----------------------------------
87// Make sure our current jvms agrees with our parse state.
88JVMState* GraphKit::sync_jvms() const {
89  JVMState* jvms = this->jvms();
90  jvms->set_bci(bci());       // Record the new bci in the JVMState
91  jvms->set_sp(sp());         // Record the new sp in the JVMState
92  assert(jvms_in_sync(), "jvms is now in sync");
93  return jvms;
94}
95
96//--------------------------------sync_jvms_for_reexecute---------------------
97// Make sure our current jvms agrees with our parse state.  This version
98// uses the reexecute_sp for reexecuting bytecodes.
99JVMState* GraphKit::sync_jvms_for_reexecute() {
100  JVMState* jvms = this->jvms();
101  jvms->set_bci(bci());          // Record the new bci in the JVMState
102  jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
103  return jvms;
104}
105
106#ifdef ASSERT
107bool GraphKit::jvms_in_sync() const {
108  Parse* parse = is_Parse();
109  if (parse == NULL) {
110    if (bci() !=      jvms()->bci())          return false;
111    if (sp()  != (int)jvms()->sp())           return false;
112    return true;
113  }
114  if (jvms()->method() != parse->method())    return false;
115  if (jvms()->bci()    != parse->bci())       return false;
116  int jvms_sp = jvms()->sp();
117  if (jvms_sp          != parse->sp())        return false;
118  int jvms_depth = jvms()->depth();
119  if (jvms_depth       != parse->depth())     return false;
120  return true;
121}
122
123// Local helper checks for special internal merge points
124// used to accumulate and merge exception states.
125// They are marked by the region's in(0) edge being the map itself.
126// Such merge points must never "escape" into the parser at large,
127// until they have been handed to gvn.transform.
128static bool is_hidden_merge(Node* reg) {
129  if (reg == NULL)  return false;
130  if (reg->is_Phi()) {
131    reg = reg->in(0);
132    if (reg == NULL)  return false;
133  }
134  return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
135}
136
137void GraphKit::verify_map() const {
138  if (map() == NULL)  return;  // null map is OK
139  assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
140  assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
141  assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
142}
143
144void GraphKit::verify_exception_state(SafePointNode* ex_map) {
145  assert(ex_map->next_exception() == NULL, "not already part of a chain");
146  assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
147}
148#endif
149
150//---------------------------stop_and_kill_map---------------------------------
151// Set _map to NULL, signalling a stop to further bytecode execution.
152// First smash the current map's control to a constant, to mark it dead.
153void GraphKit::stop_and_kill_map() {
154  SafePointNode* dead_map = stop();
155  if (dead_map != NULL) {
156    dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
157    assert(dead_map->is_killed(), "must be so marked");
158  }
159}
160
161
162//--------------------------------stopped--------------------------------------
163// Tell if _map is NULL, or control is top.
164bool GraphKit::stopped() {
165  if (map() == NULL)           return true;
166  else if (control() == top()) return true;
167  else                         return false;
168}
169
170
171//-----------------------------has_ex_handler----------------------------------
172// Tell if this method or any caller method has exception handlers.
173bool GraphKit::has_ex_handler() {
174  for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
175    if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
176      return true;
177    }
178  }
179  return false;
180}
181
182//------------------------------save_ex_oop------------------------------------
183// Save an exception without blowing stack contents or other JVM state.
184void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
185  assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
186  ex_map->add_req(ex_oop);
187  debug_only(verify_exception_state(ex_map));
188}
189
190inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
191  assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
192  Node* ex_oop = ex_map->in(ex_map->req()-1);
193  if (clear_it)  ex_map->del_req(ex_map->req()-1);
194  return ex_oop;
195}
196
197//-----------------------------saved_ex_oop------------------------------------
198// Recover a saved exception from its map.
199Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
200  return common_saved_ex_oop(ex_map, false);
201}
202
203//--------------------------clear_saved_ex_oop---------------------------------
204// Erase a previously saved exception from its map.
205Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
206  return common_saved_ex_oop(ex_map, true);
207}
208
209#ifdef ASSERT
210//---------------------------has_saved_ex_oop----------------------------------
211// Erase a previously saved exception from its map.
212bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
213  return ex_map->req() == ex_map->jvms()->endoff()+1;
214}
215#endif
216
217//-------------------------make_exception_state--------------------------------
218// Turn the current JVM state into an exception state, appending the ex_oop.
219SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
220  sync_jvms();
221  SafePointNode* ex_map = stop();  // do not manipulate this map any more
222  set_saved_ex_oop(ex_map, ex_oop);
223  return ex_map;
224}
225
226
227//--------------------------add_exception_state--------------------------------
228// Add an exception to my list of exceptions.
229void GraphKit::add_exception_state(SafePointNode* ex_map) {
230  if (ex_map == NULL || ex_map->control() == top()) {
231    return;
232  }
233#ifdef ASSERT
234  verify_exception_state(ex_map);
235  if (has_exceptions()) {
236    assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
237  }
238#endif
239
240  // If there is already an exception of exactly this type, merge with it.
241  // In particular, null-checks and other low-level exceptions common up here.
242  Node*       ex_oop  = saved_ex_oop(ex_map);
243  const Type* ex_type = _gvn.type(ex_oop);
244  if (ex_oop == top()) {
245    // No action needed.
246    return;
247  }
248  assert(ex_type->isa_instptr(), "exception must be an instance");
249  for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
250    const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
251    // We check sp also because call bytecodes can generate exceptions
252    // both before and after arguments are popped!
253    if (ex_type2 == ex_type
254        && e2->_jvms->sp() == ex_map->_jvms->sp()) {
255      combine_exception_states(ex_map, e2);
256      return;
257    }
258  }
259
260  // No pre-existing exception of the same type.  Chain it on the list.
261  push_exception_state(ex_map);
262}
263
264//-----------------------add_exception_states_from-----------------------------
265void GraphKit::add_exception_states_from(JVMState* jvms) {
266  SafePointNode* ex_map = jvms->map()->next_exception();
267  if (ex_map != NULL) {
268    jvms->map()->set_next_exception(NULL);
269    for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
270      next_map = ex_map->next_exception();
271      ex_map->set_next_exception(NULL);
272      add_exception_state(ex_map);
273    }
274  }
275}
276
277//-----------------------transfer_exceptions_into_jvms-------------------------
278JVMState* GraphKit::transfer_exceptions_into_jvms() {
279  if (map() == NULL) {
280    // We need a JVMS to carry the exceptions, but the map has gone away.
281    // Create a scratch JVMS, cloned from any of the exception states...
282    if (has_exceptions()) {
283      _map = _exceptions;
284      _map = clone_map();
285      _map->set_next_exception(NULL);
286      clear_saved_ex_oop(_map);
287      debug_only(verify_map());
288    } else {
289      // ...or created from scratch
290      JVMState* jvms = new (C) JVMState(_method, NULL);
291      jvms->set_bci(_bci);
292      jvms->set_sp(_sp);
293      jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
294      set_jvms(jvms);
295      for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
296      set_all_memory(top());
297      while (map()->req() < jvms->endoff())  map()->add_req(top());
298    }
299    // (This is a kludge, in case you didn't notice.)
300    set_control(top());
301  }
302  JVMState* jvms = sync_jvms();
303  assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
304  jvms->map()->set_next_exception(_exceptions);
305  _exceptions = NULL;   // done with this set of exceptions
306  return jvms;
307}
308
309static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
310  assert(is_hidden_merge(dstphi), "must be a special merge node");
311  assert(is_hidden_merge(srcphi), "must be a special merge node");
312  uint limit = srcphi->req();
313  for (uint i = PhiNode::Input; i < limit; i++) {
314    dstphi->add_req(srcphi->in(i));
315  }
316}
317static inline void add_one_req(Node* dstphi, Node* src) {
318  assert(is_hidden_merge(dstphi), "must be a special merge node");
319  assert(!is_hidden_merge(src), "must not be a special merge node");
320  dstphi->add_req(src);
321}
322
323//-----------------------combine_exception_states------------------------------
324// This helper function combines exception states by building phis on a
325// specially marked state-merging region.  These regions and phis are
326// untransformed, and can build up gradually.  The region is marked by
327// having a control input of its exception map, rather than NULL.  Such
328// regions do not appear except in this function, and in use_exception_state.
329void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
330  if (failing())  return;  // dying anyway...
331  JVMState* ex_jvms = ex_map->_jvms;
332  assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
333  assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
334  assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
335  assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
336  assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
337  assert(ex_map->req() == phi_map->req(), "matching maps");
338  uint tos = ex_jvms->stkoff() + ex_jvms->sp();
339  Node*         hidden_merge_mark = root();
340  Node*         region  = phi_map->control();
341  MergeMemNode* phi_mem = phi_map->merged_memory();
342  MergeMemNode* ex_mem  = ex_map->merged_memory();
343  if (region->in(0) != hidden_merge_mark) {
344    // The control input is not (yet) a specially-marked region in phi_map.
345    // Make it so, and build some phis.
346    region = new (C) RegionNode(2);
347    _gvn.set_type(region, Type::CONTROL);
348    region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
349    region->init_req(1, phi_map->control());
350    phi_map->set_control(region);
351    Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
352    record_for_igvn(io_phi);
353    _gvn.set_type(io_phi, Type::ABIO);
354    phi_map->set_i_o(io_phi);
355    for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
356      Node* m = mms.memory();
357      Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
358      record_for_igvn(m_phi);
359      _gvn.set_type(m_phi, Type::MEMORY);
360      mms.set_memory(m_phi);
361    }
362  }
363
364  // Either or both of phi_map and ex_map might already be converted into phis.
365  Node* ex_control = ex_map->control();
366  // if there is special marking on ex_map also, we add multiple edges from src
367  bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
368  // how wide was the destination phi_map, originally?
369  uint orig_width = region->req();
370
371  if (add_multiple) {
372    add_n_reqs(region, ex_control);
373    add_n_reqs(phi_map->i_o(), ex_map->i_o());
374  } else {
375    // ex_map has no merges, so we just add single edges everywhere
376    add_one_req(region, ex_control);
377    add_one_req(phi_map->i_o(), ex_map->i_o());
378  }
379  for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
380    if (mms.is_empty()) {
381      // get a copy of the base memory, and patch some inputs into it
382      const TypePtr* adr_type = mms.adr_type(C);
383      Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
384      assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
385      mms.set_memory(phi);
386      // Prepare to append interesting stuff onto the newly sliced phi:
387      while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
388    }
389    // Append stuff from ex_map:
390    if (add_multiple) {
391      add_n_reqs(mms.memory(), mms.memory2());
392    } else {
393      add_one_req(mms.memory(), mms.memory2());
394    }
395  }
396  uint limit = ex_map->req();
397  for (uint i = TypeFunc::Parms; i < limit; i++) {
398    // Skip everything in the JVMS after tos.  (The ex_oop follows.)
399    if (i == tos)  i = ex_jvms->monoff();
400    Node* src = ex_map->in(i);
401    Node* dst = phi_map->in(i);
402    if (src != dst) {
403      PhiNode* phi;
404      if (dst->in(0) != region) {
405        dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
406        record_for_igvn(phi);
407        _gvn.set_type(phi, phi->type());
408        phi_map->set_req(i, dst);
409        // Prepare to append interesting stuff onto the new phi:
410        while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
411      } else {
412        assert(dst->is_Phi(), "nobody else uses a hidden region");
413        phi = dst->as_Phi();
414      }
415      if (add_multiple && src->in(0) == ex_control) {
416        // Both are phis.
417        add_n_reqs(dst, src);
418      } else {
419        while (dst->req() < region->req())  add_one_req(dst, src);
420      }
421      const Type* srctype = _gvn.type(src);
422      if (phi->type() != srctype) {
423        const Type* dsttype = phi->type()->meet(srctype);
424        if (phi->type() != dsttype) {
425          phi->set_type(dsttype);
426          _gvn.set_type(phi, dsttype);
427        }
428      }
429    }
430  }
431}
432
433//--------------------------use_exception_state--------------------------------
434Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
435  if (failing()) { stop(); return top(); }
436  Node* region = phi_map->control();
437  Node* hidden_merge_mark = root();
438  assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
439  Node* ex_oop = clear_saved_ex_oop(phi_map);
440  if (region->in(0) == hidden_merge_mark) {
441    // Special marking for internal ex-states.  Process the phis now.
442    region->set_req(0, region);  // now it's an ordinary region
443    set_jvms(phi_map->jvms());   // ...so now we can use it as a map
444    // Note: Setting the jvms also sets the bci and sp.
445    set_control(_gvn.transform(region));
446    uint tos = jvms()->stkoff() + sp();
447    for (uint i = 1; i < tos; i++) {
448      Node* x = phi_map->in(i);
449      if (x->in(0) == region) {
450        assert(x->is_Phi(), "expected a special phi");
451        phi_map->set_req(i, _gvn.transform(x));
452      }
453    }
454    for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
455      Node* x = mms.memory();
456      if (x->in(0) == region) {
457        assert(x->is_Phi(), "nobody else uses a hidden region");
458        mms.set_memory(_gvn.transform(x));
459      }
460    }
461    if (ex_oop->in(0) == region) {
462      assert(ex_oop->is_Phi(), "expected a special phi");
463      ex_oop = _gvn.transform(ex_oop);
464    }
465  } else {
466    set_jvms(phi_map->jvms());
467  }
468
469  assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
470  assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
471  return ex_oop;
472}
473
474//---------------------------------java_bc-------------------------------------
475Bytecodes::Code GraphKit::java_bc() const {
476  ciMethod* method = this->method();
477  int       bci    = this->bci();
478  if (method != NULL && bci != InvocationEntryBci)
479    return method->java_code_at_bci(bci);
480  else
481    return Bytecodes::_illegal;
482}
483
484void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
485                                                          bool must_throw) {
486    // if the exception capability is set, then we will generate code
487    // to check the JavaThread.should_post_on_exceptions flag to see
488    // if we actually need to report exception events (for this
489    // thread).  If we don't need to report exception events, we will
490    // take the normal fast path provided by add_exception_events.  If
491    // exception event reporting is enabled for this thread, we will
492    // take the uncommon_trap in the BuildCutout below.
493
494    // first must access the should_post_on_exceptions_flag in this thread's JavaThread
495    Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
496    Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
497    Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, false);
498
499    // Test the should_post_on_exceptions_flag vs. 0
500    Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
501    Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
502
503    // Branch to slow_path if should_post_on_exceptions_flag was true
504    { BuildCutout unless(this, tst, PROB_MAX);
505      // Do not try anything fancy if we're notifying the VM on every throw.
506      // Cf. case Bytecodes::_athrow in parse2.cpp.
507      uncommon_trap(reason, Deoptimization::Action_none,
508                    (ciKlass*)NULL, (char*)NULL, must_throw);
509    }
510
511}
512
513//------------------------------builtin_throw----------------------------------
514void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
515  bool must_throw = true;
516
517  if (env()->jvmti_can_post_on_exceptions()) {
518    // check if we must post exception events, take uncommon trap if so
519    uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
520    // here if should_post_on_exceptions is false
521    // continue on with the normal codegen
522  }
523
524  // If this particular condition has not yet happened at this
525  // bytecode, then use the uncommon trap mechanism, and allow for
526  // a future recompilation if several traps occur here.
527  // If the throw is hot, try to use a more complicated inline mechanism
528  // which keeps execution inside the compiled code.
529  bool treat_throw_as_hot = false;
530  ciMethodData* md = method()->method_data();
531
532  if (ProfileTraps) {
533    if (too_many_traps(reason)) {
534      treat_throw_as_hot = true;
535    }
536    // (If there is no MDO at all, assume it is early in
537    // execution, and that any deopts are part of the
538    // startup transient, and don't need to be remembered.)
539
540    // Also, if there is a local exception handler, treat all throws
541    // as hot if there has been at least one in this method.
542    if (C->trap_count(reason) != 0
543        && method()->method_data()->trap_count(reason) != 0
544        && has_ex_handler()) {
545        treat_throw_as_hot = true;
546    }
547  }
548
549  // If this throw happens frequently, an uncommon trap might cause
550  // a performance pothole.  If there is a local exception handler,
551  // and if this particular bytecode appears to be deoptimizing often,
552  // let us handle the throw inline, with a preconstructed instance.
553  // Note:   If the deopt count has blown up, the uncommon trap
554  // runtime is going to flush this nmethod, not matter what.
555  if (treat_throw_as_hot
556      && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
557    // If the throw is local, we use a pre-existing instance and
558    // punt on the backtrace.  This would lead to a missing backtrace
559    // (a repeat of 4292742) if the backtrace object is ever asked
560    // for its backtrace.
561    // Fixing this remaining case of 4292742 requires some flavor of
562    // escape analysis.  Leave that for the future.
563    ciInstance* ex_obj = NULL;
564    switch (reason) {
565    case Deoptimization::Reason_null_check:
566      ex_obj = env()->NullPointerException_instance();
567      break;
568    case Deoptimization::Reason_div0_check:
569      ex_obj = env()->ArithmeticException_instance();
570      break;
571    case Deoptimization::Reason_range_check:
572      ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
573      break;
574    case Deoptimization::Reason_class_check:
575      if (java_bc() == Bytecodes::_aastore) {
576        ex_obj = env()->ArrayStoreException_instance();
577      } else {
578        ex_obj = env()->ClassCastException_instance();
579      }
580      break;
581    }
582    if (failing()) { stop(); return; }  // exception allocation might fail
583    if (ex_obj != NULL) {
584      // Cheat with a preallocated exception object.
585      if (C->log() != NULL)
586        C->log()->elem("hot_throw preallocated='1' reason='%s'",
587                       Deoptimization::trap_reason_name(reason));
588      const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
589      Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
590
591      // Clear the detail message of the preallocated exception object.
592      // Weblogic sometimes mutates the detail message of exceptions
593      // using reflection.
594      int offset = java_lang_Throwable::get_detailMessage_offset();
595      const TypePtr* adr_typ = ex_con->add_offset(offset);
596
597      Node *adr = basic_plus_adr(ex_node, ex_node, offset);
598      const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
599      Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT);
600
601      add_exception_state(make_exception_state(ex_node));
602      return;
603    }
604  }
605
606  // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
607  // It won't be much cheaper than bailing to the interp., since we'll
608  // have to pass up all the debug-info, and the runtime will have to
609  // create the stack trace.
610
611  // Usual case:  Bail to interpreter.
612  // Reserve the right to recompile if we haven't seen anything yet.
613
614  Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
615  if (treat_throw_as_hot
616      && (method()->method_data()->trap_recompiled_at(bci())
617          || C->too_many_traps(reason))) {
618    // We cannot afford to take more traps here.  Suffer in the interpreter.
619    if (C->log() != NULL)
620      C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
621                     Deoptimization::trap_reason_name(reason),
622                     C->trap_count(reason));
623    action = Deoptimization::Action_none;
624  }
625
626  // "must_throw" prunes the JVM state to include only the stack, if there
627  // are no local exception handlers.  This should cut down on register
628  // allocation time and code size, by drastically reducing the number
629  // of in-edges on the call to the uncommon trap.
630
631  uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
632}
633
634
635//----------------------------PreserveJVMState---------------------------------
636PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
637  debug_only(kit->verify_map());
638  _kit    = kit;
639  _map    = kit->map();   // preserve the map
640  _sp     = kit->sp();
641  kit->set_map(clone_map ? kit->clone_map() : NULL);
642  Compile::current()->inc_preserve_jvm_state();
643#ifdef ASSERT
644  _bci    = kit->bci();
645  Parse* parser = kit->is_Parse();
646  int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
647  _block  = block;
648#endif
649}
650PreserveJVMState::~PreserveJVMState() {
651  GraphKit* kit = _kit;
652#ifdef ASSERT
653  assert(kit->bci() == _bci, "bci must not shift");
654  Parse* parser = kit->is_Parse();
655  int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
656  assert(block == _block,    "block must not shift");
657#endif
658  kit->set_map(_map);
659  kit->set_sp(_sp);
660  Compile::current()->dec_preserve_jvm_state();
661}
662
663
664//-----------------------------BuildCutout-------------------------------------
665BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
666  : PreserveJVMState(kit)
667{
668  assert(p->is_Con() || p->is_Bool(), "test must be a bool");
669  SafePointNode* outer_map = _map;   // preserved map is caller's
670  SafePointNode* inner_map = kit->map();
671  IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
672  outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
673  inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
674}
675BuildCutout::~BuildCutout() {
676  GraphKit* kit = _kit;
677  assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
678}
679
680//---------------------------PreserveReexecuteState----------------------------
681PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
682  assert(!kit->stopped(), "must call stopped() before");
683  _kit    =    kit;
684  _sp     =    kit->sp();
685  _reexecute = kit->jvms()->_reexecute;
686}
687PreserveReexecuteState::~PreserveReexecuteState() {
688  if (_kit->stopped()) return;
689  _kit->jvms()->_reexecute = _reexecute;
690  _kit->set_sp(_sp);
691}
692
693//------------------------------clone_map--------------------------------------
694// Implementation of PreserveJVMState
695//
696// Only clone_map(...) here. If this function is only used in the
697// PreserveJVMState class we may want to get rid of this extra
698// function eventually and do it all there.
699
700SafePointNode* GraphKit::clone_map() {
701  if (map() == NULL)  return NULL;
702
703  // Clone the memory edge first
704  Node* mem = MergeMemNode::make(C, map()->memory());
705  gvn().set_type_bottom(mem);
706
707  SafePointNode *clonemap = (SafePointNode*)map()->clone();
708  JVMState* jvms = this->jvms();
709  JVMState* clonejvms = jvms->clone_shallow(C);
710  clonemap->set_memory(mem);
711  clonemap->set_jvms(clonejvms);
712  clonejvms->set_map(clonemap);
713  record_for_igvn(clonemap);
714  gvn().set_type_bottom(clonemap);
715  return clonemap;
716}
717
718
719//-----------------------------set_map_clone-----------------------------------
720void GraphKit::set_map_clone(SafePointNode* m) {
721  _map = m;
722  _map = clone_map();
723  _map->set_next_exception(NULL);
724  debug_only(verify_map());
725}
726
727
728//----------------------------kill_dead_locals---------------------------------
729// Detect any locals which are known to be dead, and force them to top.
730void GraphKit::kill_dead_locals() {
731  // Consult the liveness information for the locals.  If any
732  // of them are unused, then they can be replaced by top().  This
733  // should help register allocation time and cut down on the size
734  // of the deoptimization information.
735
736  // This call is made from many of the bytecode handling
737  // subroutines called from the Big Switch in do_one_bytecode.
738  // Every bytecode which might include a slow path is responsible
739  // for killing its dead locals.  The more consistent we
740  // are about killing deads, the fewer useless phis will be
741  // constructed for them at various merge points.
742
743  // bci can be -1 (InvocationEntryBci).  We return the entry
744  // liveness for the method.
745
746  if (method() == NULL || method()->code_size() == 0) {
747    // We are building a graph for a call to a native method.
748    // All locals are live.
749    return;
750  }
751
752  ResourceMark rm;
753
754  // Consult the liveness information for the locals.  If any
755  // of them are unused, then they can be replaced by top().  This
756  // should help register allocation time and cut down on the size
757  // of the deoptimization information.
758  MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
759
760  int len = (int)live_locals.size();
761  assert(len <= jvms()->loc_size(), "too many live locals");
762  for (int local = 0; local < len; local++) {
763    if (!live_locals.at(local)) {
764      set_local(local, top());
765    }
766  }
767}
768
769#ifdef ASSERT
770//-------------------------dead_locals_are_killed------------------------------
771// Return true if all dead locals are set to top in the map.
772// Used to assert "clean" debug info at various points.
773bool GraphKit::dead_locals_are_killed() {
774  if (method() == NULL || method()->code_size() == 0) {
775    // No locals need to be dead, so all is as it should be.
776    return true;
777  }
778
779  // Make sure somebody called kill_dead_locals upstream.
780  ResourceMark rm;
781  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
782    if (jvms->loc_size() == 0)  continue;  // no locals to consult
783    SafePointNode* map = jvms->map();
784    ciMethod* method = jvms->method();
785    int       bci    = jvms->bci();
786    if (jvms == this->jvms()) {
787      bci = this->bci();  // it might not yet be synched
788    }
789    MethodLivenessResult live_locals = method->liveness_at_bci(bci);
790    int len = (int)live_locals.size();
791    if (!live_locals.is_valid() || len == 0)
792      // This method is trivial, or is poisoned by a breakpoint.
793      return true;
794    assert(len == jvms->loc_size(), "live map consistent with locals map");
795    for (int local = 0; local < len; local++) {
796      if (!live_locals.at(local) && map->local(jvms, local) != top()) {
797        if (PrintMiscellaneous && (Verbose || WizardMode)) {
798          tty->print_cr("Zombie local %d: ", local);
799          jvms->dump();
800        }
801        return false;
802      }
803    }
804  }
805  return true;
806}
807
808#endif //ASSERT
809
810// Helper function for enforcing certain bytecodes to reexecute if
811// deoptimization happens
812static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
813  ciMethod* cur_method = jvms->method();
814  int       cur_bci   = jvms->bci();
815  if (cur_method != NULL && cur_bci != InvocationEntryBci) {
816    Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
817    return Interpreter::bytecode_should_reexecute(code) ||
818           is_anewarray && code == Bytecodes::_multianewarray;
819    // Reexecute _multianewarray bytecode which was replaced with
820    // sequence of [a]newarray. See Parse::do_multianewarray().
821    //
822    // Note: interpreter should not have it set since this optimization
823    // is limited by dimensions and guarded by flag so in some cases
824    // multianewarray() runtime calls will be generated and
825    // the bytecode should not be reexecutes (stack will not be reset).
826  } else
827    return false;
828}
829
830// Helper function for adding JVMState and debug information to node
831void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
832  // Add the safepoint edges to the call (or other safepoint).
833
834  // Make sure dead locals are set to top.  This
835  // should help register allocation time and cut down on the size
836  // of the deoptimization information.
837  assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
838
839  // Walk the inline list to fill in the correct set of JVMState's
840  // Also fill in the associated edges for each JVMState.
841
842  // If the bytecode needs to be reexecuted we need to put
843  // the arguments back on the stack.
844  const bool should_reexecute = jvms()->should_reexecute();
845  JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
846
847  // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
848  // undefined if the bci is different.  This is normal for Parse but it
849  // should not happen for LibraryCallKit because only one bci is processed.
850  assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
851         "in LibraryCallKit the reexecute bit should not change");
852
853  // If we are guaranteed to throw, we can prune everything but the
854  // input to the current bytecode.
855  bool can_prune_locals = false;
856  uint stack_slots_not_pruned = 0;
857  int inputs = 0, depth = 0;
858  if (must_throw) {
859    assert(method() == youngest_jvms->method(), "sanity");
860    if (compute_stack_effects(inputs, depth)) {
861      can_prune_locals = true;
862      stack_slots_not_pruned = inputs;
863    }
864  }
865
866  if (env()->jvmti_can_access_local_variables()) {
867    // At any safepoint, this method can get breakpointed, which would
868    // then require an immediate deoptimization.
869    can_prune_locals = false;  // do not prune locals
870    stack_slots_not_pruned = 0;
871  }
872
873  // do not scribble on the input jvms
874  JVMState* out_jvms = youngest_jvms->clone_deep(C);
875  call->set_jvms(out_jvms); // Start jvms list for call node
876
877  // For a known set of bytecodes, the interpreter should reexecute them if
878  // deoptimization happens. We set the reexecute state for them here
879  if (out_jvms->is_reexecute_undefined() && //don't change if already specified
880      should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
881    out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
882  }
883
884  // Presize the call:
885  DEBUG_ONLY(uint non_debug_edges = call->req());
886  call->add_req_batch(top(), youngest_jvms->debug_depth());
887  assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
888
889  // Set up edges so that the call looks like this:
890  //  Call [state:] ctl io mem fptr retadr
891  //       [parms:] parm0 ... parmN
892  //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
893  //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
894  //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
895  // Note that caller debug info precedes callee debug info.
896
897  // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
898  uint debug_ptr = call->req();
899
900  // Loop over the map input edges associated with jvms, add them
901  // to the call node, & reset all offsets to match call node array.
902  for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
903    uint debug_end   = debug_ptr;
904    uint debug_start = debug_ptr - in_jvms->debug_size();
905    debug_ptr = debug_start;  // back up the ptr
906
907    uint p = debug_start;  // walks forward in [debug_start, debug_end)
908    uint j, k, l;
909    SafePointNode* in_map = in_jvms->map();
910    out_jvms->set_map(call);
911
912    if (can_prune_locals) {
913      assert(in_jvms->method() == out_jvms->method(), "sanity");
914      // If the current throw can reach an exception handler in this JVMS,
915      // then we must keep everything live that can reach that handler.
916      // As a quick and dirty approximation, we look for any handlers at all.
917      if (in_jvms->method()->has_exception_handlers()) {
918        can_prune_locals = false;
919      }
920    }
921
922    // Add the Locals
923    k = in_jvms->locoff();
924    l = in_jvms->loc_size();
925    out_jvms->set_locoff(p);
926    if (!can_prune_locals) {
927      for (j = 0; j < l; j++)
928        call->set_req(p++, in_map->in(k+j));
929    } else {
930      p += l;  // already set to top above by add_req_batch
931    }
932
933    // Add the Expression Stack
934    k = in_jvms->stkoff();
935    l = in_jvms->sp();
936    out_jvms->set_stkoff(p);
937    if (!can_prune_locals) {
938      for (j = 0; j < l; j++)
939        call->set_req(p++, in_map->in(k+j));
940    } else if (can_prune_locals && stack_slots_not_pruned != 0) {
941      // Divide stack into {S0,...,S1}, where S0 is set to top.
942      uint s1 = stack_slots_not_pruned;
943      stack_slots_not_pruned = 0;  // for next iteration
944      if (s1 > l)  s1 = l;
945      uint s0 = l - s1;
946      p += s0;  // skip the tops preinstalled by add_req_batch
947      for (j = s0; j < l; j++)
948        call->set_req(p++, in_map->in(k+j));
949    } else {
950      p += l;  // already set to top above by add_req_batch
951    }
952
953    // Add the Monitors
954    k = in_jvms->monoff();
955    l = in_jvms->mon_size();
956    out_jvms->set_monoff(p);
957    for (j = 0; j < l; j++)
958      call->set_req(p++, in_map->in(k+j));
959
960    // Copy any scalar object fields.
961    k = in_jvms->scloff();
962    l = in_jvms->scl_size();
963    out_jvms->set_scloff(p);
964    for (j = 0; j < l; j++)
965      call->set_req(p++, in_map->in(k+j));
966
967    // Finish the new jvms.
968    out_jvms->set_endoff(p);
969
970    assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
971    assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
972    assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
973    assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
974    assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
975    assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
976
977    // Update the two tail pointers in parallel.
978    out_jvms = out_jvms->caller();
979    in_jvms  = in_jvms->caller();
980  }
981
982  assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
983
984  // Test the correctness of JVMState::debug_xxx accessors:
985  assert(call->jvms()->debug_start() == non_debug_edges, "");
986  assert(call->jvms()->debug_end()   == call->req(), "");
987  assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
988}
989
990bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
991  Bytecodes::Code code = java_bc();
992  if (code == Bytecodes::_wide) {
993    code = method()->java_code_at_bci(bci() + 1);
994  }
995
996  BasicType rtype = T_ILLEGAL;
997  int       rsize = 0;
998
999  if (code != Bytecodes::_illegal) {
1000    depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1001    rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1002    if (rtype < T_CONFLICT)
1003      rsize = type2size[rtype];
1004  }
1005
1006  switch (code) {
1007  case Bytecodes::_illegal:
1008    return false;
1009
1010  case Bytecodes::_ldc:
1011  case Bytecodes::_ldc_w:
1012  case Bytecodes::_ldc2_w:
1013    inputs = 0;
1014    break;
1015
1016  case Bytecodes::_dup:         inputs = 1;  break;
1017  case Bytecodes::_dup_x1:      inputs = 2;  break;
1018  case Bytecodes::_dup_x2:      inputs = 3;  break;
1019  case Bytecodes::_dup2:        inputs = 2;  break;
1020  case Bytecodes::_dup2_x1:     inputs = 3;  break;
1021  case Bytecodes::_dup2_x2:     inputs = 4;  break;
1022  case Bytecodes::_swap:        inputs = 2;  break;
1023  case Bytecodes::_arraylength: inputs = 1;  break;
1024
1025  case Bytecodes::_getstatic:
1026  case Bytecodes::_putstatic:
1027  case Bytecodes::_getfield:
1028  case Bytecodes::_putfield:
1029    {
1030      bool ignored_will_link;
1031      ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1032      int      size  = field->type()->size();
1033      bool is_get = (depth >= 0), is_static = (depth & 1);
1034      inputs = (is_static ? 0 : 1);
1035      if (is_get) {
1036        depth = size - inputs;
1037      } else {
1038        inputs += size;        // putxxx pops the value from the stack
1039        depth = - inputs;
1040      }
1041    }
1042    break;
1043
1044  case Bytecodes::_invokevirtual:
1045  case Bytecodes::_invokespecial:
1046  case Bytecodes::_invokestatic:
1047  case Bytecodes::_invokedynamic:
1048  case Bytecodes::_invokeinterface:
1049    {
1050      bool ignored_will_link;
1051      ciSignature* declared_signature = NULL;
1052      ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1053      assert(declared_signature != NULL, "cannot be null");
1054      inputs   = declared_signature->arg_size_for_bc(code);
1055      int size = declared_signature->return_type()->size();
1056      depth = size - inputs;
1057    }
1058    break;
1059
1060  case Bytecodes::_multianewarray:
1061    {
1062      ciBytecodeStream iter(method());
1063      iter.reset_to_bci(bci());
1064      iter.next();
1065      inputs = iter.get_dimensions();
1066      assert(rsize == 1, "");
1067      depth = rsize - inputs;
1068    }
1069    break;
1070
1071  case Bytecodes::_ireturn:
1072  case Bytecodes::_lreturn:
1073  case Bytecodes::_freturn:
1074  case Bytecodes::_dreturn:
1075  case Bytecodes::_areturn:
1076    assert(rsize = -depth, "");
1077    inputs = rsize;
1078    break;
1079
1080  case Bytecodes::_jsr:
1081  case Bytecodes::_jsr_w:
1082    inputs = 0;
1083    depth  = 1;                  // S.B. depth=1, not zero
1084    break;
1085
1086  default:
1087    // bytecode produces a typed result
1088    inputs = rsize - depth;
1089    assert(inputs >= 0, "");
1090    break;
1091  }
1092
1093#ifdef ASSERT
1094  // spot check
1095  int outputs = depth + inputs;
1096  assert(outputs >= 0, "sanity");
1097  switch (code) {
1098  case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1099  case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1100  case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1101  case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1102  case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1103  }
1104#endif //ASSERT
1105
1106  return true;
1107}
1108
1109
1110
1111//------------------------------basic_plus_adr---------------------------------
1112Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1113  // short-circuit a common case
1114  if (offset == intcon(0))  return ptr;
1115  return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1116}
1117
1118Node* GraphKit::ConvI2L(Node* offset) {
1119  // short-circuit a common case
1120  jint offset_con = find_int_con(offset, Type::OffsetBot);
1121  if (offset_con != Type::OffsetBot) {
1122    return longcon((jlong) offset_con);
1123  }
1124  return _gvn.transform( new (C) ConvI2LNode(offset));
1125}
1126Node* GraphKit::ConvL2I(Node* offset) {
1127  // short-circuit a common case
1128  jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1129  if (offset_con != (jlong)Type::OffsetBot) {
1130    return intcon((int) offset_con);
1131  }
1132  return _gvn.transform( new (C) ConvL2INode(offset));
1133}
1134
1135//-------------------------load_object_klass-----------------------------------
1136Node* GraphKit::load_object_klass(Node* obj) {
1137  // Special-case a fresh allocation to avoid building nodes:
1138  Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1139  if (akls != NULL)  return akls;
1140  Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1141  return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1142}
1143
1144//-------------------------load_array_length-----------------------------------
1145Node* GraphKit::load_array_length(Node* array) {
1146  // Special-case a fresh allocation to avoid building nodes:
1147  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1148  Node *alen;
1149  if (alloc == NULL) {
1150    Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1151    alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1152  } else {
1153    alen = alloc->Ideal_length();
1154    Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1155    if (ccast != alen) {
1156      alen = _gvn.transform(ccast);
1157    }
1158  }
1159  return alen;
1160}
1161
1162//------------------------------do_null_check----------------------------------
1163// Helper function to do a NULL pointer check.  Returned value is
1164// the incoming address with NULL casted away.  You are allowed to use the
1165// not-null value only if you are control dependent on the test.
1166extern int explicit_null_checks_inserted,
1167           explicit_null_checks_elided;
1168Node* GraphKit::null_check_common(Node* value, BasicType type,
1169                                  // optional arguments for variations:
1170                                  bool assert_null,
1171                                  Node* *null_control) {
1172  assert(!assert_null || null_control == NULL, "not both at once");
1173  if (stopped())  return top();
1174  if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1175    // For some performance testing, we may wish to suppress null checking.
1176    value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1177    return value;
1178  }
1179  explicit_null_checks_inserted++;
1180
1181  // Construct NULL check
1182  Node *chk = NULL;
1183  switch(type) {
1184    case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1185    case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
1186    case T_ARRAY  : // fall through
1187      type = T_OBJECT;  // simplify further tests
1188    case T_OBJECT : {
1189      const Type *t = _gvn.type( value );
1190
1191      const TypeOopPtr* tp = t->isa_oopptr();
1192      if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1193          // Only for do_null_check, not any of its siblings:
1194          && !assert_null && null_control == NULL) {
1195        // Usually, any field access or invocation on an unloaded oop type
1196        // will simply fail to link, since the statically linked class is
1197        // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1198        // the static class is loaded but the sharper oop type is not.
1199        // Rather than checking for this obscure case in lots of places,
1200        // we simply observe that a null check on an unloaded class
1201        // will always be followed by a nonsense operation, so we
1202        // can just issue the uncommon trap here.
1203        // Our access to the unloaded class will only be correct
1204        // after it has been loaded and initialized, which requires
1205        // a trip through the interpreter.
1206#ifndef PRODUCT
1207        if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1208#endif
1209        uncommon_trap(Deoptimization::Reason_unloaded,
1210                      Deoptimization::Action_reinterpret,
1211                      tp->klass(), "!loaded");
1212        return top();
1213      }
1214
1215      if (assert_null) {
1216        // See if the type is contained in NULL_PTR.
1217        // If so, then the value is already null.
1218        if (t->higher_equal(TypePtr::NULL_PTR)) {
1219          explicit_null_checks_elided++;
1220          return value;           // Elided null assert quickly!
1221        }
1222      } else {
1223        // See if mixing in the NULL pointer changes type.
1224        // If so, then the NULL pointer was not allowed in the original
1225        // type.  In other words, "value" was not-null.
1226        if (t->meet(TypePtr::NULL_PTR) != t) {
1227          // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1228          explicit_null_checks_elided++;
1229          return value;           // Elided null check quickly!
1230        }
1231      }
1232      chk = new (C) CmpPNode( value, null() );
1233      break;
1234    }
1235
1236    default:
1237      fatal(err_msg_res("unexpected type: %s", type2name(type)));
1238  }
1239  assert(chk != NULL, "sanity check");
1240  chk = _gvn.transform(chk);
1241
1242  BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1243  BoolNode *btst = new (C) BoolNode( chk, btest);
1244  Node   *tst = _gvn.transform( btst );
1245
1246  //-----------
1247  // if peephole optimizations occurred, a prior test existed.
1248  // If a prior test existed, maybe it dominates as we can avoid this test.
1249  if (tst != btst && type == T_OBJECT) {
1250    // At this point we want to scan up the CFG to see if we can
1251    // find an identical test (and so avoid this test altogether).
1252    Node *cfg = control();
1253    int depth = 0;
1254    while( depth < 16 ) {       // Limit search depth for speed
1255      if( cfg->Opcode() == Op_IfTrue &&
1256          cfg->in(0)->in(1) == tst ) {
1257        // Found prior test.  Use "cast_not_null" to construct an identical
1258        // CastPP (and hence hash to) as already exists for the prior test.
1259        // Return that casted value.
1260        if (assert_null) {
1261          replace_in_map(value, null());
1262          return null();  // do not issue the redundant test
1263        }
1264        Node *oldcontrol = control();
1265        set_control(cfg);
1266        Node *res = cast_not_null(value);
1267        set_control(oldcontrol);
1268        explicit_null_checks_elided++;
1269        return res;
1270      }
1271      cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1272      if (cfg == NULL)  break;  // Quit at region nodes
1273      depth++;
1274    }
1275  }
1276
1277  //-----------
1278  // Branch to failure if null
1279  float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1280  Deoptimization::DeoptReason reason;
1281  if (assert_null)
1282    reason = Deoptimization::Reason_null_assert;
1283  else if (type == T_OBJECT)
1284    reason = Deoptimization::Reason_null_check;
1285  else
1286    reason = Deoptimization::Reason_div0_check;
1287
1288  // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1289  // ciMethodData::has_trap_at will return a conservative -1 if any
1290  // must-be-null assertion has failed.  This could cause performance
1291  // problems for a method after its first do_null_assert failure.
1292  // Consider using 'Reason_class_check' instead?
1293
1294  // To cause an implicit null check, we set the not-null probability
1295  // to the maximum (PROB_MAX).  For an explicit check the probability
1296  // is set to a smaller value.
1297  if (null_control != NULL || too_many_traps(reason)) {
1298    // probability is less likely
1299    ok_prob =  PROB_LIKELY_MAG(3);
1300  } else if (!assert_null &&
1301             (ImplicitNullCheckThreshold > 0) &&
1302             method() != NULL &&
1303             (method()->method_data()->trap_count(reason)
1304              >= (uint)ImplicitNullCheckThreshold)) {
1305    ok_prob =  PROB_LIKELY_MAG(3);
1306  }
1307
1308  if (null_control != NULL) {
1309    IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1310    Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1311    set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1312    if (null_true == top())
1313      explicit_null_checks_elided++;
1314    (*null_control) = null_true;
1315  } else {
1316    BuildCutout unless(this, tst, ok_prob);
1317    // Check for optimizer eliding test at parse time
1318    if (stopped()) {
1319      // Failure not possible; do not bother making uncommon trap.
1320      explicit_null_checks_elided++;
1321    } else if (assert_null) {
1322      uncommon_trap(reason,
1323                    Deoptimization::Action_make_not_entrant,
1324                    NULL, "assert_null");
1325    } else {
1326      replace_in_map(value, zerocon(type));
1327      builtin_throw(reason);
1328    }
1329  }
1330
1331  // Must throw exception, fall-thru not possible?
1332  if (stopped()) {
1333    return top();               // No result
1334  }
1335
1336  if (assert_null) {
1337    // Cast obj to null on this path.
1338    replace_in_map(value, zerocon(type));
1339    return zerocon(type);
1340  }
1341
1342  // Cast obj to not-null on this path, if there is no null_control.
1343  // (If there is a null_control, a non-null value may come back to haunt us.)
1344  if (type == T_OBJECT) {
1345    Node* cast = cast_not_null(value, false);
1346    if (null_control == NULL || (*null_control) == top())
1347      replace_in_map(value, cast);
1348    value = cast;
1349  }
1350
1351  return value;
1352}
1353
1354
1355//------------------------------cast_not_null----------------------------------
1356// Cast obj to not-null on this path
1357Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1358  const Type *t = _gvn.type(obj);
1359  const Type *t_not_null = t->join(TypePtr::NOTNULL);
1360  // Object is already not-null?
1361  if( t == t_not_null ) return obj;
1362
1363  Node *cast = new (C) CastPPNode(obj,t_not_null);
1364  cast->init_req(0, control());
1365  cast = _gvn.transform( cast );
1366
1367  // Scan for instances of 'obj' in the current JVM mapping.
1368  // These instances are known to be not-null after the test.
1369  if (do_replace_in_map)
1370    replace_in_map(obj, cast);
1371
1372  return cast;                  // Return casted value
1373}
1374
1375
1376//--------------------------replace_in_map-------------------------------------
1377void GraphKit::replace_in_map(Node* old, Node* neww) {
1378  if (old == neww) {
1379    return;
1380  }
1381
1382  map()->replace_edge(old, neww);
1383
1384  // Note: This operation potentially replaces any edge
1385  // on the map.  This includes locals, stack, and monitors
1386  // of the current (innermost) JVM state.
1387
1388  if (!ReplaceInParentMaps) {
1389    return;
1390  }
1391
1392  // PreserveJVMState doesn't do a deep copy so we can't modify
1393  // parents
1394  if (Compile::current()->has_preserve_jvm_state()) {
1395    return;
1396  }
1397
1398  Parse* parser = is_Parse();
1399  bool progress = true;
1400  Node* ctrl = map()->in(0);
1401  // Follow the chain of parsers and see whether the update can be
1402  // done in the map of callers. We can do the replace for a caller if
1403  // the current control post dominates the control of a caller.
1404  while (parser != NULL && parser->caller() != NULL && progress) {
1405    progress = false;
1406    Node* parent_map = parser->caller()->map();
1407    assert(parser->exits().map()->jvms()->depth() == parser->caller()->depth(), "map mismatch");
1408
1409    Node* parent_ctrl = parent_map->in(0);
1410
1411    while (parent_ctrl->is_Region()) {
1412      Node* n = parent_ctrl->as_Region()->is_copy();
1413      if (n == NULL) {
1414        break;
1415      }
1416      parent_ctrl = n;
1417    }
1418
1419    for (;;) {
1420      if (ctrl == parent_ctrl) {
1421        // update the map of the exits which is the one that will be
1422        // used when compilation resume after inlining
1423        parser->exits().map()->replace_edge(old, neww);
1424        progress = true;
1425        break;
1426      }
1427      if (ctrl->is_Proj() && ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
1428        ctrl = ctrl->in(0)->in(0);
1429      } else if (ctrl->is_Region()) {
1430        Node* n = ctrl->as_Region()->is_copy();
1431        if (n == NULL) {
1432          break;
1433        }
1434        ctrl = n;
1435      } else {
1436        break;
1437      }
1438    }
1439
1440    parser = parser->parent_parser();
1441  }
1442}
1443
1444
1445//=============================================================================
1446//--------------------------------memory---------------------------------------
1447Node* GraphKit::memory(uint alias_idx) {
1448  MergeMemNode* mem = merged_memory();
1449  Node* p = mem->memory_at(alias_idx);
1450  _gvn.set_type(p, Type::MEMORY);  // must be mapped
1451  return p;
1452}
1453
1454//-----------------------------reset_memory------------------------------------
1455Node* GraphKit::reset_memory() {
1456  Node* mem = map()->memory();
1457  // do not use this node for any more parsing!
1458  debug_only( map()->set_memory((Node*)NULL) );
1459  return _gvn.transform( mem );
1460}
1461
1462//------------------------------set_all_memory---------------------------------
1463void GraphKit::set_all_memory(Node* newmem) {
1464  Node* mergemem = MergeMemNode::make(C, newmem);
1465  gvn().set_type_bottom(mergemem);
1466  map()->set_memory(mergemem);
1467}
1468
1469//------------------------------set_all_memory_call----------------------------
1470void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1471  Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1472  set_all_memory(newmem);
1473}
1474
1475//=============================================================================
1476//
1477// parser factory methods for MemNodes
1478//
1479// These are layered on top of the factory methods in LoadNode and StoreNode,
1480// and integrate with the parser's memory state and _gvn engine.
1481//
1482
1483// factory methods in "int adr_idx"
1484Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1485                          int adr_idx,
1486                          bool require_atomic_access) {
1487  assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1488  const TypePtr* adr_type = NULL; // debug-mode-only argument
1489  debug_only(adr_type = C->get_adr_type(adr_idx));
1490  Node* mem = memory(adr_idx);
1491  Node* ld;
1492  if (require_atomic_access && bt == T_LONG) {
1493    ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
1494  } else {
1495    ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
1496  }
1497  ld = _gvn.transform(ld);
1498  if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1499    // Improve graph before escape analysis and boxing elimination.
1500    record_for_igvn(ld);
1501  }
1502  return ld;
1503}
1504
1505Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1506                                int adr_idx,
1507                                bool require_atomic_access) {
1508  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1509  const TypePtr* adr_type = NULL;
1510  debug_only(adr_type = C->get_adr_type(adr_idx));
1511  Node *mem = memory(adr_idx);
1512  Node* st;
1513  if (require_atomic_access && bt == T_LONG) {
1514    st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
1515  } else {
1516    st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
1517  }
1518  st = _gvn.transform(st);
1519  set_memory(st, adr_idx);
1520  // Back-to-back stores can only remove intermediate store with DU info
1521  // so push on worklist for optimizer.
1522  if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1523    record_for_igvn(st);
1524
1525  return st;
1526}
1527
1528
1529void GraphKit::pre_barrier(bool do_load,
1530                           Node* ctl,
1531                           Node* obj,
1532                           Node* adr,
1533                           uint  adr_idx,
1534                           Node* val,
1535                           const TypeOopPtr* val_type,
1536                           Node* pre_val,
1537                           BasicType bt) {
1538
1539  BarrierSet* bs = Universe::heap()->barrier_set();
1540  set_control(ctl);
1541  switch (bs->kind()) {
1542    case BarrierSet::G1SATBCT:
1543    case BarrierSet::G1SATBCTLogging:
1544      g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1545      break;
1546
1547    case BarrierSet::CardTableModRef:
1548    case BarrierSet::CardTableExtension:
1549    case BarrierSet::ModRef:
1550      break;
1551
1552    case BarrierSet::Other:
1553    default      :
1554      ShouldNotReachHere();
1555
1556  }
1557}
1558
1559bool GraphKit::can_move_pre_barrier() const {
1560  BarrierSet* bs = Universe::heap()->barrier_set();
1561  switch (bs->kind()) {
1562    case BarrierSet::G1SATBCT:
1563    case BarrierSet::G1SATBCTLogging:
1564      return true; // Can move it if no safepoint
1565
1566    case BarrierSet::CardTableModRef:
1567    case BarrierSet::CardTableExtension:
1568    case BarrierSet::ModRef:
1569      return true; // There is no pre-barrier
1570
1571    case BarrierSet::Other:
1572    default      :
1573      ShouldNotReachHere();
1574  }
1575  return false;
1576}
1577
1578void GraphKit::post_barrier(Node* ctl,
1579                            Node* store,
1580                            Node* obj,
1581                            Node* adr,
1582                            uint  adr_idx,
1583                            Node* val,
1584                            BasicType bt,
1585                            bool use_precise) {
1586  BarrierSet* bs = Universe::heap()->barrier_set();
1587  set_control(ctl);
1588  switch (bs->kind()) {
1589    case BarrierSet::G1SATBCT:
1590    case BarrierSet::G1SATBCTLogging:
1591      g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1592      break;
1593
1594    case BarrierSet::CardTableModRef:
1595    case BarrierSet::CardTableExtension:
1596      write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1597      break;
1598
1599    case BarrierSet::ModRef:
1600      break;
1601
1602    case BarrierSet::Other:
1603    default      :
1604      ShouldNotReachHere();
1605
1606  }
1607}
1608
1609Node* GraphKit::store_oop(Node* ctl,
1610                          Node* obj,
1611                          Node* adr,
1612                          const TypePtr* adr_type,
1613                          Node* val,
1614                          const TypeOopPtr* val_type,
1615                          BasicType bt,
1616                          bool use_precise) {
1617  // Transformation of a value which could be NULL pointer (CastPP #NULL)
1618  // could be delayed during Parse (for example, in adjust_map_after_if()).
1619  // Execute transformation here to avoid barrier generation in such case.
1620  if (_gvn.type(val) == TypePtr::NULL_PTR)
1621    val = _gvn.makecon(TypePtr::NULL_PTR);
1622
1623  set_control(ctl);
1624  if (stopped()) return top(); // Dead path ?
1625
1626  assert(bt == T_OBJECT, "sanity");
1627  assert(val != NULL, "not dead path");
1628  uint adr_idx = C->get_alias_index(adr_type);
1629  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1630
1631  pre_barrier(true /* do_load */,
1632              control(), obj, adr, adr_idx, val, val_type,
1633              NULL /* pre_val */,
1634              bt);
1635
1636  Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
1637  post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1638  return store;
1639}
1640
1641// Could be an array or object we don't know at compile time (unsafe ref.)
1642Node* GraphKit::store_oop_to_unknown(Node* ctl,
1643                             Node* obj,   // containing obj
1644                             Node* adr,  // actual adress to store val at
1645                             const TypePtr* adr_type,
1646                             Node* val,
1647                             BasicType bt) {
1648  Compile::AliasType* at = C->alias_type(adr_type);
1649  const TypeOopPtr* val_type = NULL;
1650  if (adr_type->isa_instptr()) {
1651    if (at->field() != NULL) {
1652      // known field.  This code is a copy of the do_put_xxx logic.
1653      ciField* field = at->field();
1654      if (!field->type()->is_loaded()) {
1655        val_type = TypeInstPtr::BOTTOM;
1656      } else {
1657        val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1658      }
1659    }
1660  } else if (adr_type->isa_aryptr()) {
1661    val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1662  }
1663  if (val_type == NULL) {
1664    val_type = TypeInstPtr::BOTTOM;
1665  }
1666  return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
1667}
1668
1669
1670//-------------------------array_element_address-------------------------
1671Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1672                                      const TypeInt* sizetype) {
1673  uint shift  = exact_log2(type2aelembytes(elembt));
1674  uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1675
1676  // short-circuit a common case (saves lots of confusing waste motion)
1677  jint idx_con = find_int_con(idx, -1);
1678  if (idx_con >= 0) {
1679    intptr_t offset = header + ((intptr_t)idx_con << shift);
1680    return basic_plus_adr(ary, offset);
1681  }
1682
1683  // must be correct type for alignment purposes
1684  Node* base  = basic_plus_adr(ary, header);
1685#ifdef _LP64
1686  // The scaled index operand to AddP must be a clean 64-bit value.
1687  // Java allows a 32-bit int to be incremented to a negative
1688  // value, which appears in a 64-bit register as a large
1689  // positive number.  Using that large positive number as an
1690  // operand in pointer arithmetic has bad consequences.
1691  // On the other hand, 32-bit overflow is rare, and the possibility
1692  // can often be excluded, if we annotate the ConvI2L node with
1693  // a type assertion that its value is known to be a small positive
1694  // number.  (The prior range check has ensured this.)
1695  // This assertion is used by ConvI2LNode::Ideal.
1696  int index_max = max_jint - 1;  // array size is max_jint, index is one less
1697  if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1698  const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1699  idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
1700#endif
1701  Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1702  return basic_plus_adr(ary, base, scale);
1703}
1704
1705//-------------------------load_array_element-------------------------
1706Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1707  const Type* elemtype = arytype->elem();
1708  BasicType elembt = elemtype->array_element_basic_type();
1709  Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1710  Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
1711  return ld;
1712}
1713
1714//-------------------------set_arguments_for_java_call-------------------------
1715// Arguments (pre-popped from the stack) are taken from the JVMS.
1716void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1717  // Add the call arguments:
1718  uint nargs = call->method()->arg_size();
1719  for (uint i = 0; i < nargs; i++) {
1720    Node* arg = argument(i);
1721    call->init_req(i + TypeFunc::Parms, arg);
1722  }
1723}
1724
1725//---------------------------set_edges_for_java_call---------------------------
1726// Connect a newly created call into the current JVMS.
1727// A return value node (if any) is returned from set_edges_for_java_call.
1728void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1729
1730  // Add the predefined inputs:
1731  call->init_req( TypeFunc::Control, control() );
1732  call->init_req( TypeFunc::I_O    , i_o() );
1733  call->init_req( TypeFunc::Memory , reset_memory() );
1734  call->init_req( TypeFunc::FramePtr, frameptr() );
1735  call->init_req( TypeFunc::ReturnAdr, top() );
1736
1737  add_safepoint_edges(call, must_throw);
1738
1739  Node* xcall = _gvn.transform(call);
1740
1741  if (xcall == top()) {
1742    set_control(top());
1743    return;
1744  }
1745  assert(xcall == call, "call identity is stable");
1746
1747  // Re-use the current map to produce the result.
1748
1749  set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1750  set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1751  set_all_memory_call(xcall, separate_io_proj);
1752
1753  //return xcall;   // no need, caller already has it
1754}
1755
1756Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1757  if (stopped())  return top();  // maybe the call folded up?
1758
1759  // Capture the return value, if any.
1760  Node* ret;
1761  if (call->method() == NULL ||
1762      call->method()->return_type()->basic_type() == T_VOID)
1763        ret = top();
1764  else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1765
1766  // Note:  Since any out-of-line call can produce an exception,
1767  // we always insert an I_O projection from the call into the result.
1768
1769  make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1770
1771  if (separate_io_proj) {
1772    // The caller requested separate projections be used by the fall
1773    // through and exceptional paths, so replace the projections for
1774    // the fall through path.
1775    set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1776    set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1777  }
1778  return ret;
1779}
1780
1781//--------------------set_predefined_input_for_runtime_call--------------------
1782// Reading and setting the memory state is way conservative here.
1783// The real problem is that I am not doing real Type analysis on memory,
1784// so I cannot distinguish card mark stores from other stores.  Across a GC
1785// point the Store Barrier and the card mark memory has to agree.  I cannot
1786// have a card mark store and its barrier split across the GC point from
1787// either above or below.  Here I get that to happen by reading ALL of memory.
1788// A better answer would be to separate out card marks from other memory.
1789// For now, return the input memory state, so that it can be reused
1790// after the call, if this call has restricted memory effects.
1791Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1792  // Set fixed predefined input arguments
1793  Node* memory = reset_memory();
1794  call->init_req( TypeFunc::Control,   control()  );
1795  call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1796  call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1797  call->init_req( TypeFunc::FramePtr,  frameptr() );
1798  call->init_req( TypeFunc::ReturnAdr, top()      );
1799  return memory;
1800}
1801
1802//-------------------set_predefined_output_for_runtime_call--------------------
1803// Set control and memory (not i_o) from the call.
1804// If keep_mem is not NULL, use it for the output state,
1805// except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1806// If hook_mem is NULL, this call produces no memory effects at all.
1807// If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1808// then only that memory slice is taken from the call.
1809// In the last case, we must put an appropriate memory barrier before
1810// the call, so as to create the correct anti-dependencies on loads
1811// preceding the call.
1812void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1813                                                      Node* keep_mem,
1814                                                      const TypePtr* hook_mem) {
1815  // no i/o
1816  set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1817  if (keep_mem) {
1818    // First clone the existing memory state
1819    set_all_memory(keep_mem);
1820    if (hook_mem != NULL) {
1821      // Make memory for the call
1822      Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1823      // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1824      // We also use hook_mem to extract specific effects from arraycopy stubs.
1825      set_memory(mem, hook_mem);
1826    }
1827    // ...else the call has NO memory effects.
1828
1829    // Make sure the call advertises its memory effects precisely.
1830    // This lets us build accurate anti-dependences in gcm.cpp.
1831    assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1832           "call node must be constructed correctly");
1833  } else {
1834    assert(hook_mem == NULL, "");
1835    // This is not a "slow path" call; all memory comes from the call.
1836    set_all_memory_call(call);
1837  }
1838}
1839
1840
1841// Replace the call with the current state of the kit.
1842void GraphKit::replace_call(CallNode* call, Node* result) {
1843  JVMState* ejvms = NULL;
1844  if (has_exceptions()) {
1845    ejvms = transfer_exceptions_into_jvms();
1846  }
1847
1848  SafePointNode* final_state = stop();
1849
1850  // Find all the needed outputs of this call
1851  CallProjections callprojs;
1852  call->extract_projections(&callprojs, true);
1853
1854  Node* init_mem = call->in(TypeFunc::Memory);
1855  Node* final_mem = final_state->in(TypeFunc::Memory);
1856  Node* final_ctl = final_state->in(TypeFunc::Control);
1857  Node* final_io = final_state->in(TypeFunc::I_O);
1858
1859  // Replace all the old call edges with the edges from the inlining result
1860  if (callprojs.fallthrough_catchproj != NULL) {
1861    C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1862  }
1863  if (callprojs.fallthrough_memproj != NULL) {
1864    C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1865  }
1866  if (callprojs.fallthrough_ioproj != NULL) {
1867    C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1868  }
1869
1870  // Replace the result with the new result if it exists and is used
1871  if (callprojs.resproj != NULL && result != NULL) {
1872    C->gvn_replace_by(callprojs.resproj, result);
1873  }
1874
1875  if (ejvms == NULL) {
1876    // No exception edges to simply kill off those paths
1877    if (callprojs.catchall_catchproj != NULL) {
1878      C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1879    }
1880    if (callprojs.catchall_memproj != NULL) {
1881      C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1882    }
1883    if (callprojs.catchall_ioproj != NULL) {
1884      C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1885    }
1886    // Replace the old exception object with top
1887    if (callprojs.exobj != NULL) {
1888      C->gvn_replace_by(callprojs.exobj, C->top());
1889    }
1890  } else {
1891    GraphKit ekit(ejvms);
1892
1893    // Load my combined exception state into the kit, with all phis transformed:
1894    SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1895
1896    Node* ex_oop = ekit.use_exception_state(ex_map);
1897    if (callprojs.catchall_catchproj != NULL) {
1898      C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1899    }
1900    if (callprojs.catchall_memproj != NULL) {
1901      C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1902    }
1903    if (callprojs.catchall_ioproj != NULL) {
1904      C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1905    }
1906
1907    // Replace the old exception object with the newly created one
1908    if (callprojs.exobj != NULL) {
1909      C->gvn_replace_by(callprojs.exobj, ex_oop);
1910    }
1911  }
1912
1913  // Disconnect the call from the graph
1914  call->disconnect_inputs(NULL, C);
1915  C->gvn_replace_by(call, C->top());
1916
1917  // Clean up any MergeMems that feed other MergeMems since the
1918  // optimizer doesn't like that.
1919  if (final_mem->is_MergeMem()) {
1920    Node_List wl;
1921    for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1922      Node* m = i.get();
1923      if (m->is_MergeMem() && !wl.contains(m)) {
1924        wl.push(m);
1925      }
1926    }
1927    while (wl.size()  > 0) {
1928      _gvn.transform(wl.pop());
1929    }
1930  }
1931}
1932
1933
1934//------------------------------increment_counter------------------------------
1935// for statistics: increment a VM counter by 1
1936
1937void GraphKit::increment_counter(address counter_addr) {
1938  Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1939  increment_counter(adr1);
1940}
1941
1942void GraphKit::increment_counter(Node* counter_addr) {
1943  int adr_type = Compile::AliasIdxRaw;
1944  Node* ctrl = control();
1945  Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type);
1946  Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1947  store_to_memory( ctrl, counter_addr, incr, T_INT, adr_type );
1948}
1949
1950
1951//------------------------------uncommon_trap----------------------------------
1952// Bail out to the interpreter in mid-method.  Implemented by calling the
1953// uncommon_trap blob.  This helper function inserts a runtime call with the
1954// right debug info.
1955void GraphKit::uncommon_trap(int trap_request,
1956                             ciKlass* klass, const char* comment,
1957                             bool must_throw,
1958                             bool keep_exact_action) {
1959  if (failing())  stop();
1960  if (stopped())  return; // trap reachable?
1961
1962  // Note:  If ProfileTraps is true, and if a deopt. actually
1963  // occurs here, the runtime will make sure an MDO exists.  There is
1964  // no need to call method()->ensure_method_data() at this point.
1965
1966  // Set the stack pointer to the right value for reexecution:
1967  set_sp(reexecute_sp());
1968
1969#ifdef ASSERT
1970  if (!must_throw) {
1971    // Make sure the stack has at least enough depth to execute
1972    // the current bytecode.
1973    int inputs, ignored_depth;
1974    if (compute_stack_effects(inputs, ignored_depth)) {
1975      assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1976             Bytecodes::name(java_bc()), sp(), inputs));
1977    }
1978  }
1979#endif
1980
1981  Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1982  Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1983
1984  switch (action) {
1985  case Deoptimization::Action_maybe_recompile:
1986  case Deoptimization::Action_reinterpret:
1987    // Temporary fix for 6529811 to allow virtual calls to be sure they
1988    // get the chance to go from mono->bi->mega
1989    if (!keep_exact_action &&
1990        Deoptimization::trap_request_index(trap_request) < 0 &&
1991        too_many_recompiles(reason)) {
1992      // This BCI is causing too many recompilations.
1993      action = Deoptimization::Action_none;
1994      trap_request = Deoptimization::make_trap_request(reason, action);
1995    } else {
1996      C->set_trap_can_recompile(true);
1997    }
1998    break;
1999  case Deoptimization::Action_make_not_entrant:
2000    C->set_trap_can_recompile(true);
2001    break;
2002#ifdef ASSERT
2003  case Deoptimization::Action_none:
2004  case Deoptimization::Action_make_not_compilable:
2005    break;
2006  default:
2007    fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
2008    break;
2009#endif
2010  }
2011
2012  if (TraceOptoParse) {
2013    char buf[100];
2014    tty->print_cr("Uncommon trap %s at bci:%d",
2015                  Deoptimization::format_trap_request(buf, sizeof(buf),
2016                                                      trap_request), bci());
2017  }
2018
2019  CompileLog* log = C->log();
2020  if (log != NULL) {
2021    int kid = (klass == NULL)? -1: log->identify(klass);
2022    log->begin_elem("uncommon_trap bci='%d'", bci());
2023    char buf[100];
2024    log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2025                                                          trap_request));
2026    if (kid >= 0)         log->print(" klass='%d'", kid);
2027    if (comment != NULL)  log->print(" comment='%s'", comment);
2028    log->end_elem();
2029  }
2030
2031  // Make sure any guarding test views this path as very unlikely
2032  Node *i0 = control()->in(0);
2033  if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2034    IfNode *iff = i0->as_If();
2035    float f = iff->_prob;   // Get prob
2036    if (control()->Opcode() == Op_IfTrue) {
2037      if (f > PROB_UNLIKELY_MAG(4))
2038        iff->_prob = PROB_MIN;
2039    } else {
2040      if (f < PROB_LIKELY_MAG(4))
2041        iff->_prob = PROB_MAX;
2042    }
2043  }
2044
2045  // Clear out dead values from the debug info.
2046  kill_dead_locals();
2047
2048  // Now insert the uncommon trap subroutine call
2049  address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2050  const TypePtr* no_memory_effects = NULL;
2051  // Pass the index of the class to be loaded
2052  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2053                                 (must_throw ? RC_MUST_THROW : 0),
2054                                 OptoRuntime::uncommon_trap_Type(),
2055                                 call_addr, "uncommon_trap", no_memory_effects,
2056                                 intcon(trap_request));
2057  assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2058         "must extract request correctly from the graph");
2059  assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2060
2061  call->set_req(TypeFunc::ReturnAdr, returnadr());
2062  // The debug info is the only real input to this call.
2063
2064  // Halt-and-catch fire here.  The above call should never return!
2065  HaltNode* halt = new(C) HaltNode(control(), frameptr());
2066  _gvn.set_type_bottom(halt);
2067  root()->add_req(halt);
2068
2069  stop_and_kill_map();
2070}
2071
2072
2073//--------------------------just_allocated_object------------------------------
2074// Report the object that was just allocated.
2075// It must be the case that there are no intervening safepoints.
2076// We use this to determine if an object is so "fresh" that
2077// it does not require card marks.
2078Node* GraphKit::just_allocated_object(Node* current_control) {
2079  if (C->recent_alloc_ctl() == current_control)
2080    return C->recent_alloc_obj();
2081  return NULL;
2082}
2083
2084
2085void GraphKit::round_double_arguments(ciMethod* dest_method) {
2086  // (Note:  TypeFunc::make has a cache that makes this fast.)
2087  const TypeFunc* tf    = TypeFunc::make(dest_method);
2088  int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2089  for (int j = 0; j < nargs; j++) {
2090    const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2091    if( targ->basic_type() == T_DOUBLE ) {
2092      // If any parameters are doubles, they must be rounded before
2093      // the call, dstore_rounding does gvn.transform
2094      Node *arg = argument(j);
2095      arg = dstore_rounding(arg);
2096      set_argument(j, arg);
2097    }
2098  }
2099}
2100
2101/**
2102 * Record profiling data exact_kls for Node n with the type system so
2103 * that it can propagate it (speculation)
2104 *
2105 * @param n          node that the type applies to
2106 * @param exact_kls  type from profiling
2107 *
2108 * @return           node with improved type
2109 */
2110Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
2111  const TypeOopPtr* current_type = _gvn.type(n)->isa_oopptr();
2112  assert(UseTypeSpeculation, "type speculation must be on");
2113  if (exact_kls != NULL &&
2114      // nothing to improve if type is already exact
2115      (current_type == NULL ||
2116       (!current_type->klass_is_exact() &&
2117        (current_type->speculative() == NULL ||
2118         !current_type->speculative()->klass_is_exact())))) {
2119    const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2120    const TypeOopPtr* xtype = tklass->as_instance_type();
2121    assert(xtype->klass_is_exact(), "Should be exact");
2122
2123    // Build a type with a speculative type (what we think we know
2124    // about the type but will need a guard when we use it)
2125    const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, xtype);
2126    // We're changing the type, we need a new cast node to carry the
2127    // new type. The new type depends on the control: what profiling
2128    // tells us is only valid from here as far as we can tell.
2129    Node* cast = new(C) CastPPNode(n, spec_type);
2130    cast->init_req(0, control());
2131    cast = _gvn.transform(cast);
2132    replace_in_map(n, cast);
2133    n = cast;
2134  }
2135  return n;
2136}
2137
2138/**
2139 * Record profiling data from receiver profiling at an invoke with the
2140 * type system so that it can propagate it (speculation)
2141 *
2142 * @param n  receiver node
2143 *
2144 * @return           node with improved type
2145 */
2146Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2147  if (!UseTypeSpeculation) {
2148    return n;
2149  }
2150  ciKlass* exact_kls = profile_has_unique_klass();
2151  return record_profile_for_speculation(n, exact_kls);
2152}
2153
2154/**
2155 * Record profiling data from argument profiling at an invoke with the
2156 * type system so that it can propagate it (speculation)
2157 *
2158 * @param dest_method  target method for the call
2159 * @param bc           what invoke bytecode is this?
2160 */
2161void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2162  if (!UseTypeSpeculation) {
2163    return;
2164  }
2165  const TypeFunc* tf    = TypeFunc::make(dest_method);
2166  int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2167  int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2168  for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2169    const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2170    if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2171      ciKlass* better_type = method()->argument_profiled_type(bci(), i);
2172      if (better_type != NULL) {
2173        record_profile_for_speculation(argument(j), better_type);
2174      }
2175      i++;
2176    }
2177  }
2178}
2179
2180/**
2181 * Record profiling data from parameter profiling at an invoke with
2182 * the type system so that it can propagate it (speculation)
2183 */
2184void GraphKit::record_profiled_parameters_for_speculation() {
2185  if (!UseTypeSpeculation) {
2186    return;
2187  }
2188  for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2189    if (_gvn.type(local(i))->isa_oopptr()) {
2190      ciKlass* better_type = method()->parameter_profiled_type(j);
2191      if (better_type != NULL) {
2192        record_profile_for_speculation(local(i), better_type);
2193      }
2194      j++;
2195    }
2196  }
2197}
2198
2199void GraphKit::round_double_result(ciMethod* dest_method) {
2200  // A non-strict method may return a double value which has an extended
2201  // exponent, but this must not be visible in a caller which is 'strict'
2202  // If a strict caller invokes a non-strict callee, round a double result
2203
2204  BasicType result_type = dest_method->return_type()->basic_type();
2205  assert( method() != NULL, "must have caller context");
2206  if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2207    // Destination method's return value is on top of stack
2208    // dstore_rounding() does gvn.transform
2209    Node *result = pop_pair();
2210    result = dstore_rounding(result);
2211    push_pair(result);
2212  }
2213}
2214
2215// rounding for strict float precision conformance
2216Node* GraphKit::precision_rounding(Node* n) {
2217  return UseStrictFP && _method->flags().is_strict()
2218    && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2219    ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2220    : n;
2221}
2222
2223// rounding for strict double precision conformance
2224Node* GraphKit::dprecision_rounding(Node *n) {
2225  return UseStrictFP && _method->flags().is_strict()
2226    && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2227    ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2228    : n;
2229}
2230
2231// rounding for non-strict double stores
2232Node* GraphKit::dstore_rounding(Node* n) {
2233  return Matcher::strict_fp_requires_explicit_rounding
2234    && UseSSE <= 1
2235    ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2236    : n;
2237}
2238
2239//=============================================================================
2240// Generate a fast path/slow path idiom.  Graph looks like:
2241// [foo] indicates that 'foo' is a parameter
2242//
2243//              [in]     NULL
2244//                 \    /
2245//                  CmpP
2246//                  Bool ne
2247//                   If
2248//                  /  \
2249//              True    False-<2>
2250//              / |
2251//             /  cast_not_null
2252//           Load  |    |   ^
2253//        [fast_test]   |   |
2254// gvn to   opt_test    |   |
2255//          /    \      |  <1>
2256//      True     False  |
2257//        |         \\  |
2258//   [slow_call]     \[fast_result]
2259//    Ctl   Val       \      \
2260//     |               \      \
2261//    Catch       <1>   \      \
2262//   /    \        ^     \      \
2263//  Ex    No_Ex    |      \      \
2264//  |       \   \  |       \ <2>  \
2265//  ...      \  [slow_res] |  |    \   [null_result]
2266//            \         \--+--+---  |  |
2267//             \           | /    \ | /
2268//              --------Region     Phi
2269//
2270//=============================================================================
2271// Code is structured as a series of driver functions all called 'do_XXX' that
2272// call a set of helper functions.  Helper functions first, then drivers.
2273
2274//------------------------------null_check_oop---------------------------------
2275// Null check oop.  Set null-path control into Region in slot 3.
2276// Make a cast-not-nullness use the other not-null control.  Return cast.
2277Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2278                               bool never_see_null, bool safe_for_replace) {
2279  // Initial NULL check taken path
2280  (*null_control) = top();
2281  Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2282
2283  // Generate uncommon_trap:
2284  if (never_see_null && (*null_control) != top()) {
2285    // If we see an unexpected null at a check-cast we record it and force a
2286    // recompile; the offending check-cast will be compiled to handle NULLs.
2287    // If we see more than one offending BCI, then all checkcasts in the
2288    // method will be compiled to handle NULLs.
2289    PreserveJVMState pjvms(this);
2290    set_control(*null_control);
2291    replace_in_map(value, null());
2292    uncommon_trap(Deoptimization::Reason_null_check,
2293                  Deoptimization::Action_make_not_entrant);
2294    (*null_control) = top();    // NULL path is dead
2295  }
2296  if ((*null_control) == top() && safe_for_replace) {
2297    replace_in_map(value, cast);
2298  }
2299
2300  // Cast away null-ness on the result
2301  return cast;
2302}
2303
2304//------------------------------opt_iff----------------------------------------
2305// Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2306// Return slow-path control.
2307Node* GraphKit::opt_iff(Node* region, Node* iff) {
2308  IfNode *opt_iff = _gvn.transform(iff)->as_If();
2309
2310  // Fast path taken; set region slot 2
2311  Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2312  region->init_req(2,fast_taken); // Capture fast-control
2313
2314  // Fast path not-taken, i.e. slow path
2315  Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2316  return slow_taken;
2317}
2318
2319//-----------------------------make_runtime_call-------------------------------
2320Node* GraphKit::make_runtime_call(int flags,
2321                                  const TypeFunc* call_type, address call_addr,
2322                                  const char* call_name,
2323                                  const TypePtr* adr_type,
2324                                  // The following parms are all optional.
2325                                  // The first NULL ends the list.
2326                                  Node* parm0, Node* parm1,
2327                                  Node* parm2, Node* parm3,
2328                                  Node* parm4, Node* parm5,
2329                                  Node* parm6, Node* parm7) {
2330  // Slow-path call
2331  bool is_leaf = !(flags & RC_NO_LEAF);
2332  bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2333  if (call_name == NULL) {
2334    assert(!is_leaf, "must supply name for leaf");
2335    call_name = OptoRuntime::stub_name(call_addr);
2336  }
2337  CallNode* call;
2338  if (!is_leaf) {
2339    call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2340                                           bci(), adr_type);
2341  } else if (flags & RC_NO_FP) {
2342    call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2343  } else {
2344    call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2345  }
2346
2347  // The following is similar to set_edges_for_java_call,
2348  // except that the memory effects of the call are restricted to AliasIdxRaw.
2349
2350  // Slow path call has no side-effects, uses few values
2351  bool wide_in  = !(flags & RC_NARROW_MEM);
2352  bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2353
2354  Node* prev_mem = NULL;
2355  if (wide_in) {
2356    prev_mem = set_predefined_input_for_runtime_call(call);
2357  } else {
2358    assert(!wide_out, "narrow in => narrow out");
2359    Node* narrow_mem = memory(adr_type);
2360    prev_mem = reset_memory();
2361    map()->set_memory(narrow_mem);
2362    set_predefined_input_for_runtime_call(call);
2363  }
2364
2365  // Hook each parm in order.  Stop looking at the first NULL.
2366  if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2367  if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2368  if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2369  if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2370  if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2371  if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2372  if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2373  if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2374    /* close each nested if ===> */  } } } } } } } }
2375  assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2376
2377  if (!is_leaf) {
2378    // Non-leaves can block and take safepoints:
2379    add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2380  }
2381  // Non-leaves can throw exceptions:
2382  if (has_io) {
2383    call->set_req(TypeFunc::I_O, i_o());
2384  }
2385
2386  if (flags & RC_UNCOMMON) {
2387    // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2388    // (An "if" probability corresponds roughly to an unconditional count.
2389    // Sort of.)
2390    call->set_cnt(PROB_UNLIKELY_MAG(4));
2391  }
2392
2393  Node* c = _gvn.transform(call);
2394  assert(c == call, "cannot disappear");
2395
2396  if (wide_out) {
2397    // Slow path call has full side-effects.
2398    set_predefined_output_for_runtime_call(call);
2399  } else {
2400    // Slow path call has few side-effects, and/or sets few values.
2401    set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2402  }
2403
2404  if (has_io) {
2405    set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2406  }
2407  return call;
2408
2409}
2410
2411//------------------------------merge_memory-----------------------------------
2412// Merge memory from one path into the current memory state.
2413void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2414  for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2415    Node* old_slice = mms.force_memory();
2416    Node* new_slice = mms.memory2();
2417    if (old_slice != new_slice) {
2418      PhiNode* phi;
2419      if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2420        phi = new_slice->as_Phi();
2421        #ifdef ASSERT
2422        if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2423          old_slice = old_slice->in(new_path);
2424        // Caller is responsible for ensuring that any pre-existing
2425        // phis are already aware of old memory.
2426        int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2427        assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2428        #endif
2429        mms.set_memory(phi);
2430      } else {
2431        phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2432        _gvn.set_type(phi, Type::MEMORY);
2433        phi->set_req(new_path, new_slice);
2434        mms.set_memory(_gvn.transform(phi));  // assume it is complete
2435      }
2436    }
2437  }
2438}
2439
2440//------------------------------make_slow_call_ex------------------------------
2441// Make the exception handler hookups for the slow call
2442void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2443  if (stopped())  return;
2444
2445  // Make a catch node with just two handlers:  fall-through and catch-all
2446  Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2447  Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2448  Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2449  Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2450
2451  { PreserveJVMState pjvms(this);
2452    set_control(excp);
2453    set_i_o(i_o);
2454
2455    if (excp != top()) {
2456      // Create an exception state also.
2457      // Use an exact type if the caller has specified a specific exception.
2458      const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2459      Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2460      add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2461    }
2462  }
2463
2464  // Get the no-exception control from the CatchNode.
2465  set_control(norm);
2466}
2467
2468
2469//-------------------------------gen_subtype_check-----------------------------
2470// Generate a subtyping check.  Takes as input the subtype and supertype.
2471// Returns 2 values: sets the default control() to the true path and returns
2472// the false path.  Only reads invariant memory; sets no (visible) memory.
2473// The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2474// but that's not exposed to the optimizer.  This call also doesn't take in an
2475// Object; if you wish to check an Object you need to load the Object's class
2476// prior to coming here.
2477Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2478  // Fast check for identical types, perhaps identical constants.
2479  // The types can even be identical non-constants, in cases
2480  // involving Array.newInstance, Object.clone, etc.
2481  if (subklass == superklass)
2482    return top();             // false path is dead; no test needed.
2483
2484  if (_gvn.type(superklass)->singleton()) {
2485    ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2486    ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2487
2488    // In the common case of an exact superklass, try to fold up the
2489    // test before generating code.  You may ask, why not just generate
2490    // the code and then let it fold up?  The answer is that the generated
2491    // code will necessarily include null checks, which do not always
2492    // completely fold away.  If they are also needless, then they turn
2493    // into a performance loss.  Example:
2494    //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2495    // Here, the type of 'fa' is often exact, so the store check
2496    // of fa[1]=x will fold up, without testing the nullness of x.
2497    switch (static_subtype_check(superk, subk)) {
2498    case SSC_always_false:
2499      {
2500        Node* always_fail = control();
2501        set_control(top());
2502        return always_fail;
2503      }
2504    case SSC_always_true:
2505      return top();
2506    case SSC_easy_test:
2507      {
2508        // Just do a direct pointer compare and be done.
2509        Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2510        Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2511        IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2512        set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2513        return       _gvn.transform( new(C) IfFalseNode(iff) );
2514      }
2515    case SSC_full_test:
2516      break;
2517    default:
2518      ShouldNotReachHere();
2519    }
2520  }
2521
2522  // %%% Possible further optimization:  Even if the superklass is not exact,
2523  // if the subklass is the unique subtype of the superklass, the check
2524  // will always succeed.  We could leave a dependency behind to ensure this.
2525
2526  // First load the super-klass's check-offset
2527  Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2528  Node *chk_off = _gvn.transform( new (C) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
2529  int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2530  bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2531
2532  // Load from the sub-klass's super-class display list, or a 1-word cache of
2533  // the secondary superclass list, or a failing value with a sentinel offset
2534  // if the super-klass is an interface or exceptionally deep in the Java
2535  // hierarchy and we have to scan the secondary superclass list the hard way.
2536  // Worst-case type is a little odd: NULL is allowed as a result (usually
2537  // klass loads can never produce a NULL).
2538  Node *chk_off_X = ConvI2X(chk_off);
2539  Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2540  // For some types like interfaces the following loadKlass is from a 1-word
2541  // cache which is mutable so can't use immutable memory.  Other
2542  // types load from the super-class display table which is immutable.
2543  Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2544  Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2545
2546  // Compile speed common case: ARE a subtype and we canNOT fail
2547  if( superklass == nkls )
2548    return top();             // false path is dead; no test needed.
2549
2550  // See if we get an immediate positive hit.  Happens roughly 83% of the
2551  // time.  Test to see if the value loaded just previously from the subklass
2552  // is exactly the superklass.
2553  Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2554  Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2555  IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2556  Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2557  set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2558
2559  // Compile speed common case: Check for being deterministic right now.  If
2560  // chk_off is a constant and not equal to cacheoff then we are NOT a
2561  // subklass.  In this case we need exactly the 1 test above and we can
2562  // return those results immediately.
2563  if (!might_be_cache) {
2564    Node* not_subtype_ctrl = control();
2565    set_control(iftrue1); // We need exactly the 1 test above
2566    return not_subtype_ctrl;
2567  }
2568
2569  // Gather the various success & failures here
2570  RegionNode *r_ok_subtype = new (C) RegionNode(4);
2571  record_for_igvn(r_ok_subtype);
2572  RegionNode *r_not_subtype = new (C) RegionNode(3);
2573  record_for_igvn(r_not_subtype);
2574
2575  r_ok_subtype->init_req(1, iftrue1);
2576
2577  // Check for immediate negative hit.  Happens roughly 11% of the time (which
2578  // is roughly 63% of the remaining cases).  Test to see if the loaded
2579  // check-offset points into the subklass display list or the 1-element
2580  // cache.  If it points to the display (and NOT the cache) and the display
2581  // missed then it's not a subtype.
2582  Node *cacheoff = _gvn.intcon(cacheoff_con);
2583  Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2584  Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2585  IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2586  r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2587  set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2588
2589  // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2590  // No performance impact (too rare) but allows sharing of secondary arrays
2591  // which has some footprint reduction.
2592  Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2593  Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2594  IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2595  r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2596  set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2597
2598  // -- Roads not taken here: --
2599  // We could also have chosen to perform the self-check at the beginning
2600  // of this code sequence, as the assembler does.  This would not pay off
2601  // the same way, since the optimizer, unlike the assembler, can perform
2602  // static type analysis to fold away many successful self-checks.
2603  // Non-foldable self checks work better here in second position, because
2604  // the initial primary superclass check subsumes a self-check for most
2605  // types.  An exception would be a secondary type like array-of-interface,
2606  // which does not appear in its own primary supertype display.
2607  // Finally, we could have chosen to move the self-check into the
2608  // PartialSubtypeCheckNode, and from there out-of-line in a platform
2609  // dependent manner.  But it is worthwhile to have the check here,
2610  // where it can be perhaps be optimized.  The cost in code space is
2611  // small (register compare, branch).
2612
2613  // Now do a linear scan of the secondary super-klass array.  Again, no real
2614  // performance impact (too rare) but it's gotta be done.
2615  // Since the code is rarely used, there is no penalty for moving it
2616  // out of line, and it can only improve I-cache density.
2617  // The decision to inline or out-of-line this final check is platform
2618  // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2619  Node* psc = _gvn.transform(
2620    new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2621
2622  Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2623  Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2624  IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2625  r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2626  r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2627
2628  // Return false path; set default control to true path.
2629  set_control( _gvn.transform(r_ok_subtype) );
2630  return _gvn.transform(r_not_subtype);
2631}
2632
2633//----------------------------static_subtype_check-----------------------------
2634// Shortcut important common cases when superklass is exact:
2635// (0) superklass is java.lang.Object (can occur in reflective code)
2636// (1) subklass is already limited to a subtype of superklass => always ok
2637// (2) subklass does not overlap with superklass => always fail
2638// (3) superklass has NO subtypes and we can check with a simple compare.
2639int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2640  if (StressReflectiveCode) {
2641    return SSC_full_test;       // Let caller generate the general case.
2642  }
2643
2644  if (superk == env()->Object_klass()) {
2645    return SSC_always_true;     // (0) this test cannot fail
2646  }
2647
2648  ciType* superelem = superk;
2649  if (superelem->is_array_klass())
2650    superelem = superelem->as_array_klass()->base_element_type();
2651
2652  if (!subk->is_interface()) {  // cannot trust static interface types yet
2653    if (subk->is_subtype_of(superk)) {
2654      return SSC_always_true;   // (1) false path dead; no dynamic test needed
2655    }
2656    if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2657        !superk->is_subtype_of(subk)) {
2658      return SSC_always_false;
2659    }
2660  }
2661
2662  // If casting to an instance klass, it must have no subtypes
2663  if (superk->is_interface()) {
2664    // Cannot trust interfaces yet.
2665    // %%% S.B. superk->nof_implementors() == 1
2666  } else if (superelem->is_instance_klass()) {
2667    ciInstanceKlass* ik = superelem->as_instance_klass();
2668    if (!ik->has_subklass() && !ik->is_interface()) {
2669      if (!ik->is_final()) {
2670        // Add a dependency if there is a chance of a later subclass.
2671        C->dependencies()->assert_leaf_type(ik);
2672      }
2673      return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2674    }
2675  } else {
2676    // A primitive array type has no subtypes.
2677    return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2678  }
2679
2680  return SSC_full_test;
2681}
2682
2683// Profile-driven exact type check:
2684Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2685                                    float prob,
2686                                    Node* *casted_receiver) {
2687  const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2688  Node* recv_klass = load_object_klass(receiver);
2689  Node* want_klass = makecon(tklass);
2690  Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2691  Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2692  IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2693  set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2694  Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2695
2696  const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2697  assert(recv_xtype->klass_is_exact(), "");
2698
2699  // Subsume downstream occurrences of receiver with a cast to
2700  // recv_xtype, since now we know what the type will be.
2701  Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2702  (*casted_receiver) = _gvn.transform(cast);
2703  // (User must make the replace_in_map call.)
2704
2705  return fail;
2706}
2707
2708
2709//------------------------------seems_never_null-------------------------------
2710// Use null_seen information if it is available from the profile.
2711// If we see an unexpected null at a type check we record it and force a
2712// recompile; the offending check will be recompiled to handle NULLs.
2713// If we see several offending BCIs, then all checks in the
2714// method will be recompiled.
2715bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
2716  if (UncommonNullCast               // Cutout for this technique
2717      && obj != null()               // And not the -Xcomp stupid case?
2718      && !too_many_traps(Deoptimization::Reason_null_check)
2719      ) {
2720    if (data == NULL)
2721      // Edge case:  no mature data.  Be optimistic here.
2722      return true;
2723    // If the profile has not seen a null, assume it won't happen.
2724    assert(java_bc() == Bytecodes::_checkcast ||
2725           java_bc() == Bytecodes::_instanceof ||
2726           java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2727    return !data->as_BitData()->null_seen();
2728  }
2729  return false;
2730}
2731
2732//------------------------maybe_cast_profiled_receiver-------------------------
2733// If the profile has seen exactly one type, narrow to exactly that type.
2734// Subsequent type checks will always fold up.
2735Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2736                                             ciKlass* require_klass,
2737                                            ciKlass* spec_klass,
2738                                             bool safe_for_replace) {
2739  if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2740
2741  // Make sure we haven't already deoptimized from this tactic.
2742  if (too_many_traps(Deoptimization::Reason_class_check))
2743    return NULL;
2744
2745  // (No, this isn't a call, but it's enough like a virtual call
2746  // to use the same ciMethod accessor to get the profile info...)
2747  // If we have a speculative type use it instead of profiling (which
2748  // may not help us)
2749  ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2750  if (exact_kls != NULL) {// no cast failures here
2751    if (require_klass == NULL ||
2752        static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2753      // If we narrow the type to match what the type profile sees or
2754      // the speculative type, we can then remove the rest of the
2755      // cast.
2756      // This is a win, even if the exact_kls is very specific,
2757      // because downstream operations, such as method calls,
2758      // will often benefit from the sharper type.
2759      Node* exact_obj = not_null_obj; // will get updated in place...
2760      Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2761                                            &exact_obj);
2762      { PreserveJVMState pjvms(this);
2763        set_control(slow_ctl);
2764        uncommon_trap(Deoptimization::Reason_class_check,
2765                      Deoptimization::Action_maybe_recompile);
2766      }
2767      if (safe_for_replace) {
2768        replace_in_map(not_null_obj, exact_obj);
2769      }
2770      return exact_obj;
2771    }
2772    // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2773  }
2774
2775  return NULL;
2776}
2777
2778/**
2779 * Cast obj to type and emit guard unless we had too many traps here
2780 * already
2781 *
2782 * @param obj       node being casted
2783 * @param type      type to cast the node to
2784 * @param not_null  true if we know node cannot be null
2785 */
2786Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2787                                        ciKlass* type,
2788                                        bool not_null) {
2789  // type == NULL if profiling tells us this object is always null
2790  if (type != NULL) {
2791    if (!too_many_traps(Deoptimization::Reason_null_check) &&
2792        !too_many_traps(Deoptimization::Reason_class_check)) {
2793      Node* not_null_obj = NULL;
2794      // not_null is true if we know the object is not null and
2795      // there's no need for a null check
2796      if (!not_null) {
2797        Node* null_ctl = top();
2798        not_null_obj = null_check_oop(obj, &null_ctl, true, true);
2799        assert(null_ctl->is_top(), "no null control here");
2800      } else {
2801        not_null_obj = obj;
2802      }
2803
2804      Node* exact_obj = not_null_obj;
2805      ciKlass* exact_kls = type;
2806      Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2807                                            &exact_obj);
2808      {
2809        PreserveJVMState pjvms(this);
2810        set_control(slow_ctl);
2811        uncommon_trap(Deoptimization::Reason_class_check,
2812                      Deoptimization::Action_maybe_recompile);
2813      }
2814      replace_in_map(not_null_obj, exact_obj);
2815      obj = exact_obj;
2816    }
2817  } else {
2818    if (!too_many_traps(Deoptimization::Reason_null_assert)) {
2819      Node* exact_obj = null_assert(obj);
2820      replace_in_map(obj, exact_obj);
2821      obj = exact_obj;
2822    }
2823  }
2824  return obj;
2825}
2826
2827//-------------------------------gen_instanceof--------------------------------
2828// Generate an instance-of idiom.  Used by both the instance-of bytecode
2829// and the reflective instance-of call.
2830Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2831  kill_dead_locals();           // Benefit all the uncommon traps
2832  assert( !stopped(), "dead parse path should be checked in callers" );
2833  assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2834         "must check for not-null not-dead klass in callers");
2835
2836  // Make the merge point
2837  enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2838  RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2839  Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2840  C->set_has_split_ifs(true); // Has chance for split-if optimization
2841
2842  ciProfileData* data = NULL;
2843  if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2844    data = method()->method_data()->bci_to_data(bci());
2845  }
2846  bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2847                         && seems_never_null(obj, data));
2848
2849  // Null check; get casted pointer; set region slot 3
2850  Node* null_ctl = top();
2851  Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2852
2853  // If not_null_obj is dead, only null-path is taken
2854  if (stopped()) {              // Doing instance-of on a NULL?
2855    set_control(null_ctl);
2856    return intcon(0);
2857  }
2858  region->init_req(_null_path, null_ctl);
2859  phi   ->init_req(_null_path, intcon(0)); // Set null path value
2860  if (null_ctl == top()) {
2861    // Do this eagerly, so that pattern matches like is_diamond_phi
2862    // will work even during parsing.
2863    assert(_null_path == PATH_LIMIT-1, "delete last");
2864    region->del_req(_null_path);
2865    phi   ->del_req(_null_path);
2866  }
2867
2868  // Do we know the type check always succeed?
2869  bool known_statically = false;
2870  if (_gvn.type(superklass)->singleton()) {
2871    ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2872    ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2873    if (subk != NULL && subk->is_loaded()) {
2874      int static_res = static_subtype_check(superk, subk);
2875      known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
2876    }
2877  }
2878
2879  if (known_statically && UseTypeSpeculation) {
2880    // If we know the type check always succeed then we don't use the
2881    // profiling data at this bytecode. Don't lose it, feed it to the
2882    // type system as a speculative type.
2883    not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2884  } else {
2885    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2886    // We may not have profiling here or it may not help us. If we
2887    // have a speculative type use it to perform an exact cast.
2888    ciKlass* spec_obj_type = obj_type->speculative_type();
2889    if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2890      Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2891      if (stopped()) {            // Profile disagrees with this path.
2892        set_control(null_ctl);    // Null is the only remaining possibility.
2893        return intcon(0);
2894      }
2895      if (cast_obj != NULL) {
2896        not_null_obj = cast_obj;
2897      }
2898    }
2899  }
2900
2901  // Load the object's klass
2902  Node* obj_klass = load_object_klass(not_null_obj);
2903
2904  // Generate the subtype check
2905  Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2906
2907  // Plug in the success path to the general merge in slot 1.
2908  region->init_req(_obj_path, control());
2909  phi   ->init_req(_obj_path, intcon(1));
2910
2911  // Plug in the failing path to the general merge in slot 2.
2912  region->init_req(_fail_path, not_subtype_ctrl);
2913  phi   ->init_req(_fail_path, intcon(0));
2914
2915  // Return final merged results
2916  set_control( _gvn.transform(region) );
2917  record_for_igvn(region);
2918  return _gvn.transform(phi);
2919}
2920
2921//-------------------------------gen_checkcast---------------------------------
2922// Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2923// array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2924// uncommon-trap paths work.  Adjust stack after this call.
2925// If failure_control is supplied and not null, it is filled in with
2926// the control edge for the cast failure.  Otherwise, an appropriate
2927// uncommon trap or exception is thrown.
2928Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2929                              Node* *failure_control) {
2930  kill_dead_locals();           // Benefit all the uncommon traps
2931  const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2932  const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2933
2934  // Fast cutout:  Check the case that the cast is vacuously true.
2935  // This detects the common cases where the test will short-circuit
2936  // away completely.  We do this before we perform the null check,
2937  // because if the test is going to turn into zero code, we don't
2938  // want a residual null check left around.  (Causes a slowdown,
2939  // for example, in some objArray manipulations, such as a[i]=a[j].)
2940  if (tk->singleton()) {
2941    const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2942    if (objtp != NULL && objtp->klass() != NULL) {
2943      switch (static_subtype_check(tk->klass(), objtp->klass())) {
2944      case SSC_always_true:
2945        // If we know the type check always succeed then we don't use
2946        // the profiling data at this bytecode. Don't lose it, feed it
2947        // to the type system as a speculative type.
2948        return record_profiled_receiver_for_speculation(obj);
2949      case SSC_always_false:
2950        // It needs a null check because a null will *pass* the cast check.
2951        // A non-null value will always produce an exception.
2952        return null_assert(obj);
2953      }
2954    }
2955  }
2956
2957  ciProfileData* data = NULL;
2958  bool safe_for_replace = false;
2959  if (failure_control == NULL) {        // use MDO in regular case only
2960    assert(java_bc() == Bytecodes::_aastore ||
2961           java_bc() == Bytecodes::_checkcast,
2962           "interpreter profiles type checks only for these BCs");
2963    data = method()->method_data()->bci_to_data(bci());
2964    safe_for_replace = true;
2965  }
2966
2967  // Make the merge point
2968  enum { _obj_path = 1, _null_path, PATH_LIMIT };
2969  RegionNode* region = new (C) RegionNode(PATH_LIMIT);
2970  Node*       phi    = new (C) PhiNode(region, toop);
2971  C->set_has_split_ifs(true); // Has chance for split-if optimization
2972
2973  // Use null-cast information if it is available
2974  bool never_see_null = ((failure_control == NULL)  // regular case only
2975                         && seems_never_null(obj, data));
2976
2977  // Null check; get casted pointer; set region slot 3
2978  Node* null_ctl = top();
2979  Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2980
2981  // If not_null_obj is dead, only null-path is taken
2982  if (stopped()) {              // Doing instance-of on a NULL?
2983    set_control(null_ctl);
2984    return null();
2985  }
2986  region->init_req(_null_path, null_ctl);
2987  phi   ->init_req(_null_path, null());  // Set null path value
2988  if (null_ctl == top()) {
2989    // Do this eagerly, so that pattern matches like is_diamond_phi
2990    // will work even during parsing.
2991    assert(_null_path == PATH_LIMIT-1, "delete last");
2992    region->del_req(_null_path);
2993    phi   ->del_req(_null_path);
2994  }
2995
2996  Node* cast_obj = NULL;
2997  const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2998  // We may not have profiling here or it may not help us. If we have
2999  // a speculative type use it to perform an exact cast.
3000  ciKlass* spec_obj_type = obj_type->speculative_type();
3001  if (spec_obj_type != NULL ||
3002      (data != NULL &&
3003       // Counter has never been decremented (due to cast failure).
3004       // ...This is a reasonable thing to expect.  It is true of
3005       // all casts inserted by javac to implement generic types.
3006       data->as_CounterData()->count() >= 0)) {
3007    cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3008    if (cast_obj != NULL) {
3009      if (failure_control != NULL) // failure is now impossible
3010        (*failure_control) = top();
3011      // adjust the type of the phi to the exact klass:
3012      phi->raise_bottom_type(_gvn.type(cast_obj)->meet(TypePtr::NULL_PTR));
3013    }
3014  }
3015
3016  if (cast_obj == NULL) {
3017    // Load the object's klass
3018    Node* obj_klass = load_object_klass(not_null_obj);
3019
3020    // Generate the subtype check
3021    Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3022
3023    // Plug in success path into the merge
3024    cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
3025                                                         not_null_obj, toop));
3026    // Failure path ends in uncommon trap (or may be dead - failure impossible)
3027    if (failure_control == NULL) {
3028      if (not_subtype_ctrl != top()) { // If failure is possible
3029        PreserveJVMState pjvms(this);
3030        set_control(not_subtype_ctrl);
3031        builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3032      }
3033    } else {
3034      (*failure_control) = not_subtype_ctrl;
3035    }
3036  }
3037
3038  region->init_req(_obj_path, control());
3039  phi   ->init_req(_obj_path, cast_obj);
3040
3041  // A merge of NULL or Casted-NotNull obj
3042  Node* res = _gvn.transform(phi);
3043
3044  // Note I do NOT always 'replace_in_map(obj,result)' here.
3045  //  if( tk->klass()->can_be_primary_super()  )
3046    // This means that if I successfully store an Object into an array-of-String
3047    // I 'forget' that the Object is really now known to be a String.  I have to
3048    // do this because we don't have true union types for interfaces - if I store
3049    // a Baz into an array-of-Interface and then tell the optimizer it's an
3050    // Interface, I forget that it's also a Baz and cannot do Baz-like field
3051    // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3052  //  replace_in_map( obj, res );
3053
3054  // Return final merged results
3055  set_control( _gvn.transform(region) );
3056  record_for_igvn(region);
3057  return res;
3058}
3059
3060//------------------------------next_monitor-----------------------------------
3061// What number should be given to the next monitor?
3062int GraphKit::next_monitor() {
3063  int current = jvms()->monitor_depth()* C->sync_stack_slots();
3064  int next = current + C->sync_stack_slots();
3065  // Keep the toplevel high water mark current:
3066  if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3067  return current;
3068}
3069
3070//------------------------------insert_mem_bar---------------------------------
3071// Memory barrier to avoid floating things around
3072// The membar serves as a pinch point between both control and all memory slices.
3073Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3074  MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3075  mb->init_req(TypeFunc::Control, control());
3076  mb->init_req(TypeFunc::Memory,  reset_memory());
3077  Node* membar = _gvn.transform(mb);
3078  set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3079  set_all_memory_call(membar);
3080  return membar;
3081}
3082
3083//-------------------------insert_mem_bar_volatile----------------------------
3084// Memory barrier to avoid floating things around
3085// The membar serves as a pinch point between both control and memory(alias_idx).
3086// If you want to make a pinch point on all memory slices, do not use this
3087// function (even with AliasIdxBot); use insert_mem_bar() instead.
3088Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3089  // When Parse::do_put_xxx updates a volatile field, it appends a series
3090  // of MemBarVolatile nodes, one for *each* volatile field alias category.
3091  // The first membar is on the same memory slice as the field store opcode.
3092  // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3093  // All the other membars (for other volatile slices, including AliasIdxBot,
3094  // which stands for all unknown volatile slices) are control-dependent
3095  // on the first membar.  This prevents later volatile loads or stores
3096  // from sliding up past the just-emitted store.
3097
3098  MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3099  mb->set_req(TypeFunc::Control,control());
3100  if (alias_idx == Compile::AliasIdxBot) {
3101    mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3102  } else {
3103    assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3104    mb->set_req(TypeFunc::Memory, memory(alias_idx));
3105  }
3106  Node* membar = _gvn.transform(mb);
3107  set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3108  if (alias_idx == Compile::AliasIdxBot) {
3109    merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
3110  } else {
3111    set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
3112  }
3113  return membar;
3114}
3115
3116//------------------------------shared_lock------------------------------------
3117// Emit locking code.
3118FastLockNode* GraphKit::shared_lock(Node* obj) {
3119  // bci is either a monitorenter bc or InvocationEntryBci
3120  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3121  assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3122
3123  if( !GenerateSynchronizationCode )
3124    return NULL;                // Not locking things?
3125  if (stopped())                // Dead monitor?
3126    return NULL;
3127
3128  assert(dead_locals_are_killed(), "should kill locals before sync. point");
3129
3130  // Box the stack location
3131  Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
3132  Node* mem = reset_memory();
3133
3134  FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
3135  if (PrintPreciseBiasedLockingStatistics) {
3136    // Create the counters for this fast lock.
3137    flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3138  }
3139  // Add monitor to debug info for the slow path.  If we block inside the
3140  // slow path and de-opt, we need the monitor hanging around
3141  map()->push_monitor( flock );
3142
3143  const TypeFunc *tf = LockNode::lock_type();
3144  LockNode *lock = new (C) LockNode(C, tf);
3145
3146  lock->init_req( TypeFunc::Control, control() );
3147  lock->init_req( TypeFunc::Memory , mem );
3148  lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3149  lock->init_req( TypeFunc::FramePtr, frameptr() );
3150  lock->init_req( TypeFunc::ReturnAdr, top() );
3151
3152  lock->init_req(TypeFunc::Parms + 0, obj);
3153  lock->init_req(TypeFunc::Parms + 1, box);
3154  lock->init_req(TypeFunc::Parms + 2, flock);
3155  add_safepoint_edges(lock);
3156
3157  lock = _gvn.transform( lock )->as_Lock();
3158
3159  // lock has no side-effects, sets few values
3160  set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3161
3162  insert_mem_bar(Op_MemBarAcquireLock);
3163
3164  // Add this to the worklist so that the lock can be eliminated
3165  record_for_igvn(lock);
3166
3167#ifndef PRODUCT
3168  if (PrintLockStatistics) {
3169    // Update the counter for this lock.  Don't bother using an atomic
3170    // operation since we don't require absolute accuracy.
3171    lock->create_lock_counter(map()->jvms());
3172    increment_counter(lock->counter()->addr());
3173  }
3174#endif
3175
3176  return flock;
3177}
3178
3179
3180//------------------------------shared_unlock----------------------------------
3181// Emit unlocking code.
3182void GraphKit::shared_unlock(Node* box, Node* obj) {
3183  // bci is either a monitorenter bc or InvocationEntryBci
3184  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3185  assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3186
3187  if( !GenerateSynchronizationCode )
3188    return;
3189  if (stopped()) {               // Dead monitor?
3190    map()->pop_monitor();        // Kill monitor from debug info
3191    return;
3192  }
3193
3194  // Memory barrier to avoid floating things down past the locked region
3195  insert_mem_bar(Op_MemBarReleaseLock);
3196
3197  const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3198  UnlockNode *unlock = new (C) UnlockNode(C, tf);
3199  uint raw_idx = Compile::AliasIdxRaw;
3200  unlock->init_req( TypeFunc::Control, control() );
3201  unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3202  unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3203  unlock->init_req( TypeFunc::FramePtr, frameptr() );
3204  unlock->init_req( TypeFunc::ReturnAdr, top() );
3205
3206  unlock->init_req(TypeFunc::Parms + 0, obj);
3207  unlock->init_req(TypeFunc::Parms + 1, box);
3208  unlock = _gvn.transform(unlock)->as_Unlock();
3209
3210  Node* mem = reset_memory();
3211
3212  // unlock has no side-effects, sets few values
3213  set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3214
3215  // Kill monitor from debug info
3216  map()->pop_monitor( );
3217}
3218
3219//-------------------------------get_layout_helper-----------------------------
3220// If the given klass is a constant or known to be an array,
3221// fetch the constant layout helper value into constant_value
3222// and return (Node*)NULL.  Otherwise, load the non-constant
3223// layout helper value, and return the node which represents it.
3224// This two-faced routine is useful because allocation sites
3225// almost always feature constant types.
3226Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3227  const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3228  if (!StressReflectiveCode && inst_klass != NULL) {
3229    ciKlass* klass = inst_klass->klass();
3230    bool    xklass = inst_klass->klass_is_exact();
3231    if (xklass || klass->is_array_klass()) {
3232      jint lhelper = klass->layout_helper();
3233      if (lhelper != Klass::_lh_neutral_value) {
3234        constant_value = lhelper;
3235        return (Node*) NULL;
3236      }
3237    }
3238  }
3239  constant_value = Klass::_lh_neutral_value;  // put in a known value
3240  Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3241  return make_load(NULL, lhp, TypeInt::INT, T_INT);
3242}
3243
3244// We just put in an allocate/initialize with a big raw-memory effect.
3245// Hook selected additional alias categories on the initialization.
3246static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3247                                MergeMemNode* init_in_merge,
3248                                Node* init_out_raw) {
3249  DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3250  assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3251
3252  Node* prevmem = kit.memory(alias_idx);
3253  init_in_merge->set_memory_at(alias_idx, prevmem);
3254  kit.set_memory(init_out_raw, alias_idx);
3255}
3256
3257//---------------------------set_output_for_allocation-------------------------
3258Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3259                                          const TypeOopPtr* oop_type) {
3260  int rawidx = Compile::AliasIdxRaw;
3261  alloc->set_req( TypeFunc::FramePtr, frameptr() );
3262  add_safepoint_edges(alloc);
3263  Node* allocx = _gvn.transform(alloc);
3264  set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
3265  // create memory projection for i_o
3266  set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3267  make_slow_call_ex(allocx, env()->Throwable_klass(), true);
3268
3269  // create a memory projection as for the normal control path
3270  Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
3271  set_memory(malloc, rawidx);
3272
3273  // a normal slow-call doesn't change i_o, but an allocation does
3274  // we create a separate i_o projection for the normal control path
3275  set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
3276  Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
3277
3278  // put in an initialization barrier
3279  InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3280                                                 rawoop)->as_Initialize();
3281  assert(alloc->initialization() == init,  "2-way macro link must work");
3282  assert(init ->allocation()     == alloc, "2-way macro link must work");
3283  {
3284    // Extract memory strands which may participate in the new object's
3285    // initialization, and source them from the new InitializeNode.
3286    // This will allow us to observe initializations when they occur,
3287    // and link them properly (as a group) to the InitializeNode.
3288    assert(init->in(InitializeNode::Memory) == malloc, "");
3289    MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3290    init->set_req(InitializeNode::Memory, minit_in);
3291    record_for_igvn(minit_in); // fold it up later, if possible
3292    Node* minit_out = memory(rawidx);
3293    assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3294    if (oop_type->isa_aryptr()) {
3295      const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3296      int            elemidx  = C->get_alias_index(telemref);
3297      hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3298    } else if (oop_type->isa_instptr()) {
3299      ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3300      for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3301        ciField* field = ik->nonstatic_field_at(i);
3302        if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3303          continue;  // do not bother to track really large numbers of fields
3304        // Find (or create) the alias category for this field:
3305        int fieldidx = C->alias_type(field)->index();
3306        hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3307      }
3308    }
3309  }
3310
3311  // Cast raw oop to the real thing...
3312  Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3313  javaoop = _gvn.transform(javaoop);
3314  C->set_recent_alloc(control(), javaoop);
3315  assert(just_allocated_object(control()) == javaoop, "just allocated");
3316
3317#ifdef ASSERT
3318  { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3319    assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3320           "Ideal_allocation works");
3321    assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3322           "Ideal_allocation works");
3323    if (alloc->is_AllocateArray()) {
3324      assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3325             "Ideal_allocation works");
3326      assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3327             "Ideal_allocation works");
3328    } else {
3329      assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3330    }
3331  }
3332#endif //ASSERT
3333
3334  return javaoop;
3335}
3336
3337//---------------------------new_instance--------------------------------------
3338// This routine takes a klass_node which may be constant (for a static type)
3339// or may be non-constant (for reflective code).  It will work equally well
3340// for either, and the graph will fold nicely if the optimizer later reduces
3341// the type to a constant.
3342// The optional arguments are for specialized use by intrinsics:
3343//  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3344//  - If 'return_size_val', report the the total object size to the caller.
3345Node* GraphKit::new_instance(Node* klass_node,
3346                             Node* extra_slow_test,
3347                             Node* *return_size_val) {
3348  // Compute size in doublewords
3349  // The size is always an integral number of doublewords, represented
3350  // as a positive bytewise size stored in the klass's layout_helper.
3351  // The layout_helper also encodes (in a low bit) the need for a slow path.
3352  jint  layout_con = Klass::_lh_neutral_value;
3353  Node* layout_val = get_layout_helper(klass_node, layout_con);
3354  int   layout_is_con = (layout_val == NULL);
3355
3356  if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3357  // Generate the initial go-slow test.  It's either ALWAYS (return a
3358  // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3359  // case) a computed value derived from the layout_helper.
3360  Node* initial_slow_test = NULL;
3361  if (layout_is_con) {
3362    assert(!StressReflectiveCode, "stress mode does not use these paths");
3363    bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3364    initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3365
3366  } else {   // reflective case
3367    // This reflective path is used by Unsafe.allocateInstance.
3368    // (It may be stress-tested by specifying StressReflectiveCode.)
3369    // Basically, we want to get into the VM is there's an illegal argument.
3370    Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3371    initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3372    if (extra_slow_test != intcon(0)) {
3373      initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3374    }
3375    // (Macro-expander will further convert this to a Bool, if necessary.)
3376  }
3377
3378  // Find the size in bytes.  This is easy; it's the layout_helper.
3379  // The size value must be valid even if the slow path is taken.
3380  Node* size = NULL;
3381  if (layout_is_con) {
3382    size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3383  } else {   // reflective case
3384    // This reflective path is used by clone and Unsafe.allocateInstance.
3385    size = ConvI2X(layout_val);
3386
3387    // Clear the low bits to extract layout_helper_size_in_bytes:
3388    assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3389    Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3390    size = _gvn.transform( new (C) AndXNode(size, mask) );
3391  }
3392  if (return_size_val != NULL) {
3393    (*return_size_val) = size;
3394  }
3395
3396  // This is a precise notnull oop of the klass.
3397  // (Actually, it need not be precise if this is a reflective allocation.)
3398  // It's what we cast the result to.
3399  const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3400  if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3401  const TypeOopPtr* oop_type = tklass->as_instance_type();
3402
3403  // Now generate allocation code
3404
3405  // The entire memory state is needed for slow path of the allocation
3406  // since GC and deoptimization can happened.
3407  Node *mem = reset_memory();
3408  set_all_memory(mem); // Create new memory state
3409
3410  AllocateNode* alloc
3411    = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3412                           control(), mem, i_o(),
3413                           size, klass_node,
3414                           initial_slow_test);
3415
3416  return set_output_for_allocation(alloc, oop_type);
3417}
3418
3419//-------------------------------new_array-------------------------------------
3420// helper for both newarray and anewarray
3421// The 'length' parameter is (obviously) the length of the array.
3422// See comments on new_instance for the meaning of the other arguments.
3423Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3424                          Node* length,         // number of array elements
3425                          int   nargs,          // number of arguments to push back for uncommon trap
3426                          Node* *return_size_val) {
3427  jint  layout_con = Klass::_lh_neutral_value;
3428  Node* layout_val = get_layout_helper(klass_node, layout_con);
3429  int   layout_is_con = (layout_val == NULL);
3430
3431  if (!layout_is_con && !StressReflectiveCode &&
3432      !too_many_traps(Deoptimization::Reason_class_check)) {
3433    // This is a reflective array creation site.
3434    // Optimistically assume that it is a subtype of Object[],
3435    // so that we can fold up all the address arithmetic.
3436    layout_con = Klass::array_layout_helper(T_OBJECT);
3437    Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3438    Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3439    { BuildCutout unless(this, bol_lh, PROB_MAX);
3440      inc_sp(nargs);
3441      uncommon_trap(Deoptimization::Reason_class_check,
3442                    Deoptimization::Action_maybe_recompile);
3443    }
3444    layout_val = NULL;
3445    layout_is_con = true;
3446  }
3447
3448  // Generate the initial go-slow test.  Make sure we do not overflow
3449  // if length is huge (near 2Gig) or negative!  We do not need
3450  // exact double-words here, just a close approximation of needed
3451  // double-words.  We can't add any offset or rounding bits, lest we
3452  // take a size -1 of bytes and make it positive.  Use an unsigned
3453  // compare, so negative sizes look hugely positive.
3454  int fast_size_limit = FastAllocateSizeLimit;
3455  if (layout_is_con) {
3456    assert(!StressReflectiveCode, "stress mode does not use these paths");
3457    // Increase the size limit if we have exact knowledge of array type.
3458    int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3459    fast_size_limit <<= (LogBytesPerLong - log2_esize);
3460  }
3461
3462  Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3463  Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3464  if (initial_slow_test->is_Bool()) {
3465    // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3466    initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3467  }
3468
3469  // --- Size Computation ---
3470  // array_size = round_to_heap(array_header + (length << elem_shift));
3471  // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3472  // and round_to(x, y) == ((x + y-1) & ~(y-1))
3473  // The rounding mask is strength-reduced, if possible.
3474  int round_mask = MinObjAlignmentInBytes - 1;
3475  Node* header_size = NULL;
3476  int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3477  // (T_BYTE has the weakest alignment and size restrictions...)
3478  if (layout_is_con) {
3479    int       hsize  = Klass::layout_helper_header_size(layout_con);
3480    int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3481    BasicType etype  = Klass::layout_helper_element_type(layout_con);
3482    if ((round_mask & ~right_n_bits(eshift)) == 0)
3483      round_mask = 0;  // strength-reduce it if it goes away completely
3484    assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3485    assert(header_size_min <= hsize, "generic minimum is smallest");
3486    header_size_min = hsize;
3487    header_size = intcon(hsize + round_mask);
3488  } else {
3489    Node* hss   = intcon(Klass::_lh_header_size_shift);
3490    Node* hsm   = intcon(Klass::_lh_header_size_mask);
3491    Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3492    hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3493    Node* mask  = intcon(round_mask);
3494    header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3495  }
3496
3497  Node* elem_shift = NULL;
3498  if (layout_is_con) {
3499    int eshift = Klass::layout_helper_log2_element_size(layout_con);
3500    if (eshift != 0)
3501      elem_shift = intcon(eshift);
3502  } else {
3503    // There is no need to mask or shift this value.
3504    // The semantics of LShiftINode include an implicit mask to 0x1F.
3505    assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3506    elem_shift = layout_val;
3507  }
3508
3509  // Transition to native address size for all offset calculations:
3510  Node* lengthx = ConvI2X(length);
3511  Node* headerx = ConvI2X(header_size);
3512#ifdef _LP64
3513  { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3514    if (tllen != NULL && tllen->_lo < 0) {
3515      // Add a manual constraint to a positive range.  Cf. array_element_address.
3516      jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3517      if (size_max > tllen->_hi)  size_max = tllen->_hi;
3518      const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3519      lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
3520    }
3521  }
3522#endif
3523
3524  // Combine header size (plus rounding) and body size.  Then round down.
3525  // This computation cannot overflow, because it is used only in two
3526  // places, one where the length is sharply limited, and the other
3527  // after a successful allocation.
3528  Node* abody = lengthx;
3529  if (elem_shift != NULL)
3530    abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3531  Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3532  if (round_mask != 0) {
3533    Node* mask = MakeConX(~round_mask);
3534    size       = _gvn.transform( new(C) AndXNode(size, mask) );
3535  }
3536  // else if round_mask == 0, the size computation is self-rounding
3537
3538  if (return_size_val != NULL) {
3539    // This is the size
3540    (*return_size_val) = size;
3541  }
3542
3543  // Now generate allocation code
3544
3545  // The entire memory state is needed for slow path of the allocation
3546  // since GC and deoptimization can happened.
3547  Node *mem = reset_memory();
3548  set_all_memory(mem); // Create new memory state
3549
3550  // Create the AllocateArrayNode and its result projections
3551  AllocateArrayNode* alloc
3552    = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3553                                control(), mem, i_o(),
3554                                size, klass_node,
3555                                initial_slow_test,
3556                                length);
3557
3558  // Cast to correct type.  Note that the klass_node may be constant or not,
3559  // and in the latter case the actual array type will be inexact also.
3560  // (This happens via a non-constant argument to inline_native_newArray.)
3561  // In any case, the value of klass_node provides the desired array type.
3562  const TypeInt* length_type = _gvn.find_int_type(length);
3563  const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3564  if (ary_type->isa_aryptr() && length_type != NULL) {
3565    // Try to get a better type than POS for the size
3566    ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3567  }
3568
3569  Node* javaoop = set_output_for_allocation(alloc, ary_type);
3570
3571  // Cast length on remaining path to be as narrow as possible
3572  if (map()->find_edge(length) >= 0) {
3573    Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3574    if (ccast != length) {
3575      _gvn.set_type_bottom(ccast);
3576      record_for_igvn(ccast);
3577      replace_in_map(length, ccast);
3578    }
3579  }
3580
3581  return javaoop;
3582}
3583
3584// The following "Ideal_foo" functions are placed here because they recognize
3585// the graph shapes created by the functions immediately above.
3586
3587//---------------------------Ideal_allocation----------------------------------
3588// Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3589AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3590  if (ptr == NULL) {     // reduce dumb test in callers
3591    return NULL;
3592  }
3593  if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3594    ptr = ptr->in(1);
3595    if (ptr == NULL) return NULL;
3596  }
3597  // Return NULL for allocations with several casts:
3598  //   j.l.reflect.Array.newInstance(jobject, jint)
3599  //   Object.clone()
3600  // to keep more precise type from last cast.
3601  if (ptr->is_Proj()) {
3602    Node* allo = ptr->in(0);
3603    if (allo != NULL && allo->is_Allocate()) {
3604      return allo->as_Allocate();
3605    }
3606  }
3607  // Report failure to match.
3608  return NULL;
3609}
3610
3611// Fancy version which also strips off an offset (and reports it to caller).
3612AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3613                                             intptr_t& offset) {
3614  Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3615  if (base == NULL)  return NULL;
3616  return Ideal_allocation(base, phase);
3617}
3618
3619// Trace Initialize <- Proj[Parm] <- Allocate
3620AllocateNode* InitializeNode::allocation() {
3621  Node* rawoop = in(InitializeNode::RawAddress);
3622  if (rawoop->is_Proj()) {
3623    Node* alloc = rawoop->in(0);
3624    if (alloc->is_Allocate()) {
3625      return alloc->as_Allocate();
3626    }
3627  }
3628  return NULL;
3629}
3630
3631// Trace Allocate -> Proj[Parm] -> Initialize
3632InitializeNode* AllocateNode::initialization() {
3633  ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3634  if (rawoop == NULL)  return NULL;
3635  for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3636    Node* init = rawoop->fast_out(i);
3637    if (init->is_Initialize()) {
3638      assert(init->as_Initialize()->allocation() == this, "2-way link");
3639      return init->as_Initialize();
3640    }
3641  }
3642  return NULL;
3643}
3644
3645//----------------------------- loop predicates ---------------------------
3646
3647//------------------------------add_predicate_impl----------------------------
3648void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3649  // Too many traps seen?
3650  if (too_many_traps(reason)) {
3651#ifdef ASSERT
3652    if (TraceLoopPredicate) {
3653      int tc = C->trap_count(reason);
3654      tty->print("too many traps=%s tcount=%d in ",
3655                    Deoptimization::trap_reason_name(reason), tc);
3656      method()->print(); // which method has too many predicate traps
3657      tty->cr();
3658    }
3659#endif
3660    // We cannot afford to take more traps here,
3661    // do not generate predicate.
3662    return;
3663  }
3664
3665  Node *cont    = _gvn.intcon(1);
3666  Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3667  Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3668  IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3669  Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3670  C->add_predicate_opaq(opq);
3671  {
3672    PreserveJVMState pjvms(this);
3673    set_control(iffalse);
3674    inc_sp(nargs);
3675    uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3676  }
3677  Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3678  set_control(iftrue);
3679}
3680
3681//------------------------------add_predicate---------------------------------
3682void GraphKit::add_predicate(int nargs) {
3683  if (UseLoopPredicate) {
3684    add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3685  }
3686  // loop's limit check predicate should be near the loop.
3687  if (LoopLimitCheck) {
3688    add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3689  }
3690}
3691
3692//----------------------------- store barriers ----------------------------
3693#define __ ideal.
3694
3695void GraphKit::sync_kit(IdealKit& ideal) {
3696  set_all_memory(__ merged_memory());
3697  set_i_o(__ i_o());
3698  set_control(__ ctrl());
3699}
3700
3701void GraphKit::final_sync(IdealKit& ideal) {
3702  // Final sync IdealKit and graphKit.
3703  sync_kit(ideal);
3704}
3705
3706// vanilla/CMS post barrier
3707// Insert a write-barrier store.  This is to let generational GC work; we have
3708// to flag all oop-stores before the next GC point.
3709void GraphKit::write_barrier_post(Node* oop_store,
3710                                  Node* obj,
3711                                  Node* adr,
3712                                  uint  adr_idx,
3713                                  Node* val,
3714                                  bool use_precise) {
3715  // No store check needed if we're storing a NULL or an old object
3716  // (latter case is probably a string constant). The concurrent
3717  // mark sweep garbage collector, however, needs to have all nonNull
3718  // oop updates flagged via card-marks.
3719  if (val != NULL && val->is_Con()) {
3720    // must be either an oop or NULL
3721    const Type* t = val->bottom_type();
3722    if (t == TypePtr::NULL_PTR || t == Type::TOP)
3723      // stores of null never (?) need barriers
3724      return;
3725  }
3726
3727  if (use_ReduceInitialCardMarks()
3728      && obj == just_allocated_object(control())) {
3729    // We can skip marks on a freshly-allocated object in Eden.
3730    // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3731    // That routine informs GC to take appropriate compensating steps,
3732    // upon a slow-path allocation, so as to make this card-mark
3733    // elision safe.
3734    return;
3735  }
3736
3737  if (!use_precise) {
3738    // All card marks for a (non-array) instance are in one place:
3739    adr = obj;
3740  }
3741  // (Else it's an array (or unknown), and we want more precise card marks.)
3742  assert(adr != NULL, "");
3743
3744  IdealKit ideal(this, true);
3745
3746  // Convert the pointer to an int prior to doing math on it
3747  Node* cast = __ CastPX(__ ctrl(), adr);
3748
3749  // Divide by card size
3750  assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3751         "Only one we handle so far.");
3752  Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3753
3754  // Combine card table base and card offset
3755  Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3756
3757  // Get the alias_index for raw card-mark memory
3758  int adr_type = Compile::AliasIdxRaw;
3759  Node*   zero = __ ConI(0); // Dirty card value
3760  BasicType bt = T_BYTE;
3761
3762  if (UseCondCardMark) {
3763    // The classic GC reference write barrier is typically implemented
3764    // as a store into the global card mark table.  Unfortunately
3765    // unconditional stores can result in false sharing and excessive
3766    // coherence traffic as well as false transactional aborts.
3767    // UseCondCardMark enables MP "polite" conditional card mark
3768    // stores.  In theory we could relax the load from ctrl() to
3769    // no_ctrl, but that doesn't buy much latitude.
3770    Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3771    __ if_then(card_val, BoolTest::ne, zero);
3772  }
3773
3774  // Smash zero into card
3775  if( !UseConcMarkSweepGC ) {
3776    __ store(__ ctrl(), card_adr, zero, bt, adr_type);
3777  } else {
3778    // Specialized path for CM store barrier
3779    __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3780  }
3781
3782  if (UseCondCardMark) {
3783    __ end_if();
3784  }
3785
3786  // Final sync IdealKit and GraphKit.
3787  final_sync(ideal);
3788}
3789
3790// G1 pre/post barriers
3791void GraphKit::g1_write_barrier_pre(bool do_load,
3792                                    Node* obj,
3793                                    Node* adr,
3794                                    uint alias_idx,
3795                                    Node* val,
3796                                    const TypeOopPtr* val_type,
3797                                    Node* pre_val,
3798                                    BasicType bt) {
3799
3800  // Some sanity checks
3801  // Note: val is unused in this routine.
3802
3803  if (do_load) {
3804    // We need to generate the load of the previous value
3805    assert(obj != NULL, "must have a base");
3806    assert(adr != NULL, "where are loading from?");
3807    assert(pre_val == NULL, "loaded already?");
3808    assert(val_type != NULL, "need a type");
3809  } else {
3810    // In this case both val_type and alias_idx are unused.
3811    assert(pre_val != NULL, "must be loaded already");
3812    // Nothing to be done if pre_val is null.
3813    if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
3814    assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3815  }
3816  assert(bt == T_OBJECT, "or we shouldn't be here");
3817
3818  IdealKit ideal(this, true);
3819
3820  Node* tls = __ thread(); // ThreadLocalStorage
3821
3822  Node* no_ctrl = NULL;
3823  Node* no_base = __ top();
3824  Node* zero  = __ ConI(0);
3825  Node* zeroX = __ ConX(0);
3826
3827  float likely  = PROB_LIKELY(0.999);
3828  float unlikely  = PROB_UNLIKELY(0.999);
3829
3830  BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3831  assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3832
3833  // Offsets into the thread
3834  const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3835                                          PtrQueue::byte_offset_of_active());
3836  const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3837                                          PtrQueue::byte_offset_of_index());
3838  const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3839                                          PtrQueue::byte_offset_of_buf());
3840
3841  // Now the actual pointers into the thread
3842  Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3843  Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3844  Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3845
3846  // Now some of the values
3847  Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3848
3849  // if (!marking)
3850  __ if_then(marking, BoolTest::ne, zero, unlikely); {
3851    BasicType index_bt = TypeX_X->basic_type();
3852    assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
3853    Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
3854
3855    if (do_load) {
3856      // load original value
3857      // alias_idx correct??
3858      pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
3859    }
3860
3861    // if (pre_val != NULL)
3862    __ if_then(pre_val, BoolTest::ne, null()); {
3863      Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3864
3865      // is the queue for this thread full?
3866      __ if_then(index, BoolTest::ne, zeroX, likely); {
3867
3868        // decrement the index
3869        Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3870
3871        // Now get the buffer location we will log the previous value into and store it
3872        Node *log_addr = __ AddP(no_base, buffer, next_index);
3873        __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw);
3874        // update the index
3875        __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw);
3876
3877      } __ else_(); {
3878
3879        // logging buffer is full, call the runtime
3880        const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3881        __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3882      } __ end_if();  // (!index)
3883    } __ end_if();  // (pre_val != NULL)
3884  } __ end_if();  // (!marking)
3885
3886  // Final sync IdealKit and GraphKit.
3887  final_sync(ideal);
3888}
3889
3890//
3891// Update the card table and add card address to the queue
3892//
3893void GraphKit::g1_mark_card(IdealKit& ideal,
3894                            Node* card_adr,
3895                            Node* oop_store,
3896                            uint oop_alias_idx,
3897                            Node* index,
3898                            Node* index_adr,
3899                            Node* buffer,
3900                            const TypeFunc* tf) {
3901
3902  Node* zero  = __ ConI(0);
3903  Node* zeroX = __ ConX(0);
3904  Node* no_base = __ top();
3905  BasicType card_bt = T_BYTE;
3906  // Smash zero into card. MUST BE ORDERED WRT TO STORE
3907  __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3908
3909  //  Now do the queue work
3910  __ if_then(index, BoolTest::ne, zeroX); {
3911
3912    Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3913    Node* log_addr = __ AddP(no_base, buffer, next_index);
3914
3915    __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
3916    __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw);
3917
3918  } __ else_(); {
3919    __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3920  } __ end_if();
3921
3922}
3923
3924void GraphKit::g1_write_barrier_post(Node* oop_store,
3925                                     Node* obj,
3926                                     Node* adr,
3927                                     uint alias_idx,
3928                                     Node* val,
3929                                     BasicType bt,
3930                                     bool use_precise) {
3931  // If we are writing a NULL then we need no post barrier
3932
3933  if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3934    // Must be NULL
3935    const Type* t = val->bottom_type();
3936    assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3937    // No post barrier if writing NULLx
3938    return;
3939  }
3940
3941  if (!use_precise) {
3942    // All card marks for a (non-array) instance are in one place:
3943    adr = obj;
3944  }
3945  // (Else it's an array (or unknown), and we want more precise card marks.)
3946  assert(adr != NULL, "");
3947
3948  IdealKit ideal(this, true);
3949
3950  Node* tls = __ thread(); // ThreadLocalStorage
3951
3952  Node* no_base = __ top();
3953  float likely  = PROB_LIKELY(0.999);
3954  float unlikely  = PROB_UNLIKELY(0.999);
3955  Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
3956  Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
3957  Node* zeroX = __ ConX(0);
3958
3959  // Get the alias_index for raw card-mark memory
3960  const TypePtr* card_type = TypeRawPtr::BOTTOM;
3961
3962  const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3963
3964  // Offsets into the thread
3965  const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3966                                     PtrQueue::byte_offset_of_index());
3967  const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3968                                     PtrQueue::byte_offset_of_buf());
3969
3970  // Pointers into the thread
3971
3972  Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3973  Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3974
3975  // Now some values
3976  // Use ctrl to avoid hoisting these values past a safepoint, which could
3977  // potentially reset these fields in the JavaThread.
3978  Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
3979  Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3980
3981  // Convert the store obj pointer to an int prior to doing math on it
3982  // Must use ctrl to prevent "integerized oop" existing across safepoint
3983  Node* cast =  __ CastPX(__ ctrl(), adr);
3984
3985  // Divide pointer by card size
3986  Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3987
3988  // Combine card table base and card offset
3989  Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3990
3991  // If we know the value being stored does it cross regions?
3992
3993  if (val != NULL) {
3994    // Does the store cause us to cross regions?
3995
3996    // Should be able to do an unsigned compare of region_size instead of
3997    // and extra shift. Do we have an unsigned compare??
3998    // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
3999    Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4000
4001    // if (xor_res == 0) same region so skip
4002    __ if_then(xor_res, BoolTest::ne, zeroX); {
4003
4004      // No barrier if we are storing a NULL
4005      __ if_then(val, BoolTest::ne, null(), unlikely); {
4006
4007        // Ok must mark the card if not already dirty
4008
4009        // load the original value of the card
4010        Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4011
4012        __ if_then(card_val, BoolTest::ne, young_card); {
4013          sync_kit(ideal);
4014          // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4015          insert_mem_bar(Op_MemBarVolatile, oop_store);
4016          __ sync_kit(this);
4017
4018          Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4019          __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4020            g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4021          } __ end_if();
4022        } __ end_if();
4023      } __ end_if();
4024    } __ end_if();
4025  } else {
4026    // Object.clone() instrinsic uses this path.
4027    g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4028  }
4029
4030  // Final sync IdealKit and GraphKit.
4031  final_sync(ideal);
4032}
4033#undef __
4034
4035
4036
4037Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
4038  if (java_lang_String::has_offset_field()) {
4039    int offset_offset = java_lang_String::offset_offset_in_bytes();
4040    const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4041                                                       false, NULL, 0);
4042    const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4043    int offset_field_idx = C->get_alias_index(offset_field_type);
4044    return make_load(ctrl,
4045                     basic_plus_adr(str, str, offset_offset),
4046                     TypeInt::INT, T_INT, offset_field_idx);
4047  } else {
4048    return intcon(0);
4049  }
4050}
4051
4052Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4053  if (java_lang_String::has_count_field()) {
4054    int count_offset = java_lang_String::count_offset_in_bytes();
4055    const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4056                                                       false, NULL, 0);
4057    const TypePtr* count_field_type = string_type->add_offset(count_offset);
4058    int count_field_idx = C->get_alias_index(count_field_type);
4059    return make_load(ctrl,
4060                     basic_plus_adr(str, str, count_offset),
4061                     TypeInt::INT, T_INT, count_field_idx);
4062  } else {
4063    return load_array_length(load_String_value(ctrl, str));
4064  }
4065}
4066
4067Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4068  int value_offset = java_lang_String::value_offset_in_bytes();
4069  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4070                                                     false, NULL, 0);
4071  const TypePtr* value_field_type = string_type->add_offset(value_offset);
4072  const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
4073                                                   TypeAry::make(TypeInt::CHAR,TypeInt::POS),
4074                                                   ciTypeArrayKlass::make(T_CHAR), true, 0);
4075  int value_field_idx = C->get_alias_index(value_field_type);
4076  Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4077                         value_type, T_OBJECT, value_field_idx);
4078  // String.value field is known to be @Stable.
4079  if (UseImplicitStableValues) {
4080    load = cast_array_to_stable(load, value_type);
4081  }
4082  return load;
4083}
4084
4085void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
4086  int offset_offset = java_lang_String::offset_offset_in_bytes();
4087  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4088                                                     false, NULL, 0);
4089  const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4090  int offset_field_idx = C->get_alias_index(offset_field_type);
4091  store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
4092                  value, T_INT, offset_field_idx);
4093}
4094
4095void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4096  int value_offset = java_lang_String::value_offset_in_bytes();
4097  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4098                                                     false, NULL, 0);
4099  const TypePtr* value_field_type = string_type->add_offset(value_offset);
4100
4101  store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4102      value, TypeAryPtr::CHARS, T_OBJECT);
4103}
4104
4105void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
4106  int count_offset = java_lang_String::count_offset_in_bytes();
4107  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4108                                                     false, NULL, 0);
4109  const TypePtr* count_field_type = string_type->add_offset(count_offset);
4110  int count_field_idx = C->get_alias_index(count_field_type);
4111  store_to_memory(ctrl, basic_plus_adr(str, count_offset),
4112                  value, T_INT, count_field_idx);
4113}
4114
4115Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4116  // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4117  // assumption of CCP analysis.
4118  return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));
4119}
4120