gcm.cpp revision 6760:22b98ab2a69f
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "opto/block.hpp"
29#include "opto/c2compiler.hpp"
30#include "opto/callnode.hpp"
31#include "opto/cfgnode.hpp"
32#include "opto/machnode.hpp"
33#include "opto/opcodes.hpp"
34#include "opto/phaseX.hpp"
35#include "opto/rootnode.hpp"
36#include "opto/runtime.hpp"
37#include "runtime/deoptimization.hpp"
38
39// Portions of code courtesy of Clifford Click
40
41// Optimization - Graph Style
42
43// To avoid float value underflow
44#define MIN_BLOCK_FREQUENCY 1.e-35f
45
46//----------------------------schedule_node_into_block-------------------------
47// Insert node n into block b. Look for projections of n and make sure they
48// are in b also.
49void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
50  // Set basic block of n, Add n to b,
51  map_node_to_block(n, b);
52  b->add_inst(n);
53
54  // After Matching, nearly any old Node may have projections trailing it.
55  // These are usually machine-dependent flags.  In any case, they might
56  // float to another block below this one.  Move them up.
57  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
58    Node*  use  = n->fast_out(i);
59    if (use->is_Proj()) {
60      Block* buse = get_block_for_node(use);
61      if (buse != b) {              // In wrong block?
62        if (buse != NULL) {
63          buse->find_remove(use);   // Remove from wrong block
64        }
65        map_node_to_block(use, b);
66        b->add_inst(use);
67      }
68    }
69  }
70}
71
72//----------------------------replace_block_proj_ctrl-------------------------
73// Nodes that have is_block_proj() nodes as their control need to use
74// the appropriate Region for their actual block as their control since
75// the projection will be in a predecessor block.
76void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
77  const Node *in0 = n->in(0);
78  assert(in0 != NULL, "Only control-dependent");
79  const Node *p = in0->is_block_proj();
80  if (p != NULL && p != n) {    // Control from a block projection?
81    assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
82    // Find trailing Region
83    Block *pb = get_block_for_node(in0); // Block-projection already has basic block
84    uint j = 0;
85    if (pb->_num_succs != 1) {  // More then 1 successor?
86      // Search for successor
87      uint max = pb->number_of_nodes();
88      assert( max > 1, "" );
89      uint start = max - pb->_num_succs;
90      // Find which output path belongs to projection
91      for (j = start; j < max; j++) {
92        if( pb->get_node(j) == in0 )
93          break;
94      }
95      assert( j < max, "must find" );
96      // Change control to match head of successor basic block
97      j -= start;
98    }
99    n->set_req(0, pb->_succs[j]->head());
100  }
101}
102
103
104//------------------------------schedule_pinned_nodes--------------------------
105// Set the basic block for Nodes pinned into blocks
106void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
107  // Allocate node stack of size C->unique()+8 to avoid frequent realloc
108  GrowableArray <Node *> spstack(C->unique() + 8);
109  spstack.push(_root);
110  while (spstack.is_nonempty()) {
111    Node* node = spstack.pop();
112    if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
113      if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
114        assert(node->in(0), "pinned Node must have Control");
115        // Before setting block replace block_proj control edge
116        replace_block_proj_ctrl(node);
117        Node* input = node->in(0);
118        while (!input->is_block_start()) {
119          input = input->in(0);
120        }
121        Block* block = get_block_for_node(input); // Basic block of controlling input
122        schedule_node_into_block(node, block);
123      }
124
125      // process all inputs that are non NULL
126      for (int i = node->req() - 1; i >= 0; --i) {
127        if (node->in(i) != NULL) {
128          spstack.push(node->in(i));
129        }
130      }
131    }
132  }
133}
134
135#ifdef ASSERT
136// Assert that new input b2 is dominated by all previous inputs.
137// Check this by by seeing that it is dominated by b1, the deepest
138// input observed until b2.
139static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
140  if (b1 == NULL)  return;
141  assert(b1->_dom_depth < b2->_dom_depth, "sanity");
142  Block* tmp = b2;
143  while (tmp != b1 && tmp != NULL) {
144    tmp = tmp->_idom;
145  }
146  if (tmp != b1) {
147    // Detected an unschedulable graph.  Print some nice stuff and die.
148    tty->print_cr("!!! Unschedulable graph !!!");
149    for (uint j=0; j<n->len(); j++) { // For all inputs
150      Node* inn = n->in(j); // Get input
151      if (inn == NULL)  continue;  // Ignore NULL, missing inputs
152      Block* inb = cfg->get_block_for_node(inn);
153      tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
154                 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
155      inn->dump();
156    }
157    tty->print("Failing node: ");
158    n->dump();
159    assert(false, "unscheduable graph");
160  }
161}
162#endif
163
164static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
165  // Find the last input dominated by all other inputs.
166  Block* deepb           = NULL;        // Deepest block so far
167  int    deepb_dom_depth = 0;
168  for (uint k = 0; k < n->len(); k++) { // For all inputs
169    Node* inn = n->in(k);               // Get input
170    if (inn == NULL)  continue;         // Ignore NULL, missing inputs
171    Block* inb = cfg->get_block_for_node(inn);
172    assert(inb != NULL, "must already have scheduled this input");
173    if (deepb_dom_depth < (int) inb->_dom_depth) {
174      // The new inb must be dominated by the previous deepb.
175      // The various inputs must be linearly ordered in the dom
176      // tree, or else there will not be a unique deepest block.
177      DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
178      deepb = inb;                      // Save deepest block
179      deepb_dom_depth = deepb->_dom_depth;
180    }
181  }
182  assert(deepb != NULL, "must be at least one input to n");
183  return deepb;
184}
185
186
187//------------------------------schedule_early---------------------------------
188// Find the earliest Block any instruction can be placed in.  Some instructions
189// are pinned into Blocks.  Unpinned instructions can appear in last block in
190// which all their inputs occur.
191bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
192  // Allocate stack with enough space to avoid frequent realloc
193  Node_Stack nstack(roots.Size() + 8);
194  // _root will be processed among C->top() inputs
195  roots.push(C->top());
196  visited.set(C->top()->_idx);
197
198  while (roots.size() != 0) {
199    // Use local variables nstack_top_n & nstack_top_i to cache values
200    // on stack's top.
201    Node* parent_node = roots.pop();
202    uint  input_index = 0;
203
204    while (true) {
205      if (input_index == 0) {
206        // Fixup some control.  Constants without control get attached
207        // to root and nodes that use is_block_proj() nodes should be attached
208        // to the region that starts their block.
209        const Node* control_input = parent_node->in(0);
210        if (control_input != NULL) {
211          replace_block_proj_ctrl(parent_node);
212        } else {
213          // Is a constant with NO inputs?
214          if (parent_node->req() == 1) {
215            parent_node->set_req(0, _root);
216          }
217        }
218      }
219
220      // First, visit all inputs and force them to get a block.  If an
221      // input is already in a block we quit following inputs (to avoid
222      // cycles). Instead we put that Node on a worklist to be handled
223      // later (since IT'S inputs may not have a block yet).
224
225      // Assume all n's inputs will be processed
226      bool done = true;
227
228      while (input_index < parent_node->len()) {
229        Node* in = parent_node->in(input_index++);
230        if (in == NULL) {
231          continue;
232        }
233
234        int is_visited = visited.test_set(in->_idx);
235        if (!has_block(in)) {
236          if (is_visited) {
237            return false;
238          }
239          // Save parent node and next input's index.
240          nstack.push(parent_node, input_index);
241          // Process current input now.
242          parent_node = in;
243          input_index = 0;
244          // Not all n's inputs processed.
245          done = false;
246          break;
247        } else if (!is_visited) {
248          // Visit this guy later, using worklist
249          roots.push(in);
250        }
251      }
252
253      if (done) {
254        // All of n's inputs have been processed, complete post-processing.
255
256        // Some instructions are pinned into a block.  These include Region,
257        // Phi, Start, Return, and other control-dependent instructions and
258        // any projections which depend on them.
259        if (!parent_node->pinned()) {
260          // Set earliest legal block.
261          Block* earliest_block = find_deepest_input(parent_node, this);
262          map_node_to_block(parent_node, earliest_block);
263        } else {
264          assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
265        }
266
267        if (nstack.is_empty()) {
268          // Finished all nodes on stack.
269          // Process next node on the worklist 'roots'.
270          break;
271        }
272        // Get saved parent node and next input's index.
273        parent_node = nstack.node();
274        input_index = nstack.index();
275        nstack.pop();
276      }
277    }
278  }
279  return true;
280}
281
282//------------------------------dom_lca----------------------------------------
283// Find least common ancestor in dominator tree
284// LCA is a current notion of LCA, to be raised above 'this'.
285// As a convenient boundary condition, return 'this' if LCA is NULL.
286// Find the LCA of those two nodes.
287Block* Block::dom_lca(Block* LCA) {
288  if (LCA == NULL || LCA == this)  return this;
289
290  Block* anc = this;
291  while (anc->_dom_depth > LCA->_dom_depth)
292    anc = anc->_idom;           // Walk up till anc is as high as LCA
293
294  while (LCA->_dom_depth > anc->_dom_depth)
295    LCA = LCA->_idom;           // Walk up till LCA is as high as anc
296
297  while (LCA != anc) {          // Walk both up till they are the same
298    LCA = LCA->_idom;
299    anc = anc->_idom;
300  }
301
302  return LCA;
303}
304
305//--------------------------raise_LCA_above_use--------------------------------
306// We are placing a definition, and have been given a def->use edge.
307// The definition must dominate the use, so move the LCA upward in the
308// dominator tree to dominate the use.  If the use is a phi, adjust
309// the LCA only with the phi input paths which actually use this def.
310static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
311  Block* buse = cfg->get_block_for_node(use);
312  if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
313  if (!use->is_Phi())  return buse->dom_lca(LCA);
314  uint pmax = use->req();       // Number of Phi inputs
315  // Why does not this loop just break after finding the matching input to
316  // the Phi?  Well...it's like this.  I do not have true def-use/use-def
317  // chains.  Means I cannot distinguish, from the def-use direction, which
318  // of many use-defs lead from the same use to the same def.  That is, this
319  // Phi might have several uses of the same def.  Each use appears in a
320  // different predecessor block.  But when I enter here, I cannot distinguish
321  // which use-def edge I should find the predecessor block for.  So I find
322  // them all.  Means I do a little extra work if a Phi uses the same value
323  // more than once.
324  for (uint j=1; j<pmax; j++) { // For all inputs
325    if (use->in(j) == def) {    // Found matching input?
326      Block* pred = cfg->get_block_for_node(buse->pred(j));
327      LCA = pred->dom_lca(LCA);
328    }
329  }
330  return LCA;
331}
332
333//----------------------------raise_LCA_above_marks----------------------------
334// Return a new LCA that dominates LCA and any of its marked predecessors.
335// Search all my parents up to 'early' (exclusive), looking for predecessors
336// which are marked with the given index.  Return the LCA (in the dom tree)
337// of all marked blocks.  If there are none marked, return the original
338// LCA.
339static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
340  Block_List worklist;
341  worklist.push(LCA);
342  while (worklist.size() > 0) {
343    Block* mid = worklist.pop();
344    if (mid == early)  continue;  // stop searching here
345
346    // Test and set the visited bit.
347    if (mid->raise_LCA_visited() == mark)  continue;  // already visited
348
349    // Don't process the current LCA, otherwise the search may terminate early
350    if (mid != LCA && mid->raise_LCA_mark() == mark) {
351      // Raise the LCA.
352      LCA = mid->dom_lca(LCA);
353      if (LCA == early)  break;   // stop searching everywhere
354      assert(early->dominates(LCA), "early is high enough");
355      // Resume searching at that point, skipping intermediate levels.
356      worklist.push(LCA);
357      if (LCA == mid)
358        continue; // Don't mark as visited to avoid early termination.
359    } else {
360      // Keep searching through this block's predecessors.
361      for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
362        Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
363        worklist.push(mid_parent);
364      }
365    }
366    mid->set_raise_LCA_visited(mark);
367  }
368  return LCA;
369}
370
371//--------------------------memory_early_block--------------------------------
372// This is a variation of find_deepest_input, the heart of schedule_early.
373// Find the "early" block for a load, if we considered only memory and
374// address inputs, that is, if other data inputs were ignored.
375//
376// Because a subset of edges are considered, the resulting block will
377// be earlier (at a shallower dom_depth) than the true schedule_early
378// point of the node. We compute this earlier block as a more permissive
379// site for anti-dependency insertion, but only if subsume_loads is enabled.
380static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
381  Node* base;
382  Node* index;
383  Node* store = load->in(MemNode::Memory);
384  load->as_Mach()->memory_inputs(base, index);
385
386  assert(base != NodeSentinel && index != NodeSentinel,
387         "unexpected base/index inputs");
388
389  Node* mem_inputs[4];
390  int mem_inputs_length = 0;
391  if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
392  if (index != NULL) mem_inputs[mem_inputs_length++] = index;
393  if (store != NULL) mem_inputs[mem_inputs_length++] = store;
394
395  // In the comparision below, add one to account for the control input,
396  // which may be null, but always takes up a spot in the in array.
397  if (mem_inputs_length + 1 < (int) load->req()) {
398    // This "load" has more inputs than just the memory, base and index inputs.
399    // For purposes of checking anti-dependences, we need to start
400    // from the early block of only the address portion of the instruction,
401    // and ignore other blocks that may have factored into the wider
402    // schedule_early calculation.
403    if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
404
405    Block* deepb           = NULL;        // Deepest block so far
406    int    deepb_dom_depth = 0;
407    for (int i = 0; i < mem_inputs_length; i++) {
408      Block* inb = cfg->get_block_for_node(mem_inputs[i]);
409      if (deepb_dom_depth < (int) inb->_dom_depth) {
410        // The new inb must be dominated by the previous deepb.
411        // The various inputs must be linearly ordered in the dom
412        // tree, or else there will not be a unique deepest block.
413        DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
414        deepb = inb;                      // Save deepest block
415        deepb_dom_depth = deepb->_dom_depth;
416      }
417    }
418    early = deepb;
419  }
420
421  return early;
422}
423
424//--------------------------insert_anti_dependences---------------------------
425// A load may need to witness memory that nearby stores can overwrite.
426// For each nearby store, either insert an "anti-dependence" edge
427// from the load to the store, or else move LCA upward to force the
428// load to (eventually) be scheduled in a block above the store.
429//
430// Do not add edges to stores on distinct control-flow paths;
431// only add edges to stores which might interfere.
432//
433// Return the (updated) LCA.  There will not be any possibly interfering
434// store between the load's "early block" and the updated LCA.
435// Any stores in the updated LCA will have new precedence edges
436// back to the load.  The caller is expected to schedule the load
437// in the LCA, in which case the precedence edges will make LCM
438// preserve anti-dependences.  The caller may also hoist the load
439// above the LCA, if it is not the early block.
440Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
441  assert(load->needs_anti_dependence_check(), "must be a load of some sort");
442  assert(LCA != NULL, "");
443  DEBUG_ONLY(Block* LCA_orig = LCA);
444
445  // Compute the alias index.  Loads and stores with different alias indices
446  // do not need anti-dependence edges.
447  uint load_alias_idx = C->get_alias_index(load->adr_type());
448#ifdef ASSERT
449  if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
450      (PrintOpto || VerifyAliases ||
451       PrintMiscellaneous && (WizardMode || Verbose))) {
452    // Load nodes should not consume all of memory.
453    // Reporting a bottom type indicates a bug in adlc.
454    // If some particular type of node validly consumes all of memory,
455    // sharpen the preceding "if" to exclude it, so we can catch bugs here.
456    tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
457    load->dump(2);
458    if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
459  }
460#endif
461  assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
462         "String compare is only known 'load' that does not conflict with any stores");
463  assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
464         "String equals is a 'load' that does not conflict with any stores");
465  assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
466         "String indexOf is a 'load' that does not conflict with any stores");
467  assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
468         "Arrays equals is a 'load' that do not conflict with any stores");
469
470  if (!C->alias_type(load_alias_idx)->is_rewritable()) {
471    // It is impossible to spoil this load by putting stores before it,
472    // because we know that the stores will never update the value
473    // which 'load' must witness.
474    return LCA;
475  }
476
477  node_idx_t load_index = load->_idx;
478
479  // Note the earliest legal placement of 'load', as determined by
480  // by the unique point in the dom tree where all memory effects
481  // and other inputs are first available.  (Computed by schedule_early.)
482  // For normal loads, 'early' is the shallowest place (dom graph wise)
483  // to look for anti-deps between this load and any store.
484  Block* early = get_block_for_node(load);
485
486  // If we are subsuming loads, compute an "early" block that only considers
487  // memory or address inputs. This block may be different than the
488  // schedule_early block in that it could be at an even shallower depth in the
489  // dominator tree, and allow for a broader discovery of anti-dependences.
490  if (C->subsume_loads()) {
491    early = memory_early_block(load, early, this);
492  }
493
494  ResourceArea *area = Thread::current()->resource_area();
495  Node_List worklist_mem(area);     // prior memory state to store
496  Node_List worklist_store(area);   // possible-def to explore
497  Node_List worklist_visited(area); // visited mergemem nodes
498  Node_List non_early_stores(area); // all relevant stores outside of early
499  bool must_raise_LCA = false;
500
501#ifdef TRACK_PHI_INPUTS
502  // %%% This extra checking fails because MergeMem nodes are not GVNed.
503  // Provide "phi_inputs" to check if every input to a PhiNode is from the
504  // original memory state.  This indicates a PhiNode for which should not
505  // prevent the load from sinking.  For such a block, set_raise_LCA_mark
506  // may be overly conservative.
507  // Mechanism: count inputs seen for each Phi encountered in worklist_store.
508  DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
509#endif
510
511  // 'load' uses some memory state; look for users of the same state.
512  // Recurse through MergeMem nodes to the stores that use them.
513
514  // Each of these stores is a possible definition of memory
515  // that 'load' needs to use.  We need to force 'load'
516  // to occur before each such store.  When the store is in
517  // the same block as 'load', we insert an anti-dependence
518  // edge load->store.
519
520  // The relevant stores "nearby" the load consist of a tree rooted
521  // at initial_mem, with internal nodes of type MergeMem.
522  // Therefore, the branches visited by the worklist are of this form:
523  //    initial_mem -> (MergeMem ->)* store
524  // The anti-dependence constraints apply only to the fringe of this tree.
525
526  Node* initial_mem = load->in(MemNode::Memory);
527  worklist_store.push(initial_mem);
528  worklist_visited.push(initial_mem);
529  worklist_mem.push(NULL);
530  while (worklist_store.size() > 0) {
531    // Examine a nearby store to see if it might interfere with our load.
532    Node* mem   = worklist_mem.pop();
533    Node* store = worklist_store.pop();
534    uint op = store->Opcode();
535
536    // MergeMems do not directly have anti-deps.
537    // Treat them as internal nodes in a forward tree of memory states,
538    // the leaves of which are each a 'possible-def'.
539    if (store == initial_mem    // root (exclusive) of tree we are searching
540        || op == Op_MergeMem    // internal node of tree we are searching
541        ) {
542      mem = store;   // It's not a possibly interfering store.
543      if (store == initial_mem)
544        initial_mem = NULL;  // only process initial memory once
545
546      for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
547        store = mem->fast_out(i);
548        if (store->is_MergeMem()) {
549          // Be sure we don't get into combinatorial problems.
550          // (Allow phis to be repeated; they can merge two relevant states.)
551          uint j = worklist_visited.size();
552          for (; j > 0; j--) {
553            if (worklist_visited.at(j-1) == store)  break;
554          }
555          if (j > 0)  continue; // already on work list; do not repeat
556          worklist_visited.push(store);
557        }
558        worklist_mem.push(mem);
559        worklist_store.push(store);
560      }
561      continue;
562    }
563
564    if (op == Op_MachProj || op == Op_Catch)   continue;
565    if (store->needs_anti_dependence_check())  continue;  // not really a store
566
567    // Compute the alias index.  Loads and stores with different alias
568    // indices do not need anti-dependence edges.  Wide MemBar's are
569    // anti-dependent on everything (except immutable memories).
570    const TypePtr* adr_type = store->adr_type();
571    if (!C->can_alias(adr_type, load_alias_idx))  continue;
572
573    // Most slow-path runtime calls do NOT modify Java memory, but
574    // they can block and so write Raw memory.
575    if (store->is_Mach()) {
576      MachNode* mstore = store->as_Mach();
577      if (load_alias_idx != Compile::AliasIdxRaw) {
578        // Check for call into the runtime using the Java calling
579        // convention (and from there into a wrapper); it has no
580        // _method.  Can't do this optimization for Native calls because
581        // they CAN write to Java memory.
582        if (mstore->ideal_Opcode() == Op_CallStaticJava) {
583          assert(mstore->is_MachSafePoint(), "");
584          MachSafePointNode* ms = (MachSafePointNode*) mstore;
585          assert(ms->is_MachCallJava(), "");
586          MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
587          if (mcj->_method == NULL) {
588            // These runtime calls do not write to Java visible memory
589            // (other than Raw) and so do not require anti-dependence edges.
590            continue;
591          }
592        }
593        // Same for SafePoints: they read/write Raw but only read otherwise.
594        // This is basically a workaround for SafePoints only defining control
595        // instead of control + memory.
596        if (mstore->ideal_Opcode() == Op_SafePoint)
597          continue;
598      } else {
599        // Some raw memory, such as the load of "top" at an allocation,
600        // can be control dependent on the previous safepoint. See
601        // comments in GraphKit::allocate_heap() about control input.
602        // Inserting an anti-dep between such a safepoint and a use
603        // creates a cycle, and will cause a subsequent failure in
604        // local scheduling.  (BugId 4919904)
605        // (%%% How can a control input be a safepoint and not a projection??)
606        if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
607          continue;
608      }
609    }
610
611    // Identify a block that the current load must be above,
612    // or else observe that 'store' is all the way up in the
613    // earliest legal block for 'load'.  In the latter case,
614    // immediately insert an anti-dependence edge.
615    Block* store_block = get_block_for_node(store);
616    assert(store_block != NULL, "unused killing projections skipped above");
617
618    if (store->is_Phi()) {
619      // 'load' uses memory which is one (or more) of the Phi's inputs.
620      // It must be scheduled not before the Phi, but rather before
621      // each of the relevant Phi inputs.
622      //
623      // Instead of finding the LCA of all inputs to a Phi that match 'mem',
624      // we mark each corresponding predecessor block and do a combined
625      // hoisting operation later (raise_LCA_above_marks).
626      //
627      // Do not assert(store_block != early, "Phi merging memory after access")
628      // PhiNode may be at start of block 'early' with backedge to 'early'
629      DEBUG_ONLY(bool found_match = false);
630      for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
631        if (store->in(j) == mem) {   // Found matching input?
632          DEBUG_ONLY(found_match = true);
633          Block* pred_block = get_block_for_node(store_block->pred(j));
634          if (pred_block != early) {
635            // If any predecessor of the Phi matches the load's "early block",
636            // we do not need a precedence edge between the Phi and 'load'
637            // since the load will be forced into a block preceding the Phi.
638            pred_block->set_raise_LCA_mark(load_index);
639            assert(!LCA_orig->dominates(pred_block) ||
640                   early->dominates(pred_block), "early is high enough");
641            must_raise_LCA = true;
642          } else {
643            // anti-dependent upon PHI pinned below 'early', no edge needed
644            LCA = early;             // but can not schedule below 'early'
645          }
646        }
647      }
648      assert(found_match, "no worklist bug");
649#ifdef TRACK_PHI_INPUTS
650#ifdef ASSERT
651      // This assert asks about correct handling of PhiNodes, which may not
652      // have all input edges directly from 'mem'. See BugId 4621264
653      int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
654      // Increment by exactly one even if there are multiple copies of 'mem'
655      // coming into the phi, because we will run this block several times
656      // if there are several copies of 'mem'.  (That's how DU iterators work.)
657      phi_inputs.at_put(store->_idx, num_mem_inputs);
658      assert(PhiNode::Input + num_mem_inputs < store->req(),
659             "Expect at least one phi input will not be from original memory state");
660#endif //ASSERT
661#endif //TRACK_PHI_INPUTS
662    } else if (store_block != early) {
663      // 'store' is between the current LCA and earliest possible block.
664      // Label its block, and decide later on how to raise the LCA
665      // to include the effect on LCA of this store.
666      // If this store's block gets chosen as the raised LCA, we
667      // will find him on the non_early_stores list and stick him
668      // with a precedence edge.
669      // (But, don't bother if LCA is already raised all the way.)
670      if (LCA != early) {
671        store_block->set_raise_LCA_mark(load_index);
672        must_raise_LCA = true;
673        non_early_stores.push(store);
674      }
675    } else {
676      // Found a possibly-interfering store in the load's 'early' block.
677      // This means 'load' cannot sink at all in the dominator tree.
678      // Add an anti-dep edge, and squeeze 'load' into the highest block.
679      assert(store != load->in(0), "dependence cycle found");
680      if (verify) {
681        assert(store->find_edge(load) != -1, "missing precedence edge");
682      } else {
683        store->add_prec(load);
684      }
685      LCA = early;
686      // This turns off the process of gathering non_early_stores.
687    }
688  }
689  // (Worklist is now empty; all nearby stores have been visited.)
690
691  // Finished if 'load' must be scheduled in its 'early' block.
692  // If we found any stores there, they have already been given
693  // precedence edges.
694  if (LCA == early)  return LCA;
695
696  // We get here only if there are no possibly-interfering stores
697  // in the load's 'early' block.  Move LCA up above all predecessors
698  // which contain stores we have noted.
699  //
700  // The raised LCA block can be a home to such interfering stores,
701  // but its predecessors must not contain any such stores.
702  //
703  // The raised LCA will be a lower bound for placing the load,
704  // preventing the load from sinking past any block containing
705  // a store that may invalidate the memory state required by 'load'.
706  if (must_raise_LCA)
707    LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
708  if (LCA == early)  return LCA;
709
710  // Insert anti-dependence edges from 'load' to each store
711  // in the non-early LCA block.
712  // Mine the non_early_stores list for such stores.
713  if (LCA->raise_LCA_mark() == load_index) {
714    while (non_early_stores.size() > 0) {
715      Node* store = non_early_stores.pop();
716      Block* store_block = get_block_for_node(store);
717      if (store_block == LCA) {
718        // add anti_dependence from store to load in its own block
719        assert(store != load->in(0), "dependence cycle found");
720        if (verify) {
721          assert(store->find_edge(load) != -1, "missing precedence edge");
722        } else {
723          store->add_prec(load);
724        }
725      } else {
726        assert(store_block->raise_LCA_mark() == load_index, "block was marked");
727        // Any other stores we found must be either inside the new LCA
728        // or else outside the original LCA.  In the latter case, they
729        // did not interfere with any use of 'load'.
730        assert(LCA->dominates(store_block)
731               || !LCA_orig->dominates(store_block), "no stray stores");
732      }
733    }
734  }
735
736  // Return the highest block containing stores; any stores
737  // within that block have been given anti-dependence edges.
738  return LCA;
739}
740
741// This class is used to iterate backwards over the nodes in the graph.
742
743class Node_Backward_Iterator {
744
745private:
746  Node_Backward_Iterator();
747
748public:
749  // Constructor for the iterator
750  Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg);
751
752  // Postincrement operator to iterate over the nodes
753  Node *next();
754
755private:
756  VectorSet   &_visited;
757  Node_List   &_stack;
758  PhaseCFG &_cfg;
759};
760
761// Constructor for the Node_Backward_Iterator
762Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg)
763  : _visited(visited), _stack(stack), _cfg(cfg) {
764  // The stack should contain exactly the root
765  stack.clear();
766  stack.push(root);
767
768  // Clear the visited bits
769  visited.Clear();
770}
771
772// Iterator for the Node_Backward_Iterator
773Node *Node_Backward_Iterator::next() {
774
775  // If the _stack is empty, then just return NULL: finished.
776  if ( !_stack.size() )
777    return NULL;
778
779  // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
780  // made stateless, so I do not need to record the index 'i' on my _stack.
781  // Instead I visit all users each time, scanning for unvisited users.
782  // I visit unvisited not-anti-dependence users first, then anti-dependent
783  // children next.
784  Node *self = _stack.pop();
785
786  // I cycle here when I am entering a deeper level of recursion.
787  // The key variable 'self' was set prior to jumping here.
788  while( 1 ) {
789
790    _visited.set(self->_idx);
791
792    // Now schedule all uses as late as possible.
793    const Node* src = self->is_Proj() ? self->in(0) : self;
794    uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
795
796    // Schedule all nodes in a post-order visit
797    Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
798
799    // Scan for unvisited nodes
800    for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
801      // For all uses, schedule late
802      Node* n = self->fast_out(i); // Use
803
804      // Skip already visited children
805      if ( _visited.test(n->_idx) )
806        continue;
807
808      // do not traverse backward control edges
809      Node *use = n->is_Proj() ? n->in(0) : n;
810      uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
811
812      if ( use_rpo < src_rpo )
813        continue;
814
815      // Phi nodes always precede uses in a basic block
816      if ( use_rpo == src_rpo && use->is_Phi() )
817        continue;
818
819      unvisited = n;      // Found unvisited
820
821      // Check for possible-anti-dependent
822      if( !n->needs_anti_dependence_check() )
823        break;            // Not visited, not anti-dep; schedule it NOW
824    }
825
826    // Did I find an unvisited not-anti-dependent Node?
827    if ( !unvisited )
828      break;                  // All done with children; post-visit 'self'
829
830    // Visit the unvisited Node.  Contains the obvious push to
831    // indicate I'm entering a deeper level of recursion.  I push the
832    // old state onto the _stack and set a new state and loop (recurse).
833    _stack.push(self);
834    self = unvisited;
835  } // End recursion loop
836
837  return self;
838}
839
840//------------------------------ComputeLatenciesBackwards----------------------
841// Compute the latency of all the instructions.
842void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_List &stack) {
843#ifndef PRODUCT
844  if (trace_opto_pipelining())
845    tty->print("\n#---- ComputeLatenciesBackwards ----\n");
846#endif
847
848  Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
849  Node *n;
850
851  // Walk over all the nodes from last to first
852  while (n = iter.next()) {
853    // Set the latency for the definitions of this instruction
854    partial_latency_of_defs(n);
855  }
856} // end ComputeLatenciesBackwards
857
858//------------------------------partial_latency_of_defs------------------------
859// Compute the latency impact of this node on all defs.  This computes
860// a number that increases as we approach the beginning of the routine.
861void PhaseCFG::partial_latency_of_defs(Node *n) {
862  // Set the latency for this instruction
863#ifndef PRODUCT
864  if (trace_opto_pipelining()) {
865    tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
866    dump();
867  }
868#endif
869
870  if (n->is_Proj()) {
871    n = n->in(0);
872  }
873
874  if (n->is_Root()) {
875    return;
876  }
877
878  uint nlen = n->len();
879  uint use_latency = get_latency_for_node(n);
880  uint use_pre_order = get_block_for_node(n)->_pre_order;
881
882  for (uint j = 0; j < nlen; j++) {
883    Node *def = n->in(j);
884
885    if (!def || def == n) {
886      continue;
887    }
888
889    // Walk backwards thru projections
890    if (def->is_Proj()) {
891      def = def->in(0);
892    }
893
894#ifndef PRODUCT
895    if (trace_opto_pipelining()) {
896      tty->print("#    in(%2d): ", j);
897      def->dump();
898    }
899#endif
900
901    // If the defining block is not known, assume it is ok
902    Block *def_block = get_block_for_node(def);
903    uint def_pre_order = def_block ? def_block->_pre_order : 0;
904
905    if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
906      continue;
907    }
908
909    uint delta_latency = n->latency(j);
910    uint current_latency = delta_latency + use_latency;
911
912    if (get_latency_for_node(def) < current_latency) {
913      set_latency_for_node(def, current_latency);
914    }
915
916#ifndef PRODUCT
917    if (trace_opto_pipelining()) {
918      tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
919    }
920#endif
921  }
922}
923
924//------------------------------latency_from_use-------------------------------
925// Compute the latency of a specific use
926int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
927  // If self-reference, return no latency
928  if (use == n || use->is_Root()) {
929    return 0;
930  }
931
932  uint def_pre_order = get_block_for_node(def)->_pre_order;
933  uint latency = 0;
934
935  // If the use is not a projection, then it is simple...
936  if (!use->is_Proj()) {
937#ifndef PRODUCT
938    if (trace_opto_pipelining()) {
939      tty->print("#    out(): ");
940      use->dump();
941    }
942#endif
943
944    uint use_pre_order = get_block_for_node(use)->_pre_order;
945
946    if (use_pre_order < def_pre_order)
947      return 0;
948
949    if (use_pre_order == def_pre_order && use->is_Phi())
950      return 0;
951
952    uint nlen = use->len();
953    uint nl = get_latency_for_node(use);
954
955    for ( uint j=0; j<nlen; j++ ) {
956      if (use->in(j) == n) {
957        // Change this if we want local latencies
958        uint ul = use->latency(j);
959        uint  l = ul + nl;
960        if (latency < l) latency = l;
961#ifndef PRODUCT
962        if (trace_opto_pipelining()) {
963          tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
964                        nl, j, ul, l, latency);
965        }
966#endif
967      }
968    }
969  } else {
970    // This is a projection, just grab the latency of the use(s)
971    for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
972      uint l = latency_from_use(use, def, use->fast_out(j));
973      if (latency < l) latency = l;
974    }
975  }
976
977  return latency;
978}
979
980//------------------------------latency_from_uses------------------------------
981// Compute the latency of this instruction relative to all of it's uses.
982// This computes a number that increases as we approach the beginning of the
983// routine.
984void PhaseCFG::latency_from_uses(Node *n) {
985  // Set the latency for this instruction
986#ifndef PRODUCT
987  if (trace_opto_pipelining()) {
988    tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
989    dump();
990  }
991#endif
992  uint latency=0;
993  const Node *def = n->is_Proj() ? n->in(0): n;
994
995  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
996    uint l = latency_from_use(n, def, n->fast_out(i));
997
998    if (latency < l) latency = l;
999  }
1000
1001  set_latency_for_node(n, latency);
1002}
1003
1004//------------------------------hoist_to_cheaper_block-------------------------
1005// Pick a block for node self, between early and LCA, that is a cheaper
1006// alternative to LCA.
1007Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1008  const double delta = 1+PROB_UNLIKELY_MAG(4);
1009  Block* least       = LCA;
1010  double least_freq  = least->_freq;
1011  uint target        = get_latency_for_node(self);
1012  uint start_latency = get_latency_for_node(LCA->head());
1013  uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1014  bool in_latency    = (target <= start_latency);
1015  const Block* root_block = get_block_for_node(_root);
1016
1017  // Turn off latency scheduling if scheduling is just plain off
1018  if (!C->do_scheduling())
1019    in_latency = true;
1020
1021  // Do not hoist (to cover latency) instructions which target a
1022  // single register.  Hoisting stretches the live range of the
1023  // single register and may force spilling.
1024  MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1025  if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1026    in_latency = true;
1027
1028#ifndef PRODUCT
1029  if (trace_opto_pipelining()) {
1030    tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1031    self->dump();
1032    tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1033      LCA->_pre_order,
1034      LCA->head()->_idx,
1035      start_latency,
1036      LCA->get_node(LCA->end_idx())->_idx,
1037      end_latency,
1038      least_freq);
1039  }
1040#endif
1041
1042  int cand_cnt = 0;  // number of candidates tried
1043
1044  // Walk up the dominator tree from LCA (Lowest common ancestor) to
1045  // the earliest legal location.  Capture the least execution frequency.
1046  while (LCA != early) {
1047    LCA = LCA->_idom;         // Follow up the dominator tree
1048
1049    if (LCA == NULL) {
1050      // Bailout without retry
1051      C->record_method_not_compilable("late schedule failed: LCA == NULL");
1052      return least;
1053    }
1054
1055    // Don't hoist machine instructions to the root basic block
1056    if (mach && LCA == root_block)
1057      break;
1058
1059    uint start_lat = get_latency_for_node(LCA->head());
1060    uint end_idx   = LCA->end_idx();
1061    uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
1062    double LCA_freq = LCA->_freq;
1063#ifndef PRODUCT
1064    if (trace_opto_pipelining()) {
1065      tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1066        LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1067    }
1068#endif
1069    cand_cnt++;
1070    if (LCA_freq < least_freq              || // Better Frequency
1071        (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
1072         (!StressGCM                    &&    // Otherwise, choose with latency
1073          !in_latency                   &&    // No block containing latency
1074          LCA_freq < least_freq * delta &&    // No worse frequency
1075          target >= end_lat             &&    // within latency range
1076          !self->is_iteratively_computed() )  // But don't hoist IV increments
1077             // because they may end up above other uses of their phi forcing
1078             // their result register to be different from their input.
1079       ) {
1080      least = LCA;            // Found cheaper block
1081      least_freq = LCA_freq;
1082      start_latency = start_lat;
1083      end_latency = end_lat;
1084      if (target <= start_lat)
1085        in_latency = true;
1086    }
1087  }
1088
1089#ifndef PRODUCT
1090  if (trace_opto_pipelining()) {
1091    tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1092      least->_pre_order, start_latency, least_freq);
1093  }
1094#endif
1095
1096  // See if the latency needs to be updated
1097  if (target < end_latency) {
1098#ifndef PRODUCT
1099    if (trace_opto_pipelining()) {
1100      tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1101    }
1102#endif
1103    set_latency_for_node(self, end_latency);
1104    partial_latency_of_defs(self);
1105  }
1106
1107  return least;
1108}
1109
1110
1111//------------------------------schedule_late-----------------------------------
1112// Now schedule all codes as LATE as possible.  This is the LCA in the
1113// dominator tree of all USES of a value.  Pick the block with the least
1114// loop nesting depth that is lowest in the dominator tree.
1115extern const char must_clone[];
1116void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1117#ifndef PRODUCT
1118  if (trace_opto_pipelining())
1119    tty->print("\n#---- schedule_late ----\n");
1120#endif
1121
1122  Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1123  Node *self;
1124
1125  // Walk over all the nodes from last to first
1126  while (self = iter.next()) {
1127    Block* early = get_block_for_node(self); // Earliest legal placement
1128
1129    if (self->is_top()) {
1130      // Top node goes in bb #2 with other constants.
1131      // It must be special-cased, because it has no out edges.
1132      early->add_inst(self);
1133      continue;
1134    }
1135
1136    // No uses, just terminate
1137    if (self->outcnt() == 0) {
1138      assert(self->is_MachProj(), "sanity");
1139      continue;                   // Must be a dead machine projection
1140    }
1141
1142    // If node is pinned in the block, then no scheduling can be done.
1143    if( self->pinned() )          // Pinned in block?
1144      continue;
1145
1146    MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1147    if (mach) {
1148      switch (mach->ideal_Opcode()) {
1149      case Op_CreateEx:
1150        // Don't move exception creation
1151        early->add_inst(self);
1152        continue;
1153        break;
1154      case Op_CheckCastPP:
1155        // Don't move CheckCastPP nodes away from their input, if the input
1156        // is a rawptr (5071820).
1157        Node *def = self->in(1);
1158        if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1159          early->add_inst(self);
1160#ifdef ASSERT
1161          _raw_oops.push(def);
1162#endif
1163          continue;
1164        }
1165        break;
1166      }
1167    }
1168
1169    // Gather LCA of all uses
1170    Block *LCA = NULL;
1171    {
1172      for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1173        // For all uses, find LCA
1174        Node* use = self->fast_out(i);
1175        LCA = raise_LCA_above_use(LCA, use, self, this);
1176      }
1177    }  // (Hide defs of imax, i from rest of block.)
1178
1179    // Place temps in the block of their use.  This isn't a
1180    // requirement for correctness but it reduces useless
1181    // interference between temps and other nodes.
1182    if (mach != NULL && mach->is_MachTemp()) {
1183      map_node_to_block(self, LCA);
1184      LCA->add_inst(self);
1185      continue;
1186    }
1187
1188    // Check if 'self' could be anti-dependent on memory
1189    if (self->needs_anti_dependence_check()) {
1190      // Hoist LCA above possible-defs and insert anti-dependences to
1191      // defs in new LCA block.
1192      LCA = insert_anti_dependences(LCA, self);
1193    }
1194
1195    if (early->_dom_depth > LCA->_dom_depth) {
1196      // Somehow the LCA has moved above the earliest legal point.
1197      // (One way this can happen is via memory_early_block.)
1198      if (C->subsume_loads() == true && !C->failing()) {
1199        // Retry with subsume_loads == false
1200        // If this is the first failure, the sentinel string will "stick"
1201        // to the Compile object, and the C2Compiler will see it and retry.
1202        C->record_failure(C2Compiler::retry_no_subsuming_loads());
1203      } else {
1204        // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1205        C->record_method_not_compilable("late schedule failed: incorrect graph");
1206      }
1207      return;
1208    }
1209
1210    // If there is no opportunity to hoist, then we're done.
1211    // In stress mode, try to hoist even the single operations.
1212    bool try_to_hoist = StressGCM || (LCA != early);
1213
1214    // Must clone guys stay next to use; no hoisting allowed.
1215    // Also cannot hoist guys that alter memory or are otherwise not
1216    // allocatable (hoisting can make a value live longer, leading to
1217    // anti and output dependency problems which are normally resolved
1218    // by the register allocator giving everyone a different register).
1219    if (mach != NULL && must_clone[mach->ideal_Opcode()])
1220      try_to_hoist = false;
1221
1222    Block* late = NULL;
1223    if (try_to_hoist) {
1224      // Now find the block with the least execution frequency.
1225      // Start at the latest schedule and work up to the earliest schedule
1226      // in the dominator tree.  Thus the Node will dominate all its uses.
1227      late = hoist_to_cheaper_block(LCA, early, self);
1228    } else {
1229      // Just use the LCA of the uses.
1230      late = LCA;
1231    }
1232
1233    // Put the node into target block
1234    schedule_node_into_block(self, late);
1235
1236#ifdef ASSERT
1237    if (self->needs_anti_dependence_check()) {
1238      // since precedence edges are only inserted when we're sure they
1239      // are needed make sure that after placement in a block we don't
1240      // need any new precedence edges.
1241      verify_anti_dependences(late, self);
1242    }
1243#endif
1244  } // Loop until all nodes have been visited
1245
1246} // end ScheduleLate
1247
1248//------------------------------GlobalCodeMotion-------------------------------
1249void PhaseCFG::global_code_motion() {
1250  ResourceMark rm;
1251
1252#ifndef PRODUCT
1253  if (trace_opto_pipelining()) {
1254    tty->print("\n---- Start GlobalCodeMotion ----\n");
1255  }
1256#endif
1257
1258  // Initialize the node to block mapping for things on the proj_list
1259  for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1260    unmap_node_from_block(_matcher.get_projection(i));
1261  }
1262
1263  // Set the basic block for Nodes pinned into blocks
1264  Arena* arena = Thread::current()->resource_area();
1265  VectorSet visited(arena);
1266  schedule_pinned_nodes(visited);
1267
1268  // Find the earliest Block any instruction can be placed in.  Some
1269  // instructions are pinned into Blocks.  Unpinned instructions can
1270  // appear in last block in which all their inputs occur.
1271  visited.Clear();
1272  Node_List stack(arena);
1273  // Pre-grow the list
1274  stack.map((C->unique() >> 1) + 16, NULL);
1275  if (!schedule_early(visited, stack)) {
1276    // Bailout without retry
1277    C->record_method_not_compilable("early schedule failed");
1278    return;
1279  }
1280
1281  // Build Def-Use edges.
1282  // Compute the latency information (via backwards walk) for all the
1283  // instructions in the graph
1284  _node_latency = new GrowableArray<uint>(); // resource_area allocation
1285
1286  if (C->do_scheduling()) {
1287    compute_latencies_backwards(visited, stack);
1288  }
1289
1290  // Now schedule all codes as LATE as possible.  This is the LCA in the
1291  // dominator tree of all USES of a value.  Pick the block with the least
1292  // loop nesting depth that is lowest in the dominator tree.
1293  // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1294  schedule_late(visited, stack);
1295  if (C->failing()) {
1296    // schedule_late fails only when graph is incorrect.
1297    assert(!VerifyGraphEdges, "verification should have failed");
1298    return;
1299  }
1300
1301#ifndef PRODUCT
1302  if (trace_opto_pipelining()) {
1303    tty->print("\n---- Detect implicit null checks ----\n");
1304  }
1305#endif
1306
1307  // Detect implicit-null-check opportunities.  Basically, find NULL checks
1308  // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1309  // I can generate a memory op if there is not one nearby.
1310  if (C->is_method_compilation()) {
1311    // By reversing the loop direction we get a very minor gain on mpegaudio.
1312    // Feel free to revert to a forward loop for clarity.
1313    // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1314    for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1315      Node* proj = _matcher._null_check_tests[i];
1316      Node* val  = _matcher._null_check_tests[i + 1];
1317      Block* block = get_block_for_node(proj);
1318      implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1319      // The implicit_null_check will only perform the transformation
1320      // if the null branch is truly uncommon, *and* it leads to an
1321      // uncommon trap.  Combined with the too_many_traps guards
1322      // above, this prevents SEGV storms reported in 6366351,
1323      // by recompiling offending methods without this optimization.
1324    }
1325  }
1326
1327#ifndef PRODUCT
1328  if (trace_opto_pipelining()) {
1329    tty->print("\n---- Start Local Scheduling ----\n");
1330  }
1331#endif
1332
1333  // Schedule locally.  Right now a simple topological sort.
1334  // Later, do a real latency aware scheduler.
1335  GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1336  visited.Clear();
1337  for (uint i = 0; i < number_of_blocks(); i++) {
1338    Block* block = get_block(i);
1339    if (!schedule_local(block, ready_cnt, visited)) {
1340      if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1341        C->record_method_not_compilable("local schedule failed");
1342      }
1343      return;
1344    }
1345  }
1346
1347  // If we inserted any instructions between a Call and his CatchNode,
1348  // clone the instructions on all paths below the Catch.
1349  for (uint i = 0; i < number_of_blocks(); i++) {
1350    Block* block = get_block(i);
1351    call_catch_cleanup(block);
1352  }
1353
1354#ifndef PRODUCT
1355  if (trace_opto_pipelining()) {
1356    tty->print("\n---- After GlobalCodeMotion ----\n");
1357    for (uint i = 0; i < number_of_blocks(); i++) {
1358      Block* block = get_block(i);
1359      block->dump();
1360    }
1361  }
1362#endif
1363  // Dead.
1364  _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1365}
1366
1367bool PhaseCFG::do_global_code_motion() {
1368
1369  build_dominator_tree();
1370  if (C->failing()) {
1371    return false;
1372  }
1373
1374  NOT_PRODUCT( C->verify_graph_edges(); )
1375
1376  estimate_block_frequency();
1377
1378  global_code_motion();
1379
1380  if (C->failing()) {
1381    return false;
1382  }
1383
1384  return true;
1385}
1386
1387//------------------------------Estimate_Block_Frequency-----------------------
1388// Estimate block frequencies based on IfNode probabilities.
1389void PhaseCFG::estimate_block_frequency() {
1390
1391  // Force conditional branches leading to uncommon traps to be unlikely,
1392  // not because we get to the uncommon_trap with less relative frequency,
1393  // but because an uncommon_trap typically causes a deopt, so we only get
1394  // there once.
1395  if (C->do_freq_based_layout()) {
1396    Block_List worklist;
1397    Block* root_blk = get_block(0);
1398    for (uint i = 1; i < root_blk->num_preds(); i++) {
1399      Block *pb = get_block_for_node(root_blk->pred(i));
1400      if (pb->has_uncommon_code()) {
1401        worklist.push(pb);
1402      }
1403    }
1404    while (worklist.size() > 0) {
1405      Block* uct = worklist.pop();
1406      if (uct == get_root_block()) {
1407        continue;
1408      }
1409      for (uint i = 1; i < uct->num_preds(); i++) {
1410        Block *pb = get_block_for_node(uct->pred(i));
1411        if (pb->_num_succs == 1) {
1412          worklist.push(pb);
1413        } else if (pb->num_fall_throughs() == 2) {
1414          pb->update_uncommon_branch(uct);
1415        }
1416      }
1417    }
1418  }
1419
1420  // Create the loop tree and calculate loop depth.
1421  _root_loop = create_loop_tree();
1422  _root_loop->compute_loop_depth(0);
1423
1424  // Compute block frequency of each block, relative to a single loop entry.
1425  _root_loop->compute_freq();
1426
1427  // Adjust all frequencies to be relative to a single method entry
1428  _root_loop->_freq = 1.0;
1429  _root_loop->scale_freq();
1430
1431  // Save outmost loop frequency for LRG frequency threshold
1432  _outer_loop_frequency = _root_loop->outer_loop_freq();
1433
1434  // force paths ending at uncommon traps to be infrequent
1435  if (!C->do_freq_based_layout()) {
1436    Block_List worklist;
1437    Block* root_blk = get_block(0);
1438    for (uint i = 1; i < root_blk->num_preds(); i++) {
1439      Block *pb = get_block_for_node(root_blk->pred(i));
1440      if (pb->has_uncommon_code()) {
1441        worklist.push(pb);
1442      }
1443    }
1444    while (worklist.size() > 0) {
1445      Block* uct = worklist.pop();
1446      uct->_freq = PROB_MIN;
1447      for (uint i = 1; i < uct->num_preds(); i++) {
1448        Block *pb = get_block_for_node(uct->pred(i));
1449        if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1450          worklist.push(pb);
1451        }
1452      }
1453    }
1454  }
1455
1456#ifdef ASSERT
1457  for (uint i = 0; i < number_of_blocks(); i++) {
1458    Block* b = get_block(i);
1459    assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1460  }
1461#endif
1462
1463#ifndef PRODUCT
1464  if (PrintCFGBlockFreq) {
1465    tty->print_cr("CFG Block Frequencies");
1466    _root_loop->dump_tree();
1467    if (Verbose) {
1468      tty->print_cr("PhaseCFG dump");
1469      dump();
1470      tty->print_cr("Node dump");
1471      _root->dump(99999);
1472    }
1473  }
1474#endif
1475}
1476
1477//----------------------------create_loop_tree--------------------------------
1478// Create a loop tree from the CFG
1479CFGLoop* PhaseCFG::create_loop_tree() {
1480
1481#ifdef ASSERT
1482  assert(get_block(0) == get_root_block(), "first block should be root block");
1483  for (uint i = 0; i < number_of_blocks(); i++) {
1484    Block* block = get_block(i);
1485    // Check that _loop field are clear...we could clear them if not.
1486    assert(block->_loop == NULL, "clear _loop expected");
1487    // Sanity check that the RPO numbering is reflected in the _blocks array.
1488    // It doesn't have to be for the loop tree to be built, but if it is not,
1489    // then the blocks have been reordered since dom graph building...which
1490    // may question the RPO numbering
1491    assert(block->_rpo == i, "unexpected reverse post order number");
1492  }
1493#endif
1494
1495  int idct = 0;
1496  CFGLoop* root_loop = new CFGLoop(idct++);
1497
1498  Block_List worklist;
1499
1500  // Assign blocks to loops
1501  for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
1502    Block* block = get_block(i);
1503
1504    if (block->head()->is_Loop()) {
1505      Block* loop_head = block;
1506      assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1507      Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1508      Block* tail = get_block_for_node(tail_n);
1509
1510      // Defensively filter out Loop nodes for non-single-entry loops.
1511      // For all reasonable loops, the head occurs before the tail in RPO.
1512      if (i <= tail->_rpo) {
1513
1514        // The tail and (recursive) predecessors of the tail
1515        // are made members of a new loop.
1516
1517        assert(worklist.size() == 0, "nonempty worklist");
1518        CFGLoop* nloop = new CFGLoop(idct++);
1519        assert(loop_head->_loop == NULL, "just checking");
1520        loop_head->_loop = nloop;
1521        // Add to nloop so push_pred() will skip over inner loops
1522        nloop->add_member(loop_head);
1523        nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1524
1525        while (worklist.size() > 0) {
1526          Block* member = worklist.pop();
1527          if (member != loop_head) {
1528            for (uint j = 1; j < member->num_preds(); j++) {
1529              nloop->push_pred(member, j, worklist, this);
1530            }
1531          }
1532        }
1533      }
1534    }
1535  }
1536
1537  // Create a member list for each loop consisting
1538  // of both blocks and (immediate child) loops.
1539  for (uint i = 0; i < number_of_blocks(); i++) {
1540    Block* block = get_block(i);
1541    CFGLoop* lp = block->_loop;
1542    if (lp == NULL) {
1543      // Not assigned to a loop. Add it to the method's pseudo loop.
1544      block->_loop = root_loop;
1545      lp = root_loop;
1546    }
1547    if (lp == root_loop || block != lp->head()) { // loop heads are already members
1548      lp->add_member(block);
1549    }
1550    if (lp != root_loop) {
1551      if (lp->parent() == NULL) {
1552        // Not a nested loop. Make it a child of the method's pseudo loop.
1553        root_loop->add_nested_loop(lp);
1554      }
1555      if (block == lp->head()) {
1556        // Add nested loop to member list of parent loop.
1557        lp->parent()->add_member(lp);
1558      }
1559    }
1560  }
1561
1562  return root_loop;
1563}
1564
1565//------------------------------push_pred--------------------------------------
1566void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1567  Node* pred_n = blk->pred(i);
1568  Block* pred = cfg->get_block_for_node(pred_n);
1569  CFGLoop *pred_loop = pred->_loop;
1570  if (pred_loop == NULL) {
1571    // Filter out blocks for non-single-entry loops.
1572    // For all reasonable loops, the head occurs before the tail in RPO.
1573    if (pred->_rpo > head()->_rpo) {
1574      pred->_loop = this;
1575      worklist.push(pred);
1576    }
1577  } else if (pred_loop != this) {
1578    // Nested loop.
1579    while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1580      pred_loop = pred_loop->_parent;
1581    }
1582    // Make pred's loop be a child
1583    if (pred_loop->_parent == NULL) {
1584      add_nested_loop(pred_loop);
1585      // Continue with loop entry predecessor.
1586      Block* pred_head = pred_loop->head();
1587      assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1588      assert(pred_head != head(), "loop head in only one loop");
1589      push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1590    } else {
1591      assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1592    }
1593  }
1594}
1595
1596//------------------------------add_nested_loop--------------------------------
1597// Make cl a child of the current loop in the loop tree.
1598void CFGLoop::add_nested_loop(CFGLoop* cl) {
1599  assert(_parent == NULL, "no parent yet");
1600  assert(cl != this, "not my own parent");
1601  cl->_parent = this;
1602  CFGLoop* ch = _child;
1603  if (ch == NULL) {
1604    _child = cl;
1605  } else {
1606    while (ch->_sibling != NULL) { ch = ch->_sibling; }
1607    ch->_sibling = cl;
1608  }
1609}
1610
1611//------------------------------compute_loop_depth-----------------------------
1612// Store the loop depth in each CFGLoop object.
1613// Recursively walk the children to do the same for them.
1614void CFGLoop::compute_loop_depth(int depth) {
1615  _depth = depth;
1616  CFGLoop* ch = _child;
1617  while (ch != NULL) {
1618    ch->compute_loop_depth(depth + 1);
1619    ch = ch->_sibling;
1620  }
1621}
1622
1623//------------------------------compute_freq-----------------------------------
1624// Compute the frequency of each block and loop, relative to a single entry
1625// into the dominating loop head.
1626void CFGLoop::compute_freq() {
1627  // Bottom up traversal of loop tree (visit inner loops first.)
1628  // Set loop head frequency to 1.0, then transitively
1629  // compute frequency for all successors in the loop,
1630  // as well as for each exit edge.  Inner loops are
1631  // treated as single blocks with loop exit targets
1632  // as the successor blocks.
1633
1634  // Nested loops first
1635  CFGLoop* ch = _child;
1636  while (ch != NULL) {
1637    ch->compute_freq();
1638    ch = ch->_sibling;
1639  }
1640  assert (_members.length() > 0, "no empty loops");
1641  Block* hd = head();
1642  hd->_freq = 1.0;
1643  for (int i = 0; i < _members.length(); i++) {
1644    CFGElement* s = _members.at(i);
1645    double freq = s->_freq;
1646    if (s->is_block()) {
1647      Block* b = s->as_Block();
1648      for (uint j = 0; j < b->_num_succs; j++) {
1649        Block* sb = b->_succs[j];
1650        update_succ_freq(sb, freq * b->succ_prob(j));
1651      }
1652    } else {
1653      CFGLoop* lp = s->as_CFGLoop();
1654      assert(lp->_parent == this, "immediate child");
1655      for (int k = 0; k < lp->_exits.length(); k++) {
1656        Block* eb = lp->_exits.at(k).get_target();
1657        double prob = lp->_exits.at(k).get_prob();
1658        update_succ_freq(eb, freq * prob);
1659      }
1660    }
1661  }
1662
1663  // For all loops other than the outer, "method" loop,
1664  // sum and normalize the exit probability. The "method" loop
1665  // should keep the initial exit probability of 1, so that
1666  // inner blocks do not get erroneously scaled.
1667  if (_depth != 0) {
1668    // Total the exit probabilities for this loop.
1669    double exits_sum = 0.0f;
1670    for (int i = 0; i < _exits.length(); i++) {
1671      exits_sum += _exits.at(i).get_prob();
1672    }
1673
1674    // Normalize the exit probabilities. Until now, the
1675    // probabilities estimate the possibility of exit per
1676    // a single loop iteration; afterward, they estimate
1677    // the probability of exit per loop entry.
1678    for (int i = 0; i < _exits.length(); i++) {
1679      Block* et = _exits.at(i).get_target();
1680      float new_prob = 0.0f;
1681      if (_exits.at(i).get_prob() > 0.0f) {
1682        new_prob = _exits.at(i).get_prob() / exits_sum;
1683      }
1684      BlockProbPair bpp(et, new_prob);
1685      _exits.at_put(i, bpp);
1686    }
1687
1688    // Save the total, but guard against unreasonable probability,
1689    // as the value is used to estimate the loop trip count.
1690    // An infinite trip count would blur relative block
1691    // frequencies.
1692    if (exits_sum > 1.0f) exits_sum = 1.0;
1693    if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1694    _exit_prob = exits_sum;
1695  }
1696}
1697
1698//------------------------------succ_prob-------------------------------------
1699// Determine the probability of reaching successor 'i' from the receiver block.
1700float Block::succ_prob(uint i) {
1701  int eidx = end_idx();
1702  Node *n = get_node(eidx);  // Get ending Node
1703
1704  int op = n->Opcode();
1705  if (n->is_Mach()) {
1706    if (n->is_MachNullCheck()) {
1707      // Can only reach here if called after lcm. The original Op_If is gone,
1708      // so we attempt to infer the probability from one or both of the
1709      // successor blocks.
1710      assert(_num_succs == 2, "expecting 2 successors of a null check");
1711      // If either successor has only one predecessor, then the
1712      // probability estimate can be derived using the
1713      // relative frequency of the successor and this block.
1714      if (_succs[i]->num_preds() == 2) {
1715        return _succs[i]->_freq / _freq;
1716      } else if (_succs[1-i]->num_preds() == 2) {
1717        return 1 - (_succs[1-i]->_freq / _freq);
1718      } else {
1719        // Estimate using both successor frequencies
1720        float freq = _succs[i]->_freq;
1721        return freq / (freq + _succs[1-i]->_freq);
1722      }
1723    }
1724    op = n->as_Mach()->ideal_Opcode();
1725  }
1726
1727
1728  // Switch on branch type
1729  switch( op ) {
1730  case Op_CountedLoopEnd:
1731  case Op_If: {
1732    assert (i < 2, "just checking");
1733    // Conditionals pass on only part of their frequency
1734    float prob  = n->as_MachIf()->_prob;
1735    assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1736    // If succ[i] is the FALSE branch, invert path info
1737    if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
1738      return 1.0f - prob; // not taken
1739    } else {
1740      return prob; // taken
1741    }
1742  }
1743
1744  case Op_Jump:
1745    // Divide the frequency between all successors evenly
1746    return 1.0f/_num_succs;
1747
1748  case Op_Catch: {
1749    const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1750    if (ci->_con == CatchProjNode::fall_through_index) {
1751      // Fall-thru path gets the lion's share.
1752      return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1753    } else {
1754      // Presume exceptional paths are equally unlikely
1755      return PROB_UNLIKELY_MAG(5);
1756    }
1757  }
1758
1759  case Op_Root:
1760  case Op_Goto:
1761    // Pass frequency straight thru to target
1762    return 1.0f;
1763
1764  case Op_NeverBranch:
1765    return 0.0f;
1766
1767  case Op_TailCall:
1768  case Op_TailJump:
1769  case Op_Return:
1770  case Op_Halt:
1771  case Op_Rethrow:
1772    // Do not push out freq to root block
1773    return 0.0f;
1774
1775  default:
1776    ShouldNotReachHere();
1777  }
1778
1779  return 0.0f;
1780}
1781
1782//------------------------------num_fall_throughs-----------------------------
1783// Return the number of fall-through candidates for a block
1784int Block::num_fall_throughs() {
1785  int eidx = end_idx();
1786  Node *n = get_node(eidx);  // Get ending Node
1787
1788  int op = n->Opcode();
1789  if (n->is_Mach()) {
1790    if (n->is_MachNullCheck()) {
1791      // In theory, either side can fall-thru, for simplicity sake,
1792      // let's say only the false branch can now.
1793      return 1;
1794    }
1795    op = n->as_Mach()->ideal_Opcode();
1796  }
1797
1798  // Switch on branch type
1799  switch( op ) {
1800  case Op_CountedLoopEnd:
1801  case Op_If:
1802    return 2;
1803
1804  case Op_Root:
1805  case Op_Goto:
1806    return 1;
1807
1808  case Op_Catch: {
1809    for (uint i = 0; i < _num_succs; i++) {
1810      const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1811      if (ci->_con == CatchProjNode::fall_through_index) {
1812        return 1;
1813      }
1814    }
1815    return 0;
1816  }
1817
1818  case Op_Jump:
1819  case Op_NeverBranch:
1820  case Op_TailCall:
1821  case Op_TailJump:
1822  case Op_Return:
1823  case Op_Halt:
1824  case Op_Rethrow:
1825    return 0;
1826
1827  default:
1828    ShouldNotReachHere();
1829  }
1830
1831  return 0;
1832}
1833
1834//------------------------------succ_fall_through-----------------------------
1835// Return true if a specific successor could be fall-through target.
1836bool Block::succ_fall_through(uint i) {
1837  int eidx = end_idx();
1838  Node *n = get_node(eidx);  // Get ending Node
1839
1840  int op = n->Opcode();
1841  if (n->is_Mach()) {
1842    if (n->is_MachNullCheck()) {
1843      // In theory, either side can fall-thru, for simplicity sake,
1844      // let's say only the false branch can now.
1845      return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
1846    }
1847    op = n->as_Mach()->ideal_Opcode();
1848  }
1849
1850  // Switch on branch type
1851  switch( op ) {
1852  case Op_CountedLoopEnd:
1853  case Op_If:
1854  case Op_Root:
1855  case Op_Goto:
1856    return true;
1857
1858  case Op_Catch: {
1859    const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1860    return ci->_con == CatchProjNode::fall_through_index;
1861  }
1862
1863  case Op_Jump:
1864  case Op_NeverBranch:
1865  case Op_TailCall:
1866  case Op_TailJump:
1867  case Op_Return:
1868  case Op_Halt:
1869  case Op_Rethrow:
1870    return false;
1871
1872  default:
1873    ShouldNotReachHere();
1874  }
1875
1876  return false;
1877}
1878
1879//------------------------------update_uncommon_branch------------------------
1880// Update the probability of a two-branch to be uncommon
1881void Block::update_uncommon_branch(Block* ub) {
1882  int eidx = end_idx();
1883  Node *n = get_node(eidx);  // Get ending Node
1884
1885  int op = n->as_Mach()->ideal_Opcode();
1886
1887  assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
1888  assert(num_fall_throughs() == 2, "must be a two way branch block");
1889
1890  // Which successor is ub?
1891  uint s;
1892  for (s = 0; s <_num_succs; s++) {
1893    if (_succs[s] == ub) break;
1894  }
1895  assert(s < 2, "uncommon successor must be found");
1896
1897  // If ub is the true path, make the proability small, else
1898  // ub is the false path, and make the probability large
1899  bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
1900
1901  // Get existing probability
1902  float p = n->as_MachIf()->_prob;
1903
1904  if (invert) p = 1.0 - p;
1905  if (p > PROB_MIN) {
1906    p = PROB_MIN;
1907  }
1908  if (invert) p = 1.0 - p;
1909
1910  n->as_MachIf()->_prob = p;
1911}
1912
1913//------------------------------update_succ_freq-------------------------------
1914// Update the appropriate frequency associated with block 'b', a successor of
1915// a block in this loop.
1916void CFGLoop::update_succ_freq(Block* b, double freq) {
1917  if (b->_loop == this) {
1918    if (b == head()) {
1919      // back branch within the loop
1920      // Do nothing now, the loop carried frequency will be
1921      // adjust later in scale_freq().
1922    } else {
1923      // simple branch within the loop
1924      b->_freq += freq;
1925    }
1926  } else if (!in_loop_nest(b)) {
1927    // branch is exit from this loop
1928    BlockProbPair bpp(b, freq);
1929    _exits.append(bpp);
1930  } else {
1931    // branch into nested loop
1932    CFGLoop* ch = b->_loop;
1933    ch->_freq += freq;
1934  }
1935}
1936
1937//------------------------------in_loop_nest-----------------------------------
1938// Determine if block b is in the receiver's loop nest.
1939bool CFGLoop::in_loop_nest(Block* b) {
1940  int depth = _depth;
1941  CFGLoop* b_loop = b->_loop;
1942  int b_depth = b_loop->_depth;
1943  if (depth == b_depth) {
1944    return true;
1945  }
1946  while (b_depth > depth) {
1947    b_loop = b_loop->_parent;
1948    b_depth = b_loop->_depth;
1949  }
1950  return b_loop == this;
1951}
1952
1953//------------------------------scale_freq-------------------------------------
1954// Scale frequency of loops and blocks by trip counts from outer loops
1955// Do a top down traversal of loop tree (visit outer loops first.)
1956void CFGLoop::scale_freq() {
1957  double loop_freq = _freq * trip_count();
1958  _freq = loop_freq;
1959  for (int i = 0; i < _members.length(); i++) {
1960    CFGElement* s = _members.at(i);
1961    double block_freq = s->_freq * loop_freq;
1962    if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
1963      block_freq = MIN_BLOCK_FREQUENCY;
1964    s->_freq = block_freq;
1965  }
1966  CFGLoop* ch = _child;
1967  while (ch != NULL) {
1968    ch->scale_freq();
1969    ch = ch->_sibling;
1970  }
1971}
1972
1973// Frequency of outer loop
1974double CFGLoop::outer_loop_freq() const {
1975  if (_child != NULL) {
1976    return _child->_freq;
1977  }
1978  return _freq;
1979}
1980
1981#ifndef PRODUCT
1982//------------------------------dump_tree--------------------------------------
1983void CFGLoop::dump_tree() const {
1984  dump();
1985  if (_child != NULL)   _child->dump_tree();
1986  if (_sibling != NULL) _sibling->dump_tree();
1987}
1988
1989//------------------------------dump-------------------------------------------
1990void CFGLoop::dump() const {
1991  for (int i = 0; i < _depth; i++) tty->print("   ");
1992  tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
1993             _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
1994  for (int i = 0; i < _depth; i++) tty->print("   ");
1995  tty->print("         members:");
1996  int k = 0;
1997  for (int i = 0; i < _members.length(); i++) {
1998    if (k++ >= 6) {
1999      tty->print("\n              ");
2000      for (int j = 0; j < _depth+1; j++) tty->print("   ");
2001      k = 0;
2002    }
2003    CFGElement *s = _members.at(i);
2004    if (s->is_block()) {
2005      Block *b = s->as_Block();
2006      tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2007    } else {
2008      CFGLoop* lp = s->as_CFGLoop();
2009      tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2010    }
2011  }
2012  tty->print("\n");
2013  for (int i = 0; i < _depth; i++) tty->print("   ");
2014  tty->print("         exits:  ");
2015  k = 0;
2016  for (int i = 0; i < _exits.length(); i++) {
2017    if (k++ >= 7) {
2018      tty->print("\n              ");
2019      for (int j = 0; j < _depth+1; j++) tty->print("   ");
2020      k = 0;
2021    }
2022    Block *blk = _exits.at(i).get_target();
2023    double prob = _exits.at(i).get_prob();
2024    tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2025  }
2026  tty->print("\n");
2027}
2028#endif
2029