gcm.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_gcm.cpp.incl"
31
32//----------------------------schedule_node_into_block-------------------------
33// Insert node n into block b. Look for projections of n and make sure they
34// are in b also.
35void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
36  // Set basic block of n, Add n to b,
37  _bbs.map(n->_idx, b);
38  b->add_inst(n);
39
40  // After Matching, nearly any old Node may have projections trailing it.
41  // These are usually machine-dependent flags.  In any case, they might
42  // float to another block below this one.  Move them up.
43  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
44    Node*  use  = n->fast_out(i);
45    if (use->is_Proj()) {
46      Block* buse = _bbs[use->_idx];
47      if (buse != b) {              // In wrong block?
48        if (buse != NULL)
49          buse->find_remove(use);   // Remove from wrong block
50        _bbs.map(use->_idx, b);     // Re-insert in this block
51        b->add_inst(use);
52      }
53    }
54  }
55}
56
57
58//------------------------------schedule_pinned_nodes--------------------------
59// Set the basic block for Nodes pinned into blocks
60void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
61  // Allocate node stack of size C->unique()+8 to avoid frequent realloc
62  GrowableArray <Node *> spstack(C->unique()+8);
63  spstack.push(_root);
64  while ( spstack.is_nonempty() ) {
65    Node *n = spstack.pop();
66    if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
67      if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
68        Node *input = n->in(0);
69        assert( input, "pinned Node must have Control" );
70        while( !input->is_block_start() )
71          input = input->in(0);
72        Block *b = _bbs[input->_idx];  // Basic block of controlling input
73        schedule_node_into_block(n, b);
74      }
75      for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
76        if( n->in(i) != NULL )
77          spstack.push(n->in(i));
78      }
79    }
80  }
81}
82
83#ifdef ASSERT
84// Assert that new input b2 is dominated by all previous inputs.
85// Check this by by seeing that it is dominated by b1, the deepest
86// input observed until b2.
87static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
88  if (b1 == NULL)  return;
89  assert(b1->_dom_depth < b2->_dom_depth, "sanity");
90  Block* tmp = b2;
91  while (tmp != b1 && tmp != NULL) {
92    tmp = tmp->_idom;
93  }
94  if (tmp != b1) {
95    // Detected an unschedulable graph.  Print some nice stuff and die.
96    tty->print_cr("!!! Unschedulable graph !!!");
97    for (uint j=0; j<n->len(); j++) { // For all inputs
98      Node* inn = n->in(j); // Get input
99      if (inn == NULL)  continue;  // Ignore NULL, missing inputs
100      Block* inb = bbs[inn->_idx];
101      tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
102                 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
103      inn->dump();
104    }
105    tty->print("Failing node: ");
106    n->dump();
107    assert(false, "unscheduable graph");
108  }
109}
110#endif
111
112static Block* find_deepest_input(Node* n, Block_Array &bbs) {
113  // Find the last input dominated by all other inputs.
114  Block* deepb           = NULL;        // Deepest block so far
115  int    deepb_dom_depth = 0;
116  for (uint k = 0; k < n->len(); k++) { // For all inputs
117    Node* inn = n->in(k);               // Get input
118    if (inn == NULL)  continue;         // Ignore NULL, missing inputs
119    Block* inb = bbs[inn->_idx];
120    assert(inb != NULL, "must already have scheduled this input");
121    if (deepb_dom_depth < (int) inb->_dom_depth) {
122      // The new inb must be dominated by the previous deepb.
123      // The various inputs must be linearly ordered in the dom
124      // tree, or else there will not be a unique deepest block.
125      DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
126      deepb = inb;                      // Save deepest block
127      deepb_dom_depth = deepb->_dom_depth;
128    }
129  }
130  assert(deepb != NULL, "must be at least one input to n");
131  return deepb;
132}
133
134
135//------------------------------schedule_early---------------------------------
136// Find the earliest Block any instruction can be placed in.  Some instructions
137// are pinned into Blocks.  Unpinned instructions can appear in last block in
138// which all their inputs occur.
139bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
140  // Allocate stack with enough space to avoid frequent realloc
141  Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
142  // roots.push(_root); _root will be processed among C->top() inputs
143  roots.push(C->top());
144  visited.set(C->top()->_idx);
145
146  while (roots.size() != 0) {
147    // Use local variables nstack_top_n & nstack_top_i to cache values
148    // on stack's top.
149    Node *nstack_top_n = roots.pop();
150    uint  nstack_top_i = 0;
151//while_nstack_nonempty:
152    while (true) {
153      // Get parent node and next input's index from stack's top.
154      Node *n = nstack_top_n;
155      uint  i = nstack_top_i;
156
157      if (i == 0) {
158        // Special control input processing.
159        // While I am here, go ahead and look for Nodes which are taking control
160        // from a is_block_proj Node.  After I inserted RegionNodes to make proper
161        // blocks, the control at a is_block_proj more properly comes from the
162        // Region being controlled by the block_proj Node.
163        const Node *in0 = n->in(0);
164        if (in0 != NULL) {              // Control-dependent?
165          const Node *p = in0->is_block_proj();
166          if (p != NULL && p != n) {    // Control from a block projection?
167            // Find trailing Region
168            Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
169            uint j = 0;
170            if (pb->_num_succs != 1) {  // More then 1 successor?
171              // Search for successor
172              uint max = pb->_nodes.size();
173              assert( max > 1, "" );
174              uint start = max - pb->_num_succs;
175              // Find which output path belongs to projection
176              for (j = start; j < max; j++) {
177                if( pb->_nodes[j] == in0 )
178                  break;
179              }
180              assert( j < max, "must find" );
181              // Change control to match head of successor basic block
182              j -= start;
183            }
184            n->set_req(0, pb->_succs[j]->head());
185          }
186        } else {               // n->in(0) == NULL
187          if (n->req() == 1) { // This guy is a constant with NO inputs?
188            n->set_req(0, _root);
189          }
190        }
191      }
192
193      // First, visit all inputs and force them to get a block.  If an
194      // input is already in a block we quit following inputs (to avoid
195      // cycles). Instead we put that Node on a worklist to be handled
196      // later (since IT'S inputs may not have a block yet).
197      bool done = true;              // Assume all n's inputs will be processed
198      while (i < n->len()) {         // For all inputs
199        Node *in = n->in(i);         // Get input
200        ++i;
201        if (in == NULL) continue;    // Ignore NULL, missing inputs
202        int is_visited = visited.test_set(in->_idx);
203        if (!_bbs.lookup(in->_idx)) { // Missing block selection?
204          if (is_visited) {
205            // assert( !visited.test(in->_idx), "did not schedule early" );
206            return false;
207          }
208          nstack.push(n, i);         // Save parent node and next input's index.
209          nstack_top_n = in;         // Process current input now.
210          nstack_top_i = 0;
211          done = false;              // Not all n's inputs processed.
212          break; // continue while_nstack_nonempty;
213        } else if (!is_visited) {    // Input not yet visited?
214          roots.push(in);            // Visit this guy later, using worklist
215        }
216      }
217      if (done) {
218        // All of n's inputs have been processed, complete post-processing.
219
220        // Some instructions are pinned into a block.  These include Region,
221        // Phi, Start, Return, and other control-dependent instructions and
222        // any projections which depend on them.
223        if (!n->pinned()) {
224          // Set earliest legal block.
225          _bbs.map(n->_idx, find_deepest_input(n, _bbs));
226        }
227
228        if (nstack.is_empty()) {
229          // Finished all nodes on stack.
230          // Process next node on the worklist 'roots'.
231          break;
232        }
233        // Get saved parent node and next input's index.
234        nstack_top_n = nstack.node();
235        nstack_top_i = nstack.index();
236        nstack.pop();
237      } //    if (done)
238    }   // while (true)
239  }     // while (roots.size() != 0)
240  return true;
241}
242
243//------------------------------dom_lca----------------------------------------
244// Find least common ancestor in dominator tree
245// LCA is a current notion of LCA, to be raised above 'this'.
246// As a convenient boundary condition, return 'this' if LCA is NULL.
247// Find the LCA of those two nodes.
248Block* Block::dom_lca(Block* LCA) {
249  if (LCA == NULL || LCA == this)  return this;
250
251  Block* anc = this;
252  while (anc->_dom_depth > LCA->_dom_depth)
253    anc = anc->_idom;           // Walk up till anc is as high as LCA
254
255  while (LCA->_dom_depth > anc->_dom_depth)
256    LCA = LCA->_idom;           // Walk up till LCA is as high as anc
257
258  while (LCA != anc) {          // Walk both up till they are the same
259    LCA = LCA->_idom;
260    anc = anc->_idom;
261  }
262
263  return LCA;
264}
265
266//--------------------------raise_LCA_above_use--------------------------------
267// We are placing a definition, and have been given a def->use edge.
268// The definition must dominate the use, so move the LCA upward in the
269// dominator tree to dominate the use.  If the use is a phi, adjust
270// the LCA only with the phi input paths which actually use this def.
271static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
272  Block* buse = bbs[use->_idx];
273  if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
274  if (!use->is_Phi())  return buse->dom_lca(LCA);
275  uint pmax = use->req();       // Number of Phi inputs
276  // Why does not this loop just break after finding the matching input to
277  // the Phi?  Well...it's like this.  I do not have true def-use/use-def
278  // chains.  Means I cannot distinguish, from the def-use direction, which
279  // of many use-defs lead from the same use to the same def.  That is, this
280  // Phi might have several uses of the same def.  Each use appears in a
281  // different predecessor block.  But when I enter here, I cannot distinguish
282  // which use-def edge I should find the predecessor block for.  So I find
283  // them all.  Means I do a little extra work if a Phi uses the same value
284  // more than once.
285  for (uint j=1; j<pmax; j++) { // For all inputs
286    if (use->in(j) == def) {    // Found matching input?
287      Block* pred = bbs[buse->pred(j)->_idx];
288      LCA = pred->dom_lca(LCA);
289    }
290  }
291  return LCA;
292}
293
294//----------------------------raise_LCA_above_marks----------------------------
295// Return a new LCA that dominates LCA and any of its marked predecessors.
296// Search all my parents up to 'early' (exclusive), looking for predecessors
297// which are marked with the given index.  Return the LCA (in the dom tree)
298// of all marked blocks.  If there are none marked, return the original
299// LCA.
300static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
301                                    Block* early, Block_Array &bbs) {
302  Block_List worklist;
303  worklist.push(LCA);
304  while (worklist.size() > 0) {
305    Block* mid = worklist.pop();
306    if (mid == early)  continue;  // stop searching here
307
308    // Test and set the visited bit.
309    if (mid->raise_LCA_visited() == mark)  continue;  // already visited
310    mid->set_raise_LCA_visited(mark);
311
312    // Don't process the current LCA, otherwise the search may terminate early
313    if (mid != LCA && mid->raise_LCA_mark() == mark) {
314      // Raise the LCA.
315      LCA = mid->dom_lca(LCA);
316      if (LCA == early)  break;   // stop searching everywhere
317      assert(early->dominates(LCA), "early is high enough");
318      // Resume searching at that point, skipping intermediate levels.
319      worklist.push(LCA);
320    } else {
321      // Keep searching through this block's predecessors.
322      for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
323        Block* mid_parent = bbs[ mid->pred(j)->_idx ];
324        worklist.push(mid_parent);
325      }
326    }
327  }
328  return LCA;
329}
330
331//--------------------------memory_early_block--------------------------------
332// This is a variation of find_deepest_input, the heart of schedule_early.
333// Find the "early" block for a load, if we considered only memory and
334// address inputs, that is, if other data inputs were ignored.
335//
336// Because a subset of edges are considered, the resulting block will
337// be earlier (at a shallower dom_depth) than the true schedule_early
338// point of the node. We compute this earlier block as a more permissive
339// site for anti-dependency insertion, but only if subsume_loads is enabled.
340static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
341  Node* base;
342  Node* index;
343  Node* store = load->in(MemNode::Memory);
344  load->as_Mach()->memory_inputs(base, index);
345
346  assert(base != NodeSentinel && index != NodeSentinel,
347         "unexpected base/index inputs");
348
349  Node* mem_inputs[4];
350  int mem_inputs_length = 0;
351  if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
352  if (index != NULL) mem_inputs[mem_inputs_length++] = index;
353  if (store != NULL) mem_inputs[mem_inputs_length++] = store;
354
355  // In the comparision below, add one to account for the control input,
356  // which may be null, but always takes up a spot in the in array.
357  if (mem_inputs_length + 1 < (int) load->req()) {
358    // This "load" has more inputs than just the memory, base and index inputs.
359    // For purposes of checking anti-dependences, we need to start
360    // from the early block of only the address portion of the instruction,
361    // and ignore other blocks that may have factored into the wider
362    // schedule_early calculation.
363    if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
364
365    Block* deepb           = NULL;        // Deepest block so far
366    int    deepb_dom_depth = 0;
367    for (int i = 0; i < mem_inputs_length; i++) {
368      Block* inb = bbs[mem_inputs[i]->_idx];
369      if (deepb_dom_depth < (int) inb->_dom_depth) {
370        // The new inb must be dominated by the previous deepb.
371        // The various inputs must be linearly ordered in the dom
372        // tree, or else there will not be a unique deepest block.
373        DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
374        deepb = inb;                      // Save deepest block
375        deepb_dom_depth = deepb->_dom_depth;
376      }
377    }
378    early = deepb;
379  }
380
381  return early;
382}
383
384//--------------------------insert_anti_dependences---------------------------
385// A load may need to witness memory that nearby stores can overwrite.
386// For each nearby store, either insert an "anti-dependence" edge
387// from the load to the store, or else move LCA upward to force the
388// load to (eventually) be scheduled in a block above the store.
389//
390// Do not add edges to stores on distinct control-flow paths;
391// only add edges to stores which might interfere.
392//
393// Return the (updated) LCA.  There will not be any possibly interfering
394// store between the load's "early block" and the updated LCA.
395// Any stores in the updated LCA will have new precedence edges
396// back to the load.  The caller is expected to schedule the load
397// in the LCA, in which case the precedence edges will make LCM
398// preserve anti-dependences.  The caller may also hoist the load
399// above the LCA, if it is not the early block.
400Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
401  assert(load->needs_anti_dependence_check(), "must be a load of some sort");
402  assert(LCA != NULL, "");
403  DEBUG_ONLY(Block* LCA_orig = LCA);
404
405  // Compute the alias index.  Loads and stores with different alias indices
406  // do not need anti-dependence edges.
407  uint load_alias_idx = C->get_alias_index(load->adr_type());
408#ifdef ASSERT
409  if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
410      (PrintOpto || VerifyAliases ||
411       PrintMiscellaneous && (WizardMode || Verbose))) {
412    // Load nodes should not consume all of memory.
413    // Reporting a bottom type indicates a bug in adlc.
414    // If some particular type of node validly consumes all of memory,
415    // sharpen the preceding "if" to exclude it, so we can catch bugs here.
416    tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
417    load->dump(2);
418    if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
419  }
420#endif
421  assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
422         "String compare is only known 'load' that does not conflict with any stores");
423
424  if (!C->alias_type(load_alias_idx)->is_rewritable()) {
425    // It is impossible to spoil this load by putting stores before it,
426    // because we know that the stores will never update the value
427    // which 'load' must witness.
428    return LCA;
429  }
430
431  node_idx_t load_index = load->_idx;
432
433  // Note the earliest legal placement of 'load', as determined by
434  // by the unique point in the dom tree where all memory effects
435  // and other inputs are first available.  (Computed by schedule_early.)
436  // For normal loads, 'early' is the shallowest place (dom graph wise)
437  // to look for anti-deps between this load and any store.
438  Block* early = _bbs[load_index];
439
440  // If we are subsuming loads, compute an "early" block that only considers
441  // memory or address inputs. This block may be different than the
442  // schedule_early block in that it could be at an even shallower depth in the
443  // dominator tree, and allow for a broader discovery of anti-dependences.
444  if (C->subsume_loads()) {
445    early = memory_early_block(load, early, _bbs);
446  }
447
448  ResourceArea *area = Thread::current()->resource_area();
449  Node_List worklist_mem(area);     // prior memory state to store
450  Node_List worklist_store(area);   // possible-def to explore
451  Node_List worklist_visited(area); // visited mergemem nodes
452  Node_List non_early_stores(area); // all relevant stores outside of early
453  bool must_raise_LCA = false;
454
455#ifdef TRACK_PHI_INPUTS
456  // %%% This extra checking fails because MergeMem nodes are not GVNed.
457  // Provide "phi_inputs" to check if every input to a PhiNode is from the
458  // original memory state.  This indicates a PhiNode for which should not
459  // prevent the load from sinking.  For such a block, set_raise_LCA_mark
460  // may be overly conservative.
461  // Mechanism: count inputs seen for each Phi encountered in worklist_store.
462  DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
463#endif
464
465  // 'load' uses some memory state; look for users of the same state.
466  // Recurse through MergeMem nodes to the stores that use them.
467
468  // Each of these stores is a possible definition of memory
469  // that 'load' needs to use.  We need to force 'load'
470  // to occur before each such store.  When the store is in
471  // the same block as 'load', we insert an anti-dependence
472  // edge load->store.
473
474  // The relevant stores "nearby" the load consist of a tree rooted
475  // at initial_mem, with internal nodes of type MergeMem.
476  // Therefore, the branches visited by the worklist are of this form:
477  //    initial_mem -> (MergeMem ->)* store
478  // The anti-dependence constraints apply only to the fringe of this tree.
479
480  Node* initial_mem = load->in(MemNode::Memory);
481  worklist_store.push(initial_mem);
482  worklist_visited.push(initial_mem);
483  worklist_mem.push(NULL);
484  while (worklist_store.size() > 0) {
485    // Examine a nearby store to see if it might interfere with our load.
486    Node* mem   = worklist_mem.pop();
487    Node* store = worklist_store.pop();
488    uint op = store->Opcode();
489
490    // MergeMems do not directly have anti-deps.
491    // Treat them as internal nodes in a forward tree of memory states,
492    // the leaves of which are each a 'possible-def'.
493    if (store == initial_mem    // root (exclusive) of tree we are searching
494        || op == Op_MergeMem    // internal node of tree we are searching
495        ) {
496      mem = store;   // It's not a possibly interfering store.
497      if (store == initial_mem)
498        initial_mem = NULL;  // only process initial memory once
499
500      for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
501        store = mem->fast_out(i);
502        if (store->is_MergeMem()) {
503          // Be sure we don't get into combinatorial problems.
504          // (Allow phis to be repeated; they can merge two relevant states.)
505          uint j = worklist_visited.size();
506          for (; j > 0; j--) {
507            if (worklist_visited.at(j-1) == store)  break;
508          }
509          if (j > 0)  continue; // already on work list; do not repeat
510          worklist_visited.push(store);
511        }
512        worklist_mem.push(mem);
513        worklist_store.push(store);
514      }
515      continue;
516    }
517
518    if (op == Op_MachProj || op == Op_Catch)   continue;
519    if (store->needs_anti_dependence_check())  continue;  // not really a store
520
521    // Compute the alias index.  Loads and stores with different alias
522    // indices do not need anti-dependence edges.  Wide MemBar's are
523    // anti-dependent on everything (except immutable memories).
524    const TypePtr* adr_type = store->adr_type();
525    if (!C->can_alias(adr_type, load_alias_idx))  continue;
526
527    // Most slow-path runtime calls do NOT modify Java memory, but
528    // they can block and so write Raw memory.
529    if (store->is_Mach()) {
530      MachNode* mstore = store->as_Mach();
531      if (load_alias_idx != Compile::AliasIdxRaw) {
532        // Check for call into the runtime using the Java calling
533        // convention (and from there into a wrapper); it has no
534        // _method.  Can't do this optimization for Native calls because
535        // they CAN write to Java memory.
536        if (mstore->ideal_Opcode() == Op_CallStaticJava) {
537          assert(mstore->is_MachSafePoint(), "");
538          MachSafePointNode* ms = (MachSafePointNode*) mstore;
539          assert(ms->is_MachCallJava(), "");
540          MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
541          if (mcj->_method == NULL) {
542            // These runtime calls do not write to Java visible memory
543            // (other than Raw) and so do not require anti-dependence edges.
544            continue;
545          }
546        }
547        // Same for SafePoints: they read/write Raw but only read otherwise.
548        // This is basically a workaround for SafePoints only defining control
549        // instead of control + memory.
550        if (mstore->ideal_Opcode() == Op_SafePoint)
551          continue;
552      } else {
553        // Some raw memory, such as the load of "top" at an allocation,
554        // can be control dependent on the previous safepoint. See
555        // comments in GraphKit::allocate_heap() about control input.
556        // Inserting an anti-dep between such a safepoint and a use
557        // creates a cycle, and will cause a subsequent failure in
558        // local scheduling.  (BugId 4919904)
559        // (%%% How can a control input be a safepoint and not a projection??)
560        if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
561          continue;
562      }
563    }
564
565    // Identify a block that the current load must be above,
566    // or else observe that 'store' is all the way up in the
567    // earliest legal block for 'load'.  In the latter case,
568    // immediately insert an anti-dependence edge.
569    Block* store_block = _bbs[store->_idx];
570    assert(store_block != NULL, "unused killing projections skipped above");
571
572    if (store->is_Phi()) {
573      // 'load' uses memory which is one (or more) of the Phi's inputs.
574      // It must be scheduled not before the Phi, but rather before
575      // each of the relevant Phi inputs.
576      //
577      // Instead of finding the LCA of all inputs to a Phi that match 'mem',
578      // we mark each corresponding predecessor block and do a combined
579      // hoisting operation later (raise_LCA_above_marks).
580      //
581      // Do not assert(store_block != early, "Phi merging memory after access")
582      // PhiNode may be at start of block 'early' with backedge to 'early'
583      DEBUG_ONLY(bool found_match = false);
584      for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
585        if (store->in(j) == mem) {   // Found matching input?
586          DEBUG_ONLY(found_match = true);
587          Block* pred_block = _bbs[store_block->pred(j)->_idx];
588          if (pred_block != early) {
589            // If any predecessor of the Phi matches the load's "early block",
590            // we do not need a precedence edge between the Phi and 'load'
591            // since the load will be forced into a block preceeding the Phi.
592            pred_block->set_raise_LCA_mark(load_index);
593            assert(!LCA_orig->dominates(pred_block) ||
594                   early->dominates(pred_block), "early is high enough");
595            must_raise_LCA = true;
596          }
597        }
598      }
599      assert(found_match, "no worklist bug");
600#ifdef TRACK_PHI_INPUTS
601#ifdef ASSERT
602      // This assert asks about correct handling of PhiNodes, which may not
603      // have all input edges directly from 'mem'. See BugId 4621264
604      int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
605      // Increment by exactly one even if there are multiple copies of 'mem'
606      // coming into the phi, because we will run this block several times
607      // if there are several copies of 'mem'.  (That's how DU iterators work.)
608      phi_inputs.at_put(store->_idx, num_mem_inputs);
609      assert(PhiNode::Input + num_mem_inputs < store->req(),
610             "Expect at least one phi input will not be from original memory state");
611#endif //ASSERT
612#endif //TRACK_PHI_INPUTS
613    } else if (store_block != early) {
614      // 'store' is between the current LCA and earliest possible block.
615      // Label its block, and decide later on how to raise the LCA
616      // to include the effect on LCA of this store.
617      // If this store's block gets chosen as the raised LCA, we
618      // will find him on the non_early_stores list and stick him
619      // with a precedence edge.
620      // (But, don't bother if LCA is already raised all the way.)
621      if (LCA != early) {
622        store_block->set_raise_LCA_mark(load_index);
623        must_raise_LCA = true;
624        non_early_stores.push(store);
625      }
626    } else {
627      // Found a possibly-interfering store in the load's 'early' block.
628      // This means 'load' cannot sink at all in the dominator tree.
629      // Add an anti-dep edge, and squeeze 'load' into the highest block.
630      assert(store != load->in(0), "dependence cycle found");
631      if (verify) {
632        assert(store->find_edge(load) != -1, "missing precedence edge");
633      } else {
634        store->add_prec(load);
635      }
636      LCA = early;
637      // This turns off the process of gathering non_early_stores.
638    }
639  }
640  // (Worklist is now empty; all nearby stores have been visited.)
641
642  // Finished if 'load' must be scheduled in its 'early' block.
643  // If we found any stores there, they have already been given
644  // precedence edges.
645  if (LCA == early)  return LCA;
646
647  // We get here only if there are no possibly-interfering stores
648  // in the load's 'early' block.  Move LCA up above all predecessors
649  // which contain stores we have noted.
650  //
651  // The raised LCA block can be a home to such interfering stores,
652  // but its predecessors must not contain any such stores.
653  //
654  // The raised LCA will be a lower bound for placing the load,
655  // preventing the load from sinking past any block containing
656  // a store that may invalidate the memory state required by 'load'.
657  if (must_raise_LCA)
658    LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
659  if (LCA == early)  return LCA;
660
661  // Insert anti-dependence edges from 'load' to each store
662  // in the non-early LCA block.
663  // Mine the non_early_stores list for such stores.
664  if (LCA->raise_LCA_mark() == load_index) {
665    while (non_early_stores.size() > 0) {
666      Node* store = non_early_stores.pop();
667      Block* store_block = _bbs[store->_idx];
668      if (store_block == LCA) {
669        // add anti_dependence from store to load in its own block
670        assert(store != load->in(0), "dependence cycle found");
671        if (verify) {
672          assert(store->find_edge(load) != -1, "missing precedence edge");
673        } else {
674          store->add_prec(load);
675        }
676      } else {
677        assert(store_block->raise_LCA_mark() == load_index, "block was marked");
678        // Any other stores we found must be either inside the new LCA
679        // or else outside the original LCA.  In the latter case, they
680        // did not interfere with any use of 'load'.
681        assert(LCA->dominates(store_block)
682               || !LCA_orig->dominates(store_block), "no stray stores");
683      }
684    }
685  }
686
687  // Return the highest block containing stores; any stores
688  // within that block have been given anti-dependence edges.
689  return LCA;
690}
691
692// This class is used to iterate backwards over the nodes in the graph.
693
694class Node_Backward_Iterator {
695
696private:
697  Node_Backward_Iterator();
698
699public:
700  // Constructor for the iterator
701  Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
702
703  // Postincrement operator to iterate over the nodes
704  Node *next();
705
706private:
707  VectorSet   &_visited;
708  Node_List   &_stack;
709  Block_Array &_bbs;
710};
711
712// Constructor for the Node_Backward_Iterator
713Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
714  : _visited(visited), _stack(stack), _bbs(bbs) {
715  // The stack should contain exactly the root
716  stack.clear();
717  stack.push(root);
718
719  // Clear the visited bits
720  visited.Clear();
721}
722
723// Iterator for the Node_Backward_Iterator
724Node *Node_Backward_Iterator::next() {
725
726  // If the _stack is empty, then just return NULL: finished.
727  if ( !_stack.size() )
728    return NULL;
729
730  // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
731  // made stateless, so I do not need to record the index 'i' on my _stack.
732  // Instead I visit all users each time, scanning for unvisited users.
733  // I visit unvisited not-anti-dependence users first, then anti-dependent
734  // children next.
735  Node *self = _stack.pop();
736
737  // I cycle here when I am entering a deeper level of recursion.
738  // The key variable 'self' was set prior to jumping here.
739  while( 1 ) {
740
741    _visited.set(self->_idx);
742
743    // Now schedule all uses as late as possible.
744    uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
745    uint src_rpo = _bbs[src]->_rpo;
746
747    // Schedule all nodes in a post-order visit
748    Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
749
750    // Scan for unvisited nodes
751    for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
752      // For all uses, schedule late
753      Node* n = self->fast_out(i); // Use
754
755      // Skip already visited children
756      if ( _visited.test(n->_idx) )
757        continue;
758
759      // do not traverse backward control edges
760      Node *use = n->is_Proj() ? n->in(0) : n;
761      uint use_rpo = _bbs[use->_idx]->_rpo;
762
763      if ( use_rpo < src_rpo )
764        continue;
765
766      // Phi nodes always precede uses in a basic block
767      if ( use_rpo == src_rpo && use->is_Phi() )
768        continue;
769
770      unvisited = n;      // Found unvisited
771
772      // Check for possible-anti-dependent
773      if( !n->needs_anti_dependence_check() )
774        break;            // Not visited, not anti-dep; schedule it NOW
775    }
776
777    // Did I find an unvisited not-anti-dependent Node?
778    if ( !unvisited )
779      break;                  // All done with children; post-visit 'self'
780
781    // Visit the unvisited Node.  Contains the obvious push to
782    // indicate I'm entering a deeper level of recursion.  I push the
783    // old state onto the _stack and set a new state and loop (recurse).
784    _stack.push(self);
785    self = unvisited;
786  } // End recursion loop
787
788  return self;
789}
790
791//------------------------------ComputeLatenciesBackwards----------------------
792// Compute the latency of all the instructions.
793void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
794#ifndef PRODUCT
795  if (trace_opto_pipelining())
796    tty->print("\n#---- ComputeLatenciesBackwards ----\n");
797#endif
798
799  Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
800  Node *n;
801
802  // Walk over all the nodes from last to first
803  while (n = iter.next()) {
804    // Set the latency for the definitions of this instruction
805    partial_latency_of_defs(n);
806  }
807} // end ComputeLatenciesBackwards
808
809//------------------------------partial_latency_of_defs------------------------
810// Compute the latency impact of this node on all defs.  This computes
811// a number that increases as we approach the beginning of the routine.
812void PhaseCFG::partial_latency_of_defs(Node *n) {
813  // Set the latency for this instruction
814#ifndef PRODUCT
815  if (trace_opto_pipelining()) {
816    tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
817               n->_idx, _node_latency.at_grow(n->_idx));
818    dump();
819  }
820#endif
821
822  if (n->is_Proj())
823    n = n->in(0);
824
825  if (n->is_Root())
826    return;
827
828  uint nlen = n->len();
829  uint use_latency = _node_latency.at_grow(n->_idx);
830  uint use_pre_order = _bbs[n->_idx]->_pre_order;
831
832  for ( uint j=0; j<nlen; j++ ) {
833    Node *def = n->in(j);
834
835    if (!def || def == n)
836      continue;
837
838    // Walk backwards thru projections
839    if (def->is_Proj())
840      def = def->in(0);
841
842#ifndef PRODUCT
843    if (trace_opto_pipelining()) {
844      tty->print("#    in(%2d): ", j);
845      def->dump();
846    }
847#endif
848
849    // If the defining block is not known, assume it is ok
850    Block *def_block = _bbs[def->_idx];
851    uint def_pre_order = def_block ? def_block->_pre_order : 0;
852
853    if ( (use_pre_order <  def_pre_order) ||
854         (use_pre_order == def_pre_order && n->is_Phi()) )
855      continue;
856
857    uint delta_latency = n->latency(j);
858    uint current_latency = delta_latency + use_latency;
859
860    if (_node_latency.at_grow(def->_idx) < current_latency) {
861      _node_latency.at_put_grow(def->_idx, current_latency);
862    }
863
864#ifndef PRODUCT
865    if (trace_opto_pipelining()) {
866      tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
867                    use_latency, j, delta_latency, current_latency, def->_idx,
868                    _node_latency.at_grow(def->_idx));
869    }
870#endif
871  }
872}
873
874//------------------------------latency_from_use-------------------------------
875// Compute the latency of a specific use
876int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
877  // If self-reference, return no latency
878  if (use == n || use->is_Root())
879    return 0;
880
881  uint def_pre_order = _bbs[def->_idx]->_pre_order;
882  uint latency = 0;
883
884  // If the use is not a projection, then it is simple...
885  if (!use->is_Proj()) {
886#ifndef PRODUCT
887    if (trace_opto_pipelining()) {
888      tty->print("#    out(): ");
889      use->dump();
890    }
891#endif
892
893    uint use_pre_order = _bbs[use->_idx]->_pre_order;
894
895    if (use_pre_order < def_pre_order)
896      return 0;
897
898    if (use_pre_order == def_pre_order && use->is_Phi())
899      return 0;
900
901    uint nlen = use->len();
902    uint nl = _node_latency.at_grow(use->_idx);
903
904    for ( uint j=0; j<nlen; j++ ) {
905      if (use->in(j) == n) {
906        // Change this if we want local latencies
907        uint ul = use->latency(j);
908        uint  l = ul + nl;
909        if (latency < l) latency = l;
910#ifndef PRODUCT
911        if (trace_opto_pipelining()) {
912          tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
913                        nl, j, ul, l, latency);
914        }
915#endif
916      }
917    }
918  } else {
919    // This is a projection, just grab the latency of the use(s)
920    for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
921      uint l = latency_from_use(use, def, use->fast_out(j));
922      if (latency < l) latency = l;
923    }
924  }
925
926  return latency;
927}
928
929//------------------------------latency_from_uses------------------------------
930// Compute the latency of this instruction relative to all of it's uses.
931// This computes a number that increases as we approach the beginning of the
932// routine.
933void PhaseCFG::latency_from_uses(Node *n) {
934  // Set the latency for this instruction
935#ifndef PRODUCT
936  if (trace_opto_pipelining()) {
937    tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
938               n->_idx, _node_latency.at_grow(n->_idx));
939    dump();
940  }
941#endif
942  uint latency=0;
943  const Node *def = n->is_Proj() ? n->in(0): n;
944
945  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
946    uint l = latency_from_use(n, def, n->fast_out(i));
947
948    if (latency < l) latency = l;
949  }
950
951  _node_latency.at_put_grow(n->_idx, latency);
952}
953
954//------------------------------hoist_to_cheaper_block-------------------------
955// Pick a block for node self, between early and LCA, that is a cheaper
956// alternative to LCA.
957Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
958  const double delta = 1+PROB_UNLIKELY_MAG(4);
959  Block* least       = LCA;
960  double least_freq  = least->_freq;
961  uint target        = _node_latency.at_grow(self->_idx);
962  uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
963  uint end_latency   = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
964  bool in_latency    = (target <= start_latency);
965  const Block* root_block = _bbs[_root->_idx];
966
967  // Turn off latency scheduling if scheduling is just plain off
968  if (!C->do_scheduling())
969    in_latency = true;
970
971  // Do not hoist (to cover latency) instructions which target a
972  // single register.  Hoisting stretches the live range of the
973  // single register and may force spilling.
974  MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
975  if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
976    in_latency = true;
977
978#ifndef PRODUCT
979  if (trace_opto_pipelining()) {
980    tty->print("# Find cheaper block for latency %d: ",
981      _node_latency.at_grow(self->_idx));
982    self->dump();
983    tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
984      LCA->_pre_order,
985      LCA->_nodes[0]->_idx,
986      start_latency,
987      LCA->_nodes[LCA->end_idx()]->_idx,
988      end_latency,
989      least_freq);
990  }
991#endif
992
993  // Walk up the dominator tree from LCA (Lowest common ancestor) to
994  // the earliest legal location.  Capture the least execution frequency.
995  while (LCA != early) {
996    LCA = LCA->_idom;         // Follow up the dominator tree
997
998    if (LCA == NULL) {
999      // Bailout without retry
1000      C->record_method_not_compilable("late schedule failed: LCA == NULL");
1001      return least;
1002    }
1003
1004    // Don't hoist machine instructions to the root basic block
1005    if (mach && LCA == root_block)
1006      break;
1007
1008    uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
1009    uint end_idx   = LCA->end_idx();
1010    uint end_lat   = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
1011    double LCA_freq = LCA->_freq;
1012#ifndef PRODUCT
1013    if (trace_opto_pipelining()) {
1014      tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1015        LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
1016    }
1017#endif
1018    if (LCA_freq < least_freq              || // Better Frequency
1019        ( !in_latency                   &&    // No block containing latency
1020          LCA_freq < least_freq * delta &&    // No worse frequency
1021          target >= end_lat             &&    // within latency range
1022          !self->is_iteratively_computed() )  // But don't hoist IV increments
1023             // because they may end up above other uses of their phi forcing
1024             // their result register to be different from their input.
1025       ) {
1026      least = LCA;            // Found cheaper block
1027      least_freq = LCA_freq;
1028      start_latency = start_lat;
1029      end_latency = end_lat;
1030      if (target <= start_lat)
1031        in_latency = true;
1032    }
1033  }
1034
1035#ifndef PRODUCT
1036  if (trace_opto_pipelining()) {
1037    tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1038      least->_pre_order, start_latency, least_freq);
1039  }
1040#endif
1041
1042  // See if the latency needs to be updated
1043  if (target < end_latency) {
1044#ifndef PRODUCT
1045    if (trace_opto_pipelining()) {
1046      tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1047    }
1048#endif
1049    _node_latency.at_put_grow(self->_idx, end_latency);
1050    partial_latency_of_defs(self);
1051  }
1052
1053  return least;
1054}
1055
1056
1057//------------------------------schedule_late-----------------------------------
1058// Now schedule all codes as LATE as possible.  This is the LCA in the
1059// dominator tree of all USES of a value.  Pick the block with the least
1060// loop nesting depth that is lowest in the dominator tree.
1061extern const char must_clone[];
1062void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1063#ifndef PRODUCT
1064  if (trace_opto_pipelining())
1065    tty->print("\n#---- schedule_late ----\n");
1066#endif
1067
1068  Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
1069  Node *self;
1070
1071  // Walk over all the nodes from last to first
1072  while (self = iter.next()) {
1073    Block* early = _bbs[self->_idx];   // Earliest legal placement
1074
1075    if (self->is_top()) {
1076      // Top node goes in bb #2 with other constants.
1077      // It must be special-cased, because it has no out edges.
1078      early->add_inst(self);
1079      continue;
1080    }
1081
1082    // No uses, just terminate
1083    if (self->outcnt() == 0) {
1084      assert(self->Opcode() == Op_MachProj, "sanity");
1085      continue;                   // Must be a dead machine projection
1086    }
1087
1088    // If node is pinned in the block, then no scheduling can be done.
1089    if( self->pinned() )          // Pinned in block?
1090      continue;
1091
1092    MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1093    if (mach) {
1094      switch (mach->ideal_Opcode()) {
1095      case Op_CreateEx:
1096        // Don't move exception creation
1097        early->add_inst(self);
1098        continue;
1099        break;
1100      case Op_CheckCastPP:
1101        // Don't move CheckCastPP nodes away from their input, if the input
1102        // is a rawptr (5071820).
1103        Node *def = self->in(1);
1104        if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1105          early->add_inst(self);
1106          continue;
1107        }
1108        break;
1109      }
1110    }
1111
1112    // Gather LCA of all uses
1113    Block *LCA = NULL;
1114    {
1115      for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1116        // For all uses, find LCA
1117        Node* use = self->fast_out(i);
1118        LCA = raise_LCA_above_use(LCA, use, self, _bbs);
1119      }
1120    }  // (Hide defs of imax, i from rest of block.)
1121
1122    // Place temps in the block of their use.  This isn't a
1123    // requirement for correctness but it reduces useless
1124    // interference between temps and other nodes.
1125    if (mach != NULL && mach->is_MachTemp()) {
1126      _bbs.map(self->_idx, LCA);
1127      LCA->add_inst(self);
1128      continue;
1129    }
1130
1131    // Check if 'self' could be anti-dependent on memory
1132    if (self->needs_anti_dependence_check()) {
1133      // Hoist LCA above possible-defs and insert anti-dependences to
1134      // defs in new LCA block.
1135      LCA = insert_anti_dependences(LCA, self);
1136    }
1137
1138    if (early->_dom_depth > LCA->_dom_depth) {
1139      // Somehow the LCA has moved above the earliest legal point.
1140      // (One way this can happen is via memory_early_block.)
1141      if (C->subsume_loads() == true && !C->failing()) {
1142        // Retry with subsume_loads == false
1143        // If this is the first failure, the sentinel string will "stick"
1144        // to the Compile object, and the C2Compiler will see it and retry.
1145        C->record_failure(C2Compiler::retry_no_subsuming_loads());
1146      } else {
1147        // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1148        C->record_method_not_compilable("late schedule failed: incorrect graph");
1149      }
1150      return;
1151    }
1152
1153    // If there is no opportunity to hoist, then we're done.
1154    bool try_to_hoist = (LCA != early);
1155
1156    // Must clone guys stay next to use; no hoisting allowed.
1157    // Also cannot hoist guys that alter memory or are otherwise not
1158    // allocatable (hoisting can make a value live longer, leading to
1159    // anti and output dependency problems which are normally resolved
1160    // by the register allocator giving everyone a different register).
1161    if (mach != NULL && must_clone[mach->ideal_Opcode()])
1162      try_to_hoist = false;
1163
1164    Block* late = NULL;
1165    if (try_to_hoist) {
1166      // Now find the block with the least execution frequency.
1167      // Start at the latest schedule and work up to the earliest schedule
1168      // in the dominator tree.  Thus the Node will dominate all its uses.
1169      late = hoist_to_cheaper_block(LCA, early, self);
1170    } else {
1171      // Just use the LCA of the uses.
1172      late = LCA;
1173    }
1174
1175    // Put the node into target block
1176    schedule_node_into_block(self, late);
1177
1178#ifdef ASSERT
1179    if (self->needs_anti_dependence_check()) {
1180      // since precedence edges are only inserted when we're sure they
1181      // are needed make sure that after placement in a block we don't
1182      // need any new precedence edges.
1183      verify_anti_dependences(late, self);
1184    }
1185#endif
1186  } // Loop until all nodes have been visited
1187
1188} // end ScheduleLate
1189
1190//------------------------------GlobalCodeMotion-------------------------------
1191void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1192  ResourceMark rm;
1193
1194#ifndef PRODUCT
1195  if (trace_opto_pipelining()) {
1196    tty->print("\n---- Start GlobalCodeMotion ----\n");
1197  }
1198#endif
1199
1200  // Initialize the bbs.map for things on the proj_list
1201  uint i;
1202  for( i=0; i < proj_list.size(); i++ )
1203    _bbs.map(proj_list[i]->_idx, NULL);
1204
1205  // Set the basic block for Nodes pinned into blocks
1206  Arena *a = Thread::current()->resource_area();
1207  VectorSet visited(a);
1208  schedule_pinned_nodes( visited );
1209
1210  // Find the earliest Block any instruction can be placed in.  Some
1211  // instructions are pinned into Blocks.  Unpinned instructions can
1212  // appear in last block in which all their inputs occur.
1213  visited.Clear();
1214  Node_List stack(a);
1215  stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1216  if (!schedule_early(visited, stack)) {
1217    // Bailout without retry
1218    C->record_method_not_compilable("early schedule failed");
1219    return;
1220  }
1221
1222  // Build Def-Use edges.
1223  proj_list.push(_root);        // Add real root as another root
1224  proj_list.pop();
1225
1226  // Compute the latency information (via backwards walk) for all the
1227  // instructions in the graph
1228  GrowableArray<uint> node_latency;
1229  _node_latency = node_latency;
1230
1231  if( C->do_scheduling() )
1232    ComputeLatenciesBackwards(visited, stack);
1233
1234  // Now schedule all codes as LATE as possible.  This is the LCA in the
1235  // dominator tree of all USES of a value.  Pick the block with the least
1236  // loop nesting depth that is lowest in the dominator tree.
1237  // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1238  schedule_late(visited, stack);
1239  if( C->failing() ) {
1240    // schedule_late fails only when graph is incorrect.
1241    assert(!VerifyGraphEdges, "verification should have failed");
1242    return;
1243  }
1244
1245  unique = C->unique();
1246
1247#ifndef PRODUCT
1248  if (trace_opto_pipelining()) {
1249    tty->print("\n---- Detect implicit null checks ----\n");
1250  }
1251#endif
1252
1253  // Detect implicit-null-check opportunities.  Basically, find NULL checks
1254  // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1255  // I can generate a memory op if there is not one nearby.
1256  if (C->is_method_compilation()) {
1257    // Don't do it for natives, adapters, or runtime stubs
1258    int allowed_reasons = 0;
1259    // ...and don't do it when there have been too many traps, globally.
1260    for (int reason = (int)Deoptimization::Reason_none+1;
1261         reason < Compile::trapHistLength; reason++) {
1262      assert(reason < BitsPerInt, "recode bit map");
1263      if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1264        allowed_reasons |= nth_bit(reason);
1265    }
1266    // By reversing the loop direction we get a very minor gain on mpegaudio.
1267    // Feel free to revert to a forward loop for clarity.
1268    // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1269    for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1270      Node *proj = matcher._null_check_tests[i  ];
1271      Node *val  = matcher._null_check_tests[i+1];
1272      _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
1273      // The implicit_null_check will only perform the transformation
1274      // if the null branch is truly uncommon, *and* it leads to an
1275      // uncommon trap.  Combined with the too_many_traps guards
1276      // above, this prevents SEGV storms reported in 6366351,
1277      // by recompiling offending methods without this optimization.
1278    }
1279  }
1280
1281#ifndef PRODUCT
1282  if (trace_opto_pipelining()) {
1283    tty->print("\n---- Start Local Scheduling ----\n");
1284  }
1285#endif
1286
1287  // Schedule locally.  Right now a simple topological sort.
1288  // Later, do a real latency aware scheduler.
1289  int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
1290  memset( ready_cnt, -1, C->unique() * sizeof(int) );
1291  visited.Clear();
1292  for (i = 0; i < _num_blocks; i++) {
1293    if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1294      if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1295        C->record_method_not_compilable("local schedule failed");
1296      }
1297      return;
1298    }
1299  }
1300
1301  // If we inserted any instructions between a Call and his CatchNode,
1302  // clone the instructions on all paths below the Catch.
1303  for( i=0; i < _num_blocks; i++ )
1304    _blocks[i]->call_catch_cleanup(_bbs);
1305
1306#ifndef PRODUCT
1307  if (trace_opto_pipelining()) {
1308    tty->print("\n---- After GlobalCodeMotion ----\n");
1309    for (uint i = 0; i < _num_blocks; i++) {
1310      _blocks[i]->dump();
1311    }
1312  }
1313#endif
1314}
1315
1316
1317//------------------------------Estimate_Block_Frequency-----------------------
1318// Estimate block frequencies based on IfNode probabilities.
1319void PhaseCFG::Estimate_Block_Frequency() {
1320  int cnts = C->method() ? C->method()->interpreter_invocation_count() : 1;
1321  // Most of our algorithms will die horribly if frequency can become
1322  // negative so make sure cnts is a sane value.
1323  if( cnts <= 0 ) cnts = 1;
1324  float f = (float)cnts/(float)FreqCountInvocations;
1325
1326  // Create the loop tree and calculate loop depth.
1327  _root_loop = create_loop_tree();
1328  _root_loop->compute_loop_depth(0);
1329
1330  // Compute block frequency of each block, relative to a single loop entry.
1331  _root_loop->compute_freq();
1332
1333  // Adjust all frequencies to be relative to a single method entry
1334  _root_loop->_freq = f * 1.0;
1335  _root_loop->scale_freq();
1336
1337  // force paths ending at uncommon traps to be infrequent
1338  Block_List worklist;
1339  Block* root_blk = _blocks[0];
1340  for (uint i = 0; i < root_blk->num_preds(); i++) {
1341    Block *pb = _bbs[root_blk->pred(i)->_idx];
1342    if (pb->has_uncommon_code()) {
1343      worklist.push(pb);
1344    }
1345  }
1346  while (worklist.size() > 0) {
1347    Block* uct = worklist.pop();
1348    uct->_freq = PROB_MIN;
1349    for (uint i = 0; i < uct->num_preds(); i++) {
1350      Block *pb = _bbs[uct->pred(i)->_idx];
1351      if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1352        worklist.push(pb);
1353      }
1354    }
1355  }
1356
1357#ifndef PRODUCT
1358  if (PrintCFGBlockFreq) {
1359    tty->print_cr("CFG Block Frequencies");
1360    _root_loop->dump_tree();
1361    if (Verbose) {
1362      tty->print_cr("PhaseCFG dump");
1363      dump();
1364      tty->print_cr("Node dump");
1365      _root->dump(99999);
1366    }
1367  }
1368#endif
1369}
1370
1371//----------------------------create_loop_tree--------------------------------
1372// Create a loop tree from the CFG
1373CFGLoop* PhaseCFG::create_loop_tree() {
1374
1375#ifdef ASSERT
1376  assert( _blocks[0] == _broot, "" );
1377  for (uint i = 0; i < _num_blocks; i++ ) {
1378    Block *b = _blocks[i];
1379    // Check that _loop field are clear...we could clear them if not.
1380    assert(b->_loop == NULL, "clear _loop expected");
1381    // Sanity check that the RPO numbering is reflected in the _blocks array.
1382    // It doesn't have to be for the loop tree to be built, but if it is not,
1383    // then the blocks have been reordered since dom graph building...which
1384    // may question the RPO numbering
1385    assert(b->_rpo == i, "unexpected reverse post order number");
1386  }
1387#endif
1388
1389  int idct = 0;
1390  CFGLoop* root_loop = new CFGLoop(idct++);
1391
1392  Block_List worklist;
1393
1394  // Assign blocks to loops
1395  for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1396    Block *b = _blocks[i];
1397
1398    if (b->head()->is_Loop()) {
1399      Block* loop_head = b;
1400      assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1401      Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1402      Block* tail = _bbs[tail_n->_idx];
1403
1404      // Defensively filter out Loop nodes for non-single-entry loops.
1405      // For all reasonable loops, the head occurs before the tail in RPO.
1406      if (i <= tail->_rpo) {
1407
1408        // The tail and (recursive) predecessors of the tail
1409        // are made members of a new loop.
1410
1411        assert(worklist.size() == 0, "nonempty worklist");
1412        CFGLoop* nloop = new CFGLoop(idct++);
1413        assert(loop_head->_loop == NULL, "just checking");
1414        loop_head->_loop = nloop;
1415        // Add to nloop so push_pred() will skip over inner loops
1416        nloop->add_member(loop_head);
1417        nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
1418
1419        while (worklist.size() > 0) {
1420          Block* member = worklist.pop();
1421          if (member != loop_head) {
1422            for (uint j = 1; j < member->num_preds(); j++) {
1423              nloop->push_pred(member, j, worklist, _bbs);
1424            }
1425          }
1426        }
1427      }
1428    }
1429  }
1430
1431  // Create a member list for each loop consisting
1432  // of both blocks and (immediate child) loops.
1433  for (uint i = 0; i < _num_blocks; i++) {
1434    Block *b = _blocks[i];
1435    CFGLoop* lp = b->_loop;
1436    if (lp == NULL) {
1437      // Not assigned to a loop. Add it to the method's pseudo loop.
1438      b->_loop = root_loop;
1439      lp = root_loop;
1440    }
1441    if (lp == root_loop || b != lp->head()) { // loop heads are already members
1442      lp->add_member(b);
1443    }
1444    if (lp != root_loop) {
1445      if (lp->parent() == NULL) {
1446        // Not a nested loop. Make it a child of the method's pseudo loop.
1447        root_loop->add_nested_loop(lp);
1448      }
1449      if (b == lp->head()) {
1450        // Add nested loop to member list of parent loop.
1451        lp->parent()->add_member(lp);
1452      }
1453    }
1454  }
1455
1456  return root_loop;
1457}
1458
1459//------------------------------push_pred--------------------------------------
1460void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
1461  Node* pred_n = blk->pred(i);
1462  Block* pred = node_to_blk[pred_n->_idx];
1463  CFGLoop *pred_loop = pred->_loop;
1464  if (pred_loop == NULL) {
1465    // Filter out blocks for non-single-entry loops.
1466    // For all reasonable loops, the head occurs before the tail in RPO.
1467    if (pred->_rpo > head()->_rpo) {
1468      pred->_loop = this;
1469      worklist.push(pred);
1470    }
1471  } else if (pred_loop != this) {
1472    // Nested loop.
1473    while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1474      pred_loop = pred_loop->_parent;
1475    }
1476    // Make pred's loop be a child
1477    if (pred_loop->_parent == NULL) {
1478      add_nested_loop(pred_loop);
1479      // Continue with loop entry predecessor.
1480      Block* pred_head = pred_loop->head();
1481      assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1482      assert(pred_head != head(), "loop head in only one loop");
1483      push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
1484    } else {
1485      assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1486    }
1487  }
1488}
1489
1490//------------------------------add_nested_loop--------------------------------
1491// Make cl a child of the current loop in the loop tree.
1492void CFGLoop::add_nested_loop(CFGLoop* cl) {
1493  assert(_parent == NULL, "no parent yet");
1494  assert(cl != this, "not my own parent");
1495  cl->_parent = this;
1496  CFGLoop* ch = _child;
1497  if (ch == NULL) {
1498    _child = cl;
1499  } else {
1500    while (ch->_sibling != NULL) { ch = ch->_sibling; }
1501    ch->_sibling = cl;
1502  }
1503}
1504
1505//------------------------------compute_loop_depth-----------------------------
1506// Store the loop depth in each CFGLoop object.
1507// Recursively walk the children to do the same for them.
1508void CFGLoop::compute_loop_depth(int depth) {
1509  _depth = depth;
1510  CFGLoop* ch = _child;
1511  while (ch != NULL) {
1512    ch->compute_loop_depth(depth + 1);
1513    ch = ch->_sibling;
1514  }
1515}
1516
1517//------------------------------compute_freq-----------------------------------
1518// Compute the frequency of each block and loop, relative to a single entry
1519// into the dominating loop head.
1520void CFGLoop::compute_freq() {
1521  // Bottom up traversal of loop tree (visit inner loops first.)
1522  // Set loop head frequency to 1.0, then transitively
1523  // compute frequency for all successors in the loop,
1524  // as well as for each exit edge.  Inner loops are
1525  // treated as single blocks with loop exit targets
1526  // as the successor blocks.
1527
1528  // Nested loops first
1529  CFGLoop* ch = _child;
1530  while (ch != NULL) {
1531    ch->compute_freq();
1532    ch = ch->_sibling;
1533  }
1534  assert (_members.length() > 0, "no empty loops");
1535  Block* hd = head();
1536  hd->_freq = 1.0f;
1537  for (int i = 0; i < _members.length(); i++) {
1538    CFGElement* s = _members.at(i);
1539    float freq = s->_freq;
1540    if (s->is_block()) {
1541      Block* b = s->as_Block();
1542      for (uint j = 0; j < b->_num_succs; j++) {
1543        Block* sb = b->_succs[j];
1544        update_succ_freq(sb, freq * b->succ_prob(j));
1545      }
1546    } else {
1547      CFGLoop* lp = s->as_CFGLoop();
1548      assert(lp->_parent == this, "immediate child");
1549      for (int k = 0; k < lp->_exits.length(); k++) {
1550        Block* eb = lp->_exits.at(k).get_target();
1551        float prob = lp->_exits.at(k).get_prob();
1552        update_succ_freq(eb, freq * prob);
1553      }
1554    }
1555  }
1556
1557#if 0
1558  // Raise frequency of the loop backedge block, in an effort
1559  // to keep it empty.  Skip the method level "loop".
1560  if (_parent != NULL) {
1561    CFGElement* s = _members.at(_members.length() - 1);
1562    if (s->is_block()) {
1563      Block* bk = s->as_Block();
1564      if (bk->_num_succs == 1 && bk->_succs[0] == hd) {
1565        // almost any value >= 1.0f works
1566        // FIXME: raw constant
1567        bk->_freq = 1.05f;
1568      }
1569    }
1570  }
1571#endif
1572
1573  // For all loops other than the outer, "method" loop,
1574  // sum and normalize the exit probability. The "method" loop
1575  // should keep the initial exit probability of 1, so that
1576  // inner blocks do not get erroneously scaled.
1577  if (_depth != 0) {
1578    // Total the exit probabilities for this loop.
1579    float exits_sum = 0.0f;
1580    for (int i = 0; i < _exits.length(); i++) {
1581      exits_sum += _exits.at(i).get_prob();
1582    }
1583
1584    // Normalize the exit probabilities. Until now, the
1585    // probabilities estimate the possibility of exit per
1586    // a single loop iteration; afterward, they estimate
1587    // the probability of exit per loop entry.
1588    for (int i = 0; i < _exits.length(); i++) {
1589      Block* et = _exits.at(i).get_target();
1590      float new_prob = _exits.at(i).get_prob() / exits_sum;
1591      BlockProbPair bpp(et, new_prob);
1592      _exits.at_put(i, bpp);
1593    }
1594
1595    // Save the total, but guard against unreasoable probability,
1596    // as the value is used to estimate the loop trip count.
1597    // An infinite trip count would blur relative block
1598    // frequencies.
1599    if (exits_sum > 1.0f) exits_sum = 1.0;
1600    if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1601    _exit_prob = exits_sum;
1602  }
1603}
1604
1605//------------------------------succ_prob-------------------------------------
1606// Determine the probability of reaching successor 'i' from the receiver block.
1607float Block::succ_prob(uint i) {
1608  int eidx = end_idx();
1609  Node *n = _nodes[eidx];  // Get ending Node
1610  int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
1611
1612  // Switch on branch type
1613  switch( op ) {
1614  case Op_CountedLoopEnd:
1615  case Op_If: {
1616    assert (i < 2, "just checking");
1617    // Conditionals pass on only part of their frequency
1618    float prob  = n->as_MachIf()->_prob;
1619    assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1620    // If succ[i] is the FALSE branch, invert path info
1621    if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
1622      return 1.0f - prob; // not taken
1623    } else {
1624      return prob; // taken
1625    }
1626  }
1627
1628  case Op_Jump:
1629    // Divide the frequency between all successors evenly
1630    return 1.0f/_num_succs;
1631
1632  case Op_Catch: {
1633    const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1634    if (ci->_con == CatchProjNode::fall_through_index) {
1635      // Fall-thru path gets the lion's share.
1636      return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1637    } else {
1638      // Presume exceptional paths are equally unlikely
1639      return PROB_UNLIKELY_MAG(5);
1640    }
1641  }
1642
1643  case Op_Root:
1644  case Op_Goto:
1645    // Pass frequency straight thru to target
1646    return 1.0f;
1647
1648  case Op_NeverBranch:
1649    return 0.0f;
1650
1651  case Op_TailCall:
1652  case Op_TailJump:
1653  case Op_Return:
1654  case Op_Halt:
1655  case Op_Rethrow:
1656    // Do not push out freq to root block
1657    return 0.0f;
1658
1659  default:
1660    ShouldNotReachHere();
1661  }
1662
1663  return 0.0f;
1664}
1665
1666//------------------------------update_succ_freq-------------------------------
1667// Update the appropriate frequency associated with block 'b', a succesor of
1668// a block in this loop.
1669void CFGLoop::update_succ_freq(Block* b, float freq) {
1670  if (b->_loop == this) {
1671    if (b == head()) {
1672      // back branch within the loop
1673      // Do nothing now, the loop carried frequency will be
1674      // adjust later in scale_freq().
1675    } else {
1676      // simple branch within the loop
1677      b->_freq += freq;
1678    }
1679  } else if (!in_loop_nest(b)) {
1680    // branch is exit from this loop
1681    BlockProbPair bpp(b, freq);
1682    _exits.append(bpp);
1683  } else {
1684    // branch into nested loop
1685    CFGLoop* ch = b->_loop;
1686    ch->_freq += freq;
1687  }
1688}
1689
1690//------------------------------in_loop_nest-----------------------------------
1691// Determine if block b is in the receiver's loop nest.
1692bool CFGLoop::in_loop_nest(Block* b) {
1693  int depth = _depth;
1694  CFGLoop* b_loop = b->_loop;
1695  int b_depth = b_loop->_depth;
1696  if (depth == b_depth) {
1697    return true;
1698  }
1699  while (b_depth > depth) {
1700    b_loop = b_loop->_parent;
1701    b_depth = b_loop->_depth;
1702  }
1703  return b_loop == this;
1704}
1705
1706//------------------------------scale_freq-------------------------------------
1707// Scale frequency of loops and blocks by trip counts from outer loops
1708// Do a top down traversal of loop tree (visit outer loops first.)
1709void CFGLoop::scale_freq() {
1710  float loop_freq = _freq * trip_count();
1711  for (int i = 0; i < _members.length(); i++) {
1712    CFGElement* s = _members.at(i);
1713    s->_freq *= loop_freq;
1714  }
1715  CFGLoop* ch = _child;
1716  while (ch != NULL) {
1717    ch->scale_freq();
1718    ch = ch->_sibling;
1719  }
1720}
1721
1722#ifndef PRODUCT
1723//------------------------------dump_tree--------------------------------------
1724void CFGLoop::dump_tree() const {
1725  dump();
1726  if (_child != NULL)   _child->dump_tree();
1727  if (_sibling != NULL) _sibling->dump_tree();
1728}
1729
1730//------------------------------dump-------------------------------------------
1731void CFGLoop::dump() const {
1732  for (int i = 0; i < _depth; i++) tty->print("   ");
1733  tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
1734             _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
1735  for (int i = 0; i < _depth; i++) tty->print("   ");
1736  tty->print("         members:", _id);
1737  int k = 0;
1738  for (int i = 0; i < _members.length(); i++) {
1739    if (k++ >= 6) {
1740      tty->print("\n              ");
1741      for (int j = 0; j < _depth+1; j++) tty->print("   ");
1742      k = 0;
1743    }
1744    CFGElement *s = _members.at(i);
1745    if (s->is_block()) {
1746      Block *b = s->as_Block();
1747      tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
1748    } else {
1749      CFGLoop* lp = s->as_CFGLoop();
1750      tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
1751    }
1752  }
1753  tty->print("\n");
1754  for (int i = 0; i < _depth; i++) tty->print("   ");
1755  tty->print("         exits:  ");
1756  k = 0;
1757  for (int i = 0; i < _exits.length(); i++) {
1758    if (k++ >= 7) {
1759      tty->print("\n              ");
1760      for (int j = 0; j < _depth+1; j++) tty->print("   ");
1761      k = 0;
1762    }
1763    Block *blk = _exits.at(i).get_target();
1764    float prob = _exits.at(i).get_prob();
1765    tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
1766  }
1767  tty->print("\n");
1768}
1769#endif
1770