gcm.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_gcm.cpp.incl"
31
32//----------------------------schedule_node_into_block-------------------------
33// Insert node n into block b. Look for projections of n and make sure they
34// are in b also.
35void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
36  // Set basic block of n, Add n to b,
37  _bbs.map(n->_idx, b);
38  b->add_inst(n);
39
40  // After Matching, nearly any old Node may have projections trailing it.
41  // These are usually machine-dependent flags.  In any case, they might
42  // float to another block below this one.  Move them up.
43  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
44    Node*  use  = n->fast_out(i);
45    if (use->is_Proj()) {
46      Block* buse = _bbs[use->_idx];
47      if (buse != b) {              // In wrong block?
48        if (buse != NULL)
49          buse->find_remove(use);   // Remove from wrong block
50        _bbs.map(use->_idx, b);     // Re-insert in this block
51        b->add_inst(use);
52      }
53    }
54  }
55}
56
57
58//------------------------------schedule_pinned_nodes--------------------------
59// Set the basic block for Nodes pinned into blocks
60void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
61  // Allocate node stack of size C->unique()+8 to avoid frequent realloc
62  GrowableArray <Node *> spstack(C->unique()+8);
63  spstack.push(_root);
64  while ( spstack.is_nonempty() ) {
65    Node *n = spstack.pop();
66    if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
67      if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
68        Node *input = n->in(0);
69        assert( input, "pinned Node must have Control" );
70        while( !input->is_block_start() )
71          input = input->in(0);
72        Block *b = _bbs[input->_idx];  // Basic block of controlling input
73        schedule_node_into_block(n, b);
74      }
75      for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
76        if( n->in(i) != NULL )
77          spstack.push(n->in(i));
78      }
79    }
80  }
81}
82
83#ifdef ASSERT
84// Assert that new input b2 is dominated by all previous inputs.
85// Check this by by seeing that it is dominated by b1, the deepest
86// input observed until b2.
87static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
88  if (b1 == NULL)  return;
89  assert(b1->_dom_depth < b2->_dom_depth, "sanity");
90  Block* tmp = b2;
91  while (tmp != b1 && tmp != NULL) {
92    tmp = tmp->_idom;
93  }
94  if (tmp != b1) {
95    // Detected an unschedulable graph.  Print some nice stuff and die.
96    tty->print_cr("!!! Unschedulable graph !!!");
97    for (uint j=0; j<n->len(); j++) { // For all inputs
98      Node* inn = n->in(j); // Get input
99      if (inn == NULL)  continue;  // Ignore NULL, missing inputs
100      Block* inb = bbs[inn->_idx];
101      tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
102                 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
103      inn->dump();
104    }
105    tty->print("Failing node: ");
106    n->dump();
107    assert(false, "unscheduable graph");
108  }
109}
110#endif
111
112static Block* find_deepest_input(Node* n, Block_Array &bbs) {
113  // Find the last input dominated by all other inputs.
114  Block* deepb           = NULL;        // Deepest block so far
115  int    deepb_dom_depth = 0;
116  for (uint k = 0; k < n->len(); k++) { // For all inputs
117    Node* inn = n->in(k);               // Get input
118    if (inn == NULL)  continue;         // Ignore NULL, missing inputs
119    Block* inb = bbs[inn->_idx];
120    assert(inb != NULL, "must already have scheduled this input");
121    if (deepb_dom_depth < (int) inb->_dom_depth) {
122      // The new inb must be dominated by the previous deepb.
123      // The various inputs must be linearly ordered in the dom
124      // tree, or else there will not be a unique deepest block.
125      DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
126      deepb = inb;                      // Save deepest block
127      deepb_dom_depth = deepb->_dom_depth;
128    }
129  }
130  assert(deepb != NULL, "must be at least one input to n");
131  return deepb;
132}
133
134
135//------------------------------schedule_early---------------------------------
136// Find the earliest Block any instruction can be placed in.  Some instructions
137// are pinned into Blocks.  Unpinned instructions can appear in last block in
138// which all their inputs occur.
139bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
140  // Allocate stack with enough space to avoid frequent realloc
141  Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
142  // roots.push(_root); _root will be processed among C->top() inputs
143  roots.push(C->top());
144  visited.set(C->top()->_idx);
145
146  while (roots.size() != 0) {
147    // Use local variables nstack_top_n & nstack_top_i to cache values
148    // on stack's top.
149    Node *nstack_top_n = roots.pop();
150    uint  nstack_top_i = 0;
151//while_nstack_nonempty:
152    while (true) {
153      // Get parent node and next input's index from stack's top.
154      Node *n = nstack_top_n;
155      uint  i = nstack_top_i;
156
157      if (i == 0) {
158        // Special control input processing.
159        // While I am here, go ahead and look for Nodes which are taking control
160        // from a is_block_proj Node.  After I inserted RegionNodes to make proper
161        // blocks, the control at a is_block_proj more properly comes from the
162        // Region being controlled by the block_proj Node.
163        const Node *in0 = n->in(0);
164        if (in0 != NULL) {              // Control-dependent?
165          const Node *p = in0->is_block_proj();
166          if (p != NULL && p != n) {    // Control from a block projection?
167            // Find trailing Region
168            Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
169            uint j = 0;
170            if (pb->_num_succs != 1) {  // More then 1 successor?
171              // Search for successor
172              uint max = pb->_nodes.size();
173              assert( max > 1, "" );
174              uint start = max - pb->_num_succs;
175              // Find which output path belongs to projection
176              for (j = start; j < max; j++) {
177                if( pb->_nodes[j] == in0 )
178                  break;
179              }
180              assert( j < max, "must find" );
181              // Change control to match head of successor basic block
182              j -= start;
183            }
184            n->set_req(0, pb->_succs[j]->head());
185          }
186        } else {               // n->in(0) == NULL
187          if (n->req() == 1) { // This guy is a constant with NO inputs?
188            n->set_req(0, _root);
189          }
190        }
191      }
192
193      // First, visit all inputs and force them to get a block.  If an
194      // input is already in a block we quit following inputs (to avoid
195      // cycles). Instead we put that Node on a worklist to be handled
196      // later (since IT'S inputs may not have a block yet).
197      bool done = true;              // Assume all n's inputs will be processed
198      while (i < n->len()) {         // For all inputs
199        Node *in = n->in(i);         // Get input
200        ++i;
201        if (in == NULL) continue;    // Ignore NULL, missing inputs
202        int is_visited = visited.test_set(in->_idx);
203        if (!_bbs.lookup(in->_idx)) { // Missing block selection?
204          if (is_visited) {
205            // assert( !visited.test(in->_idx), "did not schedule early" );
206            return false;
207          }
208          nstack.push(n, i);         // Save parent node and next input's index.
209          nstack_top_n = in;         // Process current input now.
210          nstack_top_i = 0;
211          done = false;              // Not all n's inputs processed.
212          break; // continue while_nstack_nonempty;
213        } else if (!is_visited) {    // Input not yet visited?
214          roots.push(in);            // Visit this guy later, using worklist
215        }
216      }
217      if (done) {
218        // All of n's inputs have been processed, complete post-processing.
219
220        // Some instructions are pinned into a block.  These include Region,
221        // Phi, Start, Return, and other control-dependent instructions and
222        // any projections which depend on them.
223        if (!n->pinned()) {
224          // Set earliest legal block.
225          _bbs.map(n->_idx, find_deepest_input(n, _bbs));
226        }
227
228        if (nstack.is_empty()) {
229          // Finished all nodes on stack.
230          // Process next node on the worklist 'roots'.
231          break;
232        }
233        // Get saved parent node and next input's index.
234        nstack_top_n = nstack.node();
235        nstack_top_i = nstack.index();
236        nstack.pop();
237      } //    if (done)
238    }   // while (true)
239  }     // while (roots.size() != 0)
240  return true;
241}
242
243//------------------------------dom_lca----------------------------------------
244// Find least common ancestor in dominator tree
245// LCA is a current notion of LCA, to be raised above 'this'.
246// As a convenient boundary condition, return 'this' if LCA is NULL.
247// Find the LCA of those two nodes.
248Block* Block::dom_lca(Block* LCA) {
249  if (LCA == NULL || LCA == this)  return this;
250
251  Block* anc = this;
252  while (anc->_dom_depth > LCA->_dom_depth)
253    anc = anc->_idom;           // Walk up till anc is as high as LCA
254
255  while (LCA->_dom_depth > anc->_dom_depth)
256    LCA = LCA->_idom;           // Walk up till LCA is as high as anc
257
258  while (LCA != anc) {          // Walk both up till they are the same
259    LCA = LCA->_idom;
260    anc = anc->_idom;
261  }
262
263  return LCA;
264}
265
266//--------------------------raise_LCA_above_use--------------------------------
267// We are placing a definition, and have been given a def->use edge.
268// The definition must dominate the use, so move the LCA upward in the
269// dominator tree to dominate the use.  If the use is a phi, adjust
270// the LCA only with the phi input paths which actually use this def.
271static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
272  Block* buse = bbs[use->_idx];
273  if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
274  if (!use->is_Phi())  return buse->dom_lca(LCA);
275  uint pmax = use->req();       // Number of Phi inputs
276  // Why does not this loop just break after finding the matching input to
277  // the Phi?  Well...it's like this.  I do not have true def-use/use-def
278  // chains.  Means I cannot distinguish, from the def-use direction, which
279  // of many use-defs lead from the same use to the same def.  That is, this
280  // Phi might have several uses of the same def.  Each use appears in a
281  // different predecessor block.  But when I enter here, I cannot distinguish
282  // which use-def edge I should find the predecessor block for.  So I find
283  // them all.  Means I do a little extra work if a Phi uses the same value
284  // more than once.
285  for (uint j=1; j<pmax; j++) { // For all inputs
286    if (use->in(j) == def) {    // Found matching input?
287      Block* pred = bbs[buse->pred(j)->_idx];
288      LCA = pred->dom_lca(LCA);
289    }
290  }
291  return LCA;
292}
293
294//----------------------------raise_LCA_above_marks----------------------------
295// Return a new LCA that dominates LCA and any of its marked predecessors.
296// Search all my parents up to 'early' (exclusive), looking for predecessors
297// which are marked with the given index.  Return the LCA (in the dom tree)
298// of all marked blocks.  If there are none marked, return the original
299// LCA.
300static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
301                                    Block* early, Block_Array &bbs) {
302  Block_List worklist;
303  worklist.push(LCA);
304  while (worklist.size() > 0) {
305    Block* mid = worklist.pop();
306    if (mid == early)  continue;  // stop searching here
307
308    // Test and set the visited bit.
309    if (mid->raise_LCA_visited() == mark)  continue;  // already visited
310    mid->set_raise_LCA_visited(mark);
311
312    // Don't process the current LCA, otherwise the search may terminate early
313    if (mid != LCA && mid->raise_LCA_mark() == mark) {
314      // Raise the LCA.
315      LCA = mid->dom_lca(LCA);
316      if (LCA == early)  break;   // stop searching everywhere
317      assert(early->dominates(LCA), "early is high enough");
318      // Resume searching at that point, skipping intermediate levels.
319      worklist.push(LCA);
320    } else {
321      // Keep searching through this block's predecessors.
322      for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
323        Block* mid_parent = bbs[ mid->pred(j)->_idx ];
324        worklist.push(mid_parent);
325      }
326    }
327  }
328  return LCA;
329}
330
331//--------------------------memory_early_block--------------------------------
332// This is a variation of find_deepest_input, the heart of schedule_early.
333// Find the "early" block for a load, if we considered only memory and
334// address inputs, that is, if other data inputs were ignored.
335//
336// Because a subset of edges are considered, the resulting block will
337// be earlier (at a shallower dom_depth) than the true schedule_early
338// point of the node. We compute this earlier block as a more permissive
339// site for anti-dependency insertion, but only if subsume_loads is enabled.
340static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
341  Node* base;
342  Node* index;
343  Node* store = load->in(MemNode::Memory);
344  load->as_Mach()->memory_inputs(base, index);
345
346  assert(base != NodeSentinel && index != NodeSentinel,
347         "unexpected base/index inputs");
348
349  Node* mem_inputs[4];
350  int mem_inputs_length = 0;
351  if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
352  if (index != NULL) mem_inputs[mem_inputs_length++] = index;
353  if (store != NULL) mem_inputs[mem_inputs_length++] = store;
354
355  // In the comparision below, add one to account for the control input,
356  // which may be null, but always takes up a spot in the in array.
357  if (mem_inputs_length + 1 < (int) load->req()) {
358    // This "load" has more inputs than just the memory, base and index inputs.
359    // For purposes of checking anti-dependences, we need to start
360    // from the early block of only the address portion of the instruction,
361    // and ignore other blocks that may have factored into the wider
362    // schedule_early calculation.
363    if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
364
365    Block* deepb           = NULL;        // Deepest block so far
366    int    deepb_dom_depth = 0;
367    for (int i = 0; i < mem_inputs_length; i++) {
368      Block* inb = bbs[mem_inputs[i]->_idx];
369      if (deepb_dom_depth < (int) inb->_dom_depth) {
370        // The new inb must be dominated by the previous deepb.
371        // The various inputs must be linearly ordered in the dom
372        // tree, or else there will not be a unique deepest block.
373        DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
374        deepb = inb;                      // Save deepest block
375        deepb_dom_depth = deepb->_dom_depth;
376      }
377    }
378    early = deepb;
379  }
380
381  return early;
382}
383
384//--------------------------insert_anti_dependences---------------------------
385// A load may need to witness memory that nearby stores can overwrite.
386// For each nearby store, either insert an "anti-dependence" edge
387// from the load to the store, or else move LCA upward to force the
388// load to (eventually) be scheduled in a block above the store.
389//
390// Do not add edges to stores on distinct control-flow paths;
391// only add edges to stores which might interfere.
392//
393// Return the (updated) LCA.  There will not be any possibly interfering
394// store between the load's "early block" and the updated LCA.
395// Any stores in the updated LCA will have new precedence edges
396// back to the load.  The caller is expected to schedule the load
397// in the LCA, in which case the precedence edges will make LCM
398// preserve anti-dependences.  The caller may also hoist the load
399// above the LCA, if it is not the early block.
400Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
401  assert(load->needs_anti_dependence_check(), "must be a load of some sort");
402  assert(LCA != NULL, "");
403  DEBUG_ONLY(Block* LCA_orig = LCA);
404
405  // Compute the alias index.  Loads and stores with different alias indices
406  // do not need anti-dependence edges.
407  uint load_alias_idx = C->get_alias_index(load->adr_type());
408#ifdef ASSERT
409  if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
410      (PrintOpto || VerifyAliases ||
411       PrintMiscellaneous && (WizardMode || Verbose))) {
412    // Load nodes should not consume all of memory.
413    // Reporting a bottom type indicates a bug in adlc.
414    // If some particular type of node validly consumes all of memory,
415    // sharpen the preceding "if" to exclude it, so we can catch bugs here.
416    tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
417    load->dump(2);
418    if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
419  }
420#endif
421  assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
422         "String compare is only known 'load' that does not conflict with any stores");
423
424  if (!C->alias_type(load_alias_idx)->is_rewritable()) {
425    // It is impossible to spoil this load by putting stores before it,
426    // because we know that the stores will never update the value
427    // which 'load' must witness.
428    return LCA;
429  }
430
431  node_idx_t load_index = load->_idx;
432
433  // Note the earliest legal placement of 'load', as determined by
434  // by the unique point in the dom tree where all memory effects
435  // and other inputs are first available.  (Computed by schedule_early.)
436  // For normal loads, 'early' is the shallowest place (dom graph wise)
437  // to look for anti-deps between this load and any store.
438  Block* early = _bbs[load_index];
439
440  // If we are subsuming loads, compute an "early" block that only considers
441  // memory or address inputs. This block may be different than the
442  // schedule_early block in that it could be at an even shallower depth in the
443  // dominator tree, and allow for a broader discovery of anti-dependences.
444  if (C->subsume_loads()) {
445    early = memory_early_block(load, early, _bbs);
446  }
447
448  ResourceArea *area = Thread::current()->resource_area();
449  Node_List worklist_mem(area);     // prior memory state to store
450  Node_List worklist_store(area);   // possible-def to explore
451  Node_List non_early_stores(area); // all relevant stores outside of early
452  bool must_raise_LCA = false;
453  DEBUG_ONLY(VectorSet should_not_repeat(area));
454
455#ifdef TRACK_PHI_INPUTS
456  // %%% This extra checking fails because MergeMem nodes are not GVNed.
457  // Provide "phi_inputs" to check if every input to a PhiNode is from the
458  // original memory state.  This indicates a PhiNode for which should not
459  // prevent the load from sinking.  For such a block, set_raise_LCA_mark
460  // may be overly conservative.
461  // Mechanism: count inputs seen for each Phi encountered in worklist_store.
462  DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
463#endif
464
465  // 'load' uses some memory state; look for users of the same state.
466  // Recurse through MergeMem nodes to the stores that use them.
467
468  // Each of these stores is a possible definition of memory
469  // that 'load' needs to use.  We need to force 'load'
470  // to occur before each such store.  When the store is in
471  // the same block as 'load', we insert an anti-dependence
472  // edge load->store.
473
474  // The relevant stores "nearby" the load consist of a tree rooted
475  // at initial_mem, with internal nodes of type MergeMem.
476  // Therefore, the branches visited by the worklist are of this form:
477  //    initial_mem -> (MergeMem ->)* store
478  // The anti-dependence constraints apply only to the fringe of this tree.
479
480  Node* initial_mem = load->in(MemNode::Memory);
481  worklist_store.push(initial_mem);
482  worklist_mem.push(NULL);
483  DEBUG_ONLY(should_not_repeat.test_set(initial_mem->_idx));
484  while (worklist_store.size() > 0) {
485    // Examine a nearby store to see if it might interfere with our load.
486    Node* mem   = worklist_mem.pop();
487    Node* store = worklist_store.pop();
488    uint op = store->Opcode();
489
490    // MergeMems do not directly have anti-deps.
491    // Treat them as internal nodes in a forward tree of memory states,
492    // the leaves of which are each a 'possible-def'.
493    if (store == initial_mem    // root (exclusive) of tree we are searching
494        || op == Op_MergeMem    // internal node of tree we are searching
495        ) {
496      mem = store;   // It's not a possibly interfering store.
497      for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
498        store = mem->fast_out(i);
499        if (store->is_MergeMem()) {
500          // Be sure we don't get into combinatorial problems.
501          // (Allow phis to be repeated; they can merge two relevant states.)
502          uint i = worklist_store.size();
503          for (; i > 0; i--) {
504            if (worklist_store.at(i-1) == store)  break;
505          }
506          if (i > 0)  continue; // already on work list; do not repeat
507          DEBUG_ONLY(int repeated = should_not_repeat.test_set(store->_idx));
508          assert(!repeated, "do not walk merges twice");
509        }
510        worklist_mem.push(mem);
511        worklist_store.push(store);
512      }
513      continue;
514    }
515
516    if (op == Op_MachProj || op == Op_Catch)   continue;
517    if (store->needs_anti_dependence_check())  continue;  // not really a store
518
519    // Compute the alias index.  Loads and stores with different alias
520    // indices do not need anti-dependence edges.  Wide MemBar's are
521    // anti-dependent on everything (except immutable memories).
522    const TypePtr* adr_type = store->adr_type();
523    if (!C->can_alias(adr_type, load_alias_idx))  continue;
524
525    // Most slow-path runtime calls do NOT modify Java memory, but
526    // they can block and so write Raw memory.
527    if (store->is_Mach()) {
528      MachNode* mstore = store->as_Mach();
529      if (load_alias_idx != Compile::AliasIdxRaw) {
530        // Check for call into the runtime using the Java calling
531        // convention (and from there into a wrapper); it has no
532        // _method.  Can't do this optimization for Native calls because
533        // they CAN write to Java memory.
534        if (mstore->ideal_Opcode() == Op_CallStaticJava) {
535          assert(mstore->is_MachSafePoint(), "");
536          MachSafePointNode* ms = (MachSafePointNode*) mstore;
537          assert(ms->is_MachCallJava(), "");
538          MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
539          if (mcj->_method == NULL) {
540            // These runtime calls do not write to Java visible memory
541            // (other than Raw) and so do not require anti-dependence edges.
542            continue;
543          }
544        }
545        // Same for SafePoints: they read/write Raw but only read otherwise.
546        // This is basically a workaround for SafePoints only defining control
547        // instead of control + memory.
548        if (mstore->ideal_Opcode() == Op_SafePoint)
549          continue;
550      } else {
551        // Some raw memory, such as the load of "top" at an allocation,
552        // can be control dependent on the previous safepoint. See
553        // comments in GraphKit::allocate_heap() about control input.
554        // Inserting an anti-dep between such a safepoint and a use
555        // creates a cycle, and will cause a subsequent failure in
556        // local scheduling.  (BugId 4919904)
557        // (%%% How can a control input be a safepoint and not a projection??)
558        if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
559          continue;
560      }
561    }
562
563    // Identify a block that the current load must be above,
564    // or else observe that 'store' is all the way up in the
565    // earliest legal block for 'load'.  In the latter case,
566    // immediately insert an anti-dependence edge.
567    Block* store_block = _bbs[store->_idx];
568    assert(store_block != NULL, "unused killing projections skipped above");
569
570    if (store->is_Phi()) {
571      // 'load' uses memory which is one (or more) of the Phi's inputs.
572      // It must be scheduled not before the Phi, but rather before
573      // each of the relevant Phi inputs.
574      //
575      // Instead of finding the LCA of all inputs to a Phi that match 'mem',
576      // we mark each corresponding predecessor block and do a combined
577      // hoisting operation later (raise_LCA_above_marks).
578      //
579      // Do not assert(store_block != early, "Phi merging memory after access")
580      // PhiNode may be at start of block 'early' with backedge to 'early'
581      DEBUG_ONLY(bool found_match = false);
582      for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
583        if (store->in(j) == mem) {   // Found matching input?
584          DEBUG_ONLY(found_match = true);
585          Block* pred_block = _bbs[store_block->pred(j)->_idx];
586          if (pred_block != early) {
587            // If any predecessor of the Phi matches the load's "early block",
588            // we do not need a precedence edge between the Phi and 'load'
589            // since the load will be forced into a block preceeding the Phi.
590            pred_block->set_raise_LCA_mark(load_index);
591            assert(!LCA_orig->dominates(pred_block) ||
592                   early->dominates(pred_block), "early is high enough");
593            must_raise_LCA = true;
594          }
595        }
596      }
597      assert(found_match, "no worklist bug");
598#ifdef TRACK_PHI_INPUTS
599#ifdef ASSERT
600      // This assert asks about correct handling of PhiNodes, which may not
601      // have all input edges directly from 'mem'. See BugId 4621264
602      int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
603      // Increment by exactly one even if there are multiple copies of 'mem'
604      // coming into the phi, because we will run this block several times
605      // if there are several copies of 'mem'.  (That's how DU iterators work.)
606      phi_inputs.at_put(store->_idx, num_mem_inputs);
607      assert(PhiNode::Input + num_mem_inputs < store->req(),
608             "Expect at least one phi input will not be from original memory state");
609#endif //ASSERT
610#endif //TRACK_PHI_INPUTS
611    } else if (store_block != early) {
612      // 'store' is between the current LCA and earliest possible block.
613      // Label its block, and decide later on how to raise the LCA
614      // to include the effect on LCA of this store.
615      // If this store's block gets chosen as the raised LCA, we
616      // will find him on the non_early_stores list and stick him
617      // with a precedence edge.
618      // (But, don't bother if LCA is already raised all the way.)
619      if (LCA != early) {
620        store_block->set_raise_LCA_mark(load_index);
621        must_raise_LCA = true;
622        non_early_stores.push(store);
623      }
624    } else {
625      // Found a possibly-interfering store in the load's 'early' block.
626      // This means 'load' cannot sink at all in the dominator tree.
627      // Add an anti-dep edge, and squeeze 'load' into the highest block.
628      assert(store != load->in(0), "dependence cycle found");
629      if (verify) {
630        assert(store->find_edge(load) != -1, "missing precedence edge");
631      } else {
632        store->add_prec(load);
633      }
634      LCA = early;
635      // This turns off the process of gathering non_early_stores.
636    }
637  }
638  // (Worklist is now empty; all nearby stores have been visited.)
639
640  // Finished if 'load' must be scheduled in its 'early' block.
641  // If we found any stores there, they have already been given
642  // precedence edges.
643  if (LCA == early)  return LCA;
644
645  // We get here only if there are no possibly-interfering stores
646  // in the load's 'early' block.  Move LCA up above all predecessors
647  // which contain stores we have noted.
648  //
649  // The raised LCA block can be a home to such interfering stores,
650  // but its predecessors must not contain any such stores.
651  //
652  // The raised LCA will be a lower bound for placing the load,
653  // preventing the load from sinking past any block containing
654  // a store that may invalidate the memory state required by 'load'.
655  if (must_raise_LCA)
656    LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
657  if (LCA == early)  return LCA;
658
659  // Insert anti-dependence edges from 'load' to each store
660  // in the non-early LCA block.
661  // Mine the non_early_stores list for such stores.
662  if (LCA->raise_LCA_mark() == load_index) {
663    while (non_early_stores.size() > 0) {
664      Node* store = non_early_stores.pop();
665      Block* store_block = _bbs[store->_idx];
666      if (store_block == LCA) {
667        // add anti_dependence from store to load in its own block
668        assert(store != load->in(0), "dependence cycle found");
669        if (verify) {
670          assert(store->find_edge(load) != -1, "missing precedence edge");
671        } else {
672          store->add_prec(load);
673        }
674      } else {
675        assert(store_block->raise_LCA_mark() == load_index, "block was marked");
676        // Any other stores we found must be either inside the new LCA
677        // or else outside the original LCA.  In the latter case, they
678        // did not interfere with any use of 'load'.
679        assert(LCA->dominates(store_block)
680               || !LCA_orig->dominates(store_block), "no stray stores");
681      }
682    }
683  }
684
685  // Return the highest block containing stores; any stores
686  // within that block have been given anti-dependence edges.
687  return LCA;
688}
689
690// This class is used to iterate backwards over the nodes in the graph.
691
692class Node_Backward_Iterator {
693
694private:
695  Node_Backward_Iterator();
696
697public:
698  // Constructor for the iterator
699  Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
700
701  // Postincrement operator to iterate over the nodes
702  Node *next();
703
704private:
705  VectorSet   &_visited;
706  Node_List   &_stack;
707  Block_Array &_bbs;
708};
709
710// Constructor for the Node_Backward_Iterator
711Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
712  : _visited(visited), _stack(stack), _bbs(bbs) {
713  // The stack should contain exactly the root
714  stack.clear();
715  stack.push(root);
716
717  // Clear the visited bits
718  visited.Clear();
719}
720
721// Iterator for the Node_Backward_Iterator
722Node *Node_Backward_Iterator::next() {
723
724  // If the _stack is empty, then just return NULL: finished.
725  if ( !_stack.size() )
726    return NULL;
727
728  // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
729  // made stateless, so I do not need to record the index 'i' on my _stack.
730  // Instead I visit all users each time, scanning for unvisited users.
731  // I visit unvisited not-anti-dependence users first, then anti-dependent
732  // children next.
733  Node *self = _stack.pop();
734
735  // I cycle here when I am entering a deeper level of recursion.
736  // The key variable 'self' was set prior to jumping here.
737  while( 1 ) {
738
739    _visited.set(self->_idx);
740
741    // Now schedule all uses as late as possible.
742    uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
743    uint src_rpo = _bbs[src]->_rpo;
744
745    // Schedule all nodes in a post-order visit
746    Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
747
748    // Scan for unvisited nodes
749    for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
750      // For all uses, schedule late
751      Node* n = self->fast_out(i); // Use
752
753      // Skip already visited children
754      if ( _visited.test(n->_idx) )
755        continue;
756
757      // do not traverse backward control edges
758      Node *use = n->is_Proj() ? n->in(0) : n;
759      uint use_rpo = _bbs[use->_idx]->_rpo;
760
761      if ( use_rpo < src_rpo )
762        continue;
763
764      // Phi nodes always precede uses in a basic block
765      if ( use_rpo == src_rpo && use->is_Phi() )
766        continue;
767
768      unvisited = n;      // Found unvisited
769
770      // Check for possible-anti-dependent
771      if( !n->needs_anti_dependence_check() )
772        break;            // Not visited, not anti-dep; schedule it NOW
773    }
774
775    // Did I find an unvisited not-anti-dependent Node?
776    if ( !unvisited )
777      break;                  // All done with children; post-visit 'self'
778
779    // Visit the unvisited Node.  Contains the obvious push to
780    // indicate I'm entering a deeper level of recursion.  I push the
781    // old state onto the _stack and set a new state and loop (recurse).
782    _stack.push(self);
783    self = unvisited;
784  } // End recursion loop
785
786  return self;
787}
788
789//------------------------------ComputeLatenciesBackwards----------------------
790// Compute the latency of all the instructions.
791void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
792#ifndef PRODUCT
793  if (trace_opto_pipelining())
794    tty->print("\n#---- ComputeLatenciesBackwards ----\n");
795#endif
796
797  Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
798  Node *n;
799
800  // Walk over all the nodes from last to first
801  while (n = iter.next()) {
802    // Set the latency for the definitions of this instruction
803    partial_latency_of_defs(n);
804  }
805} // end ComputeLatenciesBackwards
806
807//------------------------------partial_latency_of_defs------------------------
808// Compute the latency impact of this node on all defs.  This computes
809// a number that increases as we approach the beginning of the routine.
810void PhaseCFG::partial_latency_of_defs(Node *n) {
811  // Set the latency for this instruction
812#ifndef PRODUCT
813  if (trace_opto_pipelining()) {
814    tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
815               n->_idx, _node_latency.at_grow(n->_idx));
816    dump();
817  }
818#endif
819
820  if (n->is_Proj())
821    n = n->in(0);
822
823  if (n->is_Root())
824    return;
825
826  uint nlen = n->len();
827  uint use_latency = _node_latency.at_grow(n->_idx);
828  uint use_pre_order = _bbs[n->_idx]->_pre_order;
829
830  for ( uint j=0; j<nlen; j++ ) {
831    Node *def = n->in(j);
832
833    if (!def || def == n)
834      continue;
835
836    // Walk backwards thru projections
837    if (def->is_Proj())
838      def = def->in(0);
839
840#ifndef PRODUCT
841    if (trace_opto_pipelining()) {
842      tty->print("#    in(%2d): ", j);
843      def->dump();
844    }
845#endif
846
847    // If the defining block is not known, assume it is ok
848    Block *def_block = _bbs[def->_idx];
849    uint def_pre_order = def_block ? def_block->_pre_order : 0;
850
851    if ( (use_pre_order <  def_pre_order) ||
852         (use_pre_order == def_pre_order && n->is_Phi()) )
853      continue;
854
855    uint delta_latency = n->latency(j);
856    uint current_latency = delta_latency + use_latency;
857
858    if (_node_latency.at_grow(def->_idx) < current_latency) {
859      _node_latency.at_put_grow(def->_idx, current_latency);
860    }
861
862#ifndef PRODUCT
863    if (trace_opto_pipelining()) {
864      tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
865                    use_latency, j, delta_latency, current_latency, def->_idx,
866                    _node_latency.at_grow(def->_idx));
867    }
868#endif
869  }
870}
871
872//------------------------------latency_from_use-------------------------------
873// Compute the latency of a specific use
874int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
875  // If self-reference, return no latency
876  if (use == n || use->is_Root())
877    return 0;
878
879  uint def_pre_order = _bbs[def->_idx]->_pre_order;
880  uint latency = 0;
881
882  // If the use is not a projection, then it is simple...
883  if (!use->is_Proj()) {
884#ifndef PRODUCT
885    if (trace_opto_pipelining()) {
886      tty->print("#    out(): ");
887      use->dump();
888    }
889#endif
890
891    uint use_pre_order = _bbs[use->_idx]->_pre_order;
892
893    if (use_pre_order < def_pre_order)
894      return 0;
895
896    if (use_pre_order == def_pre_order && use->is_Phi())
897      return 0;
898
899    uint nlen = use->len();
900    uint nl = _node_latency.at_grow(use->_idx);
901
902    for ( uint j=0; j<nlen; j++ ) {
903      if (use->in(j) == n) {
904        // Change this if we want local latencies
905        uint ul = use->latency(j);
906        uint  l = ul + nl;
907        if (latency < l) latency = l;
908#ifndef PRODUCT
909        if (trace_opto_pipelining()) {
910          tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
911                        nl, j, ul, l, latency);
912        }
913#endif
914      }
915    }
916  } else {
917    // This is a projection, just grab the latency of the use(s)
918    for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
919      uint l = latency_from_use(use, def, use->fast_out(j));
920      if (latency < l) latency = l;
921    }
922  }
923
924  return latency;
925}
926
927//------------------------------latency_from_uses------------------------------
928// Compute the latency of this instruction relative to all of it's uses.
929// This computes a number that increases as we approach the beginning of the
930// routine.
931void PhaseCFG::latency_from_uses(Node *n) {
932  // Set the latency for this instruction
933#ifndef PRODUCT
934  if (trace_opto_pipelining()) {
935    tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
936               n->_idx, _node_latency.at_grow(n->_idx));
937    dump();
938  }
939#endif
940  uint latency=0;
941  const Node *def = n->is_Proj() ? n->in(0): n;
942
943  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
944    uint l = latency_from_use(n, def, n->fast_out(i));
945
946    if (latency < l) latency = l;
947  }
948
949  _node_latency.at_put_grow(n->_idx, latency);
950}
951
952//------------------------------hoist_to_cheaper_block-------------------------
953// Pick a block for node self, between early and LCA, that is a cheaper
954// alternative to LCA.
955Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
956  const double delta = 1+PROB_UNLIKELY_MAG(4);
957  Block* least       = LCA;
958  double least_freq  = least->_freq;
959  uint target        = _node_latency.at_grow(self->_idx);
960  uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
961  uint end_latency   = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
962  bool in_latency    = (target <= start_latency);
963  const Block* root_block = _bbs[_root->_idx];
964
965  // Turn off latency scheduling if scheduling is just plain off
966  if (!C->do_scheduling())
967    in_latency = true;
968
969  // Do not hoist (to cover latency) instructions which target a
970  // single register.  Hoisting stretches the live range of the
971  // single register and may force spilling.
972  MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
973  if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
974    in_latency = true;
975
976#ifndef PRODUCT
977  if (trace_opto_pipelining()) {
978    tty->print("# Find cheaper block for latency %d: ",
979      _node_latency.at_grow(self->_idx));
980    self->dump();
981    tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
982      LCA->_pre_order,
983      LCA->_nodes[0]->_idx,
984      start_latency,
985      LCA->_nodes[LCA->end_idx()]->_idx,
986      end_latency,
987      least_freq);
988  }
989#endif
990
991  // Walk up the dominator tree from LCA (Lowest common ancestor) to
992  // the earliest legal location.  Capture the least execution frequency.
993  while (LCA != early) {
994    LCA = LCA->_idom;         // Follow up the dominator tree
995
996    if (LCA == NULL) {
997      // Bailout without retry
998      C->record_method_not_compilable("late schedule failed: LCA == NULL");
999      return least;
1000    }
1001
1002    // Don't hoist machine instructions to the root basic block
1003    if (mach && LCA == root_block)
1004      break;
1005
1006    uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
1007    uint end_idx   = LCA->end_idx();
1008    uint end_lat   = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
1009    double LCA_freq = LCA->_freq;
1010#ifndef PRODUCT
1011    if (trace_opto_pipelining()) {
1012      tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1013        LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
1014    }
1015#endif
1016    if (LCA_freq < least_freq              || // Better Frequency
1017        ( !in_latency                   &&    // No block containing latency
1018          LCA_freq < least_freq * delta &&    // No worse frequency
1019          target >= end_lat             &&    // within latency range
1020          !self->is_iteratively_computed() )  // But don't hoist IV increments
1021             // because they may end up above other uses of their phi forcing
1022             // their result register to be different from their input.
1023       ) {
1024      least = LCA;            // Found cheaper block
1025      least_freq = LCA_freq;
1026      start_latency = start_lat;
1027      end_latency = end_lat;
1028      if (target <= start_lat)
1029        in_latency = true;
1030    }
1031  }
1032
1033#ifndef PRODUCT
1034  if (trace_opto_pipelining()) {
1035    tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1036      least->_pre_order, start_latency, least_freq);
1037  }
1038#endif
1039
1040  // See if the latency needs to be updated
1041  if (target < end_latency) {
1042#ifndef PRODUCT
1043    if (trace_opto_pipelining()) {
1044      tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1045    }
1046#endif
1047    _node_latency.at_put_grow(self->_idx, end_latency);
1048    partial_latency_of_defs(self);
1049  }
1050
1051  return least;
1052}
1053
1054
1055//------------------------------schedule_late-----------------------------------
1056// Now schedule all codes as LATE as possible.  This is the LCA in the
1057// dominator tree of all USES of a value.  Pick the block with the least
1058// loop nesting depth that is lowest in the dominator tree.
1059extern const char must_clone[];
1060void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1061#ifndef PRODUCT
1062  if (trace_opto_pipelining())
1063    tty->print("\n#---- schedule_late ----\n");
1064#endif
1065
1066  Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
1067  Node *self;
1068
1069  // Walk over all the nodes from last to first
1070  while (self = iter.next()) {
1071    Block* early = _bbs[self->_idx];   // Earliest legal placement
1072
1073    if (self->is_top()) {
1074      // Top node goes in bb #2 with other constants.
1075      // It must be special-cased, because it has no out edges.
1076      early->add_inst(self);
1077      continue;
1078    }
1079
1080    // No uses, just terminate
1081    if (self->outcnt() == 0) {
1082      assert(self->Opcode() == Op_MachProj, "sanity");
1083      continue;                   // Must be a dead machine projection
1084    }
1085
1086    // If node is pinned in the block, then no scheduling can be done.
1087    if( self->pinned() )          // Pinned in block?
1088      continue;
1089
1090    MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1091    if (mach) {
1092      switch (mach->ideal_Opcode()) {
1093      case Op_CreateEx:
1094        // Don't move exception creation
1095        early->add_inst(self);
1096        continue;
1097        break;
1098      case Op_CheckCastPP:
1099        // Don't move CheckCastPP nodes away from their input, if the input
1100        // is a rawptr (5071820).
1101        Node *def = self->in(1);
1102        if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1103          early->add_inst(self);
1104          continue;
1105        }
1106        break;
1107      }
1108    }
1109
1110    // Gather LCA of all uses
1111    Block *LCA = NULL;
1112    {
1113      for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1114        // For all uses, find LCA
1115        Node* use = self->fast_out(i);
1116        LCA = raise_LCA_above_use(LCA, use, self, _bbs);
1117      }
1118    }  // (Hide defs of imax, i from rest of block.)
1119
1120    // Place temps in the block of their use.  This isn't a
1121    // requirement for correctness but it reduces useless
1122    // interference between temps and other nodes.
1123    if (mach != NULL && mach->is_MachTemp()) {
1124      _bbs.map(self->_idx, LCA);
1125      LCA->add_inst(self);
1126      continue;
1127    }
1128
1129    // Check if 'self' could be anti-dependent on memory
1130    if (self->needs_anti_dependence_check()) {
1131      // Hoist LCA above possible-defs and insert anti-dependences to
1132      // defs in new LCA block.
1133      LCA = insert_anti_dependences(LCA, self);
1134    }
1135
1136    if (early->_dom_depth > LCA->_dom_depth) {
1137      // Somehow the LCA has moved above the earliest legal point.
1138      // (One way this can happen is via memory_early_block.)
1139      if (C->subsume_loads() == true && !C->failing()) {
1140        // Retry with subsume_loads == false
1141        // If this is the first failure, the sentinel string will "stick"
1142        // to the Compile object, and the C2Compiler will see it and retry.
1143        C->record_failure(C2Compiler::retry_no_subsuming_loads());
1144      } else {
1145        // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1146        C->record_method_not_compilable("late schedule failed: incorrect graph");
1147      }
1148      return;
1149    }
1150
1151    // If there is no opportunity to hoist, then we're done.
1152    bool try_to_hoist = (LCA != early);
1153
1154    // Must clone guys stay next to use; no hoisting allowed.
1155    // Also cannot hoist guys that alter memory or are otherwise not
1156    // allocatable (hoisting can make a value live longer, leading to
1157    // anti and output dependency problems which are normally resolved
1158    // by the register allocator giving everyone a different register).
1159    if (mach != NULL && must_clone[mach->ideal_Opcode()])
1160      try_to_hoist = false;
1161
1162    Block* late = NULL;
1163    if (try_to_hoist) {
1164      // Now find the block with the least execution frequency.
1165      // Start at the latest schedule and work up to the earliest schedule
1166      // in the dominator tree.  Thus the Node will dominate all its uses.
1167      late = hoist_to_cheaper_block(LCA, early, self);
1168    } else {
1169      // Just use the LCA of the uses.
1170      late = LCA;
1171    }
1172
1173    // Put the node into target block
1174    schedule_node_into_block(self, late);
1175
1176#ifdef ASSERT
1177    if (self->needs_anti_dependence_check()) {
1178      // since precedence edges are only inserted when we're sure they
1179      // are needed make sure that after placement in a block we don't
1180      // need any new precedence edges.
1181      verify_anti_dependences(late, self);
1182    }
1183#endif
1184  } // Loop until all nodes have been visited
1185
1186} // end ScheduleLate
1187
1188//------------------------------GlobalCodeMotion-------------------------------
1189void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1190  ResourceMark rm;
1191
1192#ifndef PRODUCT
1193  if (trace_opto_pipelining()) {
1194    tty->print("\n---- Start GlobalCodeMotion ----\n");
1195  }
1196#endif
1197
1198  // Initialize the bbs.map for things on the proj_list
1199  uint i;
1200  for( i=0; i < proj_list.size(); i++ )
1201    _bbs.map(proj_list[i]->_idx, NULL);
1202
1203  // Set the basic block for Nodes pinned into blocks
1204  Arena *a = Thread::current()->resource_area();
1205  VectorSet visited(a);
1206  schedule_pinned_nodes( visited );
1207
1208  // Find the earliest Block any instruction can be placed in.  Some
1209  // instructions are pinned into Blocks.  Unpinned instructions can
1210  // appear in last block in which all their inputs occur.
1211  visited.Clear();
1212  Node_List stack(a);
1213  stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1214  if (!schedule_early(visited, stack)) {
1215    // Bailout without retry
1216    C->record_method_not_compilable("early schedule failed");
1217    return;
1218  }
1219
1220  // Build Def-Use edges.
1221  proj_list.push(_root);        // Add real root as another root
1222  proj_list.pop();
1223
1224  // Compute the latency information (via backwards walk) for all the
1225  // instructions in the graph
1226  GrowableArray<uint> node_latency;
1227  _node_latency = node_latency;
1228
1229  if( C->do_scheduling() )
1230    ComputeLatenciesBackwards(visited, stack);
1231
1232  // Now schedule all codes as LATE as possible.  This is the LCA in the
1233  // dominator tree of all USES of a value.  Pick the block with the least
1234  // loop nesting depth that is lowest in the dominator tree.
1235  // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1236  schedule_late(visited, stack);
1237  if( C->failing() ) {
1238    // schedule_late fails only when graph is incorrect.
1239    assert(!VerifyGraphEdges, "verification should have failed");
1240    return;
1241  }
1242
1243  unique = C->unique();
1244
1245#ifndef PRODUCT
1246  if (trace_opto_pipelining()) {
1247    tty->print("\n---- Detect implicit null checks ----\n");
1248  }
1249#endif
1250
1251  // Detect implicit-null-check opportunities.  Basically, find NULL checks
1252  // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1253  // I can generate a memory op if there is not one nearby.
1254  if (C->is_method_compilation()) {
1255    // Don't do it for natives, adapters, or runtime stubs
1256    int allowed_reasons = 0;
1257    // ...and don't do it when there have been too many traps, globally.
1258    for (int reason = (int)Deoptimization::Reason_none+1;
1259         reason < Compile::trapHistLength; reason++) {
1260      assert(reason < BitsPerInt, "recode bit map");
1261      if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1262        allowed_reasons |= nth_bit(reason);
1263    }
1264    // By reversing the loop direction we get a very minor gain on mpegaudio.
1265    // Feel free to revert to a forward loop for clarity.
1266    // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1267    for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1268      Node *proj = matcher._null_check_tests[i  ];
1269      Node *val  = matcher._null_check_tests[i+1];
1270      _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
1271      // The implicit_null_check will only perform the transformation
1272      // if the null branch is truly uncommon, *and* it leads to an
1273      // uncommon trap.  Combined with the too_many_traps guards
1274      // above, this prevents SEGV storms reported in 6366351,
1275      // by recompiling offending methods without this optimization.
1276    }
1277  }
1278
1279#ifndef PRODUCT
1280  if (trace_opto_pipelining()) {
1281    tty->print("\n---- Start Local Scheduling ----\n");
1282  }
1283#endif
1284
1285  // Schedule locally.  Right now a simple topological sort.
1286  // Later, do a real latency aware scheduler.
1287  int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
1288  memset( ready_cnt, -1, C->unique() * sizeof(int) );
1289  visited.Clear();
1290  for (i = 0; i < _num_blocks; i++) {
1291    if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1292      if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1293        C->record_method_not_compilable("local schedule failed");
1294      }
1295      return;
1296    }
1297  }
1298
1299  // If we inserted any instructions between a Call and his CatchNode,
1300  // clone the instructions on all paths below the Catch.
1301  for( i=0; i < _num_blocks; i++ )
1302    _blocks[i]->call_catch_cleanup(_bbs);
1303
1304#ifndef PRODUCT
1305  if (trace_opto_pipelining()) {
1306    tty->print("\n---- After GlobalCodeMotion ----\n");
1307    for (uint i = 0; i < _num_blocks; i++) {
1308      _blocks[i]->dump();
1309    }
1310  }
1311#endif
1312}
1313
1314
1315//------------------------------Estimate_Block_Frequency-----------------------
1316// Estimate block frequencies based on IfNode probabilities.
1317void PhaseCFG::Estimate_Block_Frequency() {
1318  int cnts = C->method() ? C->method()->interpreter_invocation_count() : 1;
1319  // Most of our algorithms will die horribly if frequency can become
1320  // negative so make sure cnts is a sane value.
1321  if( cnts <= 0 ) cnts = 1;
1322  float f = (float)cnts/(float)FreqCountInvocations;
1323
1324  // Create the loop tree and calculate loop depth.
1325  _root_loop = create_loop_tree();
1326  _root_loop->compute_loop_depth(0);
1327
1328  // Compute block frequency of each block, relative to a single loop entry.
1329  _root_loop->compute_freq();
1330
1331  // Adjust all frequencies to be relative to a single method entry
1332  _root_loop->_freq = f * 1.0;
1333  _root_loop->scale_freq();
1334
1335  // force paths ending at uncommon traps to be infrequent
1336  Block_List worklist;
1337  Block* root_blk = _blocks[0];
1338  for (uint i = 0; i < root_blk->num_preds(); i++) {
1339    Block *pb = _bbs[root_blk->pred(i)->_idx];
1340    if (pb->has_uncommon_code()) {
1341      worklist.push(pb);
1342    }
1343  }
1344  while (worklist.size() > 0) {
1345    Block* uct = worklist.pop();
1346    uct->_freq = PROB_MIN;
1347    for (uint i = 0; i < uct->num_preds(); i++) {
1348      Block *pb = _bbs[uct->pred(i)->_idx];
1349      if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1350        worklist.push(pb);
1351      }
1352    }
1353  }
1354
1355#ifndef PRODUCT
1356  if (PrintCFGBlockFreq) {
1357    tty->print_cr("CFG Block Frequencies");
1358    _root_loop->dump_tree();
1359    if (Verbose) {
1360      tty->print_cr("PhaseCFG dump");
1361      dump();
1362      tty->print_cr("Node dump");
1363      _root->dump(99999);
1364    }
1365  }
1366#endif
1367}
1368
1369//----------------------------create_loop_tree--------------------------------
1370// Create a loop tree from the CFG
1371CFGLoop* PhaseCFG::create_loop_tree() {
1372
1373#ifdef ASSERT
1374  assert( _blocks[0] == _broot, "" );
1375  for (uint i = 0; i < _num_blocks; i++ ) {
1376    Block *b = _blocks[i];
1377    // Check that _loop field are clear...we could clear them if not.
1378    assert(b->_loop == NULL, "clear _loop expected");
1379    // Sanity check that the RPO numbering is reflected in the _blocks array.
1380    // It doesn't have to be for the loop tree to be built, but if it is not,
1381    // then the blocks have been reordered since dom graph building...which
1382    // may question the RPO numbering
1383    assert(b->_rpo == i, "unexpected reverse post order number");
1384  }
1385#endif
1386
1387  int idct = 0;
1388  CFGLoop* root_loop = new CFGLoop(idct++);
1389
1390  Block_List worklist;
1391
1392  // Assign blocks to loops
1393  for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1394    Block *b = _blocks[i];
1395
1396    if (b->head()->is_Loop()) {
1397      Block* loop_head = b;
1398      assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1399      Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1400      Block* tail = _bbs[tail_n->_idx];
1401
1402      // Defensively filter out Loop nodes for non-single-entry loops.
1403      // For all reasonable loops, the head occurs before the tail in RPO.
1404      if (i <= tail->_rpo) {
1405
1406        // The tail and (recursive) predecessors of the tail
1407        // are made members of a new loop.
1408
1409        assert(worklist.size() == 0, "nonempty worklist");
1410        CFGLoop* nloop = new CFGLoop(idct++);
1411        assert(loop_head->_loop == NULL, "just checking");
1412        loop_head->_loop = nloop;
1413        // Add to nloop so push_pred() will skip over inner loops
1414        nloop->add_member(loop_head);
1415        nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
1416
1417        while (worklist.size() > 0) {
1418          Block* member = worklist.pop();
1419          if (member != loop_head) {
1420            for (uint j = 1; j < member->num_preds(); j++) {
1421              nloop->push_pred(member, j, worklist, _bbs);
1422            }
1423          }
1424        }
1425      }
1426    }
1427  }
1428
1429  // Create a member list for each loop consisting
1430  // of both blocks and (immediate child) loops.
1431  for (uint i = 0; i < _num_blocks; i++) {
1432    Block *b = _blocks[i];
1433    CFGLoop* lp = b->_loop;
1434    if (lp == NULL) {
1435      // Not assigned to a loop. Add it to the method's pseudo loop.
1436      b->_loop = root_loop;
1437      lp = root_loop;
1438    }
1439    if (lp == root_loop || b != lp->head()) { // loop heads are already members
1440      lp->add_member(b);
1441    }
1442    if (lp != root_loop) {
1443      if (lp->parent() == NULL) {
1444        // Not a nested loop. Make it a child of the method's pseudo loop.
1445        root_loop->add_nested_loop(lp);
1446      }
1447      if (b == lp->head()) {
1448        // Add nested loop to member list of parent loop.
1449        lp->parent()->add_member(lp);
1450      }
1451    }
1452  }
1453
1454  return root_loop;
1455}
1456
1457//------------------------------push_pred--------------------------------------
1458void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
1459  Node* pred_n = blk->pred(i);
1460  Block* pred = node_to_blk[pred_n->_idx];
1461  CFGLoop *pred_loop = pred->_loop;
1462  if (pred_loop == NULL) {
1463    // Filter out blocks for non-single-entry loops.
1464    // For all reasonable loops, the head occurs before the tail in RPO.
1465    if (pred->_rpo > head()->_rpo) {
1466      pred->_loop = this;
1467      worklist.push(pred);
1468    }
1469  } else if (pred_loop != this) {
1470    // Nested loop.
1471    while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1472      pred_loop = pred_loop->_parent;
1473    }
1474    // Make pred's loop be a child
1475    if (pred_loop->_parent == NULL) {
1476      add_nested_loop(pred_loop);
1477      // Continue with loop entry predecessor.
1478      Block* pred_head = pred_loop->head();
1479      assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1480      assert(pred_head != head(), "loop head in only one loop");
1481      push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
1482    } else {
1483      assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1484    }
1485  }
1486}
1487
1488//------------------------------add_nested_loop--------------------------------
1489// Make cl a child of the current loop in the loop tree.
1490void CFGLoop::add_nested_loop(CFGLoop* cl) {
1491  assert(_parent == NULL, "no parent yet");
1492  assert(cl != this, "not my own parent");
1493  cl->_parent = this;
1494  CFGLoop* ch = _child;
1495  if (ch == NULL) {
1496    _child = cl;
1497  } else {
1498    while (ch->_sibling != NULL) { ch = ch->_sibling; }
1499    ch->_sibling = cl;
1500  }
1501}
1502
1503//------------------------------compute_loop_depth-----------------------------
1504// Store the loop depth in each CFGLoop object.
1505// Recursively walk the children to do the same for them.
1506void CFGLoop::compute_loop_depth(int depth) {
1507  _depth = depth;
1508  CFGLoop* ch = _child;
1509  while (ch != NULL) {
1510    ch->compute_loop_depth(depth + 1);
1511    ch = ch->_sibling;
1512  }
1513}
1514
1515//------------------------------compute_freq-----------------------------------
1516// Compute the frequency of each block and loop, relative to a single entry
1517// into the dominating loop head.
1518void CFGLoop::compute_freq() {
1519  // Bottom up traversal of loop tree (visit inner loops first.)
1520  // Set loop head frequency to 1.0, then transitively
1521  // compute frequency for all successors in the loop,
1522  // as well as for each exit edge.  Inner loops are
1523  // treated as single blocks with loop exit targets
1524  // as the successor blocks.
1525
1526  // Nested loops first
1527  CFGLoop* ch = _child;
1528  while (ch != NULL) {
1529    ch->compute_freq();
1530    ch = ch->_sibling;
1531  }
1532  assert (_members.length() > 0, "no empty loops");
1533  Block* hd = head();
1534  hd->_freq = 1.0f;
1535  for (int i = 0; i < _members.length(); i++) {
1536    CFGElement* s = _members.at(i);
1537    float freq = s->_freq;
1538    if (s->is_block()) {
1539      Block* b = s->as_Block();
1540      for (uint j = 0; j < b->_num_succs; j++) {
1541        Block* sb = b->_succs[j];
1542        update_succ_freq(sb, freq * b->succ_prob(j));
1543      }
1544    } else {
1545      CFGLoop* lp = s->as_CFGLoop();
1546      assert(lp->_parent == this, "immediate child");
1547      for (int k = 0; k < lp->_exits.length(); k++) {
1548        Block* eb = lp->_exits.at(k).get_target();
1549        float prob = lp->_exits.at(k).get_prob();
1550        update_succ_freq(eb, freq * prob);
1551      }
1552    }
1553  }
1554
1555#if 0
1556  // Raise frequency of the loop backedge block, in an effort
1557  // to keep it empty.  Skip the method level "loop".
1558  if (_parent != NULL) {
1559    CFGElement* s = _members.at(_members.length() - 1);
1560    if (s->is_block()) {
1561      Block* bk = s->as_Block();
1562      if (bk->_num_succs == 1 && bk->_succs[0] == hd) {
1563        // almost any value >= 1.0f works
1564        // FIXME: raw constant
1565        bk->_freq = 1.05f;
1566      }
1567    }
1568  }
1569#endif
1570
1571  // For all loops other than the outer, "method" loop,
1572  // sum and normalize the exit probability. The "method" loop
1573  // should keep the initial exit probability of 1, so that
1574  // inner blocks do not get erroneously scaled.
1575  if (_depth != 0) {
1576    // Total the exit probabilities for this loop.
1577    float exits_sum = 0.0f;
1578    for (int i = 0; i < _exits.length(); i++) {
1579      exits_sum += _exits.at(i).get_prob();
1580    }
1581
1582    // Normalize the exit probabilities. Until now, the
1583    // probabilities estimate the possibility of exit per
1584    // a single loop iteration; afterward, they estimate
1585    // the probability of exit per loop entry.
1586    for (int i = 0; i < _exits.length(); i++) {
1587      Block* et = _exits.at(i).get_target();
1588      float new_prob = _exits.at(i).get_prob() / exits_sum;
1589      BlockProbPair bpp(et, new_prob);
1590      _exits.at_put(i, bpp);
1591    }
1592
1593    // Save the total, but guard against unreasoable probability,
1594    // as the value is used to estimate the loop trip count.
1595    // An infinite trip count would blur relative block
1596    // frequencies.
1597    if (exits_sum > 1.0f) exits_sum = 1.0;
1598    if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1599    _exit_prob = exits_sum;
1600  }
1601}
1602
1603//------------------------------succ_prob-------------------------------------
1604// Determine the probability of reaching successor 'i' from the receiver block.
1605float Block::succ_prob(uint i) {
1606  int eidx = end_idx();
1607  Node *n = _nodes[eidx];  // Get ending Node
1608  int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
1609
1610  // Switch on branch type
1611  switch( op ) {
1612  case Op_CountedLoopEnd:
1613  case Op_If: {
1614    assert (i < 2, "just checking");
1615    // Conditionals pass on only part of their frequency
1616    float prob  = n->as_MachIf()->_prob;
1617    assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1618    // If succ[i] is the FALSE branch, invert path info
1619    if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
1620      return 1.0f - prob; // not taken
1621    } else {
1622      return prob; // taken
1623    }
1624  }
1625
1626  case Op_Jump:
1627    // Divide the frequency between all successors evenly
1628    return 1.0f/_num_succs;
1629
1630  case Op_Catch: {
1631    const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1632    if (ci->_con == CatchProjNode::fall_through_index) {
1633      // Fall-thru path gets the lion's share.
1634      return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1635    } else {
1636      // Presume exceptional paths are equally unlikely
1637      return PROB_UNLIKELY_MAG(5);
1638    }
1639  }
1640
1641  case Op_Root:
1642  case Op_Goto:
1643    // Pass frequency straight thru to target
1644    return 1.0f;
1645
1646  case Op_NeverBranch:
1647    return 0.0f;
1648
1649  case Op_TailCall:
1650  case Op_TailJump:
1651  case Op_Return:
1652  case Op_Halt:
1653  case Op_Rethrow:
1654    // Do not push out freq to root block
1655    return 0.0f;
1656
1657  default:
1658    ShouldNotReachHere();
1659  }
1660
1661  return 0.0f;
1662}
1663
1664//------------------------------update_succ_freq-------------------------------
1665// Update the appropriate frequency associated with block 'b', a succesor of
1666// a block in this loop.
1667void CFGLoop::update_succ_freq(Block* b, float freq) {
1668  if (b->_loop == this) {
1669    if (b == head()) {
1670      // back branch within the loop
1671      // Do nothing now, the loop carried frequency will be
1672      // adjust later in scale_freq().
1673    } else {
1674      // simple branch within the loop
1675      b->_freq += freq;
1676    }
1677  } else if (!in_loop_nest(b)) {
1678    // branch is exit from this loop
1679    BlockProbPair bpp(b, freq);
1680    _exits.append(bpp);
1681  } else {
1682    // branch into nested loop
1683    CFGLoop* ch = b->_loop;
1684    ch->_freq += freq;
1685  }
1686}
1687
1688//------------------------------in_loop_nest-----------------------------------
1689// Determine if block b is in the receiver's loop nest.
1690bool CFGLoop::in_loop_nest(Block* b) {
1691  int depth = _depth;
1692  CFGLoop* b_loop = b->_loop;
1693  int b_depth = b_loop->_depth;
1694  if (depth == b_depth) {
1695    return true;
1696  }
1697  while (b_depth > depth) {
1698    b_loop = b_loop->_parent;
1699    b_depth = b_loop->_depth;
1700  }
1701  return b_loop == this;
1702}
1703
1704//------------------------------scale_freq-------------------------------------
1705// Scale frequency of loops and blocks by trip counts from outer loops
1706// Do a top down traversal of loop tree (visit outer loops first.)
1707void CFGLoop::scale_freq() {
1708  float loop_freq = _freq * trip_count();
1709  for (int i = 0; i < _members.length(); i++) {
1710    CFGElement* s = _members.at(i);
1711    s->_freq *= loop_freq;
1712  }
1713  CFGLoop* ch = _child;
1714  while (ch != NULL) {
1715    ch->scale_freq();
1716    ch = ch->_sibling;
1717  }
1718}
1719
1720#ifndef PRODUCT
1721//------------------------------dump_tree--------------------------------------
1722void CFGLoop::dump_tree() const {
1723  dump();
1724  if (_child != NULL)   _child->dump_tree();
1725  if (_sibling != NULL) _sibling->dump_tree();
1726}
1727
1728//------------------------------dump-------------------------------------------
1729void CFGLoop::dump() const {
1730  for (int i = 0; i < _depth; i++) tty->print("   ");
1731  tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
1732             _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
1733  for (int i = 0; i < _depth; i++) tty->print("   ");
1734  tty->print("         members:", _id);
1735  int k = 0;
1736  for (int i = 0; i < _members.length(); i++) {
1737    if (k++ >= 6) {
1738      tty->print("\n              ");
1739      for (int j = 0; j < _depth+1; j++) tty->print("   ");
1740      k = 0;
1741    }
1742    CFGElement *s = _members.at(i);
1743    if (s->is_block()) {
1744      Block *b = s->as_Block();
1745      tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
1746    } else {
1747      CFGLoop* lp = s->as_CFGLoop();
1748      tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
1749    }
1750  }
1751  tty->print("\n");
1752  for (int i = 0; i < _depth; i++) tty->print("   ");
1753  tty->print("         exits:  ");
1754  k = 0;
1755  for (int i = 0; i < _exits.length(); i++) {
1756    if (k++ >= 7) {
1757      tty->print("\n              ");
1758      for (int j = 0; j < _depth+1; j++) tty->print("   ");
1759      k = 0;
1760    }
1761    Block *blk = _exits.at(i).get_target();
1762    float prob = _exits.at(i).get_prob();
1763    tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
1764  }
1765  tty->print("\n");
1766}
1767#endif
1768