escape.cpp revision 293:c3e045194476
1/*
2 * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_escape.cpp.incl"
27
28void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
29  uint v = (targIdx << EdgeShift) + ((uint) et);
30  if (_edges == NULL) {
31     Arena *a = Compile::current()->comp_arena();
32    _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
33  }
34  _edges->append_if_missing(v);
35}
36
37void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
38  uint v = (targIdx << EdgeShift) + ((uint) et);
39
40  _edges->remove(v);
41}
42
43#ifndef PRODUCT
44static const char *node_type_names[] = {
45  "UnknownType",
46  "JavaObject",
47  "LocalVar",
48  "Field"
49};
50
51static const char *esc_names[] = {
52  "UnknownEscape",
53  "NoEscape",
54  "ArgEscape",
55  "GlobalEscape"
56};
57
58static const char *edge_type_suffix[] = {
59 "?", // UnknownEdge
60 "P", // PointsToEdge
61 "D", // DeferredEdge
62 "F"  // FieldEdge
63};
64
65void PointsToNode::dump(bool print_state) const {
66  NodeType nt = node_type();
67  tty->print("%s ", node_type_names[(int) nt]);
68  if (print_state) {
69    EscapeState es = escape_state();
70    tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
71  }
72  tty->print("[[");
73  for (uint i = 0; i < edge_count(); i++) {
74    tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
75  }
76  tty->print("]]  ");
77  if (_node == NULL)
78    tty->print_cr("<null>");
79  else
80    _node->dump();
81}
82#endif
83
84ConnectionGraph::ConnectionGraph(Compile * C) :
85  _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
86  _processed(C->comp_arena()),
87  _collecting(true),
88  _compile(C),
89  _node_map(C->comp_arena()) {
90
91  _phantom_object = C->top()->_idx,
92  add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
93
94  // Add ConP(#NULL) and ConN(#NULL) nodes.
95  PhaseGVN* igvn = C->initial_gvn();
96  Node* oop_null = igvn->zerocon(T_OBJECT);
97  _oop_null = oop_null->_idx;
98  assert(_oop_null < C->unique(), "should be created already");
99  add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
100
101  if (UseCompressedOops) {
102    Node* noop_null = igvn->zerocon(T_NARROWOOP);
103    _noop_null = noop_null->_idx;
104    assert(_noop_null < C->unique(), "should be created already");
105    add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
106  }
107}
108
109void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
110  PointsToNode *f = ptnode_adr(from_i);
111  PointsToNode *t = ptnode_adr(to_i);
112
113  assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
114  assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
115  assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
116  f->add_edge(to_i, PointsToNode::PointsToEdge);
117}
118
119void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
120  PointsToNode *f = ptnode_adr(from_i);
121  PointsToNode *t = ptnode_adr(to_i);
122
123  assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
124  assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
125  assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
126  // don't add a self-referential edge, this can occur during removal of
127  // deferred edges
128  if (from_i != to_i)
129    f->add_edge(to_i, PointsToNode::DeferredEdge);
130}
131
132int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
133  const Type *adr_type = phase->type(adr);
134  if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
135      adr->in(AddPNode::Address)->is_Proj() &&
136      adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
137    // We are computing a raw address for a store captured by an Initialize
138    // compute an appropriate address type. AddP cases #3 and #5 (see below).
139    int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
140    assert(offs != Type::OffsetBot ||
141           adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
142           "offset must be a constant or it is initialization of array");
143    return offs;
144  }
145  const TypePtr *t_ptr = adr_type->isa_ptr();
146  assert(t_ptr != NULL, "must be a pointer type");
147  return t_ptr->offset();
148}
149
150void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
151  PointsToNode *f = ptnode_adr(from_i);
152  PointsToNode *t = ptnode_adr(to_i);
153
154  assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
155  assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
156  assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
157  assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
158  t->set_offset(offset);
159
160  f->add_edge(to_i, PointsToNode::FieldEdge);
161}
162
163void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
164  PointsToNode *npt = ptnode_adr(ni);
165  PointsToNode::EscapeState old_es = npt->escape_state();
166  if (es > old_es)
167    npt->set_escape_state(es);
168}
169
170void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
171                               PointsToNode::EscapeState es, bool done) {
172  PointsToNode* ptadr = ptnode_adr(n->_idx);
173  ptadr->_node = n;
174  ptadr->set_node_type(nt);
175
176  // inline set_escape_state(idx, es);
177  PointsToNode::EscapeState old_es = ptadr->escape_state();
178  if (es > old_es)
179    ptadr->set_escape_state(es);
180
181  if (done)
182    _processed.set(n->_idx);
183}
184
185PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
186  uint idx = n->_idx;
187  PointsToNode::EscapeState es;
188
189  // If we are still collecting or there were no non-escaping allocations
190  // we don't know the answer yet
191  if (_collecting)
192    return PointsToNode::UnknownEscape;
193
194  // if the node was created after the escape computation, return
195  // UnknownEscape
196  if (idx >= nodes_size())
197    return PointsToNode::UnknownEscape;
198
199  es = ptnode_adr(idx)->escape_state();
200
201  // if we have already computed a value, return it
202  if (es != PointsToNode::UnknownEscape)
203    return es;
204
205  // PointsTo() calls n->uncast() which can return a new ideal node.
206  if (n->uncast()->_idx >= nodes_size())
207    return PointsToNode::UnknownEscape;
208
209  // compute max escape state of anything this node could point to
210  VectorSet ptset(Thread::current()->resource_area());
211  PointsTo(ptset, n, phase);
212  for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
213    uint pt = i.elem;
214    PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
215    if (pes > es)
216      es = pes;
217  }
218  // cache the computed escape state
219  assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
220  ptnode_adr(idx)->set_escape_state(es);
221  return es;
222}
223
224void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
225  VectorSet visited(Thread::current()->resource_area());
226  GrowableArray<uint>  worklist;
227
228#ifdef ASSERT
229  Node *orig_n = n;
230#endif
231
232  n = n->uncast();
233  PointsToNode* npt = ptnode_adr(n->_idx);
234
235  // If we have a JavaObject, return just that object
236  if (npt->node_type() == PointsToNode::JavaObject) {
237    ptset.set(n->_idx);
238    return;
239  }
240#ifdef ASSERT
241  if (npt->_node == NULL) {
242    if (orig_n != n)
243      orig_n->dump();
244    n->dump();
245    assert(npt->_node != NULL, "unregistered node");
246  }
247#endif
248  worklist.push(n->_idx);
249  while(worklist.length() > 0) {
250    int ni = worklist.pop();
251    if (visited.test_set(ni))
252      continue;
253
254    PointsToNode* pn = ptnode_adr(ni);
255    // ensure that all inputs of a Phi have been processed
256    assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
257
258    int edges_processed = 0;
259    uint e_cnt = pn->edge_count();
260    for (uint e = 0; e < e_cnt; e++) {
261      uint etgt = pn->edge_target(e);
262      PointsToNode::EdgeType et = pn->edge_type(e);
263      if (et == PointsToNode::PointsToEdge) {
264        ptset.set(etgt);
265        edges_processed++;
266      } else if (et == PointsToNode::DeferredEdge) {
267        worklist.push(etgt);
268        edges_processed++;
269      } else {
270        assert(false,"neither PointsToEdge or DeferredEdge");
271      }
272    }
273    if (edges_processed == 0) {
274      // no deferred or pointsto edges found.  Assume the value was set
275      // outside this method.  Add the phantom object to the pointsto set.
276      ptset.set(_phantom_object);
277    }
278  }
279}
280
281void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
282  // This method is most expensive during ConnectionGraph construction.
283  // Reuse vectorSet and an additional growable array for deferred edges.
284  deferred_edges->clear();
285  visited->Clear();
286
287  visited->set(ni);
288  PointsToNode *ptn = ptnode_adr(ni);
289
290  // Mark current edges as visited and move deferred edges to separate array.
291  for (uint i = 0; i < ptn->edge_count(); ) {
292    uint t = ptn->edge_target(i);
293#ifdef ASSERT
294    assert(!visited->test_set(t), "expecting no duplications");
295#else
296    visited->set(t);
297#endif
298    if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
299      ptn->remove_edge(t, PointsToNode::DeferredEdge);
300      deferred_edges->append(t);
301    } else {
302      i++;
303    }
304  }
305  for (int next = 0; next < deferred_edges->length(); ++next) {
306    uint t = deferred_edges->at(next);
307    PointsToNode *ptt = ptnode_adr(t);
308    uint e_cnt = ptt->edge_count();
309    for (uint e = 0; e < e_cnt; e++) {
310      uint etgt = ptt->edge_target(e);
311      if (visited->test_set(etgt))
312        continue;
313
314      PointsToNode::EdgeType et = ptt->edge_type(e);
315      if (et == PointsToNode::PointsToEdge) {
316        add_pointsto_edge(ni, etgt);
317        if(etgt == _phantom_object) {
318          // Special case - field set outside (globally escaping).
319          ptn->set_escape_state(PointsToNode::GlobalEscape);
320        }
321      } else if (et == PointsToNode::DeferredEdge) {
322        deferred_edges->append(etgt);
323      } else {
324        assert(false,"invalid connection graph");
325      }
326    }
327  }
328}
329
330
331//  Add an edge to node given by "to_i" from any field of adr_i whose offset
332//  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
333//  a pointsto edge is added if it is a JavaObject
334
335void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
336  PointsToNode* an = ptnode_adr(adr_i);
337  PointsToNode* to = ptnode_adr(to_i);
338  bool deferred = (to->node_type() == PointsToNode::LocalVar);
339
340  for (uint fe = 0; fe < an->edge_count(); fe++) {
341    assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
342    int fi = an->edge_target(fe);
343    PointsToNode* pf = ptnode_adr(fi);
344    int po = pf->offset();
345    if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
346      if (deferred)
347        add_deferred_edge(fi, to_i);
348      else
349        add_pointsto_edge(fi, to_i);
350    }
351  }
352}
353
354// Add a deferred  edge from node given by "from_i" to any field of adr_i
355// whose offset matches "offset".
356void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
357  PointsToNode* an = ptnode_adr(adr_i);
358  for (uint fe = 0; fe < an->edge_count(); fe++) {
359    assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
360    int fi = an->edge_target(fe);
361    PointsToNode* pf = ptnode_adr(fi);
362    int po = pf->offset();
363    if (pf->edge_count() == 0) {
364      // we have not seen any stores to this field, assume it was set outside this method
365      add_pointsto_edge(fi, _phantom_object);
366    }
367    if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
368      add_deferred_edge(from_i, fi);
369    }
370  }
371}
372
373// Helper functions
374
375static Node* get_addp_base(Node *addp) {
376  assert(addp->is_AddP(), "must be AddP");
377  //
378  // AddP cases for Base and Address inputs:
379  // case #1. Direct object's field reference:
380  //     Allocate
381  //       |
382  //     Proj #5 ( oop result )
383  //       |
384  //     CheckCastPP (cast to instance type)
385  //      | |
386  //     AddP  ( base == address )
387  //
388  // case #2. Indirect object's field reference:
389  //      Phi
390  //       |
391  //     CastPP (cast to instance type)
392  //      | |
393  //     AddP  ( base == address )
394  //
395  // case #3. Raw object's field reference for Initialize node:
396  //      Allocate
397  //        |
398  //      Proj #5 ( oop result )
399  //  top   |
400  //     \  |
401  //     AddP  ( base == top )
402  //
403  // case #4. Array's element reference:
404  //   {CheckCastPP | CastPP}
405  //     |  | |
406  //     |  AddP ( array's element offset )
407  //     |  |
408  //     AddP ( array's offset )
409  //
410  // case #5. Raw object's field reference for arraycopy stub call:
411  //          The inline_native_clone() case when the arraycopy stub is called
412  //          after the allocation before Initialize and CheckCastPP nodes.
413  //      Allocate
414  //        |
415  //      Proj #5 ( oop result )
416  //       | |
417  //       AddP  ( base == address )
418  //
419  // case #6. Constant Pool, ThreadLocal, CastX2P or
420  //          Raw object's field reference:
421  //      {ConP, ThreadLocal, CastX2P, raw Load}
422  //  top   |
423  //     \  |
424  //     AddP  ( base == top )
425  //
426  // case #7. Klass's field reference.
427  //      LoadKlass
428  //       | |
429  //       AddP  ( base == address )
430  //
431  // case #8. narrow Klass's field reference.
432  //      LoadNKlass
433  //       |
434  //      DecodeN
435  //       | |
436  //       AddP  ( base == address )
437  //
438  Node *base = addp->in(AddPNode::Base)->uncast();
439  if (base->is_top()) { // The AddP case #3 and #6.
440    base = addp->in(AddPNode::Address)->uncast();
441    assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
442           base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
443           (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
444           (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
445  }
446  return base;
447}
448
449static Node* find_second_addp(Node* addp, Node* n) {
450  assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
451
452  Node* addp2 = addp->raw_out(0);
453  if (addp->outcnt() == 1 && addp2->is_AddP() &&
454      addp2->in(AddPNode::Base) == n &&
455      addp2->in(AddPNode::Address) == addp) {
456
457    assert(addp->in(AddPNode::Base) == n, "expecting the same base");
458    //
459    // Find array's offset to push it on worklist first and
460    // as result process an array's element offset first (pushed second)
461    // to avoid CastPP for the array's offset.
462    // Otherwise the inserted CastPP (LocalVar) will point to what
463    // the AddP (Field) points to. Which would be wrong since
464    // the algorithm expects the CastPP has the same point as
465    // as AddP's base CheckCastPP (LocalVar).
466    //
467    //    ArrayAllocation
468    //     |
469    //    CheckCastPP
470    //     |
471    //    memProj (from ArrayAllocation CheckCastPP)
472    //     |  ||
473    //     |  ||   Int (element index)
474    //     |  ||    |   ConI (log(element size))
475    //     |  ||    |   /
476    //     |  ||   LShift
477    //     |  ||  /
478    //     |  AddP (array's element offset)
479    //     |  |
480    //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
481    //     | / /
482    //     AddP (array's offset)
483    //      |
484    //     Load/Store (memory operation on array's element)
485    //
486    return addp2;
487  }
488  return NULL;
489}
490
491//
492// Adjust the type and inputs of an AddP which computes the
493// address of a field of an instance
494//
495bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
496  const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
497  assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
498  const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
499  if (t == NULL) {
500    // We are computing a raw address for a store captured by an Initialize
501    // compute an appropriate address type (cases #3 and #5).
502    assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
503    assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
504    int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
505    assert(offs != Type::OffsetBot, "offset must be a constant");
506    t = base_t->add_offset(offs)->is_oopptr();
507  }
508  int inst_id =  base_t->instance_id();
509  assert(!t->is_known_instance() || t->instance_id() == inst_id,
510                             "old type must be non-instance or match new type");
511
512  // The type 't' could be subclass of 'base_t'.
513  // As result t->offset() could be large then base_t's size and it will
514  // cause the failure in add_offset() with narrow oops since TypeOopPtr()
515  // constructor verifies correctness of the offset.
516  //
517  // It could happend on subclass's branch (from the type profiling
518  // inlining) which was not eliminated during parsing since the exactness
519  // of the allocation type was not propagated to the subclass type check.
520  //
521  // Do nothing for such AddP node and don't process its users since
522  // this code branch will go away.
523  //
524  if (!t->is_known_instance() &&
525      !t->klass()->equals(base_t->klass()) &&
526      t->klass()->is_subtype_of(base_t->klass())) {
527     return false; // bail out
528  }
529
530  const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
531  // Do NOT remove the next call: ensure an new alias index is allocated
532  // for the instance type
533  int alias_idx = _compile->get_alias_index(tinst);
534  igvn->set_type(addp, tinst);
535  // record the allocation in the node map
536  set_map(addp->_idx, get_map(base->_idx));
537
538  // Set addp's Base and Address to 'base'.
539  Node *abase = addp->in(AddPNode::Base);
540  Node *adr   = addp->in(AddPNode::Address);
541  if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
542      adr->in(0)->_idx == (uint)inst_id) {
543    // Skip AddP cases #3 and #5.
544  } else {
545    assert(!abase->is_top(), "sanity"); // AddP case #3
546    if (abase != base) {
547      igvn->hash_delete(addp);
548      addp->set_req(AddPNode::Base, base);
549      if (abase == adr) {
550        addp->set_req(AddPNode::Address, base);
551      } else {
552        // AddP case #4 (adr is array's element offset AddP node)
553#ifdef ASSERT
554        const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
555        assert(adr->is_AddP() && atype != NULL &&
556               atype->instance_id() == inst_id, "array's element offset should be processed first");
557#endif
558      }
559      igvn->hash_insert(addp);
560    }
561  }
562  // Put on IGVN worklist since at least addp's type was changed above.
563  record_for_optimizer(addp);
564  return true;
565}
566
567//
568// Create a new version of orig_phi if necessary. Returns either the newly
569// created phi or an existing phi.  Sets create_new to indicate wheter  a new
570// phi was created.  Cache the last newly created phi in the node map.
571//
572PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
573  Compile *C = _compile;
574  new_created = false;
575  int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
576  // nothing to do if orig_phi is bottom memory or matches alias_idx
577  if (phi_alias_idx == alias_idx) {
578    return orig_phi;
579  }
580  // have we already created a Phi for this alias index?
581  PhiNode *result = get_map_phi(orig_phi->_idx);
582  if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
583    return result;
584  }
585  if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
586    if (C->do_escape_analysis() == true && !C->failing()) {
587      // Retry compilation without escape analysis.
588      // If this is the first failure, the sentinel string will "stick"
589      // to the Compile object, and the C2Compiler will see it and retry.
590      C->record_failure(C2Compiler::retry_no_escape_analysis());
591    }
592    return NULL;
593  }
594  orig_phi_worklist.append_if_missing(orig_phi);
595  const TypePtr *atype = C->get_adr_type(alias_idx);
596  result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
597  set_map_phi(orig_phi->_idx, result);
598  igvn->set_type(result, result->bottom_type());
599  record_for_optimizer(result);
600  new_created = true;
601  return result;
602}
603
604//
605// Return a new version  of Memory Phi "orig_phi" with the inputs having the
606// specified alias index.
607//
608PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
609
610  assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
611  Compile *C = _compile;
612  bool new_phi_created;
613  PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
614  if (!new_phi_created) {
615    return result;
616  }
617
618  GrowableArray<PhiNode *>  phi_list;
619  GrowableArray<uint>  cur_input;
620
621  PhiNode *phi = orig_phi;
622  uint idx = 1;
623  bool finished = false;
624  while(!finished) {
625    while (idx < phi->req()) {
626      Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
627      if (mem != NULL && mem->is_Phi()) {
628        PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
629        if (new_phi_created) {
630          // found an phi for which we created a new split, push current one on worklist and begin
631          // processing new one
632          phi_list.push(phi);
633          cur_input.push(idx);
634          phi = mem->as_Phi();
635          result = newphi;
636          idx = 1;
637          continue;
638        } else {
639          mem = newphi;
640        }
641      }
642      if (C->failing()) {
643        return NULL;
644      }
645      result->set_req(idx++, mem);
646    }
647#ifdef ASSERT
648    // verify that the new Phi has an input for each input of the original
649    assert( phi->req() == result->req(), "must have same number of inputs.");
650    assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
651#endif
652    // Check if all new phi's inputs have specified alias index.
653    // Otherwise use old phi.
654    for (uint i = 1; i < phi->req(); i++) {
655      Node* in = result->in(i);
656      assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
657    }
658    // we have finished processing a Phi, see if there are any more to do
659    finished = (phi_list.length() == 0 );
660    if (!finished) {
661      phi = phi_list.pop();
662      idx = cur_input.pop();
663      PhiNode *prev_result = get_map_phi(phi->_idx);
664      prev_result->set_req(idx++, result);
665      result = prev_result;
666    }
667  }
668  return result;
669}
670
671
672//
673// The next methods are derived from methods in MemNode.
674//
675static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
676  Node *mem = mmem;
677  // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
678  // means an array I have not precisely typed yet.  Do not do any
679  // alias stuff with it any time soon.
680  if( tinst->base() != Type::AnyPtr &&
681      !(tinst->klass()->is_java_lang_Object() &&
682        tinst->offset() == Type::OffsetBot) ) {
683    mem = mmem->memory_at(alias_idx);
684    // Update input if it is progress over what we have now
685  }
686  return mem;
687}
688
689//
690// Search memory chain of "mem" to find a MemNode whose address
691// is the specified alias index.
692//
693Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
694  if (orig_mem == NULL)
695    return orig_mem;
696  Compile* C = phase->C;
697  const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
698  bool is_instance = (tinst != NULL) && tinst->is_known_instance();
699  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
700  Node *prev = NULL;
701  Node *result = orig_mem;
702  while (prev != result) {
703    prev = result;
704    if (result == start_mem)
705      break;  // hit one of our sentinals
706    if (result->is_Mem()) {
707      const Type *at = phase->type(result->in(MemNode::Address));
708      if (at != Type::TOP) {
709        assert (at->isa_ptr() != NULL, "pointer type required.");
710        int idx = C->get_alias_index(at->is_ptr());
711        if (idx == alias_idx)
712          break;
713      }
714      result = result->in(MemNode::Memory);
715    }
716    if (!is_instance)
717      continue;  // don't search further for non-instance types
718    // skip over a call which does not affect this memory slice
719    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
720      Node *proj_in = result->in(0);
721      if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
722        break;  // hit one of our sentinals
723      } else if (proj_in->is_Call()) {
724        CallNode *call = proj_in->as_Call();
725        if (!call->may_modify(tinst, phase)) {
726          result = call->in(TypeFunc::Memory);
727        }
728      } else if (proj_in->is_Initialize()) {
729        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
730        // Stop if this is the initialization for the object instance which
731        // which contains this memory slice, otherwise skip over it.
732        if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
733          result = proj_in->in(TypeFunc::Memory);
734        }
735      } else if (proj_in->is_MemBar()) {
736        result = proj_in->in(TypeFunc::Memory);
737      }
738    } else if (result->is_MergeMem()) {
739      MergeMemNode *mmem = result->as_MergeMem();
740      result = step_through_mergemem(mmem, alias_idx, tinst);
741      if (result == mmem->base_memory()) {
742        // Didn't find instance memory, search through general slice recursively.
743        result = mmem->memory_at(C->get_general_index(alias_idx));
744        result = find_inst_mem(result, alias_idx, orig_phis, phase);
745        if (C->failing()) {
746          return NULL;
747        }
748        mmem->set_memory_at(alias_idx, result);
749      }
750    } else if (result->is_Phi() &&
751               C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
752      Node *un = result->as_Phi()->unique_input(phase);
753      if (un != NULL) {
754        result = un;
755      } else {
756        break;
757      }
758    }
759  }
760  if (result->is_Phi()) {
761    PhiNode *mphi = result->as_Phi();
762    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
763    const TypePtr *t = mphi->adr_type();
764    if (C->get_alias_index(t) != alias_idx) {
765      // Create a new Phi with the specified alias index type.
766      result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
767    } else if (!is_instance) {
768      // Push all non-instance Phis on the orig_phis worklist to update inputs
769      // during Phase 4 if needed.
770      orig_phis.append_if_missing(mphi);
771    }
772  }
773  // the result is either MemNode, PhiNode, InitializeNode.
774  return result;
775}
776
777
778//
779//  Convert the types of unescaped object to instance types where possible,
780//  propagate the new type information through the graph, and update memory
781//  edges and MergeMem inputs to reflect the new type.
782//
783//  We start with allocations (and calls which may be allocations)  on alloc_worklist.
784//  The processing is done in 4 phases:
785//
786//  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
787//            types for the CheckCastPP for allocations where possible.
788//            Propagate the the new types through users as follows:
789//               casts and Phi:  push users on alloc_worklist
790//               AddP:  cast Base and Address inputs to the instance type
791//                      push any AddP users on alloc_worklist and push any memnode
792//                      users onto memnode_worklist.
793//  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
794//            search the Memory chain for a store with the appropriate type
795//            address type.  If a Phi is found, create a new version with
796//            the approriate memory slices from each of the Phi inputs.
797//            For stores, process the users as follows:
798//               MemNode:  push on memnode_worklist
799//               MergeMem: push on mergemem_worklist
800//  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
801//            moving the first node encountered of each  instance type to the
802//            the input corresponding to its alias index.
803//            appropriate memory slice.
804//  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
805//
806// In the following example, the CheckCastPP nodes are the cast of allocation
807// results and the allocation of node 29 is unescaped and eligible to be an
808// instance type.
809//
810// We start with:
811//
812//     7 Parm #memory
813//    10  ConI  "12"
814//    19  CheckCastPP   "Foo"
815//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
816//    29  CheckCastPP   "Foo"
817//    30  AddP  _ 29 29 10  Foo+12  alias_index=4
818//
819//    40  StoreP  25   7  20   ... alias_index=4
820//    50  StoreP  35  40  30   ... alias_index=4
821//    60  StoreP  45  50  20   ... alias_index=4
822//    70  LoadP    _  60  30   ... alias_index=4
823//    80  Phi     75  50  60   Memory alias_index=4
824//    90  LoadP    _  80  30   ... alias_index=4
825//   100  LoadP    _  80  20   ... alias_index=4
826//
827//
828// Phase 1 creates an instance type for node 29 assigning it an instance id of 24
829// and creating a new alias index for node 30.  This gives:
830//
831//     7 Parm #memory
832//    10  ConI  "12"
833//    19  CheckCastPP   "Foo"
834//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
835//    29  CheckCastPP   "Foo"  iid=24
836//    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
837//
838//    40  StoreP  25   7  20   ... alias_index=4
839//    50  StoreP  35  40  30   ... alias_index=6
840//    60  StoreP  45  50  20   ... alias_index=4
841//    70  LoadP    _  60  30   ... alias_index=6
842//    80  Phi     75  50  60   Memory alias_index=4
843//    90  LoadP    _  80  30   ... alias_index=6
844//   100  LoadP    _  80  20   ... alias_index=4
845//
846// In phase 2, new memory inputs are computed for the loads and stores,
847// And a new version of the phi is created.  In phase 4, the inputs to
848// node 80 are updated and then the memory nodes are updated with the
849// values computed in phase 2.  This results in:
850//
851//     7 Parm #memory
852//    10  ConI  "12"
853//    19  CheckCastPP   "Foo"
854//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
855//    29  CheckCastPP   "Foo"  iid=24
856//    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
857//
858//    40  StoreP  25  7   20   ... alias_index=4
859//    50  StoreP  35  7   30   ... alias_index=6
860//    60  StoreP  45  40  20   ... alias_index=4
861//    70  LoadP    _  50  30   ... alias_index=6
862//    80  Phi     75  40  60   Memory alias_index=4
863//   120  Phi     75  50  50   Memory alias_index=6
864//    90  LoadP    _ 120  30   ... alias_index=6
865//   100  LoadP    _  80  20   ... alias_index=4
866//
867void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
868  GrowableArray<Node *>  memnode_worklist;
869  GrowableArray<Node *>  mergemem_worklist;
870  GrowableArray<PhiNode *>  orig_phis;
871  PhaseGVN  *igvn = _compile->initial_gvn();
872  uint new_index_start = (uint) _compile->num_alias_types();
873  VectorSet visited(Thread::current()->resource_area());
874  VectorSet ptset(Thread::current()->resource_area());
875
876
877  //  Phase 1:  Process possible allocations from alloc_worklist.
878  //  Create instance types for the CheckCastPP for allocations where possible.
879  //
880  // (Note: don't forget to change the order of the second AddP node on
881  //  the alloc_worklist if the order of the worklist processing is changed,
882  //  see the comment in find_second_addp().)
883  //
884  while (alloc_worklist.length() != 0) {
885    Node *n = alloc_worklist.pop();
886    uint ni = n->_idx;
887    const TypeOopPtr* tinst = NULL;
888    if (n->is_Call()) {
889      CallNode *alloc = n->as_Call();
890      // copy escape information to call node
891      PointsToNode* ptn = ptnode_adr(alloc->_idx);
892      PointsToNode::EscapeState es = escape_state(alloc, igvn);
893      // We have an allocation or call which returns a Java object,
894      // see if it is unescaped.
895      if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
896        continue;
897      if (alloc->is_Allocate()) {
898        // Set the scalar_replaceable flag before the next check.
899        alloc->as_Allocate()->_is_scalar_replaceable = true;
900      }
901      // find CheckCastPP of call return value
902      n = alloc->result_cast();
903      if (n == NULL ||          // No uses accept Initialize or
904          !n->is_CheckCastPP()) // not unique CheckCastPP.
905        continue;
906      // The inline code for Object.clone() casts the allocation result to
907      // java.lang.Object and then to the actual type of the allocated
908      // object. Detect this case and use the second cast.
909      // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
910      // the allocation result is cast to java.lang.Object and then
911      // to the actual Array type.
912      if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
913          && (alloc->is_AllocateArray() ||
914              igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
915        Node *cast2 = NULL;
916        for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
917          Node *use = n->fast_out(i);
918          if (use->is_CheckCastPP()) {
919            cast2 = use;
920            break;
921          }
922        }
923        if (cast2 != NULL) {
924          n = cast2;
925        } else {
926          continue;
927        }
928      }
929      set_escape_state(n->_idx, es);
930      // in order for an object to be scalar-replaceable, it must be:
931      //   - a direct allocation (not a call returning an object)
932      //   - non-escaping
933      //   - eligible to be a unique type
934      //   - not determined to be ineligible by escape analysis
935      set_map(alloc->_idx, n);
936      set_map(n->_idx, alloc);
937      const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
938      if (t == NULL)
939        continue;  // not a TypeInstPtr
940      tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
941      igvn->hash_delete(n);
942      igvn->set_type(n,  tinst);
943      n->raise_bottom_type(tinst);
944      igvn->hash_insert(n);
945      record_for_optimizer(n);
946      if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
947          (t->isa_instptr() || t->isa_aryptr())) {
948
949        // First, put on the worklist all Field edges from Connection Graph
950        // which is more accurate then putting immediate users from Ideal Graph.
951        for (uint e = 0; e < ptn->edge_count(); e++) {
952          Node *use = ptnode_adr(ptn->edge_target(e))->_node;
953          assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
954                 "only AddP nodes are Field edges in CG");
955          if (use->outcnt() > 0) { // Don't process dead nodes
956            Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
957            if (addp2 != NULL) {
958              assert(alloc->is_AllocateArray(),"array allocation was expected");
959              alloc_worklist.append_if_missing(addp2);
960            }
961            alloc_worklist.append_if_missing(use);
962          }
963        }
964
965        // An allocation may have an Initialize which has raw stores. Scan
966        // the users of the raw allocation result and push AddP users
967        // on alloc_worklist.
968        Node *raw_result = alloc->proj_out(TypeFunc::Parms);
969        assert (raw_result != NULL, "must have an allocation result");
970        for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
971          Node *use = raw_result->fast_out(i);
972          if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
973            Node* addp2 = find_second_addp(use, raw_result);
974            if (addp2 != NULL) {
975              assert(alloc->is_AllocateArray(),"array allocation was expected");
976              alloc_worklist.append_if_missing(addp2);
977            }
978            alloc_worklist.append_if_missing(use);
979          } else if (use->is_Initialize()) {
980            memnode_worklist.append_if_missing(use);
981          }
982        }
983      }
984    } else if (n->is_AddP()) {
985      ptset.Clear();
986      PointsTo(ptset, get_addp_base(n), igvn);
987      assert(ptset.Size() == 1, "AddP address is unique");
988      uint elem = ptset.getelem(); // Allocation node's index
989      if (elem == _phantom_object)
990        continue; // Assume the value was set outside this method.
991      Node *base = get_map(elem);  // CheckCastPP node
992      if (!split_AddP(n, base, igvn)) continue; // wrong type
993      tinst = igvn->type(base)->isa_oopptr();
994    } else if (n->is_Phi() ||
995               n->is_CheckCastPP() ||
996               n->is_EncodeP() ||
997               n->is_DecodeN() ||
998               (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
999      if (visited.test_set(n->_idx)) {
1000        assert(n->is_Phi(), "loops only through Phi's");
1001        continue;  // already processed
1002      }
1003      ptset.Clear();
1004      PointsTo(ptset, n, igvn);
1005      if (ptset.Size() == 1) {
1006        uint elem = ptset.getelem(); // Allocation node's index
1007        if (elem == _phantom_object)
1008          continue; // Assume the value was set outside this method.
1009        Node *val = get_map(elem);   // CheckCastPP node
1010        TypeNode *tn = n->as_Type();
1011        tinst = igvn->type(val)->isa_oopptr();
1012        assert(tinst != NULL && tinst->is_known_instance() &&
1013               (uint)tinst->instance_id() == elem , "instance type expected.");
1014
1015        const Type *tn_type = igvn->type(tn);
1016        const TypeOopPtr *tn_t;
1017        if (tn_type->isa_narrowoop()) {
1018          tn_t = tn_type->make_ptr()->isa_oopptr();
1019        } else {
1020          tn_t = tn_type->isa_oopptr();
1021        }
1022
1023        if (tn_t != NULL &&
1024            tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
1025          if (tn_type->isa_narrowoop()) {
1026            tn_type = tinst->make_narrowoop();
1027          } else {
1028            tn_type = tinst;
1029          }
1030          igvn->hash_delete(tn);
1031          igvn->set_type(tn, tn_type);
1032          tn->set_type(tn_type);
1033          igvn->hash_insert(tn);
1034          record_for_optimizer(n);
1035        } else {
1036          continue; // wrong type
1037        }
1038      }
1039    } else {
1040      continue;
1041    }
1042    // push users on appropriate worklist
1043    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1044      Node *use = n->fast_out(i);
1045      if(use->is_Mem() && use->in(MemNode::Address) == n) {
1046        memnode_worklist.append_if_missing(use);
1047      } else if (use->is_Initialize()) {
1048        memnode_worklist.append_if_missing(use);
1049      } else if (use->is_MergeMem()) {
1050        mergemem_worklist.append_if_missing(use);
1051      } else if (use->is_SafePoint() && tinst != NULL) {
1052        // Look for MergeMem nodes for calls which reference unique allocation
1053        // (through CheckCastPP nodes) even for debug info.
1054        Node* m = use->in(TypeFunc::Memory);
1055        uint iid = tinst->instance_id();
1056        while (m->is_Proj() && m->in(0)->is_SafePoint() &&
1057               m->in(0) != use && !m->in(0)->_idx != iid) {
1058          m = m->in(0)->in(TypeFunc::Memory);
1059        }
1060        if (m->is_MergeMem()) {
1061          mergemem_worklist.append_if_missing(m);
1062        }
1063      } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1064        Node* addp2 = find_second_addp(use, n);
1065        if (addp2 != NULL) {
1066          alloc_worklist.append_if_missing(addp2);
1067        }
1068        alloc_worklist.append_if_missing(use);
1069      } else if (use->is_Phi() ||
1070                 use->is_CheckCastPP() ||
1071                 use->is_EncodeP() ||
1072                 use->is_DecodeN() ||
1073                 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1074        alloc_worklist.append_if_missing(use);
1075      }
1076    }
1077
1078  }
1079  // New alias types were created in split_AddP().
1080  uint new_index_end = (uint) _compile->num_alias_types();
1081
1082  //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1083  //            compute new values for Memory inputs  (the Memory inputs are not
1084  //            actually updated until phase 4.)
1085  if (memnode_worklist.length() == 0)
1086    return;  // nothing to do
1087
1088  while (memnode_worklist.length() != 0) {
1089    Node *n = memnode_worklist.pop();
1090    if (visited.test_set(n->_idx))
1091      continue;
1092    if (n->is_Phi()) {
1093      assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
1094      // we don't need to do anything, but the users must be pushed if we haven't processed
1095      // this Phi before
1096    } else if (n->is_Initialize()) {
1097      // we don't need to do anything, but the users of the memory projection must be pushed
1098      n = n->as_Initialize()->proj_out(TypeFunc::Memory);
1099      if (n == NULL)
1100        continue;
1101    } else {
1102      assert(n->is_Mem(), "memory node required.");
1103      Node *addr = n->in(MemNode::Address);
1104      assert(addr->is_AddP(), "AddP required");
1105      const Type *addr_t = igvn->type(addr);
1106      if (addr_t == Type::TOP)
1107        continue;
1108      assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1109      int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1110      assert ((uint)alias_idx < new_index_end, "wrong alias index");
1111      Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1112      if (_compile->failing()) {
1113        return;
1114      }
1115      if (mem != n->in(MemNode::Memory)) {
1116        set_map(n->_idx, mem);
1117        ptnode_adr(n->_idx)->_node = n;
1118      }
1119      if (n->is_Load()) {
1120        continue;  // don't push users
1121      } else if (n->is_LoadStore()) {
1122        // get the memory projection
1123        for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1124          Node *use = n->fast_out(i);
1125          if (use->Opcode() == Op_SCMemProj) {
1126            n = use;
1127            break;
1128          }
1129        }
1130        assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1131      }
1132    }
1133    // push user on appropriate worklist
1134    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1135      Node *use = n->fast_out(i);
1136      if (use->is_Phi()) {
1137        memnode_worklist.append_if_missing(use);
1138      } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1139        memnode_worklist.append_if_missing(use);
1140      } else if (use->is_Initialize()) {
1141        memnode_worklist.append_if_missing(use);
1142      } else if (use->is_MergeMem()) {
1143        mergemem_worklist.append_if_missing(use);
1144      }
1145    }
1146  }
1147
1148  //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1149  //            Walk each memory moving the first node encountered of each
1150  //            instance type to the the input corresponding to its alias index.
1151  while (mergemem_worklist.length() != 0) {
1152    Node *n = mergemem_worklist.pop();
1153    assert(n->is_MergeMem(), "MergeMem node required.");
1154    if (visited.test_set(n->_idx))
1155      continue;
1156    MergeMemNode *nmm = n->as_MergeMem();
1157    // Note: we don't want to use MergeMemStream here because we only want to
1158    //  scan inputs which exist at the start, not ones we add during processing.
1159    uint nslices = nmm->req();
1160    igvn->hash_delete(nmm);
1161    for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1162      Node* mem = nmm->in(i);
1163      Node* cur = NULL;
1164      if (mem == NULL || mem->is_top())
1165        continue;
1166      while (mem->is_Mem()) {
1167        const Type *at = igvn->type(mem->in(MemNode::Address));
1168        if (at != Type::TOP) {
1169          assert (at->isa_ptr() != NULL, "pointer type required.");
1170          uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1171          if (idx == i) {
1172            if (cur == NULL)
1173              cur = mem;
1174          } else {
1175            if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1176              nmm->set_memory_at(idx, mem);
1177            }
1178          }
1179        }
1180        mem = mem->in(MemNode::Memory);
1181      }
1182      nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1183      // Find any instance of the current type if we haven't encountered
1184      // a value of the instance along the chain.
1185      for (uint ni = new_index_start; ni < new_index_end; ni++) {
1186        if((uint)_compile->get_general_index(ni) == i) {
1187          Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1188          if (nmm->is_empty_memory(m)) {
1189            Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1190            if (_compile->failing()) {
1191              return;
1192            }
1193            nmm->set_memory_at(ni, result);
1194          }
1195        }
1196      }
1197    }
1198    // Find the rest of instances values
1199    for (uint ni = new_index_start; ni < new_index_end; ni++) {
1200      const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
1201      Node* result = step_through_mergemem(nmm, ni, tinst);
1202      if (result == nmm->base_memory()) {
1203        // Didn't find instance memory, search through general slice recursively.
1204        result = nmm->memory_at(igvn->C->get_general_index(ni));
1205        result = find_inst_mem(result, ni, orig_phis, igvn);
1206        if (_compile->failing()) {
1207          return;
1208        }
1209        nmm->set_memory_at(ni, result);
1210      }
1211    }
1212    igvn->hash_insert(nmm);
1213    record_for_optimizer(nmm);
1214
1215    // Propagate new memory slices to following MergeMem nodes.
1216    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1217      Node *use = n->fast_out(i);
1218      if (use->is_Call()) {
1219        CallNode* in = use->as_Call();
1220        if (in->proj_out(TypeFunc::Memory) != NULL) {
1221          Node* m = in->proj_out(TypeFunc::Memory);
1222          for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1223            Node* mm = m->fast_out(j);
1224            if (mm->is_MergeMem()) {
1225              mergemem_worklist.append_if_missing(mm);
1226            }
1227          }
1228        }
1229        if (use->is_Allocate()) {
1230          use = use->as_Allocate()->initialization();
1231          if (use == NULL) {
1232            continue;
1233          }
1234        }
1235      }
1236      if (use->is_Initialize()) {
1237        InitializeNode* in = use->as_Initialize();
1238        if (in->proj_out(TypeFunc::Memory) != NULL) {
1239          Node* m = in->proj_out(TypeFunc::Memory);
1240          for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1241            Node* mm = m->fast_out(j);
1242            if (mm->is_MergeMem()) {
1243              mergemem_worklist.append_if_missing(mm);
1244            }
1245          }
1246        }
1247      }
1248    }
1249  }
1250
1251  //  Phase 4:  Update the inputs of non-instance memory Phis and
1252  //            the Memory input of memnodes
1253  // First update the inputs of any non-instance Phi's from
1254  // which we split out an instance Phi.  Note we don't have
1255  // to recursively process Phi's encounted on the input memory
1256  // chains as is done in split_memory_phi() since they  will
1257  // also be processed here.
1258  for (int j = 0; j < orig_phis.length(); j++) {
1259    PhiNode *phi = orig_phis.at(j);
1260    int alias_idx = _compile->get_alias_index(phi->adr_type());
1261    igvn->hash_delete(phi);
1262    for (uint i = 1; i < phi->req(); i++) {
1263      Node *mem = phi->in(i);
1264      Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1265      if (_compile->failing()) {
1266        return;
1267      }
1268      if (mem != new_mem) {
1269        phi->set_req(i, new_mem);
1270      }
1271    }
1272    igvn->hash_insert(phi);
1273    record_for_optimizer(phi);
1274  }
1275
1276  // Update the memory inputs of MemNodes with the value we computed
1277  // in Phase 2.
1278  for (uint i = 0; i < nodes_size(); i++) {
1279    Node *nmem = get_map(i);
1280    if (nmem != NULL) {
1281      Node *n = ptnode_adr(i)->_node;
1282      if (n != NULL && n->is_Mem()) {
1283        igvn->hash_delete(n);
1284        n->set_req(MemNode::Memory, nmem);
1285        igvn->hash_insert(n);
1286        record_for_optimizer(n);
1287      }
1288    }
1289  }
1290}
1291
1292bool ConnectionGraph::has_candidates(Compile *C) {
1293  // EA brings benefits only when the code has allocations and/or locks which
1294  // are represented by ideal Macro nodes.
1295  int cnt = C->macro_count();
1296  for( int i=0; i < cnt; i++ ) {
1297    Node *n = C->macro_node(i);
1298    if ( n->is_Allocate() )
1299      return true;
1300    if( n->is_Lock() ) {
1301      Node* obj = n->as_Lock()->obj_node()->uncast();
1302      if( !(obj->is_Parm() || obj->is_Con()) )
1303        return true;
1304    }
1305  }
1306  return false;
1307}
1308
1309bool ConnectionGraph::compute_escape() {
1310  Compile* C = _compile;
1311
1312  // 1. Populate Connection Graph (CG) with Ideal nodes.
1313
1314  Unique_Node_List worklist_init;
1315  worklist_init.map(C->unique(), NULL);  // preallocate space
1316
1317  // Initialize worklist
1318  if (C->root() != NULL) {
1319    worklist_init.push(C->root());
1320  }
1321
1322  GrowableArray<int> cg_worklist;
1323  PhaseGVN* igvn = C->initial_gvn();
1324  bool has_allocations = false;
1325
1326  // Push all useful nodes onto CG list and set their type.
1327  for( uint next = 0; next < worklist_init.size(); ++next ) {
1328    Node* n = worklist_init.at(next);
1329    record_for_escape_analysis(n, igvn);
1330    // Only allocations and java static calls results are checked
1331    // for an escape status. See process_call_result() below.
1332    if (n->is_Allocate() || n->is_CallStaticJava() &&
1333        ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1334      has_allocations = true;
1335    }
1336    if(n->is_AddP())
1337      cg_worklist.append(n->_idx);
1338    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1339      Node* m = n->fast_out(i);   // Get user
1340      worklist_init.push(m);
1341    }
1342  }
1343
1344  if (!has_allocations) {
1345    _collecting = false;
1346    return false; // Nothing to do.
1347  }
1348
1349  // 2. First pass to create simple CG edges (doesn't require to walk CG).
1350  uint delayed_size = _delayed_worklist.size();
1351  for( uint next = 0; next < delayed_size; ++next ) {
1352    Node* n = _delayed_worklist.at(next);
1353    build_connection_graph(n, igvn);
1354  }
1355
1356  // 3. Pass to create fields edges (Allocate -F-> AddP).
1357  uint cg_length = cg_worklist.length();
1358  for( uint next = 0; next < cg_length; ++next ) {
1359    int ni = cg_worklist.at(next);
1360    build_connection_graph(ptnode_adr(ni)->_node, igvn);
1361  }
1362
1363  cg_worklist.clear();
1364  cg_worklist.append(_phantom_object);
1365
1366  // 4. Build Connection Graph which need
1367  //    to walk the connection graph.
1368  for (uint ni = 0; ni < nodes_size(); ni++) {
1369    PointsToNode* ptn = ptnode_adr(ni);
1370    Node *n = ptn->_node;
1371    if (n != NULL) { // Call, AddP, LoadP, StoreP
1372      build_connection_graph(n, igvn);
1373      if (ptn->node_type() != PointsToNode::UnknownType)
1374        cg_worklist.append(n->_idx); // Collect CG nodes
1375    }
1376  }
1377
1378  VectorSet ptset(Thread::current()->resource_area());
1379  GrowableArray<uint>  deferred_edges;
1380  VectorSet visited(Thread::current()->resource_area());
1381
1382  // 5. Remove deferred edges from the graph and collect
1383  //    information needed for type splitting.
1384  cg_length = cg_worklist.length();
1385  for( uint next = 0; next < cg_length; ++next ) {
1386    int ni = cg_worklist.at(next);
1387    PointsToNode* ptn = ptnode_adr(ni);
1388    PointsToNode::NodeType nt = ptn->node_type();
1389    if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1390      remove_deferred(ni, &deferred_edges, &visited);
1391      Node *n = ptn->_node;
1392      if (n->is_AddP()) {
1393        // Search for objects which are not scalar replaceable.
1394        // Mark their escape state as ArgEscape to propagate the state
1395        // to referenced objects.
1396        // Note: currently there are no difference in compiler optimizations
1397        // for ArgEscape objects and NoEscape objects which are not
1398        // scalar replaceable.
1399
1400        int offset = ptn->offset();
1401        Node *base = get_addp_base(n);
1402        ptset.Clear();
1403        PointsTo(ptset, base, igvn);
1404        int ptset_size = ptset.Size();
1405
1406        // Check if a field's initializing value is recorded and add
1407        // a corresponding NULL field's value if it is not recorded.
1408        // Connection Graph does not record a default initialization by NULL
1409        // captured by Initialize node.
1410        //
1411        // Note: it will disable scalar replacement in some cases:
1412        //
1413        //    Point p[] = new Point[1];
1414        //    p[0] = new Point(); // Will be not scalar replaced
1415        //
1416        // but it will save us from incorrect optimizations in next cases:
1417        //
1418        //    Point p[] = new Point[1];
1419        //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1420        //
1421        // Without a control flow analysis we can't distinguish above cases.
1422        //
1423        if (offset != Type::OffsetBot && ptset_size == 1) {
1424          uint elem = ptset.getelem(); // Allocation node's index
1425          // It does not matter if it is not Allocation node since
1426          // only non-escaping allocations are scalar replaced.
1427          if (ptnode_adr(elem)->_node->is_Allocate() &&
1428              ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
1429            AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
1430            InitializeNode* ini = alloc->initialization();
1431            Node* value = NULL;
1432            if (ini != NULL) {
1433              BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1434              Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
1435              if (store != NULL && store->is_Store())
1436                value = store->in(MemNode::ValueIn);
1437            }
1438            if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1439              // A field's initializing value was not recorded. Add NULL.
1440              uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1441              add_pointsto_edge(ni, null_idx);
1442            }
1443          }
1444        }
1445
1446        // An object is not scalar replaceable if the field which may point
1447        // to it has unknown offset (unknown element of an array of objects).
1448        //
1449        if (offset == Type::OffsetBot) {
1450          uint e_cnt = ptn->edge_count();
1451          for (uint ei = 0; ei < e_cnt; ei++) {
1452            uint npi = ptn->edge_target(ei);
1453            set_escape_state(npi, PointsToNode::ArgEscape);
1454            ptnode_adr(npi)->_scalar_replaceable = false;
1455          }
1456        }
1457
1458        // Currently an object is not scalar replaceable if a LoadStore node
1459        // access its field since the field value is unknown after it.
1460        //
1461        bool has_LoadStore = false;
1462        for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1463          Node *use = n->fast_out(i);
1464          if (use->is_LoadStore()) {
1465            has_LoadStore = true;
1466            break;
1467          }
1468        }
1469        // An object is not scalar replaceable if the address points
1470        // to unknown field (unknown element for arrays, offset is OffsetBot).
1471        //
1472        // Or the address may point to more then one object. This may produce
1473        // the false positive result (set scalar_replaceable to false)
1474        // since the flow-insensitive escape analysis can't separate
1475        // the case when stores overwrite the field's value from the case
1476        // when stores happened on different control branches.
1477        //
1478        if (ptset_size > 1 || ptset_size != 0 &&
1479            (has_LoadStore || offset == Type::OffsetBot)) {
1480          for( VectorSetI j(&ptset); j.test(); ++j ) {
1481            set_escape_state(j.elem, PointsToNode::ArgEscape);
1482            ptnode_adr(j.elem)->_scalar_replaceable = false;
1483          }
1484        }
1485      }
1486    }
1487  }
1488
1489  // 6. Propagate escape states.
1490  GrowableArray<int>  worklist;
1491  bool has_non_escaping_obj = false;
1492
1493  // push all GlobalEscape nodes on the worklist
1494  for( uint next = 0; next < cg_length; ++next ) {
1495    int nk = cg_worklist.at(next);
1496    if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
1497      worklist.push(nk);
1498  }
1499  // mark all nodes reachable from GlobalEscape nodes
1500  while(worklist.length() > 0) {
1501    PointsToNode* ptn = ptnode_adr(worklist.pop());
1502    uint e_cnt = ptn->edge_count();
1503    for (uint ei = 0; ei < e_cnt; ei++) {
1504      uint npi = ptn->edge_target(ei);
1505      PointsToNode *np = ptnode_adr(npi);
1506      if (np->escape_state() < PointsToNode::GlobalEscape) {
1507        np->set_escape_state(PointsToNode::GlobalEscape);
1508        worklist.push(npi);
1509      }
1510    }
1511  }
1512
1513  // push all ArgEscape nodes on the worklist
1514  for( uint next = 0; next < cg_length; ++next ) {
1515    int nk = cg_worklist.at(next);
1516    if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
1517      worklist.push(nk);
1518  }
1519  // mark all nodes reachable from ArgEscape nodes
1520  while(worklist.length() > 0) {
1521    PointsToNode* ptn = ptnode_adr(worklist.pop());
1522    if (ptn->node_type() == PointsToNode::JavaObject)
1523      has_non_escaping_obj = true; // Non GlobalEscape
1524    uint e_cnt = ptn->edge_count();
1525    for (uint ei = 0; ei < e_cnt; ei++) {
1526      uint npi = ptn->edge_target(ei);
1527      PointsToNode *np = ptnode_adr(npi);
1528      if (np->escape_state() < PointsToNode::ArgEscape) {
1529        np->set_escape_state(PointsToNode::ArgEscape);
1530        worklist.push(npi);
1531      }
1532    }
1533  }
1534
1535  GrowableArray<Node*> alloc_worklist;
1536
1537  // push all NoEscape nodes on the worklist
1538  for( uint next = 0; next < cg_length; ++next ) {
1539    int nk = cg_worklist.at(next);
1540    if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1541      worklist.push(nk);
1542  }
1543  // mark all nodes reachable from NoEscape nodes
1544  while(worklist.length() > 0) {
1545    PointsToNode* ptn = ptnode_adr(worklist.pop());
1546    if (ptn->node_type() == PointsToNode::JavaObject)
1547      has_non_escaping_obj = true; // Non GlobalEscape
1548    Node* n = ptn->_node;
1549    if (n->is_Allocate() && ptn->_scalar_replaceable ) {
1550      // Push scalar replaceable alocations on alloc_worklist
1551      // for processing in split_unique_types().
1552      alloc_worklist.append(n);
1553    }
1554    uint e_cnt = ptn->edge_count();
1555    for (uint ei = 0; ei < e_cnt; ei++) {
1556      uint npi = ptn->edge_target(ei);
1557      PointsToNode *np = ptnode_adr(npi);
1558      if (np->escape_state() < PointsToNode::NoEscape) {
1559        np->set_escape_state(PointsToNode::NoEscape);
1560        worklist.push(npi);
1561      }
1562    }
1563  }
1564
1565  _collecting = false;
1566  assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1567
1568  bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
1569  if ( has_scalar_replaceable_candidates &&
1570       C->AliasLevel() >= 3 && EliminateAllocations ) {
1571
1572    // Now use the escape information to create unique types for
1573    // scalar replaceable objects.
1574    split_unique_types(alloc_worklist);
1575
1576    if (C->failing())  return false;
1577
1578    // Clean up after split unique types.
1579    ResourceMark rm;
1580    PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
1581
1582    C->print_method("After Escape Analysis", 2);
1583
1584#ifdef ASSERT
1585  } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1586    tty->print("=== No allocations eliminated for ");
1587    C->method()->print_short_name();
1588    if(!EliminateAllocations) {
1589      tty->print(" since EliminateAllocations is off ===");
1590    } else if(!has_scalar_replaceable_candidates) {
1591      tty->print(" since there are no scalar replaceable candidates ===");
1592    } else if(C->AliasLevel() < 3) {
1593      tty->print(" since AliasLevel < 3 ===");
1594    }
1595    tty->cr();
1596#endif
1597  }
1598  return has_non_escaping_obj;
1599}
1600
1601void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
1602
1603    switch (call->Opcode()) {
1604#ifdef ASSERT
1605    case Op_Allocate:
1606    case Op_AllocateArray:
1607    case Op_Lock:
1608    case Op_Unlock:
1609      assert(false, "should be done already");
1610      break;
1611#endif
1612    case Op_CallLeafNoFP:
1613    {
1614      // Stub calls, objects do not escape but they are not scale replaceable.
1615      // Adjust escape state for outgoing arguments.
1616      const TypeTuple * d = call->tf()->domain();
1617      VectorSet ptset(Thread::current()->resource_area());
1618      for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1619        const Type* at = d->field_at(i);
1620        Node *arg = call->in(i)->uncast();
1621        const Type *aat = phase->type(arg);
1622        if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
1623          assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1624                 aat->isa_ptr() != NULL, "expecting an Ptr");
1625          set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1626          if (arg->is_AddP()) {
1627            //
1628            // The inline_native_clone() case when the arraycopy stub is called
1629            // after the allocation before Initialize and CheckCastPP nodes.
1630            //
1631            // Set AddP's base (Allocate) as not scalar replaceable since
1632            // pointer to the base (with offset) is passed as argument.
1633            //
1634            arg = get_addp_base(arg);
1635          }
1636          ptset.Clear();
1637          PointsTo(ptset, arg, phase);
1638          for( VectorSetI j(&ptset); j.test(); ++j ) {
1639            uint pt = j.elem;
1640            set_escape_state(pt, PointsToNode::ArgEscape);
1641          }
1642        }
1643      }
1644      break;
1645    }
1646
1647    case Op_CallStaticJava:
1648    // For a static call, we know exactly what method is being called.
1649    // Use bytecode estimator to record the call's escape affects
1650    {
1651      ciMethod *meth = call->as_CallJava()->method();
1652      BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1653      // fall-through if not a Java method or no analyzer information
1654      if (call_analyzer != NULL) {
1655        const TypeTuple * d = call->tf()->domain();
1656        VectorSet ptset(Thread::current()->resource_area());
1657        bool copy_dependencies = false;
1658        for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1659          const Type* at = d->field_at(i);
1660          int k = i - TypeFunc::Parms;
1661
1662          if (at->isa_oopptr() != NULL) {
1663            Node *arg = call->in(i)->uncast();
1664
1665            bool global_escapes = false;
1666            bool fields_escapes = false;
1667            if (!call_analyzer->is_arg_stack(k)) {
1668              // The argument global escapes, mark everything it could point to
1669              set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1670              global_escapes = true;
1671            } else {
1672              if (!call_analyzer->is_arg_local(k)) {
1673                // The argument itself doesn't escape, but any fields might
1674                fields_escapes = true;
1675              }
1676              set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1677              copy_dependencies = true;
1678            }
1679
1680            ptset.Clear();
1681            PointsTo(ptset, arg, phase);
1682            for( VectorSetI j(&ptset); j.test(); ++j ) {
1683              uint pt = j.elem;
1684              if (global_escapes) {
1685                //The argument global escapes, mark everything it could point to
1686                set_escape_state(pt, PointsToNode::GlobalEscape);
1687              } else {
1688                if (fields_escapes) {
1689                  // The argument itself doesn't escape, but any fields might
1690                  add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
1691                }
1692                set_escape_state(pt, PointsToNode::ArgEscape);
1693              }
1694            }
1695          }
1696        }
1697        if (copy_dependencies)
1698          call_analyzer->copy_dependencies(_compile->dependencies());
1699        break;
1700      }
1701    }
1702
1703    default:
1704    // Fall-through here if not a Java method or no analyzer information
1705    // or some other type of call, assume the worst case: all arguments
1706    // globally escape.
1707    {
1708      // adjust escape state for  outgoing arguments
1709      const TypeTuple * d = call->tf()->domain();
1710      VectorSet ptset(Thread::current()->resource_area());
1711      for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1712        const Type* at = d->field_at(i);
1713        if (at->isa_oopptr() != NULL) {
1714          Node *arg = call->in(i)->uncast();
1715          set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1716          ptset.Clear();
1717          PointsTo(ptset, arg, phase);
1718          for( VectorSetI j(&ptset); j.test(); ++j ) {
1719            uint pt = j.elem;
1720            set_escape_state(pt, PointsToNode::GlobalEscape);
1721          }
1722        }
1723      }
1724    }
1725  }
1726}
1727void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
1728  CallNode   *call = resproj->in(0)->as_Call();
1729  uint    call_idx = call->_idx;
1730  uint resproj_idx = resproj->_idx;
1731
1732  switch (call->Opcode()) {
1733    case Op_Allocate:
1734    {
1735      Node *k = call->in(AllocateNode::KlassNode);
1736      const TypeKlassPtr *kt;
1737      if (k->Opcode() == Op_LoadKlass) {
1738        kt = k->as_Load()->type()->isa_klassptr();
1739      } else {
1740        // Also works for DecodeN(LoadNKlass).
1741        kt = k->as_Type()->type()->isa_klassptr();
1742      }
1743      assert(kt != NULL, "TypeKlassPtr  required.");
1744      ciKlass* cik = kt->klass();
1745      ciInstanceKlass* ciik = cik->as_instance_klass();
1746
1747      PointsToNode::EscapeState es;
1748      uint edge_to;
1749      if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
1750        es = PointsToNode::GlobalEscape;
1751        edge_to = _phantom_object; // Could not be worse
1752      } else {
1753        es = PointsToNode::NoEscape;
1754        edge_to = call_idx;
1755      }
1756      set_escape_state(call_idx, es);
1757      add_pointsto_edge(resproj_idx, edge_to);
1758      _processed.set(resproj_idx);
1759      break;
1760    }
1761
1762    case Op_AllocateArray:
1763    {
1764      int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1765      if (length < 0 || length > EliminateAllocationArraySizeLimit) {
1766        // Not scalar replaceable if the length is not constant or too big.
1767        ptnode_adr(call_idx)->_scalar_replaceable = false;
1768      }
1769      set_escape_state(call_idx, PointsToNode::NoEscape);
1770      add_pointsto_edge(resproj_idx, call_idx);
1771      _processed.set(resproj_idx);
1772      break;
1773    }
1774
1775    case Op_CallStaticJava:
1776    // For a static call, we know exactly what method is being called.
1777    // Use bytecode estimator to record whether the call's return value escapes
1778    {
1779      bool done = true;
1780      const TypeTuple *r = call->tf()->range();
1781      const Type* ret_type = NULL;
1782
1783      if (r->cnt() > TypeFunc::Parms)
1784        ret_type = r->field_at(TypeFunc::Parms);
1785
1786      // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1787      //        _multianewarray functions return a TypeRawPtr.
1788      if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
1789        _processed.set(resproj_idx);
1790        break;  // doesn't return a pointer type
1791      }
1792      ciMethod *meth = call->as_CallJava()->method();
1793      const TypeTuple * d = call->tf()->domain();
1794      if (meth == NULL) {
1795        // not a Java method, assume global escape
1796        set_escape_state(call_idx, PointsToNode::GlobalEscape);
1797        add_pointsto_edge(resproj_idx, _phantom_object);
1798      } else {
1799        BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
1800        bool copy_dependencies = false;
1801
1802        if (call_analyzer->is_return_allocated()) {
1803          // Returns a newly allocated unescaped object, simply
1804          // update dependency information.
1805          // Mark it as NoEscape so that objects referenced by
1806          // it's fields will be marked as NoEscape at least.
1807          set_escape_state(call_idx, PointsToNode::NoEscape);
1808          add_pointsto_edge(resproj_idx, call_idx);
1809          copy_dependencies = true;
1810        } else if (call_analyzer->is_return_local()) {
1811          // determine whether any arguments are returned
1812          set_escape_state(call_idx, PointsToNode::NoEscape);
1813          for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1814            const Type* at = d->field_at(i);
1815
1816            if (at->isa_oopptr() != NULL) {
1817              Node *arg = call->in(i)->uncast();
1818
1819              if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
1820                PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1821                if (arg_esp->node_type() == PointsToNode::UnknownType)
1822                  done = false;
1823                else if (arg_esp->node_type() == PointsToNode::JavaObject)
1824                  add_pointsto_edge(resproj_idx, arg->_idx);
1825                else
1826                  add_deferred_edge(resproj_idx, arg->_idx);
1827                arg_esp->_hidden_alias = true;
1828              }
1829            }
1830          }
1831          copy_dependencies = true;
1832        } else {
1833          set_escape_state(call_idx, PointsToNode::GlobalEscape);
1834          add_pointsto_edge(resproj_idx, _phantom_object);
1835          for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1836            const Type* at = d->field_at(i);
1837            if (at->isa_oopptr() != NULL) {
1838              Node *arg = call->in(i)->uncast();
1839              PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1840              arg_esp->_hidden_alias = true;
1841            }
1842          }
1843        }
1844        if (copy_dependencies)
1845          call_analyzer->copy_dependencies(_compile->dependencies());
1846      }
1847      if (done)
1848        _processed.set(resproj_idx);
1849      break;
1850    }
1851
1852    default:
1853    // Some other type of call, assume the worst case that the
1854    // returned value, if any, globally escapes.
1855    {
1856      const TypeTuple *r = call->tf()->range();
1857      if (r->cnt() > TypeFunc::Parms) {
1858        const Type* ret_type = r->field_at(TypeFunc::Parms);
1859
1860        // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1861        //        _multianewarray functions return a TypeRawPtr.
1862        if (ret_type->isa_ptr() != NULL) {
1863          set_escape_state(call_idx, PointsToNode::GlobalEscape);
1864          add_pointsto_edge(resproj_idx, _phantom_object);
1865        }
1866      }
1867      _processed.set(resproj_idx);
1868    }
1869  }
1870}
1871
1872// Populate Connection Graph with Ideal nodes and create simple
1873// connection graph edges (do not need to check the node_type of inputs
1874// or to call PointsTo() to walk the connection graph).
1875void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
1876  if (_processed.test(n->_idx))
1877    return; // No need to redefine node's state.
1878
1879  if (n->is_Call()) {
1880    // Arguments to allocation and locking don't escape.
1881    if (n->is_Allocate()) {
1882      add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
1883      record_for_optimizer(n);
1884    } else if (n->is_Lock() || n->is_Unlock()) {
1885      // Put Lock and Unlock nodes on IGVN worklist to process them during
1886      // the first IGVN optimization when escape information is still available.
1887      record_for_optimizer(n);
1888      _processed.set(n->_idx);
1889    } else {
1890      // Have to process call's arguments first.
1891      PointsToNode::NodeType nt = PointsToNode::UnknownType;
1892
1893      // Check if a call returns an object.
1894      const TypeTuple *r = n->as_Call()->tf()->range();
1895      if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
1896          n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
1897        // Note:  use isa_ptr() instead of isa_oopptr() here because
1898        //        the _multianewarray functions return a TypeRawPtr.
1899        if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
1900          nt = PointsToNode::JavaObject;
1901        }
1902      }
1903      add_node(n, nt, PointsToNode::UnknownEscape, false);
1904    }
1905    return;
1906  }
1907
1908  // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1909  // ThreadLocal has RawPrt type.
1910  switch (n->Opcode()) {
1911    case Op_AddP:
1912    {
1913      add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
1914      break;
1915    }
1916    case Op_CastX2P:
1917    { // "Unsafe" memory access.
1918      add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
1919      break;
1920    }
1921    case Op_CastPP:
1922    case Op_CheckCastPP:
1923    case Op_EncodeP:
1924    case Op_DecodeN:
1925    {
1926      add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
1927      int ti = n->in(1)->_idx;
1928      PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
1929      if (nt == PointsToNode::UnknownType) {
1930        _delayed_worklist.push(n); // Process it later.
1931        break;
1932      } else if (nt == PointsToNode::JavaObject) {
1933        add_pointsto_edge(n->_idx, ti);
1934      } else {
1935        add_deferred_edge(n->_idx, ti);
1936      }
1937      _processed.set(n->_idx);
1938      break;
1939    }
1940    case Op_ConP:
1941    {
1942      // assume all pointer constants globally escape except for null
1943      PointsToNode::EscapeState es;
1944      if (phase->type(n) == TypePtr::NULL_PTR)
1945        es = PointsToNode::NoEscape;
1946      else
1947        es = PointsToNode::GlobalEscape;
1948
1949      add_node(n, PointsToNode::JavaObject, es, true);
1950      break;
1951    }
1952    case Op_ConN:
1953    {
1954      // assume all narrow oop constants globally escape except for null
1955      PointsToNode::EscapeState es;
1956      if (phase->type(n) == TypeNarrowOop::NULL_PTR)
1957        es = PointsToNode::NoEscape;
1958      else
1959        es = PointsToNode::GlobalEscape;
1960
1961      add_node(n, PointsToNode::JavaObject, es, true);
1962      break;
1963    }
1964    case Op_CreateEx:
1965    {
1966      // assume that all exception objects globally escape
1967      add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
1968      break;
1969    }
1970    case Op_LoadKlass:
1971    case Op_LoadNKlass:
1972    {
1973      add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
1974      break;
1975    }
1976    case Op_LoadP:
1977    case Op_LoadN:
1978    {
1979      const Type *t = phase->type(n);
1980      if (t->make_ptr() == NULL) {
1981        _processed.set(n->_idx);
1982        return;
1983      }
1984      add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
1985      break;
1986    }
1987    case Op_Parm:
1988    {
1989      _processed.set(n->_idx); // No need to redefine it state.
1990      uint con = n->as_Proj()->_con;
1991      if (con < TypeFunc::Parms)
1992        return;
1993      const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
1994      if (t->isa_ptr() == NULL)
1995        return;
1996      // We have to assume all input parameters globally escape
1997      // (Note: passing 'false' since _processed is already set).
1998      add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
1999      break;
2000    }
2001    case Op_Phi:
2002    {
2003      const Type *t = n->as_Phi()->type();
2004      if (t->make_ptr() == NULL) {
2005        // nothing to do if not an oop or narrow oop
2006        _processed.set(n->_idx);
2007        return;
2008      }
2009      add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2010      uint i;
2011      for (i = 1; i < n->req() ; i++) {
2012        Node* in = n->in(i);
2013        if (in == NULL)
2014          continue;  // ignore NULL
2015        in = in->uncast();
2016        if (in->is_top() || in == n)
2017          continue;  // ignore top or inputs which go back this node
2018        int ti = in->_idx;
2019        PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2020        if (nt == PointsToNode::UnknownType) {
2021          break;
2022        } else if (nt == PointsToNode::JavaObject) {
2023          add_pointsto_edge(n->_idx, ti);
2024        } else {
2025          add_deferred_edge(n->_idx, ti);
2026        }
2027      }
2028      if (i >= n->req())
2029        _processed.set(n->_idx);
2030      else
2031        _delayed_worklist.push(n);
2032      break;
2033    }
2034    case Op_Proj:
2035    {
2036      // we are only interested in the result projection from a call
2037      if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2038        add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2039        process_call_result(n->as_Proj(), phase);
2040        if (!_processed.test(n->_idx)) {
2041          // The call's result may need to be processed later if the call
2042          // returns it's argument and the argument is not processed yet.
2043          _delayed_worklist.push(n);
2044        }
2045      } else {
2046        _processed.set(n->_idx);
2047      }
2048      break;
2049    }
2050    case Op_Return:
2051    {
2052      if( n->req() > TypeFunc::Parms &&
2053          phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2054        // Treat Return value as LocalVar with GlobalEscape escape state.
2055        add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2056        int ti = n->in(TypeFunc::Parms)->_idx;
2057        PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2058        if (nt == PointsToNode::UnknownType) {
2059          _delayed_worklist.push(n); // Process it later.
2060          break;
2061        } else if (nt == PointsToNode::JavaObject) {
2062          add_pointsto_edge(n->_idx, ti);
2063        } else {
2064          add_deferred_edge(n->_idx, ti);
2065        }
2066      }
2067      _processed.set(n->_idx);
2068      break;
2069    }
2070    case Op_StoreP:
2071    case Op_StoreN:
2072    {
2073      const Type *adr_type = phase->type(n->in(MemNode::Address));
2074      adr_type = adr_type->make_ptr();
2075      if (adr_type->isa_oopptr()) {
2076        add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2077      } else {
2078        Node* adr = n->in(MemNode::Address);
2079        if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2080            adr->in(AddPNode::Address)->is_Proj() &&
2081            adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2082          add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2083          // We are computing a raw address for a store captured
2084          // by an Initialize compute an appropriate address type.
2085          int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2086          assert(offs != Type::OffsetBot, "offset must be a constant");
2087        } else {
2088          _processed.set(n->_idx);
2089          return;
2090        }
2091      }
2092      break;
2093    }
2094    case Op_StorePConditional:
2095    case Op_CompareAndSwapP:
2096    case Op_CompareAndSwapN:
2097    {
2098      const Type *adr_type = phase->type(n->in(MemNode::Address));
2099      adr_type = adr_type->make_ptr();
2100      if (adr_type->isa_oopptr()) {
2101        add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2102      } else {
2103        _processed.set(n->_idx);
2104        return;
2105      }
2106      break;
2107    }
2108    case Op_ThreadLocal:
2109    {
2110      add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2111      break;
2112    }
2113    default:
2114      ;
2115      // nothing to do
2116  }
2117  return;
2118}
2119
2120void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2121  uint n_idx = n->_idx;
2122
2123  // Don't set processed bit for AddP, LoadP, StoreP since
2124  // they may need more then one pass to process.
2125  if (_processed.test(n_idx))
2126    return; // No need to redefine node's state.
2127
2128  if (n->is_Call()) {
2129    CallNode *call = n->as_Call();
2130    process_call_arguments(call, phase);
2131    _processed.set(n_idx);
2132    return;
2133  }
2134
2135  switch (n->Opcode()) {
2136    case Op_AddP:
2137    {
2138      Node *base = get_addp_base(n);
2139      // Create a field edge to this node from everything base could point to.
2140      VectorSet ptset(Thread::current()->resource_area());
2141      PointsTo(ptset, base, phase);
2142      for( VectorSetI i(&ptset); i.test(); ++i ) {
2143        uint pt = i.elem;
2144        add_field_edge(pt, n_idx, address_offset(n, phase));
2145      }
2146      break;
2147    }
2148    case Op_CastX2P:
2149    {
2150      assert(false, "Op_CastX2P");
2151      break;
2152    }
2153    case Op_CastPP:
2154    case Op_CheckCastPP:
2155    case Op_EncodeP:
2156    case Op_DecodeN:
2157    {
2158      int ti = n->in(1)->_idx;
2159      if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2160        add_pointsto_edge(n_idx, ti);
2161      } else {
2162        add_deferred_edge(n_idx, ti);
2163      }
2164      _processed.set(n_idx);
2165      break;
2166    }
2167    case Op_ConP:
2168    {
2169      assert(false, "Op_ConP");
2170      break;
2171    }
2172    case Op_ConN:
2173    {
2174      assert(false, "Op_ConN");
2175      break;
2176    }
2177    case Op_CreateEx:
2178    {
2179      assert(false, "Op_CreateEx");
2180      break;
2181    }
2182    case Op_LoadKlass:
2183    case Op_LoadNKlass:
2184    {
2185      assert(false, "Op_LoadKlass");
2186      break;
2187    }
2188    case Op_LoadP:
2189    case Op_LoadN:
2190    {
2191      const Type *t = phase->type(n);
2192#ifdef ASSERT
2193      if (t->make_ptr() == NULL)
2194        assert(false, "Op_LoadP");
2195#endif
2196
2197      Node* adr = n->in(MemNode::Address)->uncast();
2198      const Type *adr_type = phase->type(adr);
2199      Node* adr_base;
2200      if (adr->is_AddP()) {
2201        adr_base = get_addp_base(adr);
2202      } else {
2203        adr_base = adr;
2204      }
2205
2206      // For everything "adr_base" could point to, create a deferred edge from
2207      // this node to each field with the same offset.
2208      VectorSet ptset(Thread::current()->resource_area());
2209      PointsTo(ptset, adr_base, phase);
2210      int offset = address_offset(adr, phase);
2211      for( VectorSetI i(&ptset); i.test(); ++i ) {
2212        uint pt = i.elem;
2213        add_deferred_edge_to_fields(n_idx, pt, offset);
2214      }
2215      break;
2216    }
2217    case Op_Parm:
2218    {
2219      assert(false, "Op_Parm");
2220      break;
2221    }
2222    case Op_Phi:
2223    {
2224#ifdef ASSERT
2225      const Type *t = n->as_Phi()->type();
2226      if (t->make_ptr() == NULL)
2227        assert(false, "Op_Phi");
2228#endif
2229      for (uint i = 1; i < n->req() ; i++) {
2230        Node* in = n->in(i);
2231        if (in == NULL)
2232          continue;  // ignore NULL
2233        in = in->uncast();
2234        if (in->is_top() || in == n)
2235          continue;  // ignore top or inputs which go back this node
2236        int ti = in->_idx;
2237        if (ptnode_adr(in->_idx)->node_type() == PointsToNode::JavaObject) {
2238          add_pointsto_edge(n_idx, ti);
2239        } else {
2240          add_deferred_edge(n_idx, ti);
2241        }
2242      }
2243      _processed.set(n_idx);
2244      break;
2245    }
2246    case Op_Proj:
2247    {
2248      // we are only interested in the result projection from a call
2249      if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2250        process_call_result(n->as_Proj(), phase);
2251        assert(_processed.test(n_idx), "all call results should be processed");
2252      } else {
2253        assert(false, "Op_Proj");
2254      }
2255      break;
2256    }
2257    case Op_Return:
2258    {
2259#ifdef ASSERT
2260      if( n->req() <= TypeFunc::Parms ||
2261          !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2262        assert(false, "Op_Return");
2263      }
2264#endif
2265      int ti = n->in(TypeFunc::Parms)->_idx;
2266      if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2267        add_pointsto_edge(n_idx, ti);
2268      } else {
2269        add_deferred_edge(n_idx, ti);
2270      }
2271      _processed.set(n_idx);
2272      break;
2273    }
2274    case Op_StoreP:
2275    case Op_StoreN:
2276    case Op_StorePConditional:
2277    case Op_CompareAndSwapP:
2278    case Op_CompareAndSwapN:
2279    {
2280      Node *adr = n->in(MemNode::Address);
2281      const Type *adr_type = phase->type(adr)->make_ptr();
2282#ifdef ASSERT
2283      if (!adr_type->isa_oopptr())
2284        assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2285#endif
2286
2287      assert(adr->is_AddP(), "expecting an AddP");
2288      Node *adr_base = get_addp_base(adr);
2289      Node *val = n->in(MemNode::ValueIn)->uncast();
2290      // For everything "adr_base" could point to, create a deferred edge
2291      // to "val" from each field with the same offset.
2292      VectorSet ptset(Thread::current()->resource_area());
2293      PointsTo(ptset, adr_base, phase);
2294      for( VectorSetI i(&ptset); i.test(); ++i ) {
2295        uint pt = i.elem;
2296        add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2297      }
2298      break;
2299    }
2300    case Op_ThreadLocal:
2301    {
2302      assert(false, "Op_ThreadLocal");
2303      break;
2304    }
2305    default:
2306      ;
2307      // nothing to do
2308  }
2309}
2310
2311#ifndef PRODUCT
2312void ConnectionGraph::dump() {
2313  PhaseGVN  *igvn = _compile->initial_gvn();
2314  bool first = true;
2315
2316  uint size = nodes_size();
2317  for (uint ni = 0; ni < size; ni++) {
2318    PointsToNode *ptn = ptnode_adr(ni);
2319    PointsToNode::NodeType ptn_type = ptn->node_type();
2320
2321    if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2322      continue;
2323    PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
2324    if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2325      if (first) {
2326        tty->cr();
2327        tty->print("======== Connection graph for ");
2328        _compile->method()->print_short_name();
2329        tty->cr();
2330        first = false;
2331      }
2332      tty->print("%6d ", ni);
2333      ptn->dump();
2334      // Print all locals which reference this allocation
2335      for (uint li = ni; li < size; li++) {
2336        PointsToNode *ptn_loc = ptnode_adr(li);
2337        PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2338        if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2339             ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2340          ptnode_adr(li)->dump(false);
2341        }
2342      }
2343      if (Verbose) {
2344        // Print all fields which reference this allocation
2345        for (uint i = 0; i < ptn->edge_count(); i++) {
2346          uint ei = ptn->edge_target(i);
2347          ptnode_adr(ei)->dump(false);
2348        }
2349      }
2350      tty->cr();
2351    }
2352  }
2353}
2354#endif
2355