divnode.cpp revision 605:98cb887364d3
1/*
2 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_divnode.cpp.incl"
31#include <math.h>
32
33//----------------------magic_int_divide_constants-----------------------------
34// Compute magic multiplier and shift constant for converting a 32 bit divide
35// by constant into a multiply/shift/add series. Return false if calculations
36// fail.
37//
38// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
39// minor type name and parameter changes.
40static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
41  int32_t p;
42  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
43  const uint32_t two31 = 0x80000000L;     // 2**31.
44
45  ad = ABS(d);
46  if (d == 0 || d == 1) return false;
47  t = two31 + ((uint32_t)d >> 31);
48  anc = t - 1 - t%ad;     // Absolute value of nc.
49  p = 31;                 // Init. p.
50  q1 = two31/anc;         // Init. q1 = 2**p/|nc|.
51  r1 = two31 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
52  q2 = two31/ad;          // Init. q2 = 2**p/|d|.
53  r2 = two31 - q2*ad;     // Init. r2 = rem(2**p, |d|).
54  do {
55    p = p + 1;
56    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
57    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
58    if (r1 >= anc) {      // (Must be an unsigned
59      q1 = q1 + 1;        // comparison here).
60      r1 = r1 - anc;
61    }
62    q2 = 2*q2;            // Update q2 = 2**p/|d|.
63    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
64    if (r2 >= ad) {       // (Must be an unsigned
65      q2 = q2 + 1;        // comparison here).
66      r2 = r2 - ad;
67    }
68    delta = ad - r2;
69  } while (q1 < delta || (q1 == delta && r1 == 0));
70
71  M = q2 + 1;
72  if (d < 0) M = -M;      // Magic number and
73  s = p - 32;             // shift amount to return.
74
75  return true;
76}
77
78//--------------------------transform_int_divide-------------------------------
79// Convert a division by constant divisor into an alternate Ideal graph.
80// Return NULL if no transformation occurs.
81static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
82
83  // Check for invalid divisors
84  assert( divisor != 0 && divisor != min_jint,
85          "bad divisor for transforming to long multiply" );
86
87  bool d_pos = divisor >= 0;
88  jint d = d_pos ? divisor : -divisor;
89  const int N = 32;
90
91  // Result
92  Node *q = NULL;
93
94  if (d == 1) {
95    // division by +/- 1
96    if (!d_pos) {
97      // Just negate the value
98      q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
99    }
100  } else if ( is_power_of_2(d) ) {
101    // division by +/- a power of 2
102
103    // See if we can simply do a shift without rounding
104    bool needs_rounding = true;
105    const Type *dt = phase->type(dividend);
106    const TypeInt *dti = dt->isa_int();
107    if (dti && dti->_lo >= 0) {
108      // we don't need to round a positive dividend
109      needs_rounding = false;
110    } else if( dividend->Opcode() == Op_AndI ) {
111      // An AND mask of sufficient size clears the low bits and
112      // I can avoid rounding.
113      const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
114      if( andconi_t && andconi_t->is_con() ) {
115        jint andconi = andconi_t->get_con();
116        if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
117          dividend = dividend->in(1);
118          needs_rounding = false;
119        }
120      }
121    }
122
123    // Add rounding to the shift to handle the sign bit
124    int l = log2_intptr(d-1)+1;
125    if (needs_rounding) {
126      // Divide-by-power-of-2 can be made into a shift, but you have to do
127      // more math for the rounding.  You need to add 0 for positive
128      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
129      // shift is by 2.  You need to add 3 to negative dividends and 0 to
130      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
131      // (-2+3)>>2 becomes 0, etc.
132
133      // Compute 0 or -1, based on sign bit
134      Node *sign = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N - 1)));
135      // Mask sign bit to the low sign bits
136      Node *round = phase->transform(new (phase->C, 3) URShiftINode(sign, phase->intcon(N - l)));
137      // Round up before shifting
138      dividend = phase->transform(new (phase->C, 3) AddINode(dividend, round));
139    }
140
141    // Shift for division
142    q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));
143
144    if (!d_pos) {
145      q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
146    }
147  } else {
148    // Attempt the jint constant divide -> multiply transform found in
149    //   "Division by Invariant Integers using Multiplication"
150    //     by Granlund and Montgomery
151    // See also "Hacker's Delight", chapter 10 by Warren.
152
153    jint magic_const;
154    jint shift_const;
155    if (magic_int_divide_constants(d, magic_const, shift_const)) {
156      Node *magic = phase->longcon(magic_const);
157      Node *dividend_long = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
158
159      // Compute the high half of the dividend x magic multiplication
160      Node *mul_hi = phase->transform(new (phase->C, 3) MulLNode(dividend_long, magic));
161
162      if (magic_const < 0) {
163        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N)));
164        mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
165
166        // The magic multiplier is too large for a 32 bit constant. We've adjusted
167        // it down by 2^32, but have to add 1 dividend back in after the multiplication.
168        // This handles the "overflow" case described by Granlund and Montgomery.
169        mul_hi = phase->transform(new (phase->C, 3) AddINode(dividend, mul_hi));
170
171        // Shift over the (adjusted) mulhi
172        if (shift_const != 0) {
173          mul_hi = phase->transform(new (phase->C, 3) RShiftINode(mul_hi, phase->intcon(shift_const)));
174        }
175      } else {
176        // No add is required, we can merge the shifts together.
177        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
178        mul_hi = phase->transform(new (phase->C, 2) ConvL2INode(mul_hi));
179      }
180
181      // Get a 0 or -1 from the sign of the dividend.
182      Node *addend0 = mul_hi;
183      Node *addend1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
184
185      // If the divisor is negative, swap the order of the input addends;
186      // this has the effect of negating the quotient.
187      if (!d_pos) {
188        Node *temp = addend0; addend0 = addend1; addend1 = temp;
189      }
190
191      // Adjust the final quotient by subtracting -1 (adding 1)
192      // from the mul_hi.
193      q = new (phase->C, 3) SubINode(addend0, addend1);
194    }
195  }
196
197  return q;
198}
199
200//---------------------magic_long_divide_constants-----------------------------
201// Compute magic multiplier and shift constant for converting a 64 bit divide
202// by constant into a multiply/shift/add series. Return false if calculations
203// fail.
204//
205// Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
206// minor type name and parameter changes.  Adjusted to 64 bit word width.
207static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
208  int64_t p;
209  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
210  const uint64_t two63 = 0x8000000000000000LL;     // 2**63.
211
212  ad = ABS(d);
213  if (d == 0 || d == 1) return false;
214  t = two63 + ((uint64_t)d >> 63);
215  anc = t - 1 - t%ad;     // Absolute value of nc.
216  p = 63;                 // Init. p.
217  q1 = two63/anc;         // Init. q1 = 2**p/|nc|.
218  r1 = two63 - q1*anc;    // Init. r1 = rem(2**p, |nc|).
219  q2 = two63/ad;          // Init. q2 = 2**p/|d|.
220  r2 = two63 - q2*ad;     // Init. r2 = rem(2**p, |d|).
221  do {
222    p = p + 1;
223    q1 = 2*q1;            // Update q1 = 2**p/|nc|.
224    r1 = 2*r1;            // Update r1 = rem(2**p, |nc|).
225    if (r1 >= anc) {      // (Must be an unsigned
226      q1 = q1 + 1;        // comparison here).
227      r1 = r1 - anc;
228    }
229    q2 = 2*q2;            // Update q2 = 2**p/|d|.
230    r2 = 2*r2;            // Update r2 = rem(2**p, |d|).
231    if (r2 >= ad) {       // (Must be an unsigned
232      q2 = q2 + 1;        // comparison here).
233      r2 = r2 - ad;
234    }
235    delta = ad - r2;
236  } while (q1 < delta || (q1 == delta && r1 == 0));
237
238  M = q2 + 1;
239  if (d < 0) M = -M;      // Magic number and
240  s = p - 64;             // shift amount to return.
241
242  return true;
243}
244
245//---------------------long_by_long_mulhi--------------------------------------
246// Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
247static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
248  // If the architecture supports a 64x64 mulhi, there is
249  // no need to synthesize it in ideal nodes.
250  if (Matcher::has_match_rule(Op_MulHiL)) {
251    Node* v = phase->longcon(magic_const);
252    return new (phase->C, 3) MulHiLNode(dividend, v);
253  }
254
255  // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
256  // (http://www.hackersdelight.org/HDcode/mulhs.c)
257  //
258  // int mulhs(int u, int v) {
259  //    unsigned u0, v0, w0;
260  //    int u1, v1, w1, w2, t;
261  //
262  //    u0 = u & 0xFFFF;  u1 = u >> 16;
263  //    v0 = v & 0xFFFF;  v1 = v >> 16;
264  //    w0 = u0*v0;
265  //    t  = u1*v0 + (w0 >> 16);
266  //    w1 = t & 0xFFFF;
267  //    w2 = t >> 16;
268  //    w1 = u0*v1 + w1;
269  //    return u1*v1 + w2 + (w1 >> 16);
270  // }
271  //
272  // Note: The version above is for 32x32 multiplications, while the
273  // following inline comments are adapted to 64x64.
274
275  const int N = 64;
276
277  // u0 = u & 0xFFFFFFFF;  u1 = u >> 32;
278  Node* u0 = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
279  Node* u1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
280
281  // v0 = v & 0xFFFFFFFF;  v1 = v >> 32;
282  Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
283  Node* v1 = phase->longcon(magic_const >> (N / 2));
284
285  // w0 = u0*v0;
286  Node* w0 = phase->transform(new (phase->C, 3) MulLNode(u0, v0));
287
288  // t = u1*v0 + (w0 >> 32);
289  Node* u1v0 = phase->transform(new (phase->C, 3) MulLNode(u1, v0));
290  Node* temp = phase->transform(new (phase->C, 3) URShiftLNode(w0, phase->intcon(N / 2)));
291  Node* t    = phase->transform(new (phase->C, 3) AddLNode(u1v0, temp));
292
293  // w1 = t & 0xFFFFFFFF;
294  Node* w1 = new (phase->C, 3) AndLNode(t, phase->longcon(0xFFFFFFFF));
295
296  // w2 = t >> 32;
297  Node* w2 = new (phase->C, 3) RShiftLNode(t, phase->intcon(N / 2));
298
299  // 6732154: Construct both w1 and w2 before transforming, so t
300  // doesn't go dead prematurely.
301  w1 = phase->transform(w1);
302  w2 = phase->transform(w2);
303
304  // w1 = u0*v1 + w1;
305  Node* u0v1 = phase->transform(new (phase->C, 3) MulLNode(u0, v1));
306  w1         = phase->transform(new (phase->C, 3) AddLNode(u0v1, w1));
307
308  // return u1*v1 + w2 + (w1 >> 32);
309  Node* u1v1  = phase->transform(new (phase->C, 3) MulLNode(u1, v1));
310  Node* temp1 = phase->transform(new (phase->C, 3) AddLNode(u1v1, w2));
311  Node* temp2 = phase->transform(new (phase->C, 3) RShiftLNode(w1, phase->intcon(N / 2)));
312
313  return new (phase->C, 3) AddLNode(temp1, temp2);
314}
315
316
317//--------------------------transform_long_divide------------------------------
318// Convert a division by constant divisor into an alternate Ideal graph.
319// Return NULL if no transformation occurs.
320static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
321  // Check for invalid divisors
322  assert( divisor != 0L && divisor != min_jlong,
323          "bad divisor for transforming to long multiply" );
324
325  bool d_pos = divisor >= 0;
326  jlong d = d_pos ? divisor : -divisor;
327  const int N = 64;
328
329  // Result
330  Node *q = NULL;
331
332  if (d == 1) {
333    // division by +/- 1
334    if (!d_pos) {
335      // Just negate the value
336      q = new (phase->C, 3) SubLNode(phase->longcon(0), dividend);
337    }
338  } else if ( is_power_of_2_long(d) ) {
339
340    // division by +/- a power of 2
341
342    // See if we can simply do a shift without rounding
343    bool needs_rounding = true;
344    const Type *dt = phase->type(dividend);
345    const TypeLong *dtl = dt->isa_long();
346
347    if (dtl && dtl->_lo > 0) {
348      // we don't need to round a positive dividend
349      needs_rounding = false;
350    } else if( dividend->Opcode() == Op_AndL ) {
351      // An AND mask of sufficient size clears the low bits and
352      // I can avoid rounding.
353      const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
354      if( andconl_t && andconl_t->is_con() ) {
355        jlong andconl = andconl_t->get_con();
356        if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
357          dividend = dividend->in(1);
358          needs_rounding = false;
359        }
360      }
361    }
362
363    // Add rounding to the shift to handle the sign bit
364    int l = log2_long(d-1)+1;
365    if (needs_rounding) {
366      // Divide-by-power-of-2 can be made into a shift, but you have to do
367      // more math for the rounding.  You need to add 0 for positive
368      // numbers, and "i-1" for negative numbers.  Example: i=4, so the
369      // shift is by 2.  You need to add 3 to negative dividends and 0 to
370      // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
371      // (-2+3)>>2 becomes 0, etc.
372
373      // Compute 0 or -1, based on sign bit
374      Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N - 1)));
375      // Mask sign bit to the low sign bits
376      Node *round = phase->transform(new (phase->C, 3) URShiftLNode(sign, phase->intcon(N - l)));
377      // Round up before shifting
378      dividend = phase->transform(new (phase->C, 3) AddLNode(dividend, round));
379    }
380
381    // Shift for division
382    q = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(l));
383
384    if (!d_pos) {
385      q = new (phase->C, 3) SubLNode(phase->longcon(0), phase->transform(q));
386    }
387  } else {
388    // Attempt the jlong constant divide -> multiply transform found in
389    //   "Division by Invariant Integers using Multiplication"
390    //     by Granlund and Montgomery
391    // See also "Hacker's Delight", chapter 10 by Warren.
392
393    jlong magic_const;
394    jint shift_const;
395    if (magic_long_divide_constants(d, magic_const, shift_const)) {
396      // Compute the high half of the dividend x magic multiplication
397      Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
398
399      // The high half of the 128-bit multiply is computed.
400      if (magic_const < 0) {
401        // The magic multiplier is too large for a 64 bit constant. We've adjusted
402        // it down by 2^64, but have to add 1 dividend back in after the multiplication.
403        // This handles the "overflow" case described by Granlund and Montgomery.
404        mul_hi = phase->transform(new (phase->C, 3) AddLNode(dividend, mul_hi));
405      }
406
407      // Shift over the (adjusted) mulhi
408      if (shift_const != 0) {
409        mul_hi = phase->transform(new (phase->C, 3) RShiftLNode(mul_hi, phase->intcon(shift_const)));
410      }
411
412      // Get a 0 or -1 from the sign of the dividend.
413      Node *addend0 = mul_hi;
414      Node *addend1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N-1)));
415
416      // If the divisor is negative, swap the order of the input addends;
417      // this has the effect of negating the quotient.
418      if (!d_pos) {
419        Node *temp = addend0; addend0 = addend1; addend1 = temp;
420      }
421
422      // Adjust the final quotient by subtracting -1 (adding 1)
423      // from the mul_hi.
424      q = new (phase->C, 3) SubLNode(addend0, addend1);
425    }
426  }
427
428  return q;
429}
430
431//=============================================================================
432//------------------------------Identity---------------------------------------
433// If the divisor is 1, we are an identity on the dividend.
434Node *DivINode::Identity( PhaseTransform *phase ) {
435  return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
436}
437
438//------------------------------Idealize---------------------------------------
439// Divides can be changed to multiplies and/or shifts
440Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
441  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
442  // Don't bother trying to transform a dead node
443  if( in(0) && in(0)->is_top() )  return NULL;
444
445  const Type *t = phase->type( in(2) );
446  if( t == TypeInt::ONE )       // Identity?
447    return NULL;                // Skip it
448
449  const TypeInt *ti = t->isa_int();
450  if( !ti ) return NULL;
451  if( !ti->is_con() ) return NULL;
452  jint i = ti->get_con();       // Get divisor
453
454  if (i == 0) return NULL;      // Dividing by zero constant does not idealize
455
456  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
457
458  // Dividing by MININT does not optimize as a power-of-2 shift.
459  if( i == min_jint ) return NULL;
460
461  return transform_int_divide( phase, in(1), i );
462}
463
464//------------------------------Value------------------------------------------
465// A DivINode divides its inputs.  The third input is a Control input, used to
466// prevent hoisting the divide above an unsafe test.
467const Type *DivINode::Value( PhaseTransform *phase ) const {
468  // Either input is TOP ==> the result is TOP
469  const Type *t1 = phase->type( in(1) );
470  const Type *t2 = phase->type( in(2) );
471  if( t1 == Type::TOP ) return Type::TOP;
472  if( t2 == Type::TOP ) return Type::TOP;
473
474  // x/x == 1 since we always generate the dynamic divisor check for 0.
475  if( phase->eqv( in(1), in(2) ) )
476    return TypeInt::ONE;
477
478  // Either input is BOTTOM ==> the result is the local BOTTOM
479  const Type *bot = bottom_type();
480  if( (t1 == bot) || (t2 == bot) ||
481      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
482    return bot;
483
484  // Divide the two numbers.  We approximate.
485  // If divisor is a constant and not zero
486  const TypeInt *i1 = t1->is_int();
487  const TypeInt *i2 = t2->is_int();
488  int widen = MAX2(i1->_widen, i2->_widen);
489
490  if( i2->is_con() && i2->get_con() != 0 ) {
491    int32 d = i2->get_con(); // Divisor
492    jint lo, hi;
493    if( d >= 0 ) {
494      lo = i1->_lo/d;
495      hi = i1->_hi/d;
496    } else {
497      if( d == -1 && i1->_lo == min_jint ) {
498        // 'min_jint/-1' throws arithmetic exception during compilation
499        lo = min_jint;
500        // do not support holes, 'hi' must go to either min_jint or max_jint:
501        // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
502        hi = i1->_hi == min_jint ? min_jint : max_jint;
503      } else {
504        lo = i1->_hi/d;
505        hi = i1->_lo/d;
506      }
507    }
508    return TypeInt::make(lo, hi, widen);
509  }
510
511  // If the dividend is a constant
512  if( i1->is_con() ) {
513    int32 d = i1->get_con();
514    if( d < 0 ) {
515      if( d == min_jint ) {
516        //  (-min_jint) == min_jint == (min_jint / -1)
517        return TypeInt::make(min_jint, max_jint/2 + 1, widen);
518      } else {
519        return TypeInt::make(d, -d, widen);
520      }
521    }
522    return TypeInt::make(-d, d, widen);
523  }
524
525  // Otherwise we give up all hope
526  return TypeInt::INT;
527}
528
529
530//=============================================================================
531//------------------------------Identity---------------------------------------
532// If the divisor is 1, we are an identity on the dividend.
533Node *DivLNode::Identity( PhaseTransform *phase ) {
534  return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
535}
536
537//------------------------------Idealize---------------------------------------
538// Dividing by a power of 2 is a shift.
539Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
540  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
541  // Don't bother trying to transform a dead node
542  if( in(0) && in(0)->is_top() )  return NULL;
543
544  const Type *t = phase->type( in(2) );
545  if( t == TypeLong::ONE )      // Identity?
546    return NULL;                // Skip it
547
548  const TypeLong *tl = t->isa_long();
549  if( !tl ) return NULL;
550  if( !tl->is_con() ) return NULL;
551  jlong l = tl->get_con();      // Get divisor
552
553  if (l == 0) return NULL;      // Dividing by zero constant does not idealize
554
555  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
556
557  // Dividing by MININT does not optimize as a power-of-2 shift.
558  if( l == min_jlong ) return NULL;
559
560  return transform_long_divide( phase, in(1), l );
561}
562
563//------------------------------Value------------------------------------------
564// A DivLNode divides its inputs.  The third input is a Control input, used to
565// prevent hoisting the divide above an unsafe test.
566const Type *DivLNode::Value( PhaseTransform *phase ) const {
567  // Either input is TOP ==> the result is TOP
568  const Type *t1 = phase->type( in(1) );
569  const Type *t2 = phase->type( in(2) );
570  if( t1 == Type::TOP ) return Type::TOP;
571  if( t2 == Type::TOP ) return Type::TOP;
572
573  // x/x == 1 since we always generate the dynamic divisor check for 0.
574  if( phase->eqv( in(1), in(2) ) )
575    return TypeLong::ONE;
576
577  // Either input is BOTTOM ==> the result is the local BOTTOM
578  const Type *bot = bottom_type();
579  if( (t1 == bot) || (t2 == bot) ||
580      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
581    return bot;
582
583  // Divide the two numbers.  We approximate.
584  // If divisor is a constant and not zero
585  const TypeLong *i1 = t1->is_long();
586  const TypeLong *i2 = t2->is_long();
587  int widen = MAX2(i1->_widen, i2->_widen);
588
589  if( i2->is_con() && i2->get_con() != 0 ) {
590    jlong d = i2->get_con();    // Divisor
591    jlong lo, hi;
592    if( d >= 0 ) {
593      lo = i1->_lo/d;
594      hi = i1->_hi/d;
595    } else {
596      if( d == CONST64(-1) && i1->_lo == min_jlong ) {
597        // 'min_jlong/-1' throws arithmetic exception during compilation
598        lo = min_jlong;
599        // do not support holes, 'hi' must go to either min_jlong or max_jlong:
600        // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
601        hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
602      } else {
603        lo = i1->_hi/d;
604        hi = i1->_lo/d;
605      }
606    }
607    return TypeLong::make(lo, hi, widen);
608  }
609
610  // If the dividend is a constant
611  if( i1->is_con() ) {
612    jlong d = i1->get_con();
613    if( d < 0 ) {
614      if( d == min_jlong ) {
615        //  (-min_jlong) == min_jlong == (min_jlong / -1)
616        return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
617      } else {
618        return TypeLong::make(d, -d, widen);
619      }
620    }
621    return TypeLong::make(-d, d, widen);
622  }
623
624  // Otherwise we give up all hope
625  return TypeLong::LONG;
626}
627
628
629//=============================================================================
630//------------------------------Value------------------------------------------
631// An DivFNode divides its inputs.  The third input is a Control input, used to
632// prevent hoisting the divide above an unsafe test.
633const Type *DivFNode::Value( PhaseTransform *phase ) const {
634  // Either input is TOP ==> the result is TOP
635  const Type *t1 = phase->type( in(1) );
636  const Type *t2 = phase->type( in(2) );
637  if( t1 == Type::TOP ) return Type::TOP;
638  if( t2 == Type::TOP ) return Type::TOP;
639
640  // Either input is BOTTOM ==> the result is the local BOTTOM
641  const Type *bot = bottom_type();
642  if( (t1 == bot) || (t2 == bot) ||
643      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
644    return bot;
645
646  // x/x == 1, we ignore 0/0.
647  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
648  // Does not work for variables because of NaN's
649  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
650    if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
651      return TypeF::ONE;
652
653  if( t2 == TypeF::ONE )
654    return t1;
655
656  // If divisor is a constant and not zero, divide them numbers
657  if( t1->base() == Type::FloatCon &&
658      t2->base() == Type::FloatCon &&
659      t2->getf() != 0.0 ) // could be negative zero
660    return TypeF::make( t1->getf()/t2->getf() );
661
662  // If the dividend is a constant zero
663  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
664  // Test TypeF::ZERO is not sufficient as it could be negative zero
665
666  if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
667    return TypeF::ZERO;
668
669  // Otherwise we give up all hope
670  return Type::FLOAT;
671}
672
673//------------------------------isA_Copy---------------------------------------
674// Dividing by self is 1.
675// If the divisor is 1, we are an identity on the dividend.
676Node *DivFNode::Identity( PhaseTransform *phase ) {
677  return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
678}
679
680
681//------------------------------Idealize---------------------------------------
682Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
683  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
684  // Don't bother trying to transform a dead node
685  if( in(0) && in(0)->is_top() )  return NULL;
686
687  const Type *t2 = phase->type( in(2) );
688  if( t2 == TypeF::ONE )         // Identity?
689    return NULL;                // Skip it
690
691  const TypeF *tf = t2->isa_float_constant();
692  if( !tf ) return NULL;
693  if( tf->base() != Type::FloatCon ) return NULL;
694
695  // Check for out of range values
696  if( tf->is_nan() || !tf->is_finite() ) return NULL;
697
698  // Get the value
699  float f = tf->getf();
700  int exp;
701
702  // Only for special case of dividing by a power of 2
703  if( frexp((double)f, &exp) != 0.5 ) return NULL;
704
705  // Limit the range of acceptable exponents
706  if( exp < -126 || exp > 126 ) return NULL;
707
708  // Compute the reciprocal
709  float reciprocal = ((float)1.0) / f;
710
711  assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
712
713  // return multiplication by the reciprocal
714  return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
715}
716
717//=============================================================================
718//------------------------------Value------------------------------------------
719// An DivDNode divides its inputs.  The third input is a Control input, used to
720// prevent hoisting the divide above an unsafe test.
721const Type *DivDNode::Value( PhaseTransform *phase ) const {
722  // Either input is TOP ==> the result is TOP
723  const Type *t1 = phase->type( in(1) );
724  const Type *t2 = phase->type( in(2) );
725  if( t1 == Type::TOP ) return Type::TOP;
726  if( t2 == Type::TOP ) return Type::TOP;
727
728  // Either input is BOTTOM ==> the result is the local BOTTOM
729  const Type *bot = bottom_type();
730  if( (t1 == bot) || (t2 == bot) ||
731      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
732    return bot;
733
734  // x/x == 1, we ignore 0/0.
735  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
736  // Does not work for variables because of NaN's
737  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
738    if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
739      return TypeD::ONE;
740
741  if( t2 == TypeD::ONE )
742    return t1;
743
744#if defined(IA32)
745  if (!phase->C->method()->is_strict())
746    // Can't trust native compilers to properly fold strict double
747    // division with round-to-zero on this platform.
748#endif
749    {
750      // If divisor is a constant and not zero, divide them numbers
751      if( t1->base() == Type::DoubleCon &&
752          t2->base() == Type::DoubleCon &&
753          t2->getd() != 0.0 ) // could be negative zero
754        return TypeD::make( t1->getd()/t2->getd() );
755    }
756
757  // If the dividend is a constant zero
758  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
759  // Test TypeF::ZERO is not sufficient as it could be negative zero
760  if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
761    return TypeD::ZERO;
762
763  // Otherwise we give up all hope
764  return Type::DOUBLE;
765}
766
767
768//------------------------------isA_Copy---------------------------------------
769// Dividing by self is 1.
770// If the divisor is 1, we are an identity on the dividend.
771Node *DivDNode::Identity( PhaseTransform *phase ) {
772  return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
773}
774
775//------------------------------Idealize---------------------------------------
776Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
777  if (in(0) && remove_dead_region(phase, can_reshape))  return this;
778  // Don't bother trying to transform a dead node
779  if( in(0) && in(0)->is_top() )  return NULL;
780
781  const Type *t2 = phase->type( in(2) );
782  if( t2 == TypeD::ONE )         // Identity?
783    return NULL;                // Skip it
784
785  const TypeD *td = t2->isa_double_constant();
786  if( !td ) return NULL;
787  if( td->base() != Type::DoubleCon ) return NULL;
788
789  // Check for out of range values
790  if( td->is_nan() || !td->is_finite() ) return NULL;
791
792  // Get the value
793  double d = td->getd();
794  int exp;
795
796  // Only for special case of dividing by a power of 2
797  if( frexp(d, &exp) != 0.5 ) return NULL;
798
799  // Limit the range of acceptable exponents
800  if( exp < -1021 || exp > 1022 ) return NULL;
801
802  // Compute the reciprocal
803  double reciprocal = 1.0 / d;
804
805  assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
806
807  // return multiplication by the reciprocal
808  return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
809}
810
811//=============================================================================
812//------------------------------Idealize---------------------------------------
813Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
814  // Check for dead control input
815  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
816  // Don't bother trying to transform a dead node
817  if( in(0) && in(0)->is_top() )  return NULL;
818
819  // Get the modulus
820  const Type *t = phase->type( in(2) );
821  if( t == Type::TOP ) return NULL;
822  const TypeInt *ti = t->is_int();
823
824  // Check for useless control input
825  // Check for excluding mod-zero case
826  if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
827    set_req(0, NULL);        // Yank control input
828    return this;
829  }
830
831  // See if we are MOD'ing by 2^k or 2^k-1.
832  if( !ti->is_con() ) return NULL;
833  jint con = ti->get_con();
834
835  Node *hook = new (phase->C, 1) Node(1);
836
837  // First, special check for modulo 2^k-1
838  if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
839    uint k = exact_log2(con+1);  // Extract k
840
841    // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
842    static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
843    int trip_count = 1;
844    if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];
845
846    // If the unroll factor is not too large, and if conditional moves are
847    // ok, then use this case
848    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
849      Node *x = in(1);            // Value being mod'd
850      Node *divisor = in(2);      // Also is mask
851
852      hook->init_req(0, x);       // Add a use to x to prevent him from dying
853      // Generate code to reduce X rapidly to nearly 2^k-1.
854      for( int i = 0; i < trip_count; i++ ) {
855        Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
856        Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
857        x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
858        hook->set_req(0, x);
859      }
860
861      // Generate sign-fixup code.  Was original value positive?
862      // int hack_res = (i >= 0) ? divisor : 1;
863      Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
864      Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
865      Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
866      // if( x >= hack_res ) x -= divisor;
867      Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
868      Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
869      Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
870      // Convention is to not transform the return value of an Ideal
871      // since Ideal is expected to return a modified 'this' or a new node.
872      Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
873      // cmov2 is now the mod
874
875      // Now remove the bogus extra edges used to keep things alive
876      if (can_reshape) {
877        phase->is_IterGVN()->remove_dead_node(hook);
878      } else {
879        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
880      }
881      return cmov2;
882    }
883  }
884
885  // Fell thru, the unroll case is not appropriate. Transform the modulo
886  // into a long multiply/int multiply/subtract case
887
888  // Cannot handle mod 0, and min_jint isn't handled by the transform
889  if( con == 0 || con == min_jint ) return NULL;
890
891  // Get the absolute value of the constant; at this point, we can use this
892  jint pos_con = (con >= 0) ? con : -con;
893
894  // integer Mod 1 is always 0
895  if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);
896
897  int log2_con = -1;
898
899  // If this is a power of two, they maybe we can mask it
900  if( is_power_of_2(pos_con) ) {
901    log2_con = log2_intptr((intptr_t)pos_con);
902
903    const Type *dt = phase->type(in(1));
904    const TypeInt *dti = dt->isa_int();
905
906    // See if this can be masked, if the dividend is non-negative
907    if( dti && dti->_lo >= 0 )
908      return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
909  }
910
911  // Save in(1) so that it cannot be changed or deleted
912  hook->init_req(0, in(1));
913
914  // Divide using the transform from DivI to MulL
915  Node *result = transform_int_divide( phase, in(1), pos_con );
916  if (result != NULL) {
917    Node *divide = phase->transform(result);
918
919    // Re-multiply, using a shift if this is a power of two
920    Node *mult = NULL;
921
922    if( log2_con >= 0 )
923      mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
924    else
925      mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
926
927    // Finally, subtract the multiplied divided value from the original
928    result = new (phase->C, 3) SubINode( in(1), mult );
929  }
930
931  // Now remove the bogus extra edges used to keep things alive
932  if (can_reshape) {
933    phase->is_IterGVN()->remove_dead_node(hook);
934  } else {
935    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
936  }
937
938  // return the value
939  return result;
940}
941
942//------------------------------Value------------------------------------------
943const Type *ModINode::Value( PhaseTransform *phase ) const {
944  // Either input is TOP ==> the result is TOP
945  const Type *t1 = phase->type( in(1) );
946  const Type *t2 = phase->type( in(2) );
947  if( t1 == Type::TOP ) return Type::TOP;
948  if( t2 == Type::TOP ) return Type::TOP;
949
950  // We always generate the dynamic check for 0.
951  // 0 MOD X is 0
952  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
953  // X MOD X is 0
954  if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
955
956  // Either input is BOTTOM ==> the result is the local BOTTOM
957  const Type *bot = bottom_type();
958  if( (t1 == bot) || (t2 == bot) ||
959      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
960    return bot;
961
962  const TypeInt *i1 = t1->is_int();
963  const TypeInt *i2 = t2->is_int();
964  if( !i1->is_con() || !i2->is_con() ) {
965    if( i1->_lo >= 0 && i2->_lo >= 0 )
966      return TypeInt::POS;
967    // If both numbers are not constants, we know little.
968    return TypeInt::INT;
969  }
970  // Mod by zero?  Throw exception at runtime!
971  if( !i2->get_con() ) return TypeInt::POS;
972
973  // We must be modulo'ing 2 float constants.
974  // Check for min_jint % '-1', result is defined to be '0'.
975  if( i1->get_con() == min_jint && i2->get_con() == -1 )
976    return TypeInt::ZERO;
977
978  return TypeInt::make( i1->get_con() % i2->get_con() );
979}
980
981
982//=============================================================================
983//------------------------------Idealize---------------------------------------
984Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
985  // Check for dead control input
986  if( in(0) && remove_dead_region(phase, can_reshape) )  return this;
987  // Don't bother trying to transform a dead node
988  if( in(0) && in(0)->is_top() )  return NULL;
989
990  // Get the modulus
991  const Type *t = phase->type( in(2) );
992  if( t == Type::TOP ) return NULL;
993  const TypeLong *tl = t->is_long();
994
995  // Check for useless control input
996  // Check for excluding mod-zero case
997  if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
998    set_req(0, NULL);        // Yank control input
999    return this;
1000  }
1001
1002  // See if we are MOD'ing by 2^k or 2^k-1.
1003  if( !tl->is_con() ) return NULL;
1004  jlong con = tl->get_con();
1005
1006  Node *hook = new (phase->C, 1) Node(1);
1007
1008  // Expand mod
1009  if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
1010    uint k = exact_log2_long(con+1);  // Extract k
1011
1012    // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
1013    // Used to help a popular random number generator which does a long-mod
1014    // of 2^31-1 and shows up in SpecJBB and SciMark.
1015    static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
1016    int trip_count = 1;
1017    if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
1018
1019    // If the unroll factor is not too large, and if conditional moves are
1020    // ok, then use this case
1021    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
1022      Node *x = in(1);            // Value being mod'd
1023      Node *divisor = in(2);      // Also is mask
1024
1025      hook->init_req(0, x);       // Add a use to x to prevent him from dying
1026      // Generate code to reduce X rapidly to nearly 2^k-1.
1027      for( int i = 0; i < trip_count; i++ ) {
1028        Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
1029        Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
1030        x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
1031        hook->set_req(0, x);    // Add a use to x to prevent him from dying
1032      }
1033
1034      // Generate sign-fixup code.  Was original value positive?
1035      // long hack_res = (i >= 0) ? divisor : CONST64(1);
1036      Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
1037      Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
1038      Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
1039      // if( x >= hack_res ) x -= divisor;
1040      Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
1041      Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
1042      Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
1043      // Convention is to not transform the return value of an Ideal
1044      // since Ideal is expected to return a modified 'this' or a new node.
1045      Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
1046      // cmov2 is now the mod
1047
1048      // Now remove the bogus extra edges used to keep things alive
1049      if (can_reshape) {
1050        phase->is_IterGVN()->remove_dead_node(hook);
1051      } else {
1052        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
1053      }
1054      return cmov2;
1055    }
1056  }
1057
1058  // Fell thru, the unroll case is not appropriate. Transform the modulo
1059  // into a long multiply/int multiply/subtract case
1060
1061  // Cannot handle mod 0, and min_jint isn't handled by the transform
1062  if( con == 0 || con == min_jlong ) return NULL;
1063
1064  // Get the absolute value of the constant; at this point, we can use this
1065  jlong pos_con = (con >= 0) ? con : -con;
1066
1067  // integer Mod 1 is always 0
1068  if( pos_con == 1 ) return new (phase->C, 1) ConLNode(TypeLong::ZERO);
1069
1070  int log2_con = -1;
1071
1072  // If this is a power of two, then maybe we can mask it
1073  if( is_power_of_2_long(pos_con) ) {
1074    log2_con = log2_long(pos_con);
1075
1076    const Type *dt = phase->type(in(1));
1077    const TypeLong *dtl = dt->isa_long();
1078
1079    // See if this can be masked, if the dividend is non-negative
1080    if( dtl && dtl->_lo >= 0 )
1081      return ( new (phase->C, 3) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
1082  }
1083
1084  // Save in(1) so that it cannot be changed or deleted
1085  hook->init_req(0, in(1));
1086
1087  // Divide using the transform from DivI to MulL
1088  Node *result = transform_long_divide( phase, in(1), pos_con );
1089  if (result != NULL) {
1090    Node *divide = phase->transform(result);
1091
1092    // Re-multiply, using a shift if this is a power of two
1093    Node *mult = NULL;
1094
1095    if( log2_con >= 0 )
1096      mult = phase->transform( new (phase->C, 3) LShiftLNode( divide, phase->intcon( log2_con ) ) );
1097    else
1098      mult = phase->transform( new (phase->C, 3) MulLNode( divide, phase->longcon( pos_con ) ) );
1099
1100    // Finally, subtract the multiplied divided value from the original
1101    result = new (phase->C, 3) SubLNode( in(1), mult );
1102  }
1103
1104  // Now remove the bogus extra edges used to keep things alive
1105  if (can_reshape) {
1106    phase->is_IterGVN()->remove_dead_node(hook);
1107  } else {
1108    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
1109  }
1110
1111  // return the value
1112  return result;
1113}
1114
1115//------------------------------Value------------------------------------------
1116const Type *ModLNode::Value( PhaseTransform *phase ) const {
1117  // Either input is TOP ==> the result is TOP
1118  const Type *t1 = phase->type( in(1) );
1119  const Type *t2 = phase->type( in(2) );
1120  if( t1 == Type::TOP ) return Type::TOP;
1121  if( t2 == Type::TOP ) return Type::TOP;
1122
1123  // We always generate the dynamic check for 0.
1124  // 0 MOD X is 0
1125  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1126  // X MOD X is 0
1127  if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
1128
1129  // Either input is BOTTOM ==> the result is the local BOTTOM
1130  const Type *bot = bottom_type();
1131  if( (t1 == bot) || (t2 == bot) ||
1132      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1133    return bot;
1134
1135  const TypeLong *i1 = t1->is_long();
1136  const TypeLong *i2 = t2->is_long();
1137  if( !i1->is_con() || !i2->is_con() ) {
1138    if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
1139      return TypeLong::POS;
1140    // If both numbers are not constants, we know little.
1141    return TypeLong::LONG;
1142  }
1143  // Mod by zero?  Throw exception at runtime!
1144  if( !i2->get_con() ) return TypeLong::POS;
1145
1146  // We must be modulo'ing 2 float constants.
1147  // Check for min_jint % '-1', result is defined to be '0'.
1148  if( i1->get_con() == min_jlong && i2->get_con() == -1 )
1149    return TypeLong::ZERO;
1150
1151  return TypeLong::make( i1->get_con() % i2->get_con() );
1152}
1153
1154
1155//=============================================================================
1156//------------------------------Value------------------------------------------
1157const Type *ModFNode::Value( PhaseTransform *phase ) const {
1158  // Either input is TOP ==> the result is TOP
1159  const Type *t1 = phase->type( in(1) );
1160  const Type *t2 = phase->type( in(2) );
1161  if( t1 == Type::TOP ) return Type::TOP;
1162  if( t2 == Type::TOP ) return Type::TOP;
1163
1164  // Either input is BOTTOM ==> the result is the local BOTTOM
1165  const Type *bot = bottom_type();
1166  if( (t1 == bot) || (t2 == bot) ||
1167      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1168    return bot;
1169
1170  // If either number is not a constant, we know nothing.
1171  if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
1172    return Type::FLOAT;         // note: x%x can be either NaN or 0
1173  }
1174
1175  float f1 = t1->getf();
1176  float f2 = t2->getf();
1177  jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
1178  jint  x2 = jint_cast(f2);
1179
1180  // If either is a NaN, return an input NaN
1181  if (g_isnan(f1))    return t1;
1182  if (g_isnan(f2))    return t2;
1183
1184  // If an operand is infinity or the divisor is +/- zero, punt.
1185  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
1186    return Type::FLOAT;
1187
1188  // We must be modulo'ing 2 float constants.
1189  // Make sure that the sign of the fmod is equal to the sign of the dividend
1190  jint xr = jint_cast(fmod(f1, f2));
1191  if ((x1 ^ xr) < 0) {
1192    xr ^= min_jint;
1193  }
1194
1195  return TypeF::make(jfloat_cast(xr));
1196}
1197
1198
1199//=============================================================================
1200//------------------------------Value------------------------------------------
1201const Type *ModDNode::Value( PhaseTransform *phase ) const {
1202  // Either input is TOP ==> the result is TOP
1203  const Type *t1 = phase->type( in(1) );
1204  const Type *t2 = phase->type( in(2) );
1205  if( t1 == Type::TOP ) return Type::TOP;
1206  if( t2 == Type::TOP ) return Type::TOP;
1207
1208  // Either input is BOTTOM ==> the result is the local BOTTOM
1209  const Type *bot = bottom_type();
1210  if( (t1 == bot) || (t2 == bot) ||
1211      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
1212    return bot;
1213
1214  // If either number is not a constant, we know nothing.
1215  if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
1216    return Type::DOUBLE;        // note: x%x can be either NaN or 0
1217  }
1218
1219  double f1 = t1->getd();
1220  double f2 = t2->getd();
1221  jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
1222  jlong  x2 = jlong_cast(f2);
1223
1224  // If either is a NaN, return an input NaN
1225  if (g_isnan(f1))    return t1;
1226  if (g_isnan(f2))    return t2;
1227
1228  // If an operand is infinity or the divisor is +/- zero, punt.
1229  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
1230    return Type::DOUBLE;
1231
1232  // We must be modulo'ing 2 double constants.
1233  // Make sure that the sign of the fmod is equal to the sign of the dividend
1234  jlong xr = jlong_cast(fmod(f1, f2));
1235  if ((x1 ^ xr) < 0) {
1236    xr ^= min_jlong;
1237  }
1238
1239  return TypeD::make(jdouble_cast(xr));
1240}
1241
1242//=============================================================================
1243
1244DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
1245  init_req(0, c);
1246  init_req(1, dividend);
1247  init_req(2, divisor);
1248}
1249
1250//------------------------------make------------------------------------------
1251DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
1252  Node* n = div_or_mod;
1253  assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
1254         "only div or mod input pattern accepted");
1255
1256  DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
1257  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
1258  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
1259  return divmod;
1260}
1261
1262//------------------------------make------------------------------------------
1263DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
1264  Node* n = div_or_mod;
1265  assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
1266         "only div or mod input pattern accepted");
1267
1268  DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
1269  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
1270  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
1271  return divmod;
1272}
1273
1274//------------------------------match------------------------------------------
1275// return result(s) along with their RegMask info
1276Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
1277  uint ideal_reg = proj->ideal_reg();
1278  RegMask rm;
1279  if (proj->_con == div_proj_num) {
1280    rm = match->divI_proj_mask();
1281  } else {
1282    assert(proj->_con == mod_proj_num, "must be div or mod projection");
1283    rm = match->modI_proj_mask();
1284  }
1285  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
1286}
1287
1288
1289//------------------------------match------------------------------------------
1290// return result(s) along with their RegMask info
1291Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
1292  uint ideal_reg = proj->ideal_reg();
1293  RegMask rm;
1294  if (proj->_con == div_proj_num) {
1295    rm = match->divL_proj_mask();
1296  } else {
1297    assert(proj->_con == mod_proj_num, "must be div or mod projection");
1298    rm = match->modL_proj_mask();
1299  }
1300  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
1301}
1302