compile.cpp revision 9056:dc9930a04ab0
155714Skris/*
255714Skris * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
355714Skris * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
455714Skris *
555714Skris * This code is free software; you can redistribute it and/or modify it
655714Skris * under the terms of the GNU General Public License version 2 only, as
755714Skris * published by the Free Software Foundation.
855714Skris *
955714Skris * This code is distributed in the hope that it will be useful, but WITHOUT
1055714Skris * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1155714Skris * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1255714Skris * version 2 for more details (a copy is included in the LICENSE file that
1355714Skris * accompanied this code).
1455714Skris *
1555714Skris * You should have received a copy of the GNU General Public License version
1655714Skris * 2 along with this work; if not, write to the Free Software Foundation,
1755714Skris * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1855714Skris *
1955714Skris * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2055714Skris * or visit www.oracle.com if you need additional information or have any
2155714Skris * questions.
2255714Skris *
2355714Skris */
2455714Skris
2555714Skris#include "precompiled.hpp"
2655714Skris#include "asm/macroAssembler.hpp"
2755714Skris#include "asm/macroAssembler.inline.hpp"
2855714Skris#include "ci/ciReplay.hpp"
2955714Skris#include "classfile/systemDictionary.hpp"
3055714Skris#include "code/exceptionHandlerTable.hpp"
3155714Skris#include "code/nmethod.hpp"
3255714Skris#include "compiler/compileBroker.hpp"
3355714Skris#include "compiler/compileLog.hpp"
3455714Skris#include "compiler/disassembler.hpp"
3555714Skris#include "compiler/oopMap.hpp"
3655714Skris#include "opto/addnode.hpp"
3755714Skris#include "opto/block.hpp"
3855714Skris#include "opto/c2compiler.hpp"
3955714Skris#include "opto/callGenerator.hpp"
4055714Skris#include "opto/callnode.hpp"
41#include "opto/cfgnode.hpp"
42#include "opto/chaitin.hpp"
43#include "opto/compile.hpp"
44#include "opto/connode.hpp"
45#include "opto/convertnode.hpp"
46#include "opto/divnode.hpp"
47#include "opto/escape.hpp"
48#include "opto/idealGraphPrinter.hpp"
49#include "opto/loopnode.hpp"
50#include "opto/machnode.hpp"
51#include "opto/macro.hpp"
52#include "opto/matcher.hpp"
53#include "opto/mathexactnode.hpp"
54#include "opto/memnode.hpp"
55#include "opto/mulnode.hpp"
56#include "opto/narrowptrnode.hpp"
57#include "opto/node.hpp"
58#include "opto/opcodes.hpp"
59#include "opto/output.hpp"
60#include "opto/parse.hpp"
61#include "opto/phaseX.hpp"
62#include "opto/rootnode.hpp"
63#include "opto/runtime.hpp"
64#include "opto/stringopts.hpp"
65#include "opto/type.hpp"
66#include "opto/vectornode.hpp"
67#include "runtime/arguments.hpp"
68#include "runtime/sharedRuntime.hpp"
69#include "runtime/signature.hpp"
70#include "runtime/stubRoutines.hpp"
71#include "runtime/timer.hpp"
72#include "utilities/copy.hpp"
73
74
75// -------------------- Compile::mach_constant_base_node -----------------------
76// Constant table base node singleton.
77MachConstantBaseNode* Compile::mach_constant_base_node() {
78  if (_mach_constant_base_node == NULL) {
79    _mach_constant_base_node = new MachConstantBaseNode();
80    _mach_constant_base_node->add_req(C->root());
81  }
82  return _mach_constant_base_node;
83}
84
85
86/// Support for intrinsics.
87
88// Return the index at which m must be inserted (or already exists).
89// The sort order is by the address of the ciMethod, with is_virtual as minor key.
90int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
91#ifdef ASSERT
92  for (int i = 1; i < _intrinsics->length(); i++) {
93    CallGenerator* cg1 = _intrinsics->at(i-1);
94    CallGenerator* cg2 = _intrinsics->at(i);
95    assert(cg1->method() != cg2->method()
96           ? cg1->method()     < cg2->method()
97           : cg1->is_virtual() < cg2->is_virtual(),
98           "compiler intrinsics list must stay sorted");
99  }
100#endif
101  // Binary search sorted list, in decreasing intervals [lo, hi].
102  int lo = 0, hi = _intrinsics->length()-1;
103  while (lo <= hi) {
104    int mid = (uint)(hi + lo) / 2;
105    ciMethod* mid_m = _intrinsics->at(mid)->method();
106    if (m < mid_m) {
107      hi = mid-1;
108    } else if (m > mid_m) {
109      lo = mid+1;
110    } else {
111      // look at minor sort key
112      bool mid_virt = _intrinsics->at(mid)->is_virtual();
113      if (is_virtual < mid_virt) {
114        hi = mid-1;
115      } else if (is_virtual > mid_virt) {
116        lo = mid+1;
117      } else {
118        return mid;  // exact match
119      }
120    }
121  }
122  return lo;  // inexact match
123}
124
125void Compile::register_intrinsic(CallGenerator* cg) {
126  if (_intrinsics == NULL) {
127    _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
128  }
129  // This code is stolen from ciObjectFactory::insert.
130  // Really, GrowableArray should have methods for
131  // insert_at, remove_at, and binary_search.
132  int len = _intrinsics->length();
133  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
134  if (index == len) {
135    _intrinsics->append(cg);
136  } else {
137#ifdef ASSERT
138    CallGenerator* oldcg = _intrinsics->at(index);
139    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
140#endif
141    _intrinsics->append(_intrinsics->at(len-1));
142    int pos;
143    for (pos = len-2; pos >= index; pos--) {
144      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
145    }
146    _intrinsics->at_put(index, cg);
147  }
148  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
149}
150
151CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
152  assert(m->is_loaded(), "don't try this on unloaded methods");
153  if (_intrinsics != NULL) {
154    int index = intrinsic_insertion_index(m, is_virtual);
155    if (index < _intrinsics->length()
156        && _intrinsics->at(index)->method() == m
157        && _intrinsics->at(index)->is_virtual() == is_virtual) {
158      return _intrinsics->at(index);
159    }
160  }
161  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
162  if (m->intrinsic_id() != vmIntrinsics::_none &&
163      m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
164    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
165    if (cg != NULL) {
166      // Save it for next time:
167      register_intrinsic(cg);
168      return cg;
169    } else {
170      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
171    }
172  }
173  return NULL;
174}
175
176// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
177// in library_call.cpp.
178
179
180#ifndef PRODUCT
181// statistics gathering...
182
183juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
184jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
185
186bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
187  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
188  int oflags = _intrinsic_hist_flags[id];
189  assert(flags != 0, "what happened?");
190  if (is_virtual) {
191    flags |= _intrinsic_virtual;
192  }
193  bool changed = (flags != oflags);
194  if ((flags & _intrinsic_worked) != 0) {
195    juint count = (_intrinsic_hist_count[id] += 1);
196    if (count == 1) {
197      changed = true;           // first time
198    }
199    // increment the overall count also:
200    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
201  }
202  if (changed) {
203    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
204      // Something changed about the intrinsic's virtuality.
205      if ((flags & _intrinsic_virtual) != 0) {
206        // This is the first use of this intrinsic as a virtual call.
207        if (oflags != 0) {
208          // We already saw it as a non-virtual, so note both cases.
209          flags |= _intrinsic_both;
210        }
211      } else if ((oflags & _intrinsic_both) == 0) {
212        // This is the first use of this intrinsic as a non-virtual
213        flags |= _intrinsic_both;
214      }
215    }
216    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
217  }
218  // update the overall flags also:
219  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
220  return changed;
221}
222
223static char* format_flags(int flags, char* buf) {
224  buf[0] = 0;
225  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
226  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
227  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
228  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
229  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
230  if (buf[0] == 0)  strcat(buf, ",");
231  assert(buf[0] == ',', "must be");
232  return &buf[1];
233}
234
235void Compile::print_intrinsic_statistics() {
236  char flagsbuf[100];
237  ttyLocker ttyl;
238  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
239  tty->print_cr("Compiler intrinsic usage:");
240  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
241  if (total == 0)  total = 1;  // avoid div0 in case of no successes
242  #define PRINT_STAT_LINE(name, c, f) \
243    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
244  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
245    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
246    int   flags = _intrinsic_hist_flags[id];
247    juint count = _intrinsic_hist_count[id];
248    if ((flags | count) != 0) {
249      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
250    }
251  }
252  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
253  if (xtty != NULL)  xtty->tail("statistics");
254}
255
256void Compile::print_statistics() {
257  { ttyLocker ttyl;
258    if (xtty != NULL)  xtty->head("statistics type='opto'");
259    Parse::print_statistics();
260    PhaseCCP::print_statistics();
261    PhaseRegAlloc::print_statistics();
262    Scheduling::print_statistics();
263    PhasePeephole::print_statistics();
264    PhaseIdealLoop::print_statistics();
265    if (xtty != NULL)  xtty->tail("statistics");
266  }
267  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
268    // put this under its own <statistics> element.
269    print_intrinsic_statistics();
270  }
271}
272#endif //PRODUCT
273
274// Support for bundling info
275Bundle* Compile::node_bundling(const Node *n) {
276  assert(valid_bundle_info(n), "oob");
277  return &_node_bundling_base[n->_idx];
278}
279
280bool Compile::valid_bundle_info(const Node *n) {
281  return (_node_bundling_limit > n->_idx);
282}
283
284
285void Compile::gvn_replace_by(Node* n, Node* nn) {
286  for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
287    Node* use = n->last_out(i);
288    bool is_in_table = initial_gvn()->hash_delete(use);
289    uint uses_found = 0;
290    for (uint j = 0; j < use->len(); j++) {
291      if (use->in(j) == n) {
292        if (j < use->req())
293          use->set_req(j, nn);
294        else
295          use->set_prec(j, nn);
296        uses_found++;
297      }
298    }
299    if (is_in_table) {
300      // reinsert into table
301      initial_gvn()->hash_find_insert(use);
302    }
303    record_for_igvn(use);
304    i -= uses_found;    // we deleted 1 or more copies of this edge
305  }
306}
307
308
309static inline bool not_a_node(const Node* n) {
310  if (n == NULL)                   return true;
311  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
312  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
313  return false;
314}
315
316// Identify all nodes that are reachable from below, useful.
317// Use breadth-first pass that records state in a Unique_Node_List,
318// recursive traversal is slower.
319void Compile::identify_useful_nodes(Unique_Node_List &useful) {
320  int estimated_worklist_size = unique();
321  useful.map( estimated_worklist_size, NULL );  // preallocate space
322
323  // Initialize worklist
324  if (root() != NULL)     { useful.push(root()); }
325  // If 'top' is cached, declare it useful to preserve cached node
326  if( cached_top_node() ) { useful.push(cached_top_node()); }
327
328  // Push all useful nodes onto the list, breadthfirst
329  for( uint next = 0; next < useful.size(); ++next ) {
330    assert( next < unique(), "Unique useful nodes < total nodes");
331    Node *n  = useful.at(next);
332    uint max = n->len();
333    for( uint i = 0; i < max; ++i ) {
334      Node *m = n->in(i);
335      if (not_a_node(m))  continue;
336      useful.push(m);
337    }
338  }
339}
340
341// Update dead_node_list with any missing dead nodes using useful
342// list. Consider all non-useful nodes to be useless i.e., dead nodes.
343void Compile::update_dead_node_list(Unique_Node_List &useful) {
344  uint max_idx = unique();
345  VectorSet& useful_node_set = useful.member_set();
346
347  for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
348    // If node with index node_idx is not in useful set,
349    // mark it as dead in dead node list.
350    if (! useful_node_set.test(node_idx) ) {
351      record_dead_node(node_idx);
352    }
353  }
354}
355
356void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
357  int shift = 0;
358  for (int i = 0; i < inlines->length(); i++) {
359    CallGenerator* cg = inlines->at(i);
360    CallNode* call = cg->call_node();
361    if (shift > 0) {
362      inlines->at_put(i-shift, cg);
363    }
364    if (!useful.member(call)) {
365      shift++;
366    }
367  }
368  inlines->trunc_to(inlines->length()-shift);
369}
370
371// Disconnect all useless nodes by disconnecting those at the boundary.
372void Compile::remove_useless_nodes(Unique_Node_List &useful) {
373  uint next = 0;
374  while (next < useful.size()) {
375    Node *n = useful.at(next++);
376    if (n->is_SafePoint()) {
377      // We're done with a parsing phase. Replaced nodes are not valid
378      // beyond that point.
379      n->as_SafePoint()->delete_replaced_nodes();
380    }
381    // Use raw traversal of out edges since this code removes out edges
382    int max = n->outcnt();
383    for (int j = 0; j < max; ++j) {
384      Node* child = n->raw_out(j);
385      if (! useful.member(child)) {
386        assert(!child->is_top() || child != top(),
387               "If top is cached in Compile object it is in useful list");
388        // Only need to remove this out-edge to the useless node
389        n->raw_del_out(j);
390        --j;
391        --max;
392      }
393    }
394    if (n->outcnt() == 1 && n->has_special_unique_user()) {
395      record_for_igvn(n->unique_out());
396    }
397  }
398  // Remove useless macro and predicate opaq nodes
399  for (int i = C->macro_count()-1; i >= 0; i--) {
400    Node* n = C->macro_node(i);
401    if (!useful.member(n)) {
402      remove_macro_node(n);
403    }
404  }
405  // Remove useless expensive node
406  for (int i = C->expensive_count()-1; i >= 0; i--) {
407    Node* n = C->expensive_node(i);
408    if (!useful.member(n)) {
409      remove_expensive_node(n);
410    }
411  }
412  // clean up the late inline lists
413  remove_useless_late_inlines(&_string_late_inlines, useful);
414  remove_useless_late_inlines(&_boxing_late_inlines, useful);
415  remove_useless_late_inlines(&_late_inlines, useful);
416  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
417}
418
419//------------------------------frame_size_in_words-----------------------------
420// frame_slots in units of words
421int Compile::frame_size_in_words() const {
422  // shift is 0 in LP32 and 1 in LP64
423  const int shift = (LogBytesPerWord - LogBytesPerInt);
424  int words = _frame_slots >> shift;
425  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
426  return words;
427}
428
429// To bang the stack of this compiled method we use the stack size
430// that the interpreter would need in case of a deoptimization. This
431// removes the need to bang the stack in the deoptimization blob which
432// in turn simplifies stack overflow handling.
433int Compile::bang_size_in_bytes() const {
434  return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
435}
436
437// ============================================================================
438//------------------------------CompileWrapper---------------------------------
439class CompileWrapper : public StackObj {
440  Compile *const _compile;
441 public:
442  CompileWrapper(Compile* compile);
443
444  ~CompileWrapper();
445};
446
447CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
448  // the Compile* pointer is stored in the current ciEnv:
449  ciEnv* env = compile->env();
450  assert(env == ciEnv::current(), "must already be a ciEnv active");
451  assert(env->compiler_data() == NULL, "compile already active?");
452  env->set_compiler_data(compile);
453  assert(compile == Compile::current(), "sanity");
454
455  compile->set_type_dict(NULL);
456  compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
457  compile->clone_map().set_clone_idx(0);
458  compile->set_type_hwm(NULL);
459  compile->set_type_last_size(0);
460  compile->set_last_tf(NULL, NULL);
461  compile->set_indexSet_arena(NULL);
462  compile->set_indexSet_free_block_list(NULL);
463  compile->init_type_arena();
464  Type::Initialize(compile);
465  _compile->set_scratch_buffer_blob(NULL);
466  _compile->begin_method();
467  _compile->clone_map().set_debug(_compile->has_method() && _compile->method_has_option(_compile->clone_map().debug_option_name));
468}
469CompileWrapper::~CompileWrapper() {
470  _compile->end_method();
471  if (_compile->scratch_buffer_blob() != NULL)
472    BufferBlob::free(_compile->scratch_buffer_blob());
473  _compile->env()->set_compiler_data(NULL);
474}
475
476
477//----------------------------print_compile_messages---------------------------
478void Compile::print_compile_messages() {
479#ifndef PRODUCT
480  // Check if recompiling
481  if (_subsume_loads == false && PrintOpto) {
482    // Recompiling without allowing machine instructions to subsume loads
483    tty->print_cr("*********************************************************");
484    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
485    tty->print_cr("*********************************************************");
486  }
487  if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
488    // Recompiling without escape analysis
489    tty->print_cr("*********************************************************");
490    tty->print_cr("** Bailout: Recompile without escape analysis          **");
491    tty->print_cr("*********************************************************");
492  }
493  if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
494    // Recompiling without boxing elimination
495    tty->print_cr("*********************************************************");
496    tty->print_cr("** Bailout: Recompile without boxing elimination       **");
497    tty->print_cr("*********************************************************");
498  }
499  if (env()->break_at_compile()) {
500    // Open the debugger when compiling this method.
501    tty->print("### Breaking when compiling: ");
502    method()->print_short_name();
503    tty->cr();
504    BREAKPOINT;
505  }
506
507  if( PrintOpto ) {
508    if (is_osr_compilation()) {
509      tty->print("[OSR]%3d", _compile_id);
510    } else {
511      tty->print("%3d", _compile_id);
512    }
513  }
514#endif
515}
516
517
518//-----------------------init_scratch_buffer_blob------------------------------
519// Construct a temporary BufferBlob and cache it for this compile.
520void Compile::init_scratch_buffer_blob(int const_size) {
521  // If there is already a scratch buffer blob allocated and the
522  // constant section is big enough, use it.  Otherwise free the
523  // current and allocate a new one.
524  BufferBlob* blob = scratch_buffer_blob();
525  if ((blob != NULL) && (const_size <= _scratch_const_size)) {
526    // Use the current blob.
527  } else {
528    if (blob != NULL) {
529      BufferBlob::free(blob);
530    }
531
532    ResourceMark rm;
533    _scratch_const_size = const_size;
534    int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
535    blob = BufferBlob::create("Compile::scratch_buffer", size);
536    // Record the buffer blob for next time.
537    set_scratch_buffer_blob(blob);
538    // Have we run out of code space?
539    if (scratch_buffer_blob() == NULL) {
540      // Let CompilerBroker disable further compilations.
541      record_failure("Not enough space for scratch buffer in CodeCache");
542      return;
543    }
544  }
545
546  // Initialize the relocation buffers
547  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
548  set_scratch_locs_memory(locs_buf);
549}
550
551
552//-----------------------scratch_emit_size-------------------------------------
553// Helper function that computes size by emitting code
554uint Compile::scratch_emit_size(const Node* n) {
555  // Start scratch_emit_size section.
556  set_in_scratch_emit_size(true);
557
558  // Emit into a trash buffer and count bytes emitted.
559  // This is a pretty expensive way to compute a size,
560  // but it works well enough if seldom used.
561  // All common fixed-size instructions are given a size
562  // method by the AD file.
563  // Note that the scratch buffer blob and locs memory are
564  // allocated at the beginning of the compile task, and
565  // may be shared by several calls to scratch_emit_size.
566  // The allocation of the scratch buffer blob is particularly
567  // expensive, since it has to grab the code cache lock.
568  BufferBlob* blob = this->scratch_buffer_blob();
569  assert(blob != NULL, "Initialize BufferBlob at start");
570  assert(blob->size() > MAX_inst_size, "sanity");
571  relocInfo* locs_buf = scratch_locs_memory();
572  address blob_begin = blob->content_begin();
573  address blob_end   = (address)locs_buf;
574  assert(blob->content_contains(blob_end), "sanity");
575  CodeBuffer buf(blob_begin, blob_end - blob_begin);
576  buf.initialize_consts_size(_scratch_const_size);
577  buf.initialize_stubs_size(MAX_stubs_size);
578  assert(locs_buf != NULL, "sanity");
579  int lsize = MAX_locs_size / 3;
580  buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
581  buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
582  buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
583
584  // Do the emission.
585
586  Label fakeL; // Fake label for branch instructions.
587  Label*   saveL = NULL;
588  uint save_bnum = 0;
589  bool is_branch = n->is_MachBranch();
590  if (is_branch) {
591    MacroAssembler masm(&buf);
592    masm.bind(fakeL);
593    n->as_MachBranch()->save_label(&saveL, &save_bnum);
594    n->as_MachBranch()->label_set(&fakeL, 0);
595  }
596  n->emit(buf, this->regalloc());
597
598  // Emitting into the scratch buffer should not fail
599  assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
600
601  if (is_branch) // Restore label.
602    n->as_MachBranch()->label_set(saveL, save_bnum);
603
604  // End scratch_emit_size section.
605  set_in_scratch_emit_size(false);
606
607  return buf.insts_size();
608}
609
610
611// ============================================================================
612//------------------------------Compile standard-------------------------------
613debug_only( int Compile::_debug_idx = 100000; )
614
615// Compile a method.  entry_bci is -1 for normal compilations and indicates
616// the continuation bci for on stack replacement.
617
618
619Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
620                  bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
621                : Phase(Compiler),
622                  _env(ci_env),
623                  _log(ci_env->log()),
624                  _compile_id(ci_env->compile_id()),
625                  _save_argument_registers(false),
626                  _stub_name(NULL),
627                  _stub_function(NULL),
628                  _stub_entry_point(NULL),
629                  _method(target),
630                  _entry_bci(osr_bci),
631                  _initial_gvn(NULL),
632                  _for_igvn(NULL),
633                  _warm_calls(NULL),
634                  _subsume_loads(subsume_loads),
635                  _do_escape_analysis(do_escape_analysis),
636                  _eliminate_boxing(eliminate_boxing),
637                  _failure_reason(NULL),
638                  _code_buffer("Compile::Fill_buffer"),
639                  _orig_pc_slot(0),
640                  _orig_pc_slot_offset_in_bytes(0),
641                  _has_method_handle_invokes(false),
642                  _mach_constant_base_node(NULL),
643                  _node_bundling_limit(0),
644                  _node_bundling_base(NULL),
645                  _java_calls(0),
646                  _inner_loops(0),
647                  _scratch_const_size(-1),
648                  _in_scratch_emit_size(false),
649                  _dead_node_list(comp_arena()),
650                  _dead_node_count(0),
651#ifndef PRODUCT
652                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
653                  _in_dump_cnt(0),
654                  _printer(IdealGraphPrinter::printer()),
655#endif
656                  _congraph(NULL),
657                  _comp_arena(mtCompiler),
658                  _node_arena(mtCompiler),
659                  _old_arena(mtCompiler),
660                  _Compile_types(mtCompiler),
661                  _replay_inline_data(NULL),
662                  _late_inlines(comp_arena(), 2, 0, NULL),
663                  _string_late_inlines(comp_arena(), 2, 0, NULL),
664                  _boxing_late_inlines(comp_arena(), 2, 0, NULL),
665                  _late_inlines_pos(0),
666                  _number_of_mh_late_inlines(0),
667                  _inlining_progress(false),
668                  _inlining_incrementally(false),
669                  _print_inlining_list(NULL),
670                  _print_inlining_stream(NULL),
671                  _print_inlining_idx(0),
672                  _print_inlining_output(NULL),
673                  _interpreter_frame_size(0),
674                  _max_node_limit(MaxNodeLimit) {
675  C = this;
676
677  CompileWrapper cw(this);
678
679  if (CITimeVerbose) {
680    tty->print(" ");
681    target->holder()->name()->print();
682    tty->print(".");
683    target->print_short_name();
684    tty->print("  ");
685  }
686  TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
687  TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
688
689#ifndef PRODUCT
690  bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
691  if (!print_opto_assembly) {
692    bool print_assembly = (PrintAssembly || _method->should_print_assembly());
693    if (print_assembly && !Disassembler::can_decode()) {
694      tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
695      print_opto_assembly = true;
696    }
697  }
698  set_print_assembly(print_opto_assembly);
699  set_parsed_irreducible_loop(false);
700
701  if (method()->has_option("ReplayInline")) {
702    _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
703  }
704#endif
705  set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
706  set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
707  set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
708
709  if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
710    // Make sure the method being compiled gets its own MDO,
711    // so we can at least track the decompile_count().
712    // Need MDO to record RTM code generation state.
713    method()->ensure_method_data();
714  }
715
716  Init(::AliasLevel);
717
718
719  print_compile_messages();
720
721  _ilt = InlineTree::build_inline_tree_root();
722
723  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
724  assert(num_alias_types() >= AliasIdxRaw, "");
725
726#define MINIMUM_NODE_HASH  1023
727  // Node list that Iterative GVN will start with
728  Unique_Node_List for_igvn(comp_arena());
729  set_for_igvn(&for_igvn);
730
731  // GVN that will be run immediately on new nodes
732  uint estimated_size = method()->code_size()*4+64;
733  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
734  PhaseGVN gvn(node_arena(), estimated_size);
735  set_initial_gvn(&gvn);
736
737  print_inlining_init();
738  { // Scope for timing the parser
739    TracePhase tp("parse", &timers[_t_parser]);
740
741    // Put top into the hash table ASAP.
742    initial_gvn()->transform_no_reclaim(top());
743
744    // Set up tf(), start(), and find a CallGenerator.
745    CallGenerator* cg = NULL;
746    if (is_osr_compilation()) {
747      const TypeTuple *domain = StartOSRNode::osr_domain();
748      const TypeTuple *range = TypeTuple::make_range(method()->signature());
749      init_tf(TypeFunc::make(domain, range));
750      StartNode* s = new StartOSRNode(root(), domain);
751      initial_gvn()->set_type_bottom(s);
752      init_start(s);
753      cg = CallGenerator::for_osr(method(), entry_bci());
754    } else {
755      // Normal case.
756      init_tf(TypeFunc::make(method()));
757      StartNode* s = new StartNode(root(), tf()->domain());
758      initial_gvn()->set_type_bottom(s);
759      init_start(s);
760      if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
761        // With java.lang.ref.reference.get() we must go through the
762        // intrinsic when G1 is enabled - even when get() is the root
763        // method of the compile - so that, if necessary, the value in
764        // the referent field of the reference object gets recorded by
765        // the pre-barrier code.
766        // Specifically, if G1 is enabled, the value in the referent
767        // field is recorded by the G1 SATB pre barrier. This will
768        // result in the referent being marked live and the reference
769        // object removed from the list of discovered references during
770        // reference processing.
771        cg = find_intrinsic(method(), false);
772      }
773      if (cg == NULL) {
774        float past_uses = method()->interpreter_invocation_count();
775        float expected_uses = past_uses;
776        cg = CallGenerator::for_inline(method(), expected_uses);
777      }
778    }
779    if (failing())  return;
780    if (cg == NULL) {
781      record_method_not_compilable_all_tiers("cannot parse method");
782      return;
783    }
784    JVMState* jvms = build_start_state(start(), tf());
785    if ((jvms = cg->generate(jvms)) == NULL) {
786      if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
787        record_method_not_compilable("method parse failed");
788      }
789      return;
790    }
791    GraphKit kit(jvms);
792
793    if (!kit.stopped()) {
794      // Accept return values, and transfer control we know not where.
795      // This is done by a special, unique ReturnNode bound to root.
796      return_values(kit.jvms());
797    }
798
799    if (kit.has_exceptions()) {
800      // Any exceptions that escape from this call must be rethrown
801      // to whatever caller is dynamically above us on the stack.
802      // This is done by a special, unique RethrowNode bound to root.
803      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
804    }
805
806    assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
807
808    if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
809      inline_string_calls(true);
810    }
811
812    if (failing())  return;
813
814    print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
815
816    // Remove clutter produced by parsing.
817    if (!failing()) {
818      ResourceMark rm;
819      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
820    }
821  }
822
823  // Note:  Large methods are capped off in do_one_bytecode().
824  if (failing())  return;
825
826  // After parsing, node notes are no longer automagic.
827  // They must be propagated by register_new_node_with_optimizer(),
828  // clone(), or the like.
829  set_default_node_notes(NULL);
830
831  for (;;) {
832    int successes = Inline_Warm();
833    if (failing())  return;
834    if (successes == 0)  break;
835  }
836
837  // Drain the list.
838  Finish_Warm();
839#ifndef PRODUCT
840  if (_printer && _printer->should_print(_method)) {
841    _printer->print_inlining(this);
842  }
843#endif
844
845  if (failing())  return;
846  NOT_PRODUCT( verify_graph_edges(); )
847
848  // Now optimize
849  Optimize();
850  if (failing())  return;
851  NOT_PRODUCT( verify_graph_edges(); )
852
853#ifndef PRODUCT
854  if (PrintIdeal) {
855    ttyLocker ttyl;  // keep the following output all in one block
856    // This output goes directly to the tty, not the compiler log.
857    // To enable tools to match it up with the compilation activity,
858    // be sure to tag this tty output with the compile ID.
859    if (xtty != NULL) {
860      xtty->head("ideal compile_id='%d'%s", compile_id(),
861                 is_osr_compilation()    ? " compile_kind='osr'" :
862                 "");
863    }
864    root()->dump(9999);
865    if (xtty != NULL) {
866      xtty->tail("ideal");
867    }
868  }
869#endif
870
871  NOT_PRODUCT( verify_barriers(); )
872
873  // Dump compilation data to replay it.
874  if (method()->has_option("DumpReplay")) {
875    env()->dump_replay_data(_compile_id);
876  }
877  if (method()->has_option("DumpInline") && (ilt() != NULL)) {
878    env()->dump_inline_data(_compile_id);
879  }
880
881  // Now that we know the size of all the monitors we can add a fixed slot
882  // for the original deopt pc.
883
884  _orig_pc_slot =  fixed_slots();
885  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
886  set_fixed_slots(next_slot);
887
888  // Compute when to use implicit null checks. Used by matching trap based
889  // nodes and NullCheck optimization.
890  set_allowed_deopt_reasons();
891
892  // Now generate code
893  Code_Gen();
894  if (failing())  return;
895
896  // Check if we want to skip execution of all compiled code.
897  {
898#ifndef PRODUCT
899    if (OptoNoExecute) {
900      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
901      return;
902    }
903#endif
904    TracePhase tp("install_code", &timers[_t_registerMethod]);
905
906    if (is_osr_compilation()) {
907      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
908      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
909    } else {
910      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
911      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
912    }
913
914    env()->register_method(_method, _entry_bci,
915                           &_code_offsets,
916                           _orig_pc_slot_offset_in_bytes,
917                           code_buffer(),
918                           frame_size_in_words(), _oop_map_set,
919                           &_handler_table, &_inc_table,
920                           compiler,
921                           env()->comp_level(),
922                           has_unsafe_access(),
923                           SharedRuntime::is_wide_vector(max_vector_size()),
924                           rtm_state()
925                           );
926
927    if (log() != NULL) // Print code cache state into compiler log
928      log()->code_cache_state();
929  }
930}
931
932//------------------------------Compile----------------------------------------
933// Compile a runtime stub
934Compile::Compile( ciEnv* ci_env,
935                  TypeFunc_generator generator,
936                  address stub_function,
937                  const char *stub_name,
938                  int is_fancy_jump,
939                  bool pass_tls,
940                  bool save_arg_registers,
941                  bool return_pc )
942  : Phase(Compiler),
943    _env(ci_env),
944    _log(ci_env->log()),
945    _compile_id(0),
946    _save_argument_registers(save_arg_registers),
947    _method(NULL),
948    _stub_name(stub_name),
949    _stub_function(stub_function),
950    _stub_entry_point(NULL),
951    _entry_bci(InvocationEntryBci),
952    _initial_gvn(NULL),
953    _for_igvn(NULL),
954    _warm_calls(NULL),
955    _orig_pc_slot(0),
956    _orig_pc_slot_offset_in_bytes(0),
957    _subsume_loads(true),
958    _do_escape_analysis(false),
959    _eliminate_boxing(false),
960    _failure_reason(NULL),
961    _code_buffer("Compile::Fill_buffer"),
962    _has_method_handle_invokes(false),
963    _mach_constant_base_node(NULL),
964    _node_bundling_limit(0),
965    _node_bundling_base(NULL),
966    _java_calls(0),
967    _inner_loops(0),
968#ifndef PRODUCT
969    _trace_opto_output(TraceOptoOutput),
970    _in_dump_cnt(0),
971    _printer(NULL),
972#endif
973    _comp_arena(mtCompiler),
974    _node_arena(mtCompiler),
975    _old_arena(mtCompiler),
976    _Compile_types(mtCompiler),
977    _dead_node_list(comp_arena()),
978    _dead_node_count(0),
979    _congraph(NULL),
980    _replay_inline_data(NULL),
981    _number_of_mh_late_inlines(0),
982    _inlining_progress(false),
983    _inlining_incrementally(false),
984    _print_inlining_list(NULL),
985    _print_inlining_stream(NULL),
986    _print_inlining_idx(0),
987    _print_inlining_output(NULL),
988    _allowed_reasons(0),
989    _interpreter_frame_size(0),
990    _max_node_limit(MaxNodeLimit) {
991  C = this;
992
993  TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
994  TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
995
996#ifndef PRODUCT
997  set_print_assembly(PrintFrameConverterAssembly);
998  set_parsed_irreducible_loop(false);
999#endif
1000  set_has_irreducible_loop(false); // no loops
1001
1002  CompileWrapper cw(this);
1003  Init(/*AliasLevel=*/ 0);
1004  init_tf((*generator)());
1005
1006  {
1007    // The following is a dummy for the sake of GraphKit::gen_stub
1008    Unique_Node_List for_igvn(comp_arena());
1009    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1010    PhaseGVN gvn(Thread::current()->resource_area(),255);
1011    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1012    gvn.transform_no_reclaim(top());
1013
1014    GraphKit kit;
1015    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1016  }
1017
1018  NOT_PRODUCT( verify_graph_edges(); )
1019  Code_Gen();
1020  if (failing())  return;
1021
1022
1023  // Entry point will be accessed using compile->stub_entry_point();
1024  if (code_buffer() == NULL) {
1025    Matcher::soft_match_failure();
1026  } else {
1027    if (PrintAssembly && (WizardMode || Verbose))
1028      tty->print_cr("### Stub::%s", stub_name);
1029
1030    if (!failing()) {
1031      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1032
1033      // Make the NMethod
1034      // For now we mark the frame as never safe for profile stackwalking
1035      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1036                                                      code_buffer(),
1037                                                      CodeOffsets::frame_never_safe,
1038                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
1039                                                      frame_size_in_words(),
1040                                                      _oop_map_set,
1041                                                      save_arg_registers);
1042      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1043
1044      _stub_entry_point = rs->entry_point();
1045    }
1046  }
1047}
1048
1049//------------------------------Init-------------------------------------------
1050// Prepare for a single compilation
1051void Compile::Init(int aliaslevel) {
1052  _unique  = 0;
1053  _regalloc = NULL;
1054
1055  _tf      = NULL;  // filled in later
1056  _top     = NULL;  // cached later
1057  _matcher = NULL;  // filled in later
1058  _cfg     = NULL;  // filled in later
1059
1060  set_24_bit_selection_and_mode(Use24BitFP, false);
1061
1062  _node_note_array = NULL;
1063  _default_node_notes = NULL;
1064  DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1065
1066  _immutable_memory = NULL; // filled in at first inquiry
1067
1068  // Globally visible Nodes
1069  // First set TOP to NULL to give safe behavior during creation of RootNode
1070  set_cached_top_node(NULL);
1071  set_root(new RootNode());
1072  // Now that you have a Root to point to, create the real TOP
1073  set_cached_top_node( new ConNode(Type::TOP) );
1074  set_recent_alloc(NULL, NULL);
1075
1076  // Create Debug Information Recorder to record scopes, oopmaps, etc.
1077  env()->set_oop_recorder(new OopRecorder(env()->arena()));
1078  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1079  env()->set_dependencies(new Dependencies(env()));
1080
1081  _fixed_slots = 0;
1082  set_has_split_ifs(false);
1083  set_has_loops(has_method() && method()->has_loops()); // first approximation
1084  set_has_stringbuilder(false);
1085  set_has_boxed_value(false);
1086  _trap_can_recompile = false;  // no traps emitted yet
1087  _major_progress = true; // start out assuming good things will happen
1088  set_has_unsafe_access(false);
1089  set_max_vector_size(0);
1090  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1091  set_decompile_count(0);
1092
1093  set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1094  set_num_loop_opts(LoopOptsCount);
1095  set_do_inlining(Inline);
1096  set_max_inline_size(MaxInlineSize);
1097  set_freq_inline_size(FreqInlineSize);
1098  set_do_scheduling(OptoScheduling);
1099  set_do_count_invocations(false);
1100  set_do_method_data_update(false);
1101
1102  set_do_vector_loop(false);
1103
1104  bool do_vector = false;
1105  if (AllowVectorizeOnDemand) {
1106    if (has_method() && (method()->has_option("Vectorize") || method()->has_option("VectorizeDebug"))) {
1107      set_do_vector_loop(true);
1108    } else if (has_method() && method()->name() != 0 &&
1109               method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1110      set_do_vector_loop(true);
1111    }
1112#ifndef PRODUCT
1113    if (do_vector_loop() && Verbose) {
1114      tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());
1115    }
1116#endif
1117  }
1118
1119  set_age_code(has_method() && method()->profile_aging());
1120  set_rtm_state(NoRTM); // No RTM lock eliding by default
1121  method_has_option_value("MaxNodeLimit", _max_node_limit);
1122#if INCLUDE_RTM_OPT
1123  if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1124    int rtm_state = method()->method_data()->rtm_state();
1125    if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1126      // Don't generate RTM lock eliding code.
1127      set_rtm_state(NoRTM);
1128    } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1129      // Generate RTM lock eliding code without abort ratio calculation code.
1130      set_rtm_state(UseRTM);
1131    } else if (UseRTMDeopt) {
1132      // Generate RTM lock eliding code and include abort ratio calculation
1133      // code if UseRTMDeopt is on.
1134      set_rtm_state(ProfileRTM);
1135    }
1136  }
1137#endif
1138  if (debug_info()->recording_non_safepoints()) {
1139    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1140                        (comp_arena(), 8, 0, NULL));
1141    set_default_node_notes(Node_Notes::make(this));
1142  }
1143
1144  // // -- Initialize types before each compile --
1145  // // Update cached type information
1146  // if( _method && _method->constants() )
1147  //   Type::update_loaded_types(_method, _method->constants());
1148
1149  // Init alias_type map.
1150  if (!_do_escape_analysis && aliaslevel == 3)
1151    aliaslevel = 2;  // No unique types without escape analysis
1152  _AliasLevel = aliaslevel;
1153  const int grow_ats = 16;
1154  _max_alias_types = grow_ats;
1155  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1156  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1157  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1158  {
1159    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1160  }
1161  // Initialize the first few types.
1162  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1163  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1164  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1165  _num_alias_types = AliasIdxRaw+1;
1166  // Zero out the alias type cache.
1167  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1168  // A NULL adr_type hits in the cache right away.  Preload the right answer.
1169  probe_alias_cache(NULL)->_index = AliasIdxTop;
1170
1171  _intrinsics = NULL;
1172  _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1173  _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1174  _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1175  register_library_intrinsics();
1176}
1177
1178//---------------------------init_start----------------------------------------
1179// Install the StartNode on this compile object.
1180void Compile::init_start(StartNode* s) {
1181  if (failing())
1182    return; // already failing
1183  assert(s == start(), "");
1184}
1185
1186/**
1187 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1188 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1189 * the ideal graph.
1190 */
1191StartNode* Compile::start() const {
1192  assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1193  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1194    Node* start = root()->fast_out(i);
1195    if (start->is_Start()) {
1196      return start->as_Start();
1197    }
1198  }
1199  fatal("Did not find Start node!");
1200  return NULL;
1201}
1202
1203//-------------------------------immutable_memory-------------------------------------
1204// Access immutable memory
1205Node* Compile::immutable_memory() {
1206  if (_immutable_memory != NULL) {
1207    return _immutable_memory;
1208  }
1209  StartNode* s = start();
1210  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1211    Node *p = s->fast_out(i);
1212    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1213      _immutable_memory = p;
1214      return _immutable_memory;
1215    }
1216  }
1217  ShouldNotReachHere();
1218  return NULL;
1219}
1220
1221//----------------------set_cached_top_node------------------------------------
1222// Install the cached top node, and make sure Node::is_top works correctly.
1223void Compile::set_cached_top_node(Node* tn) {
1224  if (tn != NULL)  verify_top(tn);
1225  Node* old_top = _top;
1226  _top = tn;
1227  // Calling Node::setup_is_top allows the nodes the chance to adjust
1228  // their _out arrays.
1229  if (_top != NULL)     _top->setup_is_top();
1230  if (old_top != NULL)  old_top->setup_is_top();
1231  assert(_top == NULL || top()->is_top(), "");
1232}
1233
1234#ifdef ASSERT
1235uint Compile::count_live_nodes_by_graph_walk() {
1236  Unique_Node_List useful(comp_arena());
1237  // Get useful node list by walking the graph.
1238  identify_useful_nodes(useful);
1239  return useful.size();
1240}
1241
1242void Compile::print_missing_nodes() {
1243
1244  // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1245  if ((_log == NULL) && (! PrintIdealNodeCount)) {
1246    return;
1247  }
1248
1249  // This is an expensive function. It is executed only when the user
1250  // specifies VerifyIdealNodeCount option or otherwise knows the
1251  // additional work that needs to be done to identify reachable nodes
1252  // by walking the flow graph and find the missing ones using
1253  // _dead_node_list.
1254
1255  Unique_Node_List useful(comp_arena());
1256  // Get useful node list by walking the graph.
1257  identify_useful_nodes(useful);
1258
1259  uint l_nodes = C->live_nodes();
1260  uint l_nodes_by_walk = useful.size();
1261
1262  if (l_nodes != l_nodes_by_walk) {
1263    if (_log != NULL) {
1264      _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1265      _log->stamp();
1266      _log->end_head();
1267    }
1268    VectorSet& useful_member_set = useful.member_set();
1269    int last_idx = l_nodes_by_walk;
1270    for (int i = 0; i < last_idx; i++) {
1271      if (useful_member_set.test(i)) {
1272        if (_dead_node_list.test(i)) {
1273          if (_log != NULL) {
1274            _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1275          }
1276          if (PrintIdealNodeCount) {
1277            // Print the log message to tty
1278              tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1279              useful.at(i)->dump();
1280          }
1281        }
1282      }
1283      else if (! _dead_node_list.test(i)) {
1284        if (_log != NULL) {
1285          _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1286        }
1287        if (PrintIdealNodeCount) {
1288          // Print the log message to tty
1289          tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1290        }
1291      }
1292    }
1293    if (_log != NULL) {
1294      _log->tail("mismatched_nodes");
1295    }
1296  }
1297}
1298void Compile::record_modified_node(Node* n) {
1299  if (_modified_nodes != NULL && !_inlining_incrementally &&
1300      n->outcnt() != 0 && !n->is_Con()) {
1301    _modified_nodes->push(n);
1302  }
1303}
1304
1305void Compile::remove_modified_node(Node* n) {
1306  if (_modified_nodes != NULL) {
1307    _modified_nodes->remove(n);
1308  }
1309}
1310#endif
1311
1312#ifndef PRODUCT
1313void Compile::verify_top(Node* tn) const {
1314  if (tn != NULL) {
1315    assert(tn->is_Con(), "top node must be a constant");
1316    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1317    assert(tn->in(0) != NULL, "must have live top node");
1318  }
1319}
1320#endif
1321
1322
1323///-------------------Managing Per-Node Debug & Profile Info-------------------
1324
1325void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1326  guarantee(arr != NULL, "");
1327  int num_blocks = arr->length();
1328  if (grow_by < num_blocks)  grow_by = num_blocks;
1329  int num_notes = grow_by * _node_notes_block_size;
1330  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1331  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1332  while (num_notes > 0) {
1333    arr->append(notes);
1334    notes     += _node_notes_block_size;
1335    num_notes -= _node_notes_block_size;
1336  }
1337  assert(num_notes == 0, "exact multiple, please");
1338}
1339
1340bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1341  if (source == NULL || dest == NULL)  return false;
1342
1343  if (dest->is_Con())
1344    return false;               // Do not push debug info onto constants.
1345
1346#ifdef ASSERT
1347  // Leave a bread crumb trail pointing to the original node:
1348  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1349    dest->set_debug_orig(source);
1350  }
1351#endif
1352
1353  if (node_note_array() == NULL)
1354    return false;               // Not collecting any notes now.
1355
1356  // This is a copy onto a pre-existing node, which may already have notes.
1357  // If both nodes have notes, do not overwrite any pre-existing notes.
1358  Node_Notes* source_notes = node_notes_at(source->_idx);
1359  if (source_notes == NULL || source_notes->is_clear())  return false;
1360  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1361  if (dest_notes == NULL || dest_notes->is_clear()) {
1362    return set_node_notes_at(dest->_idx, source_notes);
1363  }
1364
1365  Node_Notes merged_notes = (*source_notes);
1366  // The order of operations here ensures that dest notes will win...
1367  merged_notes.update_from(dest_notes);
1368  return set_node_notes_at(dest->_idx, &merged_notes);
1369}
1370
1371
1372//--------------------------allow_range_check_smearing-------------------------
1373// Gating condition for coalescing similar range checks.
1374// Sometimes we try 'speculatively' replacing a series of a range checks by a
1375// single covering check that is at least as strong as any of them.
1376// If the optimization succeeds, the simplified (strengthened) range check
1377// will always succeed.  If it fails, we will deopt, and then give up
1378// on the optimization.
1379bool Compile::allow_range_check_smearing() const {
1380  // If this method has already thrown a range-check,
1381  // assume it was because we already tried range smearing
1382  // and it failed.
1383  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1384  return !already_trapped;
1385}
1386
1387
1388//------------------------------flatten_alias_type-----------------------------
1389const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1390  int offset = tj->offset();
1391  TypePtr::PTR ptr = tj->ptr();
1392
1393  // Known instance (scalarizable allocation) alias only with itself.
1394  bool is_known_inst = tj->isa_oopptr() != NULL &&
1395                       tj->is_oopptr()->is_known_instance();
1396
1397  // Process weird unsafe references.
1398  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1399    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1400    assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1401    tj = TypeOopPtr::BOTTOM;
1402    ptr = tj->ptr();
1403    offset = tj->offset();
1404  }
1405
1406  // Array pointers need some flattening
1407  const TypeAryPtr *ta = tj->isa_aryptr();
1408  if (ta && ta->is_stable()) {
1409    // Erase stability property for alias analysis.
1410    tj = ta = ta->cast_to_stable(false);
1411  }
1412  if( ta && is_known_inst ) {
1413    if ( offset != Type::OffsetBot &&
1414         offset > arrayOopDesc::length_offset_in_bytes() ) {
1415      offset = Type::OffsetBot; // Flatten constant access into array body only
1416      tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1417    }
1418  } else if( ta && _AliasLevel >= 2 ) {
1419    // For arrays indexed by constant indices, we flatten the alias
1420    // space to include all of the array body.  Only the header, klass
1421    // and array length can be accessed un-aliased.
1422    if( offset != Type::OffsetBot ) {
1423      if( ta->const_oop() ) { // MethodData* or Method*
1424        offset = Type::OffsetBot;   // Flatten constant access into array body
1425        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1426      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1427        // range is OK as-is.
1428        tj = ta = TypeAryPtr::RANGE;
1429      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1430        tj = TypeInstPtr::KLASS; // all klass loads look alike
1431        ta = TypeAryPtr::RANGE; // generic ignored junk
1432        ptr = TypePtr::BotPTR;
1433      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1434        tj = TypeInstPtr::MARK;
1435        ta = TypeAryPtr::RANGE; // generic ignored junk
1436        ptr = TypePtr::BotPTR;
1437      } else {                  // Random constant offset into array body
1438        offset = Type::OffsetBot;   // Flatten constant access into array body
1439        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1440      }
1441    }
1442    // Arrays of fixed size alias with arrays of unknown size.
1443    if (ta->size() != TypeInt::POS) {
1444      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1445      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1446    }
1447    // Arrays of known objects become arrays of unknown objects.
1448    if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1449      const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1450      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1451    }
1452    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1453      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1454      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1455    }
1456    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1457    // cannot be distinguished by bytecode alone.
1458    if (ta->elem() == TypeInt::BOOL) {
1459      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1460      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1461      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1462    }
1463    // During the 2nd round of IterGVN, NotNull castings are removed.
1464    // Make sure the Bottom and NotNull variants alias the same.
1465    // Also, make sure exact and non-exact variants alias the same.
1466    if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1467      tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1468    }
1469  }
1470
1471  // Oop pointers need some flattening
1472  const TypeInstPtr *to = tj->isa_instptr();
1473  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1474    ciInstanceKlass *k = to->klass()->as_instance_klass();
1475    if( ptr == TypePtr::Constant ) {
1476      if (to->klass() != ciEnv::current()->Class_klass() ||
1477          offset < k->size_helper() * wordSize) {
1478        // No constant oop pointers (such as Strings); they alias with
1479        // unknown strings.
1480        assert(!is_known_inst, "not scalarizable allocation");
1481        tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1482      }
1483    } else if( is_known_inst ) {
1484      tj = to; // Keep NotNull and klass_is_exact for instance type
1485    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1486      // During the 2nd round of IterGVN, NotNull castings are removed.
1487      // Make sure the Bottom and NotNull variants alias the same.
1488      // Also, make sure exact and non-exact variants alias the same.
1489      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1490    }
1491    if (to->speculative() != NULL) {
1492      tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1493    }
1494    // Canonicalize the holder of this field
1495    if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1496      // First handle header references such as a LoadKlassNode, even if the
1497      // object's klass is unloaded at compile time (4965979).
1498      if (!is_known_inst) { // Do it only for non-instance types
1499        tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1500      }
1501    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1502      // Static fields are in the space above the normal instance
1503      // fields in the java.lang.Class instance.
1504      if (to->klass() != ciEnv::current()->Class_klass()) {
1505        to = NULL;
1506        tj = TypeOopPtr::BOTTOM;
1507        offset = tj->offset();
1508      }
1509    } else {
1510      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1511      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1512        if( is_known_inst ) {
1513          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1514        } else {
1515          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1516        }
1517      }
1518    }
1519  }
1520
1521  // Klass pointers to object array klasses need some flattening
1522  const TypeKlassPtr *tk = tj->isa_klassptr();
1523  if( tk ) {
1524    // If we are referencing a field within a Klass, we need
1525    // to assume the worst case of an Object.  Both exact and
1526    // inexact types must flatten to the same alias class so
1527    // use NotNull as the PTR.
1528    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1529
1530      tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1531                                   TypeKlassPtr::OBJECT->klass(),
1532                                   offset);
1533    }
1534
1535    ciKlass* klass = tk->klass();
1536    if( klass->is_obj_array_klass() ) {
1537      ciKlass* k = TypeAryPtr::OOPS->klass();
1538      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1539        k = TypeInstPtr::BOTTOM->klass();
1540      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1541    }
1542
1543    // Check for precise loads from the primary supertype array and force them
1544    // to the supertype cache alias index.  Check for generic array loads from
1545    // the primary supertype array and also force them to the supertype cache
1546    // alias index.  Since the same load can reach both, we need to merge
1547    // these 2 disparate memories into the same alias class.  Since the
1548    // primary supertype array is read-only, there's no chance of confusion
1549    // where we bypass an array load and an array store.
1550    int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1551    if (offset == Type::OffsetBot ||
1552        (offset >= primary_supers_offset &&
1553         offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1554        offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1555      offset = in_bytes(Klass::secondary_super_cache_offset());
1556      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1557    }
1558  }
1559
1560  // Flatten all Raw pointers together.
1561  if (tj->base() == Type::RawPtr)
1562    tj = TypeRawPtr::BOTTOM;
1563
1564  if (tj->base() == Type::AnyPtr)
1565    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1566
1567  // Flatten all to bottom for now
1568  switch( _AliasLevel ) {
1569  case 0:
1570    tj = TypePtr::BOTTOM;
1571    break;
1572  case 1:                       // Flatten to: oop, static, field or array
1573    switch (tj->base()) {
1574    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1575    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1576    case Type::AryPtr:   // do not distinguish arrays at all
1577    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1578    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1579    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1580    default: ShouldNotReachHere();
1581    }
1582    break;
1583  case 2:                       // No collapsing at level 2; keep all splits
1584  case 3:                       // No collapsing at level 3; keep all splits
1585    break;
1586  default:
1587    Unimplemented();
1588  }
1589
1590  offset = tj->offset();
1591  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1592
1593  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1594          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1595          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1596          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1597          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1598          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1599          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1600          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1601  assert( tj->ptr() != TypePtr::TopPTR &&
1602          tj->ptr() != TypePtr::AnyNull &&
1603          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1604//    assert( tj->ptr() != TypePtr::Constant ||
1605//            tj->base() == Type::RawPtr ||
1606//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1607
1608  return tj;
1609}
1610
1611void Compile::AliasType::Init(int i, const TypePtr* at) {
1612  _index = i;
1613  _adr_type = at;
1614  _field = NULL;
1615  _element = NULL;
1616  _is_rewritable = true; // default
1617  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1618  if (atoop != NULL && atoop->is_known_instance()) {
1619    const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1620    _general_index = Compile::current()->get_alias_index(gt);
1621  } else {
1622    _general_index = 0;
1623  }
1624}
1625
1626//---------------------------------print_on------------------------------------
1627#ifndef PRODUCT
1628void Compile::AliasType::print_on(outputStream* st) {
1629  if (index() < 10)
1630        st->print("@ <%d> ", index());
1631  else  st->print("@ <%d>",  index());
1632  st->print(is_rewritable() ? "   " : " RO");
1633  int offset = adr_type()->offset();
1634  if (offset == Type::OffsetBot)
1635        st->print(" +any");
1636  else  st->print(" +%-3d", offset);
1637  st->print(" in ");
1638  adr_type()->dump_on(st);
1639  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1640  if (field() != NULL && tjp) {
1641    if (tjp->klass()  != field()->holder() ||
1642        tjp->offset() != field()->offset_in_bytes()) {
1643      st->print(" != ");
1644      field()->print();
1645      st->print(" ***");
1646    }
1647  }
1648}
1649
1650void print_alias_types() {
1651  Compile* C = Compile::current();
1652  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1653  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1654    C->alias_type(idx)->print_on(tty);
1655    tty->cr();
1656  }
1657}
1658#endif
1659
1660
1661//----------------------------probe_alias_cache--------------------------------
1662Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1663  intptr_t key = (intptr_t) adr_type;
1664  key ^= key >> logAliasCacheSize;
1665  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1666}
1667
1668
1669//-----------------------------grow_alias_types--------------------------------
1670void Compile::grow_alias_types() {
1671  const int old_ats  = _max_alias_types; // how many before?
1672  const int new_ats  = old_ats;          // how many more?
1673  const int grow_ats = old_ats+new_ats;  // how many now?
1674  _max_alias_types = grow_ats;
1675  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1676  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1677  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1678  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1679}
1680
1681
1682//--------------------------------find_alias_type------------------------------
1683Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1684  if (_AliasLevel == 0)
1685    return alias_type(AliasIdxBot);
1686
1687  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1688  if (ace->_adr_type == adr_type) {
1689    return alias_type(ace->_index);
1690  }
1691
1692  // Handle special cases.
1693  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1694  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1695
1696  // Do it the slow way.
1697  const TypePtr* flat = flatten_alias_type(adr_type);
1698
1699#ifdef ASSERT
1700  assert(flat == flatten_alias_type(flat), "idempotent");
1701  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1702  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1703    const TypeOopPtr* foop = flat->is_oopptr();
1704    // Scalarizable allocations have exact klass always.
1705    bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1706    const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1707    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1708  }
1709  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1710#endif
1711
1712  int idx = AliasIdxTop;
1713  for (int i = 0; i < num_alias_types(); i++) {
1714    if (alias_type(i)->adr_type() == flat) {
1715      idx = i;
1716      break;
1717    }
1718  }
1719
1720  if (idx == AliasIdxTop) {
1721    if (no_create)  return NULL;
1722    // Grow the array if necessary.
1723    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1724    // Add a new alias type.
1725    idx = _num_alias_types++;
1726    _alias_types[idx]->Init(idx, flat);
1727    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1728    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1729    if (flat->isa_instptr()) {
1730      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1731          && flat->is_instptr()->klass() == env()->Class_klass())
1732        alias_type(idx)->set_rewritable(false);
1733    }
1734    if (flat->isa_aryptr()) {
1735#ifdef ASSERT
1736      const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1737      // (T_BYTE has the weakest alignment and size restrictions...)
1738      assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1739#endif
1740      if (flat->offset() == TypePtr::OffsetBot) {
1741        alias_type(idx)->set_element(flat->is_aryptr()->elem());
1742      }
1743    }
1744    if (flat->isa_klassptr()) {
1745      if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1746        alias_type(idx)->set_rewritable(false);
1747      if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1748        alias_type(idx)->set_rewritable(false);
1749      if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1750        alias_type(idx)->set_rewritable(false);
1751      if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1752        alias_type(idx)->set_rewritable(false);
1753    }
1754    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1755    // but the base pointer type is not distinctive enough to identify
1756    // references into JavaThread.)
1757
1758    // Check for final fields.
1759    const TypeInstPtr* tinst = flat->isa_instptr();
1760    if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1761      ciField* field;
1762      if (tinst->const_oop() != NULL &&
1763          tinst->klass() == ciEnv::current()->Class_klass() &&
1764          tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1765        // static field
1766        ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1767        field = k->get_field_by_offset(tinst->offset(), true);
1768      } else {
1769        ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1770        field = k->get_field_by_offset(tinst->offset(), false);
1771      }
1772      assert(field == NULL ||
1773             original_field == NULL ||
1774             (field->holder() == original_field->holder() &&
1775              field->offset() == original_field->offset() &&
1776              field->is_static() == original_field->is_static()), "wrong field?");
1777      // Set field() and is_rewritable() attributes.
1778      if (field != NULL)  alias_type(idx)->set_field(field);
1779    }
1780  }
1781
1782  // Fill the cache for next time.
1783  ace->_adr_type = adr_type;
1784  ace->_index    = idx;
1785  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1786
1787  // Might as well try to fill the cache for the flattened version, too.
1788  AliasCacheEntry* face = probe_alias_cache(flat);
1789  if (face->_adr_type == NULL) {
1790    face->_adr_type = flat;
1791    face->_index    = idx;
1792    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1793  }
1794
1795  return alias_type(idx);
1796}
1797
1798
1799Compile::AliasType* Compile::alias_type(ciField* field) {
1800  const TypeOopPtr* t;
1801  if (field->is_static())
1802    t = TypeInstPtr::make(field->holder()->java_mirror());
1803  else
1804    t = TypeOopPtr::make_from_klass_raw(field->holder());
1805  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1806  assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1807  return atp;
1808}
1809
1810
1811//------------------------------have_alias_type--------------------------------
1812bool Compile::have_alias_type(const TypePtr* adr_type) {
1813  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1814  if (ace->_adr_type == adr_type) {
1815    return true;
1816  }
1817
1818  // Handle special cases.
1819  if (adr_type == NULL)             return true;
1820  if (adr_type == TypePtr::BOTTOM)  return true;
1821
1822  return find_alias_type(adr_type, true, NULL) != NULL;
1823}
1824
1825//-----------------------------must_alias--------------------------------------
1826// True if all values of the given address type are in the given alias category.
1827bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1828  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1829  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1830  if (alias_idx == AliasIdxTop)         return false; // the empty category
1831  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1832
1833  // the only remaining possible overlap is identity
1834  int adr_idx = get_alias_index(adr_type);
1835  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1836  assert(adr_idx == alias_idx ||
1837         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1838          && adr_type                       != TypeOopPtr::BOTTOM),
1839         "should not be testing for overlap with an unsafe pointer");
1840  return adr_idx == alias_idx;
1841}
1842
1843//------------------------------can_alias--------------------------------------
1844// True if any values of the given address type are in the given alias category.
1845bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1846  if (alias_idx == AliasIdxTop)         return false; // the empty category
1847  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1848  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1849  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1850
1851  // the only remaining possible overlap is identity
1852  int adr_idx = get_alias_index(adr_type);
1853  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1854  return adr_idx == alias_idx;
1855}
1856
1857
1858
1859//---------------------------pop_warm_call-------------------------------------
1860WarmCallInfo* Compile::pop_warm_call() {
1861  WarmCallInfo* wci = _warm_calls;
1862  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1863  return wci;
1864}
1865
1866//----------------------------Inline_Warm--------------------------------------
1867int Compile::Inline_Warm() {
1868  // If there is room, try to inline some more warm call sites.
1869  // %%% Do a graph index compaction pass when we think we're out of space?
1870  if (!InlineWarmCalls)  return 0;
1871
1872  int calls_made_hot = 0;
1873  int room_to_grow   = NodeCountInliningCutoff - unique();
1874  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1875  int amount_grown   = 0;
1876  WarmCallInfo* call;
1877  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1878    int est_size = (int)call->size();
1879    if (est_size > (room_to_grow - amount_grown)) {
1880      // This one won't fit anyway.  Get rid of it.
1881      call->make_cold();
1882      continue;
1883    }
1884    call->make_hot();
1885    calls_made_hot++;
1886    amount_grown   += est_size;
1887    amount_to_grow -= est_size;
1888  }
1889
1890  if (calls_made_hot > 0)  set_major_progress();
1891  return calls_made_hot;
1892}
1893
1894
1895//----------------------------Finish_Warm--------------------------------------
1896void Compile::Finish_Warm() {
1897  if (!InlineWarmCalls)  return;
1898  if (failing())  return;
1899  if (warm_calls() == NULL)  return;
1900
1901  // Clean up loose ends, if we are out of space for inlining.
1902  WarmCallInfo* call;
1903  while ((call = pop_warm_call()) != NULL) {
1904    call->make_cold();
1905  }
1906}
1907
1908//---------------------cleanup_loop_predicates-----------------------
1909// Remove the opaque nodes that protect the predicates so that all unused
1910// checks and uncommon_traps will be eliminated from the ideal graph
1911void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1912  if (predicate_count()==0) return;
1913  for (int i = predicate_count(); i > 0; i--) {
1914    Node * n = predicate_opaque1_node(i-1);
1915    assert(n->Opcode() == Op_Opaque1, "must be");
1916    igvn.replace_node(n, n->in(1));
1917  }
1918  assert(predicate_count()==0, "should be clean!");
1919}
1920
1921// StringOpts and late inlining of string methods
1922void Compile::inline_string_calls(bool parse_time) {
1923  {
1924    // remove useless nodes to make the usage analysis simpler
1925    ResourceMark rm;
1926    PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1927  }
1928
1929  {
1930    ResourceMark rm;
1931    print_method(PHASE_BEFORE_STRINGOPTS, 3);
1932    PhaseStringOpts pso(initial_gvn(), for_igvn());
1933    print_method(PHASE_AFTER_STRINGOPTS, 3);
1934  }
1935
1936  // now inline anything that we skipped the first time around
1937  if (!parse_time) {
1938    _late_inlines_pos = _late_inlines.length();
1939  }
1940
1941  while (_string_late_inlines.length() > 0) {
1942    CallGenerator* cg = _string_late_inlines.pop();
1943    cg->do_late_inline();
1944    if (failing())  return;
1945  }
1946  _string_late_inlines.trunc_to(0);
1947}
1948
1949// Late inlining of boxing methods
1950void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1951  if (_boxing_late_inlines.length() > 0) {
1952    assert(has_boxed_value(), "inconsistent");
1953
1954    PhaseGVN* gvn = initial_gvn();
1955    set_inlining_incrementally(true);
1956
1957    assert( igvn._worklist.size() == 0, "should be done with igvn" );
1958    for_igvn()->clear();
1959    gvn->replace_with(&igvn);
1960
1961    _late_inlines_pos = _late_inlines.length();
1962
1963    while (_boxing_late_inlines.length() > 0) {
1964      CallGenerator* cg = _boxing_late_inlines.pop();
1965      cg->do_late_inline();
1966      if (failing())  return;
1967    }
1968    _boxing_late_inlines.trunc_to(0);
1969
1970    {
1971      ResourceMark rm;
1972      PhaseRemoveUseless pru(gvn, for_igvn());
1973    }
1974
1975    igvn = PhaseIterGVN(gvn);
1976    igvn.optimize();
1977
1978    set_inlining_progress(false);
1979    set_inlining_incrementally(false);
1980  }
1981}
1982
1983void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1984  assert(IncrementalInline, "incremental inlining should be on");
1985  PhaseGVN* gvn = initial_gvn();
1986
1987  set_inlining_progress(false);
1988  for_igvn()->clear();
1989  gvn->replace_with(&igvn);
1990
1991  {
1992    TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1993    int i = 0;
1994    for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1995      CallGenerator* cg = _late_inlines.at(i);
1996      _late_inlines_pos = i+1;
1997      cg->do_late_inline();
1998      if (failing())  return;
1999    }
2000    int j = 0;
2001    for (; i < _late_inlines.length(); i++, j++) {
2002      _late_inlines.at_put(j, _late_inlines.at(i));
2003    }
2004    _late_inlines.trunc_to(j);
2005  }
2006
2007  {
2008    TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2009    ResourceMark rm;
2010    PhaseRemoveUseless pru(gvn, for_igvn());
2011  }
2012
2013  {
2014    TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2015    igvn = PhaseIterGVN(gvn);
2016  }
2017}
2018
2019// Perform incremental inlining until bound on number of live nodes is reached
2020void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2021  TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2022
2023  PhaseGVN* gvn = initial_gvn();
2024
2025  set_inlining_incrementally(true);
2026  set_inlining_progress(true);
2027  uint low_live_nodes = 0;
2028
2029  while(inlining_progress() && _late_inlines.length() > 0) {
2030
2031    if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2032      if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2033        TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2034        // PhaseIdealLoop is expensive so we only try it once we are
2035        // out of live nodes and we only try it again if the previous
2036        // helped got the number of nodes down significantly
2037        PhaseIdealLoop ideal_loop( igvn, false, true );
2038        if (failing())  return;
2039        low_live_nodes = live_nodes();
2040        _major_progress = true;
2041      }
2042
2043      if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2044        break;
2045      }
2046    }
2047
2048    inline_incrementally_one(igvn);
2049
2050    if (failing())  return;
2051
2052    {
2053      TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2054      igvn.optimize();
2055    }
2056
2057    if (failing())  return;
2058  }
2059
2060  assert( igvn._worklist.size() == 0, "should be done with igvn" );
2061
2062  if (_string_late_inlines.length() > 0) {
2063    assert(has_stringbuilder(), "inconsistent");
2064    for_igvn()->clear();
2065    initial_gvn()->replace_with(&igvn);
2066
2067    inline_string_calls(false);
2068
2069    if (failing())  return;
2070
2071    {
2072      TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2073      ResourceMark rm;
2074      PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2075    }
2076
2077    {
2078      TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2079      igvn = PhaseIterGVN(gvn);
2080      igvn.optimize();
2081    }
2082  }
2083
2084  set_inlining_incrementally(false);
2085}
2086
2087
2088//------------------------------Optimize---------------------------------------
2089// Given a graph, optimize it.
2090void Compile::Optimize() {
2091  TracePhase tp("optimizer", &timers[_t_optimizer]);
2092
2093#ifndef PRODUCT
2094  if (env()->break_at_compile()) {
2095    BREAKPOINT;
2096  }
2097
2098#endif
2099
2100  ResourceMark rm;
2101  int          loop_opts_cnt;
2102
2103  print_inlining_reinit();
2104
2105  NOT_PRODUCT( verify_graph_edges(); )
2106
2107  print_method(PHASE_AFTER_PARSING);
2108
2109 {
2110  // Iterative Global Value Numbering, including ideal transforms
2111  // Initialize IterGVN with types and values from parse-time GVN
2112  PhaseIterGVN igvn(initial_gvn());
2113#ifdef ASSERT
2114  _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2115#endif
2116  {
2117    TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2118    igvn.optimize();
2119  }
2120
2121  print_method(PHASE_ITER_GVN1, 2);
2122
2123  if (failing())  return;
2124
2125  inline_incrementally(igvn);
2126
2127  print_method(PHASE_INCREMENTAL_INLINE, 2);
2128
2129  if (failing())  return;
2130
2131  if (eliminate_boxing()) {
2132    // Inline valueOf() methods now.
2133    inline_boxing_calls(igvn);
2134
2135    if (AlwaysIncrementalInline) {
2136      inline_incrementally(igvn);
2137    }
2138
2139    print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2140
2141    if (failing())  return;
2142  }
2143
2144  // Remove the speculative part of types and clean up the graph from
2145  // the extra CastPP nodes whose only purpose is to carry them. Do
2146  // that early so that optimizations are not disrupted by the extra
2147  // CastPP nodes.
2148  remove_speculative_types(igvn);
2149
2150  // No more new expensive nodes will be added to the list from here
2151  // so keep only the actual candidates for optimizations.
2152  cleanup_expensive_nodes(igvn);
2153
2154  // Perform escape analysis
2155  if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2156    if (has_loops()) {
2157      // Cleanup graph (remove dead nodes).
2158      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2159      PhaseIdealLoop ideal_loop( igvn, false, true );
2160      if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2161      if (failing())  return;
2162    }
2163    ConnectionGraph::do_analysis(this, &igvn);
2164
2165    if (failing())  return;
2166
2167    // Optimize out fields loads from scalar replaceable allocations.
2168    igvn.optimize();
2169    print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2170
2171    if (failing())  return;
2172
2173    if (congraph() != NULL && macro_count() > 0) {
2174      TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2175      PhaseMacroExpand mexp(igvn);
2176      mexp.eliminate_macro_nodes();
2177      igvn.set_delay_transform(false);
2178
2179      igvn.optimize();
2180      print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2181
2182      if (failing())  return;
2183    }
2184  }
2185
2186  // Loop transforms on the ideal graph.  Range Check Elimination,
2187  // peeling, unrolling, etc.
2188
2189  // Set loop opts counter
2190  loop_opts_cnt = num_loop_opts();
2191  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2192    {
2193      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2194      PhaseIdealLoop ideal_loop( igvn, true );
2195      loop_opts_cnt--;
2196      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2197      if (failing())  return;
2198    }
2199    // Loop opts pass if partial peeling occurred in previous pass
2200    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2201      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2202      PhaseIdealLoop ideal_loop( igvn, false );
2203      loop_opts_cnt--;
2204      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2205      if (failing())  return;
2206    }
2207    // Loop opts pass for loop-unrolling before CCP
2208    if(major_progress() && (loop_opts_cnt > 0)) {
2209      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2210      PhaseIdealLoop ideal_loop( igvn, false );
2211      loop_opts_cnt--;
2212      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2213    }
2214    if (!failing()) {
2215      // Verify that last round of loop opts produced a valid graph
2216      TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2217      PhaseIdealLoop::verify(igvn);
2218    }
2219  }
2220  if (failing())  return;
2221
2222  // Conditional Constant Propagation;
2223  PhaseCCP ccp( &igvn );
2224  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2225  {
2226    TracePhase tp("ccp", &timers[_t_ccp]);
2227    ccp.do_transform();
2228  }
2229  print_method(PHASE_CPP1, 2);
2230
2231  assert( true, "Break here to ccp.dump_old2new_map()");
2232
2233  // Iterative Global Value Numbering, including ideal transforms
2234  {
2235    TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2236    igvn = ccp;
2237    igvn.optimize();
2238  }
2239
2240  print_method(PHASE_ITER_GVN2, 2);
2241
2242  if (failing())  return;
2243
2244  // Loop transforms on the ideal graph.  Range Check Elimination,
2245  // peeling, unrolling, etc.
2246  if(loop_opts_cnt > 0) {
2247    debug_only( int cnt = 0; );
2248    while(major_progress() && (loop_opts_cnt > 0)) {
2249      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2250      assert( cnt++ < 40, "infinite cycle in loop optimization" );
2251      PhaseIdealLoop ideal_loop( igvn, true);
2252      loop_opts_cnt--;
2253      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2254      if (failing())  return;
2255    }
2256  }
2257
2258  {
2259    // Verify that all previous optimizations produced a valid graph
2260    // at least to this point, even if no loop optimizations were done.
2261    TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2262    PhaseIdealLoop::verify(igvn);
2263  }
2264
2265  {
2266    TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2267    PhaseMacroExpand  mex(igvn);
2268    if (mex.expand_macro_nodes()) {
2269      assert(failing(), "must bail out w/ explicit message");
2270      return;
2271    }
2272  }
2273
2274  DEBUG_ONLY( _modified_nodes = NULL; )
2275 } // (End scope of igvn; run destructor if necessary for asserts.)
2276
2277  process_print_inlining();
2278  // A method with only infinite loops has no edges entering loops from root
2279  {
2280    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2281    if (final_graph_reshaping()) {
2282      assert(failing(), "must bail out w/ explicit message");
2283      return;
2284    }
2285  }
2286
2287  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2288}
2289
2290
2291//------------------------------Code_Gen---------------------------------------
2292// Given a graph, generate code for it
2293void Compile::Code_Gen() {
2294  if (failing()) {
2295    return;
2296  }
2297
2298  // Perform instruction selection.  You might think we could reclaim Matcher
2299  // memory PDQ, but actually the Matcher is used in generating spill code.
2300  // Internals of the Matcher (including some VectorSets) must remain live
2301  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2302  // set a bit in reclaimed memory.
2303
2304  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2305  // nodes.  Mapping is only valid at the root of each matched subtree.
2306  NOT_PRODUCT( verify_graph_edges(); )
2307
2308  Matcher matcher;
2309  _matcher = &matcher;
2310  {
2311    TracePhase tp("matcher", &timers[_t_matcher]);
2312    matcher.match();
2313  }
2314  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2315  // nodes.  Mapping is only valid at the root of each matched subtree.
2316  NOT_PRODUCT( verify_graph_edges(); )
2317
2318  // If you have too many nodes, or if matching has failed, bail out
2319  check_node_count(0, "out of nodes matching instructions");
2320  if (failing()) {
2321    return;
2322  }
2323
2324  // Build a proper-looking CFG
2325  PhaseCFG cfg(node_arena(), root(), matcher);
2326  _cfg = &cfg;
2327  {
2328    TracePhase tp("scheduler", &timers[_t_scheduler]);
2329    bool success = cfg.do_global_code_motion();
2330    if (!success) {
2331      return;
2332    }
2333
2334    print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2335    NOT_PRODUCT( verify_graph_edges(); )
2336    debug_only( cfg.verify(); )
2337  }
2338
2339  PhaseChaitin regalloc(unique(), cfg, matcher);
2340  _regalloc = &regalloc;
2341  {
2342    TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2343    // Perform register allocation.  After Chaitin, use-def chains are
2344    // no longer accurate (at spill code) and so must be ignored.
2345    // Node->LRG->reg mappings are still accurate.
2346    _regalloc->Register_Allocate();
2347
2348    // Bail out if the allocator builds too many nodes
2349    if (failing()) {
2350      return;
2351    }
2352  }
2353
2354  // Prior to register allocation we kept empty basic blocks in case the
2355  // the allocator needed a place to spill.  After register allocation we
2356  // are not adding any new instructions.  If any basic block is empty, we
2357  // can now safely remove it.
2358  {
2359    TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2360    cfg.remove_empty_blocks();
2361    if (do_freq_based_layout()) {
2362      PhaseBlockLayout layout(cfg);
2363    } else {
2364      cfg.set_loop_alignment();
2365    }
2366    cfg.fixup_flow();
2367  }
2368
2369  // Apply peephole optimizations
2370  if( OptoPeephole ) {
2371    TracePhase tp("peephole", &timers[_t_peephole]);
2372    PhasePeephole peep( _regalloc, cfg);
2373    peep.do_transform();
2374  }
2375
2376  // Do late expand if CPU requires this.
2377  if (Matcher::require_postalloc_expand) {
2378    TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2379    cfg.postalloc_expand(_regalloc);
2380  }
2381
2382  // Convert Nodes to instruction bits in a buffer
2383  {
2384    TraceTime tp("output", &timers[_t_output], CITime);
2385    Output();
2386  }
2387
2388  print_method(PHASE_FINAL_CODE);
2389
2390  // He's dead, Jim.
2391  _cfg     = (PhaseCFG*)0xdeadbeef;
2392  _regalloc = (PhaseChaitin*)0xdeadbeef;
2393}
2394
2395
2396//------------------------------dump_asm---------------------------------------
2397// Dump formatted assembly
2398#ifndef PRODUCT
2399void Compile::dump_asm(int *pcs, uint pc_limit) {
2400  bool cut_short = false;
2401  tty->print_cr("#");
2402  tty->print("#  ");  _tf->dump();  tty->cr();
2403  tty->print_cr("#");
2404
2405  // For all blocks
2406  int pc = 0x0;                 // Program counter
2407  char starts_bundle = ' ';
2408  _regalloc->dump_frame();
2409
2410  Node *n = NULL;
2411  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2412    if (VMThread::should_terminate()) {
2413      cut_short = true;
2414      break;
2415    }
2416    Block* block = _cfg->get_block(i);
2417    if (block->is_connector() && !Verbose) {
2418      continue;
2419    }
2420    n = block->head();
2421    if (pcs && n->_idx < pc_limit) {
2422      tty->print("%3.3x   ", pcs[n->_idx]);
2423    } else {
2424      tty->print("      ");
2425    }
2426    block->dump_head(_cfg);
2427    if (block->is_connector()) {
2428      tty->print_cr("        # Empty connector block");
2429    } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2430      tty->print_cr("        # Block is sole successor of call");
2431    }
2432
2433    // For all instructions
2434    Node *delay = NULL;
2435    for (uint j = 0; j < block->number_of_nodes(); j++) {
2436      if (VMThread::should_terminate()) {
2437        cut_short = true;
2438        break;
2439      }
2440      n = block->get_node(j);
2441      if (valid_bundle_info(n)) {
2442        Bundle* bundle = node_bundling(n);
2443        if (bundle->used_in_unconditional_delay()) {
2444          delay = n;
2445          continue;
2446        }
2447        if (bundle->starts_bundle()) {
2448          starts_bundle = '+';
2449        }
2450      }
2451
2452      if (WizardMode) {
2453        n->dump();
2454      }
2455
2456      if( !n->is_Region() &&    // Dont print in the Assembly
2457          !n->is_Phi() &&       // a few noisely useless nodes
2458          !n->is_Proj() &&
2459          !n->is_MachTemp() &&
2460          !n->is_SafePointScalarObject() &&
2461          !n->is_Catch() &&     // Would be nice to print exception table targets
2462          !n->is_MergeMem() &&  // Not very interesting
2463          !n->is_top() &&       // Debug info table constants
2464          !(n->is_Con() && !n->is_Mach())// Debug info table constants
2465          ) {
2466        if (pcs && n->_idx < pc_limit)
2467          tty->print("%3.3x", pcs[n->_idx]);
2468        else
2469          tty->print("   ");
2470        tty->print(" %c ", starts_bundle);
2471        starts_bundle = ' ';
2472        tty->print("\t");
2473        n->format(_regalloc, tty);
2474        tty->cr();
2475      }
2476
2477      // If we have an instruction with a delay slot, and have seen a delay,
2478      // then back up and print it
2479      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2480        assert(delay != NULL, "no unconditional delay instruction");
2481        if (WizardMode) delay->dump();
2482
2483        if (node_bundling(delay)->starts_bundle())
2484          starts_bundle = '+';
2485        if (pcs && n->_idx < pc_limit)
2486          tty->print("%3.3x", pcs[n->_idx]);
2487        else
2488          tty->print("   ");
2489        tty->print(" %c ", starts_bundle);
2490        starts_bundle = ' ';
2491        tty->print("\t");
2492        delay->format(_regalloc, tty);
2493        tty->cr();
2494        delay = NULL;
2495      }
2496
2497      // Dump the exception table as well
2498      if( n->is_Catch() && (Verbose || WizardMode) ) {
2499        // Print the exception table for this offset
2500        _handler_table.print_subtable_for(pc);
2501      }
2502    }
2503
2504    if (pcs && n->_idx < pc_limit)
2505      tty->print_cr("%3.3x", pcs[n->_idx]);
2506    else
2507      tty->cr();
2508
2509    assert(cut_short || delay == NULL, "no unconditional delay branch");
2510
2511  } // End of per-block dump
2512  tty->cr();
2513
2514  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2515}
2516#endif
2517
2518//------------------------------Final_Reshape_Counts---------------------------
2519// This class defines counters to help identify when a method
2520// may/must be executed using hardware with only 24-bit precision.
2521struct Final_Reshape_Counts : public StackObj {
2522  int  _call_count;             // count non-inlined 'common' calls
2523  int  _float_count;            // count float ops requiring 24-bit precision
2524  int  _double_count;           // count double ops requiring more precision
2525  int  _java_call_count;        // count non-inlined 'java' calls
2526  int  _inner_loop_count;       // count loops which need alignment
2527  VectorSet _visited;           // Visitation flags
2528  Node_List _tests;             // Set of IfNodes & PCTableNodes
2529
2530  Final_Reshape_Counts() :
2531    _call_count(0), _float_count(0), _double_count(0),
2532    _java_call_count(0), _inner_loop_count(0),
2533    _visited( Thread::current()->resource_area() ) { }
2534
2535  void inc_call_count  () { _call_count  ++; }
2536  void inc_float_count () { _float_count ++; }
2537  void inc_double_count() { _double_count++; }
2538  void inc_java_call_count() { _java_call_count++; }
2539  void inc_inner_loop_count() { _inner_loop_count++; }
2540
2541  int  get_call_count  () const { return _call_count  ; }
2542  int  get_float_count () const { return _float_count ; }
2543  int  get_double_count() const { return _double_count; }
2544  int  get_java_call_count() const { return _java_call_count; }
2545  int  get_inner_loop_count() const { return _inner_loop_count; }
2546};
2547
2548#ifdef ASSERT
2549static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2550  ciInstanceKlass *k = tp->klass()->as_instance_klass();
2551  // Make sure the offset goes inside the instance layout.
2552  return k->contains_field_offset(tp->offset());
2553  // Note that OffsetBot and OffsetTop are very negative.
2554}
2555#endif
2556
2557// Eliminate trivially redundant StoreCMs and accumulate their
2558// precedence edges.
2559void Compile::eliminate_redundant_card_marks(Node* n) {
2560  assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2561  if (n->in(MemNode::Address)->outcnt() > 1) {
2562    // There are multiple users of the same address so it might be
2563    // possible to eliminate some of the StoreCMs
2564    Node* mem = n->in(MemNode::Memory);
2565    Node* adr = n->in(MemNode::Address);
2566    Node* val = n->in(MemNode::ValueIn);
2567    Node* prev = n;
2568    bool done = false;
2569    // Walk the chain of StoreCMs eliminating ones that match.  As
2570    // long as it's a chain of single users then the optimization is
2571    // safe.  Eliminating partially redundant StoreCMs would require
2572    // cloning copies down the other paths.
2573    while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2574      if (adr == mem->in(MemNode::Address) &&
2575          val == mem->in(MemNode::ValueIn)) {
2576        // redundant StoreCM
2577        if (mem->req() > MemNode::OopStore) {
2578          // Hasn't been processed by this code yet.
2579          n->add_prec(mem->in(MemNode::OopStore));
2580        } else {
2581          // Already converted to precedence edge
2582          for (uint i = mem->req(); i < mem->len(); i++) {
2583            // Accumulate any precedence edges
2584            if (mem->in(i) != NULL) {
2585              n->add_prec(mem->in(i));
2586            }
2587          }
2588          // Everything above this point has been processed.
2589          done = true;
2590        }
2591        // Eliminate the previous StoreCM
2592        prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2593        assert(mem->outcnt() == 0, "should be dead");
2594        mem->disconnect_inputs(NULL, this);
2595      } else {
2596        prev = mem;
2597      }
2598      mem = prev->in(MemNode::Memory);
2599    }
2600  }
2601}
2602
2603//------------------------------final_graph_reshaping_impl----------------------
2604// Implement items 1-5 from final_graph_reshaping below.
2605void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2606
2607  if ( n->outcnt() == 0 ) return; // dead node
2608  uint nop = n->Opcode();
2609
2610  // Check for 2-input instruction with "last use" on right input.
2611  // Swap to left input.  Implements item (2).
2612  if( n->req() == 3 &&          // two-input instruction
2613      n->in(1)->outcnt() > 1 && // left use is NOT a last use
2614      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2615      n->in(2)->outcnt() == 1 &&// right use IS a last use
2616      !n->in(2)->is_Con() ) {   // right use is not a constant
2617    // Check for commutative opcode
2618    switch( nop ) {
2619    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2620    case Op_MaxI:  case Op_MinI:
2621    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2622    case Op_AndL:  case Op_XorL:  case Op_OrL:
2623    case Op_AndI:  case Op_XorI:  case Op_OrI: {
2624      // Move "last use" input to left by swapping inputs
2625      n->swap_edges(1, 2);
2626      break;
2627    }
2628    default:
2629      break;
2630    }
2631  }
2632
2633#ifdef ASSERT
2634  if( n->is_Mem() ) {
2635    int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2636    assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2637            // oop will be recorded in oop map if load crosses safepoint
2638            n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2639                             LoadNode::is_immutable_value(n->in(MemNode::Address))),
2640            "raw memory operations should have control edge");
2641  }
2642#endif
2643  // Count FPU ops and common calls, implements item (3)
2644  switch( nop ) {
2645  // Count all float operations that may use FPU
2646  case Op_AddF:
2647  case Op_SubF:
2648  case Op_MulF:
2649  case Op_DivF:
2650  case Op_NegF:
2651  case Op_ModF:
2652  case Op_ConvI2F:
2653  case Op_ConF:
2654  case Op_CmpF:
2655  case Op_CmpF3:
2656  // case Op_ConvL2F: // longs are split into 32-bit halves
2657    frc.inc_float_count();
2658    break;
2659
2660  case Op_ConvF2D:
2661  case Op_ConvD2F:
2662    frc.inc_float_count();
2663    frc.inc_double_count();
2664    break;
2665
2666  // Count all double operations that may use FPU
2667  case Op_AddD:
2668  case Op_SubD:
2669  case Op_MulD:
2670  case Op_DivD:
2671  case Op_NegD:
2672  case Op_ModD:
2673  case Op_ConvI2D:
2674  case Op_ConvD2I:
2675  // case Op_ConvL2D: // handled by leaf call
2676  // case Op_ConvD2L: // handled by leaf call
2677  case Op_ConD:
2678  case Op_CmpD:
2679  case Op_CmpD3:
2680    frc.inc_double_count();
2681    break;
2682  case Op_Opaque1:              // Remove Opaque Nodes before matching
2683  case Op_Opaque2:              // Remove Opaque Nodes before matching
2684  case Op_Opaque3:
2685    n->subsume_by(n->in(1), this);
2686    break;
2687  case Op_CallStaticJava:
2688  case Op_CallJava:
2689  case Op_CallDynamicJava:
2690    frc.inc_java_call_count(); // Count java call site;
2691  case Op_CallRuntime:
2692  case Op_CallLeaf:
2693  case Op_CallLeafNoFP: {
2694    assert( n->is_Call(), "" );
2695    CallNode *call = n->as_Call();
2696    // Count call sites where the FP mode bit would have to be flipped.
2697    // Do not count uncommon runtime calls:
2698    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2699    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2700    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2701      frc.inc_call_count();   // Count the call site
2702    } else {                  // See if uncommon argument is shared
2703      Node *n = call->in(TypeFunc::Parms);
2704      int nop = n->Opcode();
2705      // Clone shared simple arguments to uncommon calls, item (1).
2706      if( n->outcnt() > 1 &&
2707          !n->is_Proj() &&
2708          nop != Op_CreateEx &&
2709          nop != Op_CheckCastPP &&
2710          nop != Op_DecodeN &&
2711          nop != Op_DecodeNKlass &&
2712          !n->is_Mem() ) {
2713        Node *x = n->clone();
2714        call->set_req( TypeFunc::Parms, x );
2715      }
2716    }
2717    break;
2718  }
2719
2720  case Op_StoreD:
2721  case Op_LoadD:
2722  case Op_LoadD_unaligned:
2723    frc.inc_double_count();
2724    goto handle_mem;
2725  case Op_StoreF:
2726  case Op_LoadF:
2727    frc.inc_float_count();
2728    goto handle_mem;
2729
2730  case Op_StoreCM:
2731    {
2732      // Convert OopStore dependence into precedence edge
2733      Node* prec = n->in(MemNode::OopStore);
2734      n->del_req(MemNode::OopStore);
2735      n->add_prec(prec);
2736      eliminate_redundant_card_marks(n);
2737    }
2738
2739    // fall through
2740
2741  case Op_StoreB:
2742  case Op_StoreC:
2743  case Op_StorePConditional:
2744  case Op_StoreI:
2745  case Op_StoreL:
2746  case Op_StoreIConditional:
2747  case Op_StoreLConditional:
2748  case Op_CompareAndSwapI:
2749  case Op_CompareAndSwapL:
2750  case Op_CompareAndSwapP:
2751  case Op_CompareAndSwapN:
2752  case Op_GetAndAddI:
2753  case Op_GetAndAddL:
2754  case Op_GetAndSetI:
2755  case Op_GetAndSetL:
2756  case Op_GetAndSetP:
2757  case Op_GetAndSetN:
2758  case Op_StoreP:
2759  case Op_StoreN:
2760  case Op_StoreNKlass:
2761  case Op_LoadB:
2762  case Op_LoadUB:
2763  case Op_LoadUS:
2764  case Op_LoadI:
2765  case Op_LoadKlass:
2766  case Op_LoadNKlass:
2767  case Op_LoadL:
2768  case Op_LoadL_unaligned:
2769  case Op_LoadPLocked:
2770  case Op_LoadP:
2771  case Op_LoadN:
2772  case Op_LoadRange:
2773  case Op_LoadS: {
2774  handle_mem:
2775#ifdef ASSERT
2776    if( VerifyOptoOopOffsets ) {
2777      assert( n->is_Mem(), "" );
2778      MemNode *mem  = (MemNode*)n;
2779      // Check to see if address types have grounded out somehow.
2780      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2781      assert( !tp || oop_offset_is_sane(tp), "" );
2782    }
2783#endif
2784    break;
2785  }
2786
2787  case Op_AddP: {               // Assert sane base pointers
2788    Node *addp = n->in(AddPNode::Address);
2789    assert( !addp->is_AddP() ||
2790            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2791            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2792            "Base pointers must match" );
2793#ifdef _LP64
2794    if ((UseCompressedOops || UseCompressedClassPointers) &&
2795        addp->Opcode() == Op_ConP &&
2796        addp == n->in(AddPNode::Base) &&
2797        n->in(AddPNode::Offset)->is_Con()) {
2798      // Use addressing with narrow klass to load with offset on x86.
2799      // On sparc loading 32-bits constant and decoding it have less
2800      // instructions (4) then load 64-bits constant (7).
2801      // Do this transformation here since IGVN will convert ConN back to ConP.
2802      const Type* t = addp->bottom_type();
2803      if (t->isa_oopptr() || t->isa_klassptr()) {
2804        Node* nn = NULL;
2805
2806        int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2807
2808        // Look for existing ConN node of the same exact type.
2809        Node* r  = root();
2810        uint cnt = r->outcnt();
2811        for (uint i = 0; i < cnt; i++) {
2812          Node* m = r->raw_out(i);
2813          if (m!= NULL && m->Opcode() == op &&
2814              m->bottom_type()->make_ptr() == t) {
2815            nn = m;
2816            break;
2817          }
2818        }
2819        if (nn != NULL) {
2820          // Decode a narrow oop to match address
2821          // [R12 + narrow_oop_reg<<3 + offset]
2822          if (t->isa_oopptr()) {
2823            nn = new DecodeNNode(nn, t);
2824          } else {
2825            nn = new DecodeNKlassNode(nn, t);
2826          }
2827          n->set_req(AddPNode::Base, nn);
2828          n->set_req(AddPNode::Address, nn);
2829          if (addp->outcnt() == 0) {
2830            addp->disconnect_inputs(NULL, this);
2831          }
2832        }
2833      }
2834    }
2835#endif
2836    break;
2837  }
2838
2839  case Op_CastPP: {
2840    // Remove CastPP nodes to gain more freedom during scheduling but
2841    // keep the dependency they encode as control or precedence edges
2842    // (if control is set already) on memory operations. Some CastPP
2843    // nodes don't have a control (don't carry a dependency): skip
2844    // those.
2845    if (n->in(0) != NULL) {
2846      ResourceMark rm;
2847      Unique_Node_List wq;
2848      wq.push(n);
2849      for (uint next = 0; next < wq.size(); ++next) {
2850        Node *m = wq.at(next);
2851        for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2852          Node* use = m->fast_out(i);
2853          if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2854            use->ensure_control_or_add_prec(n->in(0));
2855          } else if (use->in(0) == NULL) {
2856            switch(use->Opcode()) {
2857            case Op_AddP:
2858            case Op_DecodeN:
2859            case Op_DecodeNKlass:
2860            case Op_CheckCastPP:
2861            case Op_CastPP:
2862              wq.push(use);
2863              break;
2864            }
2865          }
2866        }
2867      }
2868    }
2869    const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2870    if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2871      Node* in1 = n->in(1);
2872      const Type* t = n->bottom_type();
2873      Node* new_in1 = in1->clone();
2874      new_in1->as_DecodeN()->set_type(t);
2875
2876      if (!Matcher::narrow_oop_use_complex_address()) {
2877        //
2878        // x86, ARM and friends can handle 2 adds in addressing mode
2879        // and Matcher can fold a DecodeN node into address by using
2880        // a narrow oop directly and do implicit NULL check in address:
2881        //
2882        // [R12 + narrow_oop_reg<<3 + offset]
2883        // NullCheck narrow_oop_reg
2884        //
2885        // On other platforms (Sparc) we have to keep new DecodeN node and
2886        // use it to do implicit NULL check in address:
2887        //
2888        // decode_not_null narrow_oop_reg, base_reg
2889        // [base_reg + offset]
2890        // NullCheck base_reg
2891        //
2892        // Pin the new DecodeN node to non-null path on these platform (Sparc)
2893        // to keep the information to which NULL check the new DecodeN node
2894        // corresponds to use it as value in implicit_null_check().
2895        //
2896        new_in1->set_req(0, n->in(0));
2897      }
2898
2899      n->subsume_by(new_in1, this);
2900      if (in1->outcnt() == 0) {
2901        in1->disconnect_inputs(NULL, this);
2902      }
2903    } else {
2904      n->subsume_by(n->in(1), this);
2905      if (n->outcnt() == 0) {
2906        n->disconnect_inputs(NULL, this);
2907      }
2908    }
2909    break;
2910  }
2911#ifdef _LP64
2912  case Op_CmpP:
2913    // Do this transformation here to preserve CmpPNode::sub() and
2914    // other TypePtr related Ideal optimizations (for example, ptr nullness).
2915    if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2916      Node* in1 = n->in(1);
2917      Node* in2 = n->in(2);
2918      if (!in1->is_DecodeNarrowPtr()) {
2919        in2 = in1;
2920        in1 = n->in(2);
2921      }
2922      assert(in1->is_DecodeNarrowPtr(), "sanity");
2923
2924      Node* new_in2 = NULL;
2925      if (in2->is_DecodeNarrowPtr()) {
2926        assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2927        new_in2 = in2->in(1);
2928      } else if (in2->Opcode() == Op_ConP) {
2929        const Type* t = in2->bottom_type();
2930        if (t == TypePtr::NULL_PTR) {
2931          assert(in1->is_DecodeN(), "compare klass to null?");
2932          // Don't convert CmpP null check into CmpN if compressed
2933          // oops implicit null check is not generated.
2934          // This will allow to generate normal oop implicit null check.
2935          if (Matcher::gen_narrow_oop_implicit_null_checks())
2936            new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2937          //
2938          // This transformation together with CastPP transformation above
2939          // will generated code for implicit NULL checks for compressed oops.
2940          //
2941          // The original code after Optimize()
2942          //
2943          //    LoadN memory, narrow_oop_reg
2944          //    decode narrow_oop_reg, base_reg
2945          //    CmpP base_reg, NULL
2946          //    CastPP base_reg // NotNull
2947          //    Load [base_reg + offset], val_reg
2948          //
2949          // after these transformations will be
2950          //
2951          //    LoadN memory, narrow_oop_reg
2952          //    CmpN narrow_oop_reg, NULL
2953          //    decode_not_null narrow_oop_reg, base_reg
2954          //    Load [base_reg + offset], val_reg
2955          //
2956          // and the uncommon path (== NULL) will use narrow_oop_reg directly
2957          // since narrow oops can be used in debug info now (see the code in
2958          // final_graph_reshaping_walk()).
2959          //
2960          // At the end the code will be matched to
2961          // on x86:
2962          //
2963          //    Load_narrow_oop memory, narrow_oop_reg
2964          //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2965          //    NullCheck narrow_oop_reg
2966          //
2967          // and on sparc:
2968          //
2969          //    Load_narrow_oop memory, narrow_oop_reg
2970          //    decode_not_null narrow_oop_reg, base_reg
2971          //    Load [base_reg + offset], val_reg
2972          //    NullCheck base_reg
2973          //
2974        } else if (t->isa_oopptr()) {
2975          new_in2 = ConNode::make(t->make_narrowoop());
2976        } else if (t->isa_klassptr()) {
2977          new_in2 = ConNode::make(t->make_narrowklass());
2978        }
2979      }
2980      if (new_in2 != NULL) {
2981        Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2982        n->subsume_by(cmpN, this);
2983        if (in1->outcnt() == 0) {
2984          in1->disconnect_inputs(NULL, this);
2985        }
2986        if (in2->outcnt() == 0) {
2987          in2->disconnect_inputs(NULL, this);
2988        }
2989      }
2990    }
2991    break;
2992
2993  case Op_DecodeN:
2994  case Op_DecodeNKlass:
2995    assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2996    // DecodeN could be pinned when it can't be fold into
2997    // an address expression, see the code for Op_CastPP above.
2998    assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2999    break;
3000
3001  case Op_EncodeP:
3002  case Op_EncodePKlass: {
3003    Node* in1 = n->in(1);
3004    if (in1->is_DecodeNarrowPtr()) {
3005      n->subsume_by(in1->in(1), this);
3006    } else if (in1->Opcode() == Op_ConP) {
3007      const Type* t = in1->bottom_type();
3008      if (t == TypePtr::NULL_PTR) {
3009        assert(t->isa_oopptr(), "null klass?");
3010        n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3011      } else if (t->isa_oopptr()) {
3012        n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3013      } else if (t->isa_klassptr()) {
3014        n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3015      }
3016    }
3017    if (in1->outcnt() == 0) {
3018      in1->disconnect_inputs(NULL, this);
3019    }
3020    break;
3021  }
3022
3023  case Op_Proj: {
3024    if (OptimizeStringConcat) {
3025      ProjNode* p = n->as_Proj();
3026      if (p->_is_io_use) {
3027        // Separate projections were used for the exception path which
3028        // are normally removed by a late inline.  If it wasn't inlined
3029        // then they will hang around and should just be replaced with
3030        // the original one.
3031        Node* proj = NULL;
3032        // Replace with just one
3033        for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3034          Node *use = i.get();
3035          if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3036            proj = use;
3037            break;
3038          }
3039        }
3040        assert(proj != NULL, "must be found");
3041        p->subsume_by(proj, this);
3042      }
3043    }
3044    break;
3045  }
3046
3047  case Op_Phi:
3048    if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3049      // The EncodeP optimization may create Phi with the same edges
3050      // for all paths. It is not handled well by Register Allocator.
3051      Node* unique_in = n->in(1);
3052      assert(unique_in != NULL, "");
3053      uint cnt = n->req();
3054      for (uint i = 2; i < cnt; i++) {
3055        Node* m = n->in(i);
3056        assert(m != NULL, "");
3057        if (unique_in != m)
3058          unique_in = NULL;
3059      }
3060      if (unique_in != NULL) {
3061        n->subsume_by(unique_in, this);
3062      }
3063    }
3064    break;
3065
3066#endif
3067
3068  case Op_ModI:
3069    if (UseDivMod) {
3070      // Check if a%b and a/b both exist
3071      Node* d = n->find_similar(Op_DivI);
3072      if (d) {
3073        // Replace them with a fused divmod if supported
3074        if (Matcher::has_match_rule(Op_DivModI)) {
3075          DivModINode* divmod = DivModINode::make(n);
3076          d->subsume_by(divmod->div_proj(), this);
3077          n->subsume_by(divmod->mod_proj(), this);
3078        } else {
3079          // replace a%b with a-((a/b)*b)
3080          Node* mult = new MulINode(d, d->in(2));
3081          Node* sub  = new SubINode(d->in(1), mult);
3082          n->subsume_by(sub, this);
3083        }
3084      }
3085    }
3086    break;
3087
3088  case Op_ModL:
3089    if (UseDivMod) {
3090      // Check if a%b and a/b both exist
3091      Node* d = n->find_similar(Op_DivL);
3092      if (d) {
3093        // Replace them with a fused divmod if supported
3094        if (Matcher::has_match_rule(Op_DivModL)) {
3095          DivModLNode* divmod = DivModLNode::make(n);
3096          d->subsume_by(divmod->div_proj(), this);
3097          n->subsume_by(divmod->mod_proj(), this);
3098        } else {
3099          // replace a%b with a-((a/b)*b)
3100          Node* mult = new MulLNode(d, d->in(2));
3101          Node* sub  = new SubLNode(d->in(1), mult);
3102          n->subsume_by(sub, this);
3103        }
3104      }
3105    }
3106    break;
3107
3108  case Op_LoadVector:
3109  case Op_StoreVector:
3110    break;
3111
3112  case Op_AddReductionVI:
3113  case Op_AddReductionVL:
3114  case Op_AddReductionVF:
3115  case Op_AddReductionVD:
3116  case Op_MulReductionVI:
3117  case Op_MulReductionVL:
3118  case Op_MulReductionVF:
3119  case Op_MulReductionVD:
3120    break;
3121
3122  case Op_PackB:
3123  case Op_PackS:
3124  case Op_PackI:
3125  case Op_PackF:
3126  case Op_PackL:
3127  case Op_PackD:
3128    if (n->req()-1 > 2) {
3129      // Replace many operand PackNodes with a binary tree for matching
3130      PackNode* p = (PackNode*) n;
3131      Node* btp = p->binary_tree_pack(1, n->req());
3132      n->subsume_by(btp, this);
3133    }
3134    break;
3135  case Op_Loop:
3136  case Op_CountedLoop:
3137    if (n->as_Loop()->is_inner_loop()) {
3138      frc.inc_inner_loop_count();
3139    }
3140    break;
3141  case Op_LShiftI:
3142  case Op_RShiftI:
3143  case Op_URShiftI:
3144  case Op_LShiftL:
3145  case Op_RShiftL:
3146  case Op_URShiftL:
3147    if (Matcher::need_masked_shift_count) {
3148      // The cpu's shift instructions don't restrict the count to the
3149      // lower 5/6 bits. We need to do the masking ourselves.
3150      Node* in2 = n->in(2);
3151      juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3152      const TypeInt* t = in2->find_int_type();
3153      if (t != NULL && t->is_con()) {
3154        juint shift = t->get_con();
3155        if (shift > mask) { // Unsigned cmp
3156          n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3157        }
3158      } else {
3159        if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3160          Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3161          n->set_req(2, shift);
3162        }
3163      }
3164      if (in2->outcnt() == 0) { // Remove dead node
3165        in2->disconnect_inputs(NULL, this);
3166      }
3167    }
3168    break;
3169  case Op_MemBarStoreStore:
3170  case Op_MemBarRelease:
3171    // Break the link with AllocateNode: it is no longer useful and
3172    // confuses register allocation.
3173    if (n->req() > MemBarNode::Precedent) {
3174      n->set_req(MemBarNode::Precedent, top());
3175    }
3176    break;
3177  default:
3178    assert( !n->is_Call(), "" );
3179    assert( !n->is_Mem(), "" );
3180    assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3181    break;
3182  }
3183
3184  // Collect CFG split points
3185  if (n->is_MultiBranch())
3186    frc._tests.push(n);
3187}
3188
3189//------------------------------final_graph_reshaping_walk---------------------
3190// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3191// requires that the walk visits a node's inputs before visiting the node.
3192void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3193  ResourceArea *area = Thread::current()->resource_area();
3194  Unique_Node_List sfpt(area);
3195
3196  frc._visited.set(root->_idx); // first, mark node as visited
3197  uint cnt = root->req();
3198  Node *n = root;
3199  uint  i = 0;
3200  while (true) {
3201    if (i < cnt) {
3202      // Place all non-visited non-null inputs onto stack
3203      Node* m = n->in(i);
3204      ++i;
3205      if (m != NULL && !frc._visited.test_set(m->_idx)) {
3206        if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3207          // compute worst case interpreter size in case of a deoptimization
3208          update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3209
3210          sfpt.push(m);
3211        }
3212        cnt = m->req();
3213        nstack.push(n, i); // put on stack parent and next input's index
3214        n = m;
3215        i = 0;
3216      }
3217    } else {
3218      // Now do post-visit work
3219      final_graph_reshaping_impl( n, frc );
3220      if (nstack.is_empty())
3221        break;             // finished
3222      n = nstack.node();   // Get node from stack
3223      cnt = n->req();
3224      i = nstack.index();
3225      nstack.pop();        // Shift to the next node on stack
3226    }
3227  }
3228
3229  // Skip next transformation if compressed oops are not used.
3230  if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3231      (!UseCompressedOops && !UseCompressedClassPointers))
3232    return;
3233
3234  // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3235  // It could be done for an uncommon traps or any safepoints/calls
3236  // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3237  while (sfpt.size() > 0) {
3238    n = sfpt.pop();
3239    JVMState *jvms = n->as_SafePoint()->jvms();
3240    assert(jvms != NULL, "sanity");
3241    int start = jvms->debug_start();
3242    int end   = n->req();
3243    bool is_uncommon = (n->is_CallStaticJava() &&
3244                        n->as_CallStaticJava()->uncommon_trap_request() != 0);
3245    for (int j = start; j < end; j++) {
3246      Node* in = n->in(j);
3247      if (in->is_DecodeNarrowPtr()) {
3248        bool safe_to_skip = true;
3249        if (!is_uncommon ) {
3250          // Is it safe to skip?
3251          for (uint i = 0; i < in->outcnt(); i++) {
3252            Node* u = in->raw_out(i);
3253            if (!u->is_SafePoint() ||
3254                 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3255              safe_to_skip = false;
3256            }
3257          }
3258        }
3259        if (safe_to_skip) {
3260          n->set_req(j, in->in(1));
3261        }
3262        if (in->outcnt() == 0) {
3263          in->disconnect_inputs(NULL, this);
3264        }
3265      }
3266    }
3267  }
3268}
3269
3270//------------------------------final_graph_reshaping--------------------------
3271// Final Graph Reshaping.
3272//
3273// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3274//     and not commoned up and forced early.  Must come after regular
3275//     optimizations to avoid GVN undoing the cloning.  Clone constant
3276//     inputs to Loop Phis; these will be split by the allocator anyways.
3277//     Remove Opaque nodes.
3278// (2) Move last-uses by commutative operations to the left input to encourage
3279//     Intel update-in-place two-address operations and better register usage
3280//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3281//     calls canonicalizing them back.
3282// (3) Count the number of double-precision FP ops, single-precision FP ops
3283//     and call sites.  On Intel, we can get correct rounding either by
3284//     forcing singles to memory (requires extra stores and loads after each
3285//     FP bytecode) or we can set a rounding mode bit (requires setting and
3286//     clearing the mode bit around call sites).  The mode bit is only used
3287//     if the relative frequency of single FP ops to calls is low enough.
3288//     This is a key transform for SPEC mpeg_audio.
3289// (4) Detect infinite loops; blobs of code reachable from above but not
3290//     below.  Several of the Code_Gen algorithms fail on such code shapes,
3291//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3292//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3293//     Detection is by looking for IfNodes where only 1 projection is
3294//     reachable from below or CatchNodes missing some targets.
3295// (5) Assert for insane oop offsets in debug mode.
3296
3297bool Compile::final_graph_reshaping() {
3298  // an infinite loop may have been eliminated by the optimizer,
3299  // in which case the graph will be empty.
3300  if (root()->req() == 1) {
3301    record_method_not_compilable("trivial infinite loop");
3302    return true;
3303  }
3304
3305  // Expensive nodes have their control input set to prevent the GVN
3306  // from freely commoning them. There's no GVN beyond this point so
3307  // no need to keep the control input. We want the expensive nodes to
3308  // be freely moved to the least frequent code path by gcm.
3309  assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3310  for (int i = 0; i < expensive_count(); i++) {
3311    _expensive_nodes->at(i)->set_req(0, NULL);
3312  }
3313
3314  Final_Reshape_Counts frc;
3315
3316  // Visit everybody reachable!
3317  // Allocate stack of size C->unique()/2 to avoid frequent realloc
3318  Node_Stack nstack(live_nodes() >> 1);
3319  final_graph_reshaping_walk(nstack, root(), frc);
3320
3321  // Check for unreachable (from below) code (i.e., infinite loops).
3322  for( uint i = 0; i < frc._tests.size(); i++ ) {
3323    MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3324    // Get number of CFG targets.
3325    // Note that PCTables include exception targets after calls.
3326    uint required_outcnt = n->required_outcnt();
3327    if (n->outcnt() != required_outcnt) {
3328      // Check for a few special cases.  Rethrow Nodes never take the
3329      // 'fall-thru' path, so expected kids is 1 less.
3330      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3331        if (n->in(0)->in(0)->is_Call()) {
3332          CallNode *call = n->in(0)->in(0)->as_Call();
3333          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3334            required_outcnt--;      // Rethrow always has 1 less kid
3335          } else if (call->req() > TypeFunc::Parms &&
3336                     call->is_CallDynamicJava()) {
3337            // Check for null receiver. In such case, the optimizer has
3338            // detected that the virtual call will always result in a null
3339            // pointer exception. The fall-through projection of this CatchNode
3340            // will not be populated.
3341            Node *arg0 = call->in(TypeFunc::Parms);
3342            if (arg0->is_Type() &&
3343                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3344              required_outcnt--;
3345            }
3346          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3347                     call->req() > TypeFunc::Parms+1 &&
3348                     call->is_CallStaticJava()) {
3349            // Check for negative array length. In such case, the optimizer has
3350            // detected that the allocation attempt will always result in an
3351            // exception. There is no fall-through projection of this CatchNode .
3352            Node *arg1 = call->in(TypeFunc::Parms+1);
3353            if (arg1->is_Type() &&
3354                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3355              required_outcnt--;
3356            }
3357          }
3358        }
3359      }
3360      // Recheck with a better notion of 'required_outcnt'
3361      if (n->outcnt() != required_outcnt) {
3362        record_method_not_compilable("malformed control flow");
3363        return true;            // Not all targets reachable!
3364      }
3365    }
3366    // Check that I actually visited all kids.  Unreached kids
3367    // must be infinite loops.
3368    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3369      if (!frc._visited.test(n->fast_out(j)->_idx)) {
3370        record_method_not_compilable("infinite loop");
3371        return true;            // Found unvisited kid; must be unreach
3372      }
3373  }
3374
3375  // If original bytecodes contained a mixture of floats and doubles
3376  // check if the optimizer has made it homogenous, item (3).
3377  if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3378      frc.get_float_count() > 32 &&
3379      frc.get_double_count() == 0 &&
3380      (10 * frc.get_call_count() < frc.get_float_count()) ) {
3381    set_24_bit_selection_and_mode( false,  true );
3382  }
3383
3384  set_java_calls(frc.get_java_call_count());
3385  set_inner_loops(frc.get_inner_loop_count());
3386
3387  // No infinite loops, no reason to bail out.
3388  return false;
3389}
3390
3391//-----------------------------too_many_traps----------------------------------
3392// Report if there are too many traps at the current method and bci.
3393// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3394bool Compile::too_many_traps(ciMethod* method,
3395                             int bci,
3396                             Deoptimization::DeoptReason reason) {
3397  ciMethodData* md = method->method_data();
3398  if (md->is_empty()) {
3399    // Assume the trap has not occurred, or that it occurred only
3400    // because of a transient condition during start-up in the interpreter.
3401    return false;
3402  }
3403  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3404  if (md->has_trap_at(bci, m, reason) != 0) {
3405    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3406    // Also, if there are multiple reasons, or if there is no per-BCI record,
3407    // assume the worst.
3408    if (log())
3409      log()->elem("observe trap='%s' count='%d'",
3410                  Deoptimization::trap_reason_name(reason),
3411                  md->trap_count(reason));
3412    return true;
3413  } else {
3414    // Ignore method/bci and see if there have been too many globally.
3415    return too_many_traps(reason, md);
3416  }
3417}
3418
3419// Less-accurate variant which does not require a method and bci.
3420bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3421                             ciMethodData* logmd) {
3422  if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3423    // Too many traps globally.
3424    // Note that we use cumulative trap_count, not just md->trap_count.
3425    if (log()) {
3426      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3427      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3428                  Deoptimization::trap_reason_name(reason),
3429                  mcount, trap_count(reason));
3430    }
3431    return true;
3432  } else {
3433    // The coast is clear.
3434    return false;
3435  }
3436}
3437
3438//--------------------------too_many_recompiles--------------------------------
3439// Report if there are too many recompiles at the current method and bci.
3440// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3441// Is not eager to return true, since this will cause the compiler to use
3442// Action_none for a trap point, to avoid too many recompilations.
3443bool Compile::too_many_recompiles(ciMethod* method,
3444                                  int bci,
3445                                  Deoptimization::DeoptReason reason) {
3446  ciMethodData* md = method->method_data();
3447  if (md->is_empty()) {
3448    // Assume the trap has not occurred, or that it occurred only
3449    // because of a transient condition during start-up in the interpreter.
3450    return false;
3451  }
3452  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3453  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3454  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3455  Deoptimization::DeoptReason per_bc_reason
3456    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3457  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3458  if ((per_bc_reason == Deoptimization::Reason_none
3459       || md->has_trap_at(bci, m, reason) != 0)
3460      // The trap frequency measure we care about is the recompile count:
3461      && md->trap_recompiled_at(bci, m)
3462      && md->overflow_recompile_count() >= bc_cutoff) {
3463    // Do not emit a trap here if it has already caused recompilations.
3464    // Also, if there are multiple reasons, or if there is no per-BCI record,
3465    // assume the worst.
3466    if (log())
3467      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3468                  Deoptimization::trap_reason_name(reason),
3469                  md->trap_count(reason),
3470                  md->overflow_recompile_count());
3471    return true;
3472  } else if (trap_count(reason) != 0
3473             && decompile_count() >= m_cutoff) {
3474    // Too many recompiles globally, and we have seen this sort of trap.
3475    // Use cumulative decompile_count, not just md->decompile_count.
3476    if (log())
3477      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3478                  Deoptimization::trap_reason_name(reason),
3479                  md->trap_count(reason), trap_count(reason),
3480                  md->decompile_count(), decompile_count());
3481    return true;
3482  } else {
3483    // The coast is clear.
3484    return false;
3485  }
3486}
3487
3488// Compute when not to trap. Used by matching trap based nodes and
3489// NullCheck optimization.
3490void Compile::set_allowed_deopt_reasons() {
3491  _allowed_reasons = 0;
3492  if (is_method_compilation()) {
3493    for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3494      assert(rs < BitsPerInt, "recode bit map");
3495      if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3496        _allowed_reasons |= nth_bit(rs);
3497      }
3498    }
3499  }
3500}
3501
3502#ifndef PRODUCT
3503//------------------------------verify_graph_edges---------------------------
3504// Walk the Graph and verify that there is a one-to-one correspondence
3505// between Use-Def edges and Def-Use edges in the graph.
3506void Compile::verify_graph_edges(bool no_dead_code) {
3507  if (VerifyGraphEdges) {
3508    ResourceArea *area = Thread::current()->resource_area();
3509    Unique_Node_List visited(area);
3510    // Call recursive graph walk to check edges
3511    _root->verify_edges(visited);
3512    if (no_dead_code) {
3513      // Now make sure that no visited node is used by an unvisited node.
3514      bool dead_nodes = false;
3515      Unique_Node_List checked(area);
3516      while (visited.size() > 0) {
3517        Node* n = visited.pop();
3518        checked.push(n);
3519        for (uint i = 0; i < n->outcnt(); i++) {
3520          Node* use = n->raw_out(i);
3521          if (checked.member(use))  continue;  // already checked
3522          if (visited.member(use))  continue;  // already in the graph
3523          if (use->is_Con())        continue;  // a dead ConNode is OK
3524          // At this point, we have found a dead node which is DU-reachable.
3525          if (!dead_nodes) {
3526            tty->print_cr("*** Dead nodes reachable via DU edges:");
3527            dead_nodes = true;
3528          }
3529          use->dump(2);
3530          tty->print_cr("---");
3531          checked.push(use);  // No repeats; pretend it is now checked.
3532        }
3533      }
3534      assert(!dead_nodes, "using nodes must be reachable from root");
3535    }
3536  }
3537}
3538
3539// Verify GC barriers consistency
3540// Currently supported:
3541// - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3542void Compile::verify_barriers() {
3543  if (UseG1GC) {
3544    // Verify G1 pre-barriers
3545    const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3546
3547    ResourceArea *area = Thread::current()->resource_area();
3548    Unique_Node_List visited(area);
3549    Node_List worklist(area);
3550    // We're going to walk control flow backwards starting from the Root
3551    worklist.push(_root);
3552    while (worklist.size() > 0) {
3553      Node* x = worklist.pop();
3554      if (x == NULL || x == top()) continue;
3555      if (visited.member(x)) {
3556        continue;
3557      } else {
3558        visited.push(x);
3559      }
3560
3561      if (x->is_Region()) {
3562        for (uint i = 1; i < x->req(); i++) {
3563          worklist.push(x->in(i));
3564        }
3565      } else {
3566        worklist.push(x->in(0));
3567        // We are looking for the pattern:
3568        //                            /->ThreadLocal
3569        // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3570        //              \->ConI(0)
3571        // We want to verify that the If and the LoadB have the same control
3572        // See GraphKit::g1_write_barrier_pre()
3573        if (x->is_If()) {
3574          IfNode *iff = x->as_If();
3575          if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3576            CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3577            if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3578                && cmp->in(1)->is_Load()) {
3579              LoadNode* load = cmp->in(1)->as_Load();
3580              if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3581                  && load->in(2)->in(3)->is_Con()
3582                  && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3583
3584                Node* if_ctrl = iff->in(0);
3585                Node* load_ctrl = load->in(0);
3586
3587                if (if_ctrl != load_ctrl) {
3588                  // Skip possible CProj->NeverBranch in infinite loops
3589                  if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3590                      && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3591                    if_ctrl = if_ctrl->in(0)->in(0);
3592                  }
3593                }
3594                assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3595              }
3596            }
3597          }
3598        }
3599      }
3600    }
3601  }
3602}
3603
3604#endif
3605
3606// The Compile object keeps track of failure reasons separately from the ciEnv.
3607// This is required because there is not quite a 1-1 relation between the
3608// ciEnv and its compilation task and the Compile object.  Note that one
3609// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3610// to backtrack and retry without subsuming loads.  Other than this backtracking
3611// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3612// by the logic in C2Compiler.
3613void Compile::record_failure(const char* reason) {
3614  if (log() != NULL) {
3615    log()->elem("failure reason='%s' phase='compile'", reason);
3616  }
3617  if (_failure_reason == NULL) {
3618    // Record the first failure reason.
3619    _failure_reason = reason;
3620  }
3621
3622  if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3623    C->print_method(PHASE_FAILURE);
3624  }
3625  _root = NULL;  // flush the graph, too
3626}
3627
3628Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3629  : TraceTime(name, accumulator, CITime, CITimeVerbose),
3630    _phase_name(name), _dolog(CITimeVerbose)
3631{
3632  if (_dolog) {
3633    C = Compile::current();
3634    _log = C->log();
3635  } else {
3636    C = NULL;
3637    _log = NULL;
3638  }
3639  if (_log != NULL) {
3640    _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3641    _log->stamp();
3642    _log->end_head();
3643  }
3644}
3645
3646Compile::TracePhase::~TracePhase() {
3647
3648  C = Compile::current();
3649  if (_dolog) {
3650    _log = C->log();
3651  } else {
3652    _log = NULL;
3653  }
3654
3655#ifdef ASSERT
3656  if (PrintIdealNodeCount) {
3657    tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3658                  _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3659  }
3660
3661  if (VerifyIdealNodeCount) {
3662    Compile::current()->print_missing_nodes();
3663  }
3664#endif
3665
3666  if (_log != NULL) {
3667    _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3668  }
3669}
3670
3671//=============================================================================
3672// Two Constant's are equal when the type and the value are equal.
3673bool Compile::Constant::operator==(const Constant& other) {
3674  if (type()          != other.type()         )  return false;
3675  if (can_be_reused() != other.can_be_reused())  return false;
3676  // For floating point values we compare the bit pattern.
3677  switch (type()) {
3678  case T_FLOAT:   return (_v._value.i == other._v._value.i);
3679  case T_LONG:
3680  case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3681  case T_OBJECT:
3682  case T_ADDRESS: return (_v._value.l == other._v._value.l);
3683  case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3684  case T_METADATA: return (_v._metadata == other._v._metadata);
3685  default: ShouldNotReachHere();
3686  }
3687  return false;
3688}
3689
3690static int type_to_size_in_bytes(BasicType t) {
3691  switch (t) {
3692  case T_LONG:    return sizeof(jlong  );
3693  case T_FLOAT:   return sizeof(jfloat );
3694  case T_DOUBLE:  return sizeof(jdouble);
3695  case T_METADATA: return sizeof(Metadata*);
3696    // We use T_VOID as marker for jump-table entries (labels) which
3697    // need an internal word relocation.
3698  case T_VOID:
3699  case T_ADDRESS:
3700  case T_OBJECT:  return sizeof(jobject);
3701  }
3702
3703  ShouldNotReachHere();
3704  return -1;
3705}
3706
3707int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3708  // sort descending
3709  if (a->freq() > b->freq())  return -1;
3710  if (a->freq() < b->freq())  return  1;
3711  return 0;
3712}
3713
3714void Compile::ConstantTable::calculate_offsets_and_size() {
3715  // First, sort the array by frequencies.
3716  _constants.sort(qsort_comparator);
3717
3718#ifdef ASSERT
3719  // Make sure all jump-table entries were sorted to the end of the
3720  // array (they have a negative frequency).
3721  bool found_void = false;
3722  for (int i = 0; i < _constants.length(); i++) {
3723    Constant con = _constants.at(i);
3724    if (con.type() == T_VOID)
3725      found_void = true;  // jump-tables
3726    else
3727      assert(!found_void, "wrong sorting");
3728  }
3729#endif
3730
3731  int offset = 0;
3732  for (int i = 0; i < _constants.length(); i++) {
3733    Constant* con = _constants.adr_at(i);
3734
3735    // Align offset for type.
3736    int typesize = type_to_size_in_bytes(con->type());
3737    offset = align_size_up(offset, typesize);
3738    con->set_offset(offset);   // set constant's offset
3739
3740    if (con->type() == T_VOID) {
3741      MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3742      offset = offset + typesize * n->outcnt();  // expand jump-table
3743    } else {
3744      offset = offset + typesize;
3745    }
3746  }
3747
3748  // Align size up to the next section start (which is insts; see
3749  // CodeBuffer::align_at_start).
3750  assert(_size == -1, "already set?");
3751  _size = align_size_up(offset, CodeEntryAlignment);
3752}
3753
3754void Compile::ConstantTable::emit(CodeBuffer& cb) {
3755  MacroAssembler _masm(&cb);
3756  for (int i = 0; i < _constants.length(); i++) {
3757    Constant con = _constants.at(i);
3758    address constant_addr;
3759    switch (con.type()) {
3760    case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3761    case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3762    case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3763    case T_OBJECT: {
3764      jobject obj = con.get_jobject();
3765      int oop_index = _masm.oop_recorder()->find_index(obj);
3766      constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3767      break;
3768    }
3769    case T_ADDRESS: {
3770      address addr = (address) con.get_jobject();
3771      constant_addr = _masm.address_constant(addr);
3772      break;
3773    }
3774    // We use T_VOID as marker for jump-table entries (labels) which
3775    // need an internal word relocation.
3776    case T_VOID: {
3777      MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3778      // Fill the jump-table with a dummy word.  The real value is
3779      // filled in later in fill_jump_table.
3780      address dummy = (address) n;
3781      constant_addr = _masm.address_constant(dummy);
3782      // Expand jump-table
3783      for (uint i = 1; i < n->outcnt(); i++) {
3784        address temp_addr = _masm.address_constant(dummy + i);
3785        assert(temp_addr, "consts section too small");
3786      }
3787      break;
3788    }
3789    case T_METADATA: {
3790      Metadata* obj = con.get_metadata();
3791      int metadata_index = _masm.oop_recorder()->find_index(obj);
3792      constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3793      break;
3794    }
3795    default: ShouldNotReachHere();
3796    }
3797    assert(constant_addr, "consts section too small");
3798    assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3799            "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3800  }
3801}
3802
3803int Compile::ConstantTable::find_offset(Constant& con) const {
3804  int idx = _constants.find(con);
3805  assert(idx != -1, "constant must be in constant table");
3806  int offset = _constants.at(idx).offset();
3807  assert(offset != -1, "constant table not emitted yet?");
3808  return offset;
3809}
3810
3811void Compile::ConstantTable::add(Constant& con) {
3812  if (con.can_be_reused()) {
3813    int idx = _constants.find(con);
3814    if (idx != -1 && _constants.at(idx).can_be_reused()) {
3815      _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3816      return;
3817    }
3818  }
3819  (void) _constants.append(con);
3820}
3821
3822Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3823  Block* b = Compile::current()->cfg()->get_block_for_node(n);
3824  Constant con(type, value, b->_freq);
3825  add(con);
3826  return con;
3827}
3828
3829Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3830  Constant con(metadata);
3831  add(con);
3832  return con;
3833}
3834
3835Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3836  jvalue value;
3837  BasicType type = oper->type()->basic_type();
3838  switch (type) {
3839  case T_LONG:    value.j = oper->constantL(); break;
3840  case T_FLOAT:   value.f = oper->constantF(); break;
3841  case T_DOUBLE:  value.d = oper->constantD(); break;
3842  case T_OBJECT:
3843  case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3844  case T_METADATA: return add((Metadata*)oper->constant()); break;
3845  default: guarantee(false, "unhandled type: %s", type2name(type));
3846  }
3847  return add(n, type, value);
3848}
3849
3850Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3851  jvalue value;
3852  // We can use the node pointer here to identify the right jump-table
3853  // as this method is called from Compile::Fill_buffer right before
3854  // the MachNodes are emitted and the jump-table is filled (means the
3855  // MachNode pointers do not change anymore).
3856  value.l = (jobject) n;
3857  Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3858  add(con);
3859  return con;
3860}
3861
3862void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3863  // If called from Compile::scratch_emit_size do nothing.
3864  if (Compile::current()->in_scratch_emit_size())  return;
3865
3866  assert(labels.is_nonempty(), "must be");
3867  assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
3868
3869  // Since MachConstantNode::constant_offset() also contains
3870  // table_base_offset() we need to subtract the table_base_offset()
3871  // to get the plain offset into the constant table.
3872  int offset = n->constant_offset() - table_base_offset();
3873
3874  MacroAssembler _masm(&cb);
3875  address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3876
3877  for (uint i = 0; i < n->outcnt(); i++) {
3878    address* constant_addr = &jump_table_base[i];
3879    assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
3880    *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3881    cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3882  }
3883}
3884
3885//----------------------------static_subtype_check-----------------------------
3886// Shortcut important common cases when superklass is exact:
3887// (0) superklass is java.lang.Object (can occur in reflective code)
3888// (1) subklass is already limited to a subtype of superklass => always ok
3889// (2) subklass does not overlap with superklass => always fail
3890// (3) superklass has NO subtypes and we can check with a simple compare.
3891int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3892  if (StressReflectiveCode) {
3893    return SSC_full_test;       // Let caller generate the general case.
3894  }
3895
3896  if (superk == env()->Object_klass()) {
3897    return SSC_always_true;     // (0) this test cannot fail
3898  }
3899
3900  ciType* superelem = superk;
3901  if (superelem->is_array_klass())
3902    superelem = superelem->as_array_klass()->base_element_type();
3903
3904  if (!subk->is_interface()) {  // cannot trust static interface types yet
3905    if (subk->is_subtype_of(superk)) {
3906      return SSC_always_true;   // (1) false path dead; no dynamic test needed
3907    }
3908    if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3909        !superk->is_subtype_of(subk)) {
3910      return SSC_always_false;
3911    }
3912  }
3913
3914  // If casting to an instance klass, it must have no subtypes
3915  if (superk->is_interface()) {
3916    // Cannot trust interfaces yet.
3917    // %%% S.B. superk->nof_implementors() == 1
3918  } else if (superelem->is_instance_klass()) {
3919    ciInstanceKlass* ik = superelem->as_instance_klass();
3920    if (!ik->has_subklass() && !ik->is_interface()) {
3921      if (!ik->is_final()) {
3922        // Add a dependency if there is a chance of a later subclass.
3923        dependencies()->assert_leaf_type(ik);
3924      }
3925      return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3926    }
3927  } else {
3928    // A primitive array type has no subtypes.
3929    return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3930  }
3931
3932  return SSC_full_test;
3933}
3934
3935Node* Compile::conv_I2X_index(PhaseGVN *phase, Node* idx, const TypeInt* sizetype) {
3936#ifdef _LP64
3937  // The scaled index operand to AddP must be a clean 64-bit value.
3938  // Java allows a 32-bit int to be incremented to a negative
3939  // value, which appears in a 64-bit register as a large
3940  // positive number.  Using that large positive number as an
3941  // operand in pointer arithmetic has bad consequences.
3942  // On the other hand, 32-bit overflow is rare, and the possibility
3943  // can often be excluded, if we annotate the ConvI2L node with
3944  // a type assertion that its value is known to be a small positive
3945  // number.  (The prior range check has ensured this.)
3946  // This assertion is used by ConvI2LNode::Ideal.
3947  int index_max = max_jint - 1;  // array size is max_jint, index is one less
3948  if (sizetype != NULL)  index_max = sizetype->_hi - 1;
3949  const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
3950  idx = phase->transform(new ConvI2LNode(idx, lidxtype));
3951#endif
3952  return idx;
3953}
3954
3955// The message about the current inlining is accumulated in
3956// _print_inlining_stream and transfered into the _print_inlining_list
3957// once we know whether inlining succeeds or not. For regular
3958// inlining, messages are appended to the buffer pointed by
3959// _print_inlining_idx in the _print_inlining_list. For late inlining,
3960// a new buffer is added after _print_inlining_idx in the list. This
3961// way we can update the inlining message for late inlining call site
3962// when the inlining is attempted again.
3963void Compile::print_inlining_init() {
3964  if (print_inlining() || print_intrinsics()) {
3965    _print_inlining_stream = new stringStream();
3966    _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3967  }
3968}
3969
3970void Compile::print_inlining_reinit() {
3971  if (print_inlining() || print_intrinsics()) {
3972    // Re allocate buffer when we change ResourceMark
3973    _print_inlining_stream = new stringStream();
3974  }
3975}
3976
3977void Compile::print_inlining_reset() {
3978  _print_inlining_stream->reset();
3979}
3980
3981void Compile::print_inlining_commit() {
3982  assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3983  // Transfer the message from _print_inlining_stream to the current
3984  // _print_inlining_list buffer and clear _print_inlining_stream.
3985  _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3986  print_inlining_reset();
3987}
3988
3989void Compile::print_inlining_push() {
3990  // Add new buffer to the _print_inlining_list at current position
3991  _print_inlining_idx++;
3992  _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3993}
3994
3995Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3996  return _print_inlining_list->at(_print_inlining_idx);
3997}
3998
3999void Compile::print_inlining_update(CallGenerator* cg) {
4000  if (print_inlining() || print_intrinsics()) {
4001    if (!cg->is_late_inline()) {
4002      if (print_inlining_current().cg() != NULL) {
4003        print_inlining_push();
4004      }
4005      print_inlining_commit();
4006    } else {
4007      if (print_inlining_current().cg() != cg &&
4008          (print_inlining_current().cg() != NULL ||
4009           print_inlining_current().ss()->size() != 0)) {
4010        print_inlining_push();
4011      }
4012      print_inlining_commit();
4013      print_inlining_current().set_cg(cg);
4014    }
4015  }
4016}
4017
4018void Compile::print_inlining_move_to(CallGenerator* cg) {
4019  // We resume inlining at a late inlining call site. Locate the
4020  // corresponding inlining buffer so that we can update it.
4021  if (print_inlining()) {
4022    for (int i = 0; i < _print_inlining_list->length(); i++) {
4023      if (_print_inlining_list->adr_at(i)->cg() == cg) {
4024        _print_inlining_idx = i;
4025        return;
4026      }
4027    }
4028    ShouldNotReachHere();
4029  }
4030}
4031
4032void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4033  if (print_inlining()) {
4034    assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4035    assert(print_inlining_current().cg() == cg, "wrong entry");
4036    // replace message with new message
4037    _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4038    print_inlining_commit();
4039    print_inlining_current().set_cg(cg);
4040  }
4041}
4042
4043void Compile::print_inlining_assert_ready() {
4044  assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4045}
4046
4047void Compile::process_print_inlining() {
4048  bool do_print_inlining = print_inlining() || print_intrinsics();
4049  if (do_print_inlining || log() != NULL) {
4050    // Print inlining message for candidates that we couldn't inline
4051    // for lack of space
4052    for (int i = 0; i < _late_inlines.length(); i++) {
4053      CallGenerator* cg = _late_inlines.at(i);
4054      if (!cg->is_mh_late_inline()) {
4055        const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4056        if (do_print_inlining) {
4057          cg->print_inlining_late(msg);
4058        }
4059        log_late_inline_failure(cg, msg);
4060      }
4061    }
4062  }
4063  if (do_print_inlining) {
4064    ResourceMark rm;
4065    stringStream ss;
4066    for (int i = 0; i < _print_inlining_list->length(); i++) {
4067      ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4068    }
4069    size_t end = ss.size();
4070    _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4071    strncpy(_print_inlining_output, ss.base(), end+1);
4072    _print_inlining_output[end] = 0;
4073  }
4074}
4075
4076void Compile::dump_print_inlining() {
4077  if (_print_inlining_output != NULL) {
4078    tty->print_raw(_print_inlining_output);
4079  }
4080}
4081
4082void Compile::log_late_inline(CallGenerator* cg) {
4083  if (log() != NULL) {
4084    log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4085                cg->unique_id());
4086    JVMState* p = cg->call_node()->jvms();
4087    while (p != NULL) {
4088      log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4089      p = p->caller();
4090    }
4091    log()->tail("late_inline");
4092  }
4093}
4094
4095void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4096  log_late_inline(cg);
4097  if (log() != NULL) {
4098    log()->inline_fail(msg);
4099  }
4100}
4101
4102void Compile::log_inline_id(CallGenerator* cg) {
4103  if (log() != NULL) {
4104    // The LogCompilation tool needs a unique way to identify late
4105    // inline call sites. This id must be unique for this call site in
4106    // this compilation. Try to have it unique across compilations as
4107    // well because it can be convenient when grepping through the log
4108    // file.
4109    // Distinguish OSR compilations from others in case CICountOSR is
4110    // on.
4111    jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4112    cg->set_unique_id(id);
4113    log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4114  }
4115}
4116
4117void Compile::log_inline_failure(const char* msg) {
4118  if (C->log() != NULL) {
4119    C->log()->inline_fail(msg);
4120  }
4121}
4122
4123
4124// Dump inlining replay data to the stream.
4125// Don't change thread state and acquire any locks.
4126void Compile::dump_inline_data(outputStream* out) {
4127  InlineTree* inl_tree = ilt();
4128  if (inl_tree != NULL) {
4129    out->print(" inline %d", inl_tree->count());
4130    inl_tree->dump_replay_data(out);
4131  }
4132}
4133
4134int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4135  if (n1->Opcode() < n2->Opcode())      return -1;
4136  else if (n1->Opcode() > n2->Opcode()) return 1;
4137
4138  assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4139  for (uint i = 1; i < n1->req(); i++) {
4140    if (n1->in(i) < n2->in(i))      return -1;
4141    else if (n1->in(i) > n2->in(i)) return 1;
4142  }
4143
4144  return 0;
4145}
4146
4147int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4148  Node* n1 = *n1p;
4149  Node* n2 = *n2p;
4150
4151  return cmp_expensive_nodes(n1, n2);
4152}
4153
4154void Compile::sort_expensive_nodes() {
4155  if (!expensive_nodes_sorted()) {
4156    _expensive_nodes->sort(cmp_expensive_nodes);
4157  }
4158}
4159
4160bool Compile::expensive_nodes_sorted() const {
4161  for (int i = 1; i < _expensive_nodes->length(); i++) {
4162    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4163      return false;
4164    }
4165  }
4166  return true;
4167}
4168
4169bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4170  if (_expensive_nodes->length() == 0) {
4171    return false;
4172  }
4173
4174  assert(OptimizeExpensiveOps, "optimization off?");
4175
4176  // Take this opportunity to remove dead nodes from the list
4177  int j = 0;
4178  for (int i = 0; i < _expensive_nodes->length(); i++) {
4179    Node* n = _expensive_nodes->at(i);
4180    if (!n->is_unreachable(igvn)) {
4181      assert(n->is_expensive(), "should be expensive");
4182      _expensive_nodes->at_put(j, n);
4183      j++;
4184    }
4185  }
4186  _expensive_nodes->trunc_to(j);
4187
4188  // Then sort the list so that similar nodes are next to each other
4189  // and check for at least two nodes of identical kind with same data
4190  // inputs.
4191  sort_expensive_nodes();
4192
4193  for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4194    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4195      return true;
4196    }
4197  }
4198
4199  return false;
4200}
4201
4202void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4203  if (_expensive_nodes->length() == 0) {
4204    return;
4205  }
4206
4207  assert(OptimizeExpensiveOps, "optimization off?");
4208
4209  // Sort to bring similar nodes next to each other and clear the
4210  // control input of nodes for which there's only a single copy.
4211  sort_expensive_nodes();
4212
4213  int j = 0;
4214  int identical = 0;
4215  int i = 0;
4216  bool modified = false;
4217  for (; i < _expensive_nodes->length()-1; i++) {
4218    assert(j <= i, "can't write beyond current index");
4219    if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4220      identical++;
4221      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4222      continue;
4223    }
4224    if (identical > 0) {
4225      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4226      identical = 0;
4227    } else {
4228      Node* n = _expensive_nodes->at(i);
4229      igvn.replace_input_of(n, 0, NULL);
4230      igvn.hash_insert(n);
4231      modified = true;
4232    }
4233  }
4234  if (identical > 0) {
4235    _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4236  } else if (_expensive_nodes->length() >= 1) {
4237    Node* n = _expensive_nodes->at(i);
4238    igvn.replace_input_of(n, 0, NULL);
4239    igvn.hash_insert(n);
4240    modified = true;
4241  }
4242  _expensive_nodes->trunc_to(j);
4243  if (modified) {
4244    igvn.optimize();
4245  }
4246}
4247
4248void Compile::add_expensive_node(Node * n) {
4249  assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4250  assert(n->is_expensive(), "expensive nodes with non-null control here only");
4251  assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4252  if (OptimizeExpensiveOps) {
4253    _expensive_nodes->append(n);
4254  } else {
4255    // Clear control input and let IGVN optimize expensive nodes if
4256    // OptimizeExpensiveOps is off.
4257    n->set_req(0, NULL);
4258  }
4259}
4260
4261/**
4262 * Remove the speculative part of types and clean up the graph
4263 */
4264void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4265  if (UseTypeSpeculation) {
4266    Unique_Node_List worklist;
4267    worklist.push(root());
4268    int modified = 0;
4269    // Go over all type nodes that carry a speculative type, drop the
4270    // speculative part of the type and enqueue the node for an igvn
4271    // which may optimize it out.
4272    for (uint next = 0; next < worklist.size(); ++next) {
4273      Node *n  = worklist.at(next);
4274      if (n->is_Type()) {
4275        TypeNode* tn = n->as_Type();
4276        const Type* t = tn->type();
4277        const Type* t_no_spec = t->remove_speculative();
4278        if (t_no_spec != t) {
4279          bool in_hash = igvn.hash_delete(n);
4280          assert(in_hash, "node should be in igvn hash table");
4281          tn->set_type(t_no_spec);
4282          igvn.hash_insert(n);
4283          igvn._worklist.push(n); // give it a chance to go away
4284          modified++;
4285        }
4286      }
4287      uint max = n->len();
4288      for( uint i = 0; i < max; ++i ) {
4289        Node *m = n->in(i);
4290        if (not_a_node(m))  continue;
4291        worklist.push(m);
4292      }
4293    }
4294    // Drop the speculative part of all types in the igvn's type table
4295    igvn.remove_speculative_types();
4296    if (modified > 0) {
4297      igvn.optimize();
4298    }
4299#ifdef ASSERT
4300    // Verify that after the IGVN is over no speculative type has resurfaced
4301    worklist.clear();
4302    worklist.push(root());
4303    for (uint next = 0; next < worklist.size(); ++next) {
4304      Node *n  = worklist.at(next);
4305      const Type* t = igvn.type_or_null(n);
4306      assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4307      if (n->is_Type()) {
4308        t = n->as_Type()->type();
4309        assert(t == t->remove_speculative(), "no more speculative types");
4310      }
4311      uint max = n->len();
4312      for( uint i = 0; i < max; ++i ) {
4313        Node *m = n->in(i);
4314        if (not_a_node(m))  continue;
4315        worklist.push(m);
4316      }
4317    }
4318    igvn.check_no_speculative_types();
4319#endif
4320  }
4321}
4322
4323// Auxiliary method to support randomized stressing/fuzzing.
4324//
4325// This method can be called the arbitrary number of times, with current count
4326// as the argument. The logic allows selecting a single candidate from the
4327// running list of candidates as follows:
4328//    int count = 0;
4329//    Cand* selected = null;
4330//    while(cand = cand->next()) {
4331//      if (randomized_select(++count)) {
4332//        selected = cand;
4333//      }
4334//    }
4335//
4336// Including count equalizes the chances any candidate is "selected".
4337// This is useful when we don't have the complete list of candidates to choose
4338// from uniformly. In this case, we need to adjust the randomicity of the
4339// selection, or else we will end up biasing the selection towards the latter
4340// candidates.
4341//
4342// Quick back-envelope calculation shows that for the list of n candidates
4343// the equal probability for the candidate to persist as "best" can be
4344// achieved by replacing it with "next" k-th candidate with the probability
4345// of 1/k. It can be easily shown that by the end of the run, the
4346// probability for any candidate is converged to 1/n, thus giving the
4347// uniform distribution among all the candidates.
4348//
4349// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4350#define RANDOMIZED_DOMAIN_POW 29
4351#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4352#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4353bool Compile::randomized_select(int count) {
4354  assert(count > 0, "only positive");
4355  return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4356}
4357
4358const char*   CloneMap::debug_option_name = "CloneMapDebug";
4359CloneMap&     Compile::clone_map()                 { return _clone_map; }
4360void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4361
4362void NodeCloneInfo::dump() const {
4363  tty->print(" {%d:%d} ", idx(), gen());
4364}
4365
4366void CloneMap::clone(Node* old, Node* nnn, int gen) {
4367  uint64_t val = value(old->_idx);
4368  NodeCloneInfo cio(val);
4369  assert(val != 0, "old node should be in the map");
4370  NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4371  insert(nnn->_idx, cin.get());
4372#ifndef PRODUCT
4373  if (is_debug()) {
4374    tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4375  }
4376#endif
4377}
4378
4379void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4380  NodeCloneInfo cio(value(old->_idx));
4381  if (cio.get() == 0) {
4382    cio.set(old->_idx, 0);
4383    insert(old->_idx, cio.get());
4384#ifndef PRODUCT
4385    if (is_debug()) {
4386      tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4387    }
4388#endif
4389  }
4390  clone(old, nnn, gen);
4391}
4392
4393int CloneMap::max_gen() const {
4394  int g = 0;
4395  DictI di(_dict);
4396  for(; di.test(); ++di) {
4397    int t = gen(di._key);
4398    if (g < t) {
4399      g = t;
4400#ifndef PRODUCT
4401      if (is_debug()) {
4402        tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4403      }
4404#endif
4405    }
4406  }
4407  return g;
4408}
4409
4410void CloneMap::dump(node_idx_t key) const {
4411  uint64_t val = value(key);
4412  if (val != 0) {
4413    NodeCloneInfo ni(val);
4414    ni.dump();
4415  }
4416}
4417