compile.cpp revision 7081:39231c6e51fe
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "ci/ciReplay.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/exceptionHandlerTable.hpp"
31#include "code/nmethod.hpp"
32#include "compiler/compileBroker.hpp"
33#include "compiler/compileLog.hpp"
34#include "compiler/disassembler.hpp"
35#include "compiler/oopMap.hpp"
36#include "opto/addnode.hpp"
37#include "opto/block.hpp"
38#include "opto/c2compiler.hpp"
39#include "opto/callGenerator.hpp"
40#include "opto/callnode.hpp"
41#include "opto/cfgnode.hpp"
42#include "opto/chaitin.hpp"
43#include "opto/compile.hpp"
44#include "opto/connode.hpp"
45#include "opto/divnode.hpp"
46#include "opto/escape.hpp"
47#include "opto/idealGraphPrinter.hpp"
48#include "opto/loopnode.hpp"
49#include "opto/machnode.hpp"
50#include "opto/macro.hpp"
51#include "opto/matcher.hpp"
52#include "opto/mathexactnode.hpp"
53#include "opto/memnode.hpp"
54#include "opto/mulnode.hpp"
55#include "opto/narrowptrnode.hpp"
56#include "opto/node.hpp"
57#include "opto/opcodes.hpp"
58#include "opto/output.hpp"
59#include "opto/parse.hpp"
60#include "opto/phaseX.hpp"
61#include "opto/rootnode.hpp"
62#include "opto/runtime.hpp"
63#include "opto/stringopts.hpp"
64#include "opto/type.hpp"
65#include "opto/vectornode.hpp"
66#include "runtime/arguments.hpp"
67#include "runtime/signature.hpp"
68#include "runtime/stubRoutines.hpp"
69#include "runtime/timer.hpp"
70#include "trace/tracing.hpp"
71#include "utilities/copy.hpp"
72
73
74// -------------------- Compile::mach_constant_base_node -----------------------
75// Constant table base node singleton.
76MachConstantBaseNode* Compile::mach_constant_base_node() {
77  if (_mach_constant_base_node == NULL) {
78    _mach_constant_base_node = new MachConstantBaseNode();
79    _mach_constant_base_node->add_req(C->root());
80  }
81  return _mach_constant_base_node;
82}
83
84
85/// Support for intrinsics.
86
87// Return the index at which m must be inserted (or already exists).
88// The sort order is by the address of the ciMethod, with is_virtual as minor key.
89int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
90#ifdef ASSERT
91  for (int i = 1; i < _intrinsics->length(); i++) {
92    CallGenerator* cg1 = _intrinsics->at(i-1);
93    CallGenerator* cg2 = _intrinsics->at(i);
94    assert(cg1->method() != cg2->method()
95           ? cg1->method()     < cg2->method()
96           : cg1->is_virtual() < cg2->is_virtual(),
97           "compiler intrinsics list must stay sorted");
98  }
99#endif
100  // Binary search sorted list, in decreasing intervals [lo, hi].
101  int lo = 0, hi = _intrinsics->length()-1;
102  while (lo <= hi) {
103    int mid = (uint)(hi + lo) / 2;
104    ciMethod* mid_m = _intrinsics->at(mid)->method();
105    if (m < mid_m) {
106      hi = mid-1;
107    } else if (m > mid_m) {
108      lo = mid+1;
109    } else {
110      // look at minor sort key
111      bool mid_virt = _intrinsics->at(mid)->is_virtual();
112      if (is_virtual < mid_virt) {
113        hi = mid-1;
114      } else if (is_virtual > mid_virt) {
115        lo = mid+1;
116      } else {
117        return mid;  // exact match
118      }
119    }
120  }
121  return lo;  // inexact match
122}
123
124void Compile::register_intrinsic(CallGenerator* cg) {
125  if (_intrinsics == NULL) {
126    _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
127  }
128  // This code is stolen from ciObjectFactory::insert.
129  // Really, GrowableArray should have methods for
130  // insert_at, remove_at, and binary_search.
131  int len = _intrinsics->length();
132  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
133  if (index == len) {
134    _intrinsics->append(cg);
135  } else {
136#ifdef ASSERT
137    CallGenerator* oldcg = _intrinsics->at(index);
138    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
139#endif
140    _intrinsics->append(_intrinsics->at(len-1));
141    int pos;
142    for (pos = len-2; pos >= index; pos--) {
143      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
144    }
145    _intrinsics->at_put(index, cg);
146  }
147  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
148}
149
150CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
151  assert(m->is_loaded(), "don't try this on unloaded methods");
152  if (_intrinsics != NULL) {
153    int index = intrinsic_insertion_index(m, is_virtual);
154    if (index < _intrinsics->length()
155        && _intrinsics->at(index)->method() == m
156        && _intrinsics->at(index)->is_virtual() == is_virtual) {
157      return _intrinsics->at(index);
158    }
159  }
160  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
161  if (m->intrinsic_id() != vmIntrinsics::_none &&
162      m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
163    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
164    if (cg != NULL) {
165      // Save it for next time:
166      register_intrinsic(cg);
167      return cg;
168    } else {
169      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
170    }
171  }
172  return NULL;
173}
174
175// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
176// in library_call.cpp.
177
178
179#ifndef PRODUCT
180// statistics gathering...
181
182juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
183jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
184
185bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
186  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
187  int oflags = _intrinsic_hist_flags[id];
188  assert(flags != 0, "what happened?");
189  if (is_virtual) {
190    flags |= _intrinsic_virtual;
191  }
192  bool changed = (flags != oflags);
193  if ((flags & _intrinsic_worked) != 0) {
194    juint count = (_intrinsic_hist_count[id] += 1);
195    if (count == 1) {
196      changed = true;           // first time
197    }
198    // increment the overall count also:
199    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
200  }
201  if (changed) {
202    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
203      // Something changed about the intrinsic's virtuality.
204      if ((flags & _intrinsic_virtual) != 0) {
205        // This is the first use of this intrinsic as a virtual call.
206        if (oflags != 0) {
207          // We already saw it as a non-virtual, so note both cases.
208          flags |= _intrinsic_both;
209        }
210      } else if ((oflags & _intrinsic_both) == 0) {
211        // This is the first use of this intrinsic as a non-virtual
212        flags |= _intrinsic_both;
213      }
214    }
215    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
216  }
217  // update the overall flags also:
218  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
219  return changed;
220}
221
222static char* format_flags(int flags, char* buf) {
223  buf[0] = 0;
224  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
225  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
226  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
227  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
228  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
229  if (buf[0] == 0)  strcat(buf, ",");
230  assert(buf[0] == ',', "must be");
231  return &buf[1];
232}
233
234void Compile::print_intrinsic_statistics() {
235  char flagsbuf[100];
236  ttyLocker ttyl;
237  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
238  tty->print_cr("Compiler intrinsic usage:");
239  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
240  if (total == 0)  total = 1;  // avoid div0 in case of no successes
241  #define PRINT_STAT_LINE(name, c, f) \
242    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
243  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
244    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
245    int   flags = _intrinsic_hist_flags[id];
246    juint count = _intrinsic_hist_count[id];
247    if ((flags | count) != 0) {
248      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
249    }
250  }
251  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
252  if (xtty != NULL)  xtty->tail("statistics");
253}
254
255void Compile::print_statistics() {
256  { ttyLocker ttyl;
257    if (xtty != NULL)  xtty->head("statistics type='opto'");
258    Parse::print_statistics();
259    PhaseCCP::print_statistics();
260    PhaseRegAlloc::print_statistics();
261    Scheduling::print_statistics();
262    PhasePeephole::print_statistics();
263    PhaseIdealLoop::print_statistics();
264    if (xtty != NULL)  xtty->tail("statistics");
265  }
266  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
267    // put this under its own <statistics> element.
268    print_intrinsic_statistics();
269  }
270}
271#endif //PRODUCT
272
273// Support for bundling info
274Bundle* Compile::node_bundling(const Node *n) {
275  assert(valid_bundle_info(n), "oob");
276  return &_node_bundling_base[n->_idx];
277}
278
279bool Compile::valid_bundle_info(const Node *n) {
280  return (_node_bundling_limit > n->_idx);
281}
282
283
284void Compile::gvn_replace_by(Node* n, Node* nn) {
285  for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
286    Node* use = n->last_out(i);
287    bool is_in_table = initial_gvn()->hash_delete(use);
288    uint uses_found = 0;
289    for (uint j = 0; j < use->len(); j++) {
290      if (use->in(j) == n) {
291        if (j < use->req())
292          use->set_req(j, nn);
293        else
294          use->set_prec(j, nn);
295        uses_found++;
296      }
297    }
298    if (is_in_table) {
299      // reinsert into table
300      initial_gvn()->hash_find_insert(use);
301    }
302    record_for_igvn(use);
303    i -= uses_found;    // we deleted 1 or more copies of this edge
304  }
305}
306
307
308static inline bool not_a_node(const Node* n) {
309  if (n == NULL)                   return true;
310  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
311  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
312  return false;
313}
314
315// Identify all nodes that are reachable from below, useful.
316// Use breadth-first pass that records state in a Unique_Node_List,
317// recursive traversal is slower.
318void Compile::identify_useful_nodes(Unique_Node_List &useful) {
319  int estimated_worklist_size = unique();
320  useful.map( estimated_worklist_size, NULL );  // preallocate space
321
322  // Initialize worklist
323  if (root() != NULL)     { useful.push(root()); }
324  // If 'top' is cached, declare it useful to preserve cached node
325  if( cached_top_node() ) { useful.push(cached_top_node()); }
326
327  // Push all useful nodes onto the list, breadthfirst
328  for( uint next = 0; next < useful.size(); ++next ) {
329    assert( next < unique(), "Unique useful nodes < total nodes");
330    Node *n  = useful.at(next);
331    uint max = n->len();
332    for( uint i = 0; i < max; ++i ) {
333      Node *m = n->in(i);
334      if (not_a_node(m))  continue;
335      useful.push(m);
336    }
337  }
338}
339
340// Update dead_node_list with any missing dead nodes using useful
341// list. Consider all non-useful nodes to be useless i.e., dead nodes.
342void Compile::update_dead_node_list(Unique_Node_List &useful) {
343  uint max_idx = unique();
344  VectorSet& useful_node_set = useful.member_set();
345
346  for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
347    // If node with index node_idx is not in useful set,
348    // mark it as dead in dead node list.
349    if (! useful_node_set.test(node_idx) ) {
350      record_dead_node(node_idx);
351    }
352  }
353}
354
355void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
356  int shift = 0;
357  for (int i = 0; i < inlines->length(); i++) {
358    CallGenerator* cg = inlines->at(i);
359    CallNode* call = cg->call_node();
360    if (shift > 0) {
361      inlines->at_put(i-shift, cg);
362    }
363    if (!useful.member(call)) {
364      shift++;
365    }
366  }
367  inlines->trunc_to(inlines->length()-shift);
368}
369
370// Disconnect all useless nodes by disconnecting those at the boundary.
371void Compile::remove_useless_nodes(Unique_Node_List &useful) {
372  uint next = 0;
373  while (next < useful.size()) {
374    Node *n = useful.at(next++);
375    if (n->is_SafePoint()) {
376      // We're done with a parsing phase. Replaced nodes are not valid
377      // beyond that point.
378      n->as_SafePoint()->delete_replaced_nodes();
379    }
380    // Use raw traversal of out edges since this code removes out edges
381    int max = n->outcnt();
382    for (int j = 0; j < max; ++j) {
383      Node* child = n->raw_out(j);
384      if (! useful.member(child)) {
385        assert(!child->is_top() || child != top(),
386               "If top is cached in Compile object it is in useful list");
387        // Only need to remove this out-edge to the useless node
388        n->raw_del_out(j);
389        --j;
390        --max;
391      }
392    }
393    if (n->outcnt() == 1 && n->has_special_unique_user()) {
394      record_for_igvn(n->unique_out());
395    }
396  }
397  // Remove useless macro and predicate opaq nodes
398  for (int i = C->macro_count()-1; i >= 0; i--) {
399    Node* n = C->macro_node(i);
400    if (!useful.member(n)) {
401      remove_macro_node(n);
402    }
403  }
404  // Remove useless expensive node
405  for (int i = C->expensive_count()-1; i >= 0; i--) {
406    Node* n = C->expensive_node(i);
407    if (!useful.member(n)) {
408      remove_expensive_node(n);
409    }
410  }
411  // clean up the late inline lists
412  remove_useless_late_inlines(&_string_late_inlines, useful);
413  remove_useless_late_inlines(&_boxing_late_inlines, useful);
414  remove_useless_late_inlines(&_late_inlines, useful);
415  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
416}
417
418//------------------------------frame_size_in_words-----------------------------
419// frame_slots in units of words
420int Compile::frame_size_in_words() const {
421  // shift is 0 in LP32 and 1 in LP64
422  const int shift = (LogBytesPerWord - LogBytesPerInt);
423  int words = _frame_slots >> shift;
424  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
425  return words;
426}
427
428// To bang the stack of this compiled method we use the stack size
429// that the interpreter would need in case of a deoptimization. This
430// removes the need to bang the stack in the deoptimization blob which
431// in turn simplifies stack overflow handling.
432int Compile::bang_size_in_bytes() const {
433  return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
434}
435
436// ============================================================================
437//------------------------------CompileWrapper---------------------------------
438class CompileWrapper : public StackObj {
439  Compile *const _compile;
440 public:
441  CompileWrapper(Compile* compile);
442
443  ~CompileWrapper();
444};
445
446CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
447  // the Compile* pointer is stored in the current ciEnv:
448  ciEnv* env = compile->env();
449  assert(env == ciEnv::current(), "must already be a ciEnv active");
450  assert(env->compiler_data() == NULL, "compile already active?");
451  env->set_compiler_data(compile);
452  assert(compile == Compile::current(), "sanity");
453
454  compile->set_type_dict(NULL);
455  compile->set_type_hwm(NULL);
456  compile->set_type_last_size(0);
457  compile->set_last_tf(NULL, NULL);
458  compile->set_indexSet_arena(NULL);
459  compile->set_indexSet_free_block_list(NULL);
460  compile->init_type_arena();
461  Type::Initialize(compile);
462  _compile->set_scratch_buffer_blob(NULL);
463  _compile->begin_method();
464}
465CompileWrapper::~CompileWrapper() {
466  _compile->end_method();
467  if (_compile->scratch_buffer_blob() != NULL)
468    BufferBlob::free(_compile->scratch_buffer_blob());
469  _compile->env()->set_compiler_data(NULL);
470}
471
472
473//----------------------------print_compile_messages---------------------------
474void Compile::print_compile_messages() {
475#ifndef PRODUCT
476  // Check if recompiling
477  if (_subsume_loads == false && PrintOpto) {
478    // Recompiling without allowing machine instructions to subsume loads
479    tty->print_cr("*********************************************************");
480    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
481    tty->print_cr("*********************************************************");
482  }
483  if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
484    // Recompiling without escape analysis
485    tty->print_cr("*********************************************************");
486    tty->print_cr("** Bailout: Recompile without escape analysis          **");
487    tty->print_cr("*********************************************************");
488  }
489  if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
490    // Recompiling without boxing elimination
491    tty->print_cr("*********************************************************");
492    tty->print_cr("** Bailout: Recompile without boxing elimination       **");
493    tty->print_cr("*********************************************************");
494  }
495  if (env()->break_at_compile()) {
496    // Open the debugger when compiling this method.
497    tty->print("### Breaking when compiling: ");
498    method()->print_short_name();
499    tty->cr();
500    BREAKPOINT;
501  }
502
503  if( PrintOpto ) {
504    if (is_osr_compilation()) {
505      tty->print("[OSR]%3d", _compile_id);
506    } else {
507      tty->print("%3d", _compile_id);
508    }
509  }
510#endif
511}
512
513
514//-----------------------init_scratch_buffer_blob------------------------------
515// Construct a temporary BufferBlob and cache it for this compile.
516void Compile::init_scratch_buffer_blob(int const_size) {
517  // If there is already a scratch buffer blob allocated and the
518  // constant section is big enough, use it.  Otherwise free the
519  // current and allocate a new one.
520  BufferBlob* blob = scratch_buffer_blob();
521  if ((blob != NULL) && (const_size <= _scratch_const_size)) {
522    // Use the current blob.
523  } else {
524    if (blob != NULL) {
525      BufferBlob::free(blob);
526    }
527
528    ResourceMark rm;
529    _scratch_const_size = const_size;
530    int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
531    blob = BufferBlob::create("Compile::scratch_buffer", size);
532    // Record the buffer blob for next time.
533    set_scratch_buffer_blob(blob);
534    // Have we run out of code space?
535    if (scratch_buffer_blob() == NULL) {
536      // Let CompilerBroker disable further compilations.
537      record_failure("Not enough space for scratch buffer in CodeCache");
538      CompileBroker::handle_full_code_cache(CodeBlobType::NonMethod);
539      return;
540    }
541  }
542
543  // Initialize the relocation buffers
544  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
545  set_scratch_locs_memory(locs_buf);
546}
547
548
549//-----------------------scratch_emit_size-------------------------------------
550// Helper function that computes size by emitting code
551uint Compile::scratch_emit_size(const Node* n) {
552  // Start scratch_emit_size section.
553  set_in_scratch_emit_size(true);
554
555  // Emit into a trash buffer and count bytes emitted.
556  // This is a pretty expensive way to compute a size,
557  // but it works well enough if seldom used.
558  // All common fixed-size instructions are given a size
559  // method by the AD file.
560  // Note that the scratch buffer blob and locs memory are
561  // allocated at the beginning of the compile task, and
562  // may be shared by several calls to scratch_emit_size.
563  // The allocation of the scratch buffer blob is particularly
564  // expensive, since it has to grab the code cache lock.
565  BufferBlob* blob = this->scratch_buffer_blob();
566  assert(blob != NULL, "Initialize BufferBlob at start");
567  assert(blob->size() > MAX_inst_size, "sanity");
568  relocInfo* locs_buf = scratch_locs_memory();
569  address blob_begin = blob->content_begin();
570  address blob_end   = (address)locs_buf;
571  assert(blob->content_contains(blob_end), "sanity");
572  CodeBuffer buf(blob_begin, blob_end - blob_begin);
573  buf.initialize_consts_size(_scratch_const_size);
574  buf.initialize_stubs_size(MAX_stubs_size);
575  assert(locs_buf != NULL, "sanity");
576  int lsize = MAX_locs_size / 3;
577  buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
578  buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
579  buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
580
581  // Do the emission.
582
583  Label fakeL; // Fake label for branch instructions.
584  Label*   saveL = NULL;
585  uint save_bnum = 0;
586  bool is_branch = n->is_MachBranch();
587  if (is_branch) {
588    MacroAssembler masm(&buf);
589    masm.bind(fakeL);
590    n->as_MachBranch()->save_label(&saveL, &save_bnum);
591    n->as_MachBranch()->label_set(&fakeL, 0);
592  }
593  n->emit(buf, this->regalloc());
594  if (is_branch) // Restore label.
595    n->as_MachBranch()->label_set(saveL, save_bnum);
596
597  // End scratch_emit_size section.
598  set_in_scratch_emit_size(false);
599
600  return buf.insts_size();
601}
602
603
604// ============================================================================
605//------------------------------Compile standard-------------------------------
606debug_only( int Compile::_debug_idx = 100000; )
607
608// Compile a method.  entry_bci is -1 for normal compilations and indicates
609// the continuation bci for on stack replacement.
610
611
612Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
613                  bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
614                : Phase(Compiler),
615                  _env(ci_env),
616                  _log(ci_env->log()),
617                  _compile_id(ci_env->compile_id()),
618                  _save_argument_registers(false),
619                  _stub_name(NULL),
620                  _stub_function(NULL),
621                  _stub_entry_point(NULL),
622                  _method(target),
623                  _entry_bci(osr_bci),
624                  _initial_gvn(NULL),
625                  _for_igvn(NULL),
626                  _warm_calls(NULL),
627                  _subsume_loads(subsume_loads),
628                  _do_escape_analysis(do_escape_analysis),
629                  _eliminate_boxing(eliminate_boxing),
630                  _failure_reason(NULL),
631                  _code_buffer("Compile::Fill_buffer"),
632                  _orig_pc_slot(0),
633                  _orig_pc_slot_offset_in_bytes(0),
634                  _has_method_handle_invokes(false),
635                  _mach_constant_base_node(NULL),
636                  _node_bundling_limit(0),
637                  _node_bundling_base(NULL),
638                  _java_calls(0),
639                  _inner_loops(0),
640                  _scratch_const_size(-1),
641                  _in_scratch_emit_size(false),
642                  _dead_node_list(comp_arena()),
643                  _dead_node_count(0),
644#ifndef PRODUCT
645                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
646                  _in_dump_cnt(0),
647                  _printer(IdealGraphPrinter::printer()),
648#endif
649                  _congraph(NULL),
650                  _comp_arena(mtCompiler),
651                  _node_arena(mtCompiler),
652                  _old_arena(mtCompiler),
653                  _Compile_types(mtCompiler),
654                  _replay_inline_data(NULL),
655                  _late_inlines(comp_arena(), 2, 0, NULL),
656                  _string_late_inlines(comp_arena(), 2, 0, NULL),
657                  _boxing_late_inlines(comp_arena(), 2, 0, NULL),
658                  _late_inlines_pos(0),
659                  _number_of_mh_late_inlines(0),
660                  _inlining_progress(false),
661                  _inlining_incrementally(false),
662                  _print_inlining_list(NULL),
663                  _print_inlining_stream(NULL),
664                  _print_inlining_idx(0),
665                  _print_inlining_output(NULL),
666                  _interpreter_frame_size(0) {
667  C = this;
668
669  CompileWrapper cw(this);
670#ifndef PRODUCT
671  if (TimeCompiler2) {
672    tty->print(" ");
673    target->holder()->name()->print();
674    tty->print(".");
675    target->print_short_name();
676    tty->print("  ");
677  }
678  TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
679  TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
680  bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
681  if (!print_opto_assembly) {
682    bool print_assembly = (PrintAssembly || _method->should_print_assembly());
683    if (print_assembly && !Disassembler::can_decode()) {
684      tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
685      print_opto_assembly = true;
686    }
687  }
688  set_print_assembly(print_opto_assembly);
689  set_parsed_irreducible_loop(false);
690
691  if (method()->has_option("ReplayInline")) {
692    _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
693  }
694#endif
695  set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
696  set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
697  set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
698
699  if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
700    // Make sure the method being compiled gets its own MDO,
701    // so we can at least track the decompile_count().
702    // Need MDO to record RTM code generation state.
703    method()->ensure_method_data();
704  }
705
706  Init(::AliasLevel);
707
708
709  print_compile_messages();
710
711  _ilt = InlineTree::build_inline_tree_root();
712
713  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
714  assert(num_alias_types() >= AliasIdxRaw, "");
715
716#define MINIMUM_NODE_HASH  1023
717  // Node list that Iterative GVN will start with
718  Unique_Node_List for_igvn(comp_arena());
719  set_for_igvn(&for_igvn);
720
721  // GVN that will be run immediately on new nodes
722  uint estimated_size = method()->code_size()*4+64;
723  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
724  PhaseGVN gvn(node_arena(), estimated_size);
725  set_initial_gvn(&gvn);
726
727  print_inlining_init();
728  { // Scope for timing the parser
729    TracePhase t3("parse", &_t_parser, true);
730
731    // Put top into the hash table ASAP.
732    initial_gvn()->transform_no_reclaim(top());
733
734    // Set up tf(), start(), and find a CallGenerator.
735    CallGenerator* cg = NULL;
736    if (is_osr_compilation()) {
737      const TypeTuple *domain = StartOSRNode::osr_domain();
738      const TypeTuple *range = TypeTuple::make_range(method()->signature());
739      init_tf(TypeFunc::make(domain, range));
740      StartNode* s = new StartOSRNode(root(), domain);
741      initial_gvn()->set_type_bottom(s);
742      init_start(s);
743      cg = CallGenerator::for_osr(method(), entry_bci());
744    } else {
745      // Normal case.
746      init_tf(TypeFunc::make(method()));
747      StartNode* s = new StartNode(root(), tf()->domain());
748      initial_gvn()->set_type_bottom(s);
749      init_start(s);
750      if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
751        // With java.lang.ref.reference.get() we must go through the
752        // intrinsic when G1 is enabled - even when get() is the root
753        // method of the compile - so that, if necessary, the value in
754        // the referent field of the reference object gets recorded by
755        // the pre-barrier code.
756        // Specifically, if G1 is enabled, the value in the referent
757        // field is recorded by the G1 SATB pre barrier. This will
758        // result in the referent being marked live and the reference
759        // object removed from the list of discovered references during
760        // reference processing.
761        cg = find_intrinsic(method(), false);
762      }
763      if (cg == NULL) {
764        float past_uses = method()->interpreter_invocation_count();
765        float expected_uses = past_uses;
766        cg = CallGenerator::for_inline(method(), expected_uses);
767      }
768    }
769    if (failing())  return;
770    if (cg == NULL) {
771      record_method_not_compilable_all_tiers("cannot parse method");
772      return;
773    }
774    JVMState* jvms = build_start_state(start(), tf());
775    if ((jvms = cg->generate(jvms)) == NULL) {
776      record_method_not_compilable("method parse failed");
777      return;
778    }
779    GraphKit kit(jvms);
780
781    if (!kit.stopped()) {
782      // Accept return values, and transfer control we know not where.
783      // This is done by a special, unique ReturnNode bound to root.
784      return_values(kit.jvms());
785    }
786
787    if (kit.has_exceptions()) {
788      // Any exceptions that escape from this call must be rethrown
789      // to whatever caller is dynamically above us on the stack.
790      // This is done by a special, unique RethrowNode bound to root.
791      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
792    }
793
794    assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
795
796    if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
797      inline_string_calls(true);
798    }
799
800    if (failing())  return;
801
802    print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
803
804    // Remove clutter produced by parsing.
805    if (!failing()) {
806      ResourceMark rm;
807      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
808    }
809  }
810
811  // Note:  Large methods are capped off in do_one_bytecode().
812  if (failing())  return;
813
814  // After parsing, node notes are no longer automagic.
815  // They must be propagated by register_new_node_with_optimizer(),
816  // clone(), or the like.
817  set_default_node_notes(NULL);
818
819  for (;;) {
820    int successes = Inline_Warm();
821    if (failing())  return;
822    if (successes == 0)  break;
823  }
824
825  // Drain the list.
826  Finish_Warm();
827#ifndef PRODUCT
828  if (_printer) {
829    _printer->print_inlining(this);
830  }
831#endif
832
833  if (failing())  return;
834  NOT_PRODUCT( verify_graph_edges(); )
835
836  // Now optimize
837  Optimize();
838  if (failing())  return;
839  NOT_PRODUCT( verify_graph_edges(); )
840
841#ifndef PRODUCT
842  if (PrintIdeal) {
843    ttyLocker ttyl;  // keep the following output all in one block
844    // This output goes directly to the tty, not the compiler log.
845    // To enable tools to match it up with the compilation activity,
846    // be sure to tag this tty output with the compile ID.
847    if (xtty != NULL) {
848      xtty->head("ideal compile_id='%d'%s", compile_id(),
849                 is_osr_compilation()    ? " compile_kind='osr'" :
850                 "");
851    }
852    root()->dump(9999);
853    if (xtty != NULL) {
854      xtty->tail("ideal");
855    }
856  }
857#endif
858
859  NOT_PRODUCT( verify_barriers(); )
860
861  // Dump compilation data to replay it.
862  if (method()->has_option("DumpReplay")) {
863    env()->dump_replay_data(_compile_id);
864  }
865  if (method()->has_option("DumpInline") && (ilt() != NULL)) {
866    env()->dump_inline_data(_compile_id);
867  }
868
869  // Now that we know the size of all the monitors we can add a fixed slot
870  // for the original deopt pc.
871
872  _orig_pc_slot =  fixed_slots();
873  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
874  set_fixed_slots(next_slot);
875
876  // Compute when to use implicit null checks. Used by matching trap based
877  // nodes and NullCheck optimization.
878  set_allowed_deopt_reasons();
879
880  // Now generate code
881  Code_Gen();
882  if (failing())  return;
883
884  // Check if we want to skip execution of all compiled code.
885  {
886#ifndef PRODUCT
887    if (OptoNoExecute) {
888      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
889      return;
890    }
891    TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
892#endif
893
894    if (is_osr_compilation()) {
895      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
896      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
897    } else {
898      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
899      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
900    }
901
902    env()->register_method(_method, _entry_bci,
903                           &_code_offsets,
904                           _orig_pc_slot_offset_in_bytes,
905                           code_buffer(),
906                           frame_size_in_words(), _oop_map_set,
907                           &_handler_table, &_inc_table,
908                           compiler,
909                           env()->comp_level(),
910                           has_unsafe_access(),
911                           SharedRuntime::is_wide_vector(max_vector_size()),
912                           rtm_state()
913                           );
914
915    if (log() != NULL) // Print code cache state into compiler log
916      log()->code_cache_state();
917  }
918}
919
920//------------------------------Compile----------------------------------------
921// Compile a runtime stub
922Compile::Compile( ciEnv* ci_env,
923                  TypeFunc_generator generator,
924                  address stub_function,
925                  const char *stub_name,
926                  int is_fancy_jump,
927                  bool pass_tls,
928                  bool save_arg_registers,
929                  bool return_pc )
930  : Phase(Compiler),
931    _env(ci_env),
932    _log(ci_env->log()),
933    _compile_id(0),
934    _save_argument_registers(save_arg_registers),
935    _method(NULL),
936    _stub_name(stub_name),
937    _stub_function(stub_function),
938    _stub_entry_point(NULL),
939    _entry_bci(InvocationEntryBci),
940    _initial_gvn(NULL),
941    _for_igvn(NULL),
942    _warm_calls(NULL),
943    _orig_pc_slot(0),
944    _orig_pc_slot_offset_in_bytes(0),
945    _subsume_loads(true),
946    _do_escape_analysis(false),
947    _eliminate_boxing(false),
948    _failure_reason(NULL),
949    _code_buffer("Compile::Fill_buffer"),
950    _has_method_handle_invokes(false),
951    _mach_constant_base_node(NULL),
952    _node_bundling_limit(0),
953    _node_bundling_base(NULL),
954    _java_calls(0),
955    _inner_loops(0),
956#ifndef PRODUCT
957    _trace_opto_output(TraceOptoOutput),
958    _in_dump_cnt(0),
959    _printer(NULL),
960#endif
961    _comp_arena(mtCompiler),
962    _node_arena(mtCompiler),
963    _old_arena(mtCompiler),
964    _Compile_types(mtCompiler),
965    _dead_node_list(comp_arena()),
966    _dead_node_count(0),
967    _congraph(NULL),
968    _replay_inline_data(NULL),
969    _number_of_mh_late_inlines(0),
970    _inlining_progress(false),
971    _inlining_incrementally(false),
972    _print_inlining_list(NULL),
973    _print_inlining_stream(NULL),
974    _print_inlining_idx(0),
975    _print_inlining_output(NULL),
976    _allowed_reasons(0),
977    _interpreter_frame_size(0) {
978  C = this;
979
980#ifndef PRODUCT
981  TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
982  TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
983  set_print_assembly(PrintFrameConverterAssembly);
984  set_parsed_irreducible_loop(false);
985#endif
986  set_has_irreducible_loop(false); // no loops
987
988  CompileWrapper cw(this);
989  Init(/*AliasLevel=*/ 0);
990  init_tf((*generator)());
991
992  {
993    // The following is a dummy for the sake of GraphKit::gen_stub
994    Unique_Node_List for_igvn(comp_arena());
995    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
996    PhaseGVN gvn(Thread::current()->resource_area(),255);
997    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
998    gvn.transform_no_reclaim(top());
999
1000    GraphKit kit;
1001    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1002  }
1003
1004  NOT_PRODUCT( verify_graph_edges(); )
1005  Code_Gen();
1006  if (failing())  return;
1007
1008
1009  // Entry point will be accessed using compile->stub_entry_point();
1010  if (code_buffer() == NULL) {
1011    Matcher::soft_match_failure();
1012  } else {
1013    if (PrintAssembly && (WizardMode || Verbose))
1014      tty->print_cr("### Stub::%s", stub_name);
1015
1016    if (!failing()) {
1017      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1018
1019      // Make the NMethod
1020      // For now we mark the frame as never safe for profile stackwalking
1021      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1022                                                      code_buffer(),
1023                                                      CodeOffsets::frame_never_safe,
1024                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
1025                                                      frame_size_in_words(),
1026                                                      _oop_map_set,
1027                                                      save_arg_registers);
1028      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1029
1030      _stub_entry_point = rs->entry_point();
1031    }
1032  }
1033}
1034
1035//------------------------------Init-------------------------------------------
1036// Prepare for a single compilation
1037void Compile::Init(int aliaslevel) {
1038  _unique  = 0;
1039  _regalloc = NULL;
1040
1041  _tf      = NULL;  // filled in later
1042  _top     = NULL;  // cached later
1043  _matcher = NULL;  // filled in later
1044  _cfg     = NULL;  // filled in later
1045
1046  set_24_bit_selection_and_mode(Use24BitFP, false);
1047
1048  _node_note_array = NULL;
1049  _default_node_notes = NULL;
1050  DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1051
1052  _immutable_memory = NULL; // filled in at first inquiry
1053
1054  // Globally visible Nodes
1055  // First set TOP to NULL to give safe behavior during creation of RootNode
1056  set_cached_top_node(NULL);
1057  set_root(new RootNode());
1058  // Now that you have a Root to point to, create the real TOP
1059  set_cached_top_node( new ConNode(Type::TOP) );
1060  set_recent_alloc(NULL, NULL);
1061
1062  // Create Debug Information Recorder to record scopes, oopmaps, etc.
1063  env()->set_oop_recorder(new OopRecorder(env()->arena()));
1064  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1065  env()->set_dependencies(new Dependencies(env()));
1066
1067  _fixed_slots = 0;
1068  set_has_split_ifs(false);
1069  set_has_loops(has_method() && method()->has_loops()); // first approximation
1070  set_has_stringbuilder(false);
1071  set_has_boxed_value(false);
1072  _trap_can_recompile = false;  // no traps emitted yet
1073  _major_progress = true; // start out assuming good things will happen
1074  set_has_unsafe_access(false);
1075  set_max_vector_size(0);
1076  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1077  set_decompile_count(0);
1078
1079  set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1080  set_num_loop_opts(LoopOptsCount);
1081  set_do_inlining(Inline);
1082  set_max_inline_size(MaxInlineSize);
1083  set_freq_inline_size(FreqInlineSize);
1084  set_do_scheduling(OptoScheduling);
1085  set_do_count_invocations(false);
1086  set_do_method_data_update(false);
1087  set_age_code(has_method() && method()->profile_aging());
1088  set_rtm_state(NoRTM); // No RTM lock eliding by default
1089#if INCLUDE_RTM_OPT
1090  if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1091    int rtm_state = method()->method_data()->rtm_state();
1092    if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1093      // Don't generate RTM lock eliding code.
1094      set_rtm_state(NoRTM);
1095    } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1096      // Generate RTM lock eliding code without abort ratio calculation code.
1097      set_rtm_state(UseRTM);
1098    } else if (UseRTMDeopt) {
1099      // Generate RTM lock eliding code and include abort ratio calculation
1100      // code if UseRTMDeopt is on.
1101      set_rtm_state(ProfileRTM);
1102    }
1103  }
1104#endif
1105  if (debug_info()->recording_non_safepoints()) {
1106    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1107                        (comp_arena(), 8, 0, NULL));
1108    set_default_node_notes(Node_Notes::make(this));
1109  }
1110
1111  // // -- Initialize types before each compile --
1112  // // Update cached type information
1113  // if( _method && _method->constants() )
1114  //   Type::update_loaded_types(_method, _method->constants());
1115
1116  // Init alias_type map.
1117  if (!_do_escape_analysis && aliaslevel == 3)
1118    aliaslevel = 2;  // No unique types without escape analysis
1119  _AliasLevel = aliaslevel;
1120  const int grow_ats = 16;
1121  _max_alias_types = grow_ats;
1122  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1123  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1124  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1125  {
1126    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1127  }
1128  // Initialize the first few types.
1129  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1130  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1131  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1132  _num_alias_types = AliasIdxRaw+1;
1133  // Zero out the alias type cache.
1134  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1135  // A NULL adr_type hits in the cache right away.  Preload the right answer.
1136  probe_alias_cache(NULL)->_index = AliasIdxTop;
1137
1138  _intrinsics = NULL;
1139  _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1140  _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1141  _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1142  register_library_intrinsics();
1143}
1144
1145//---------------------------init_start----------------------------------------
1146// Install the StartNode on this compile object.
1147void Compile::init_start(StartNode* s) {
1148  if (failing())
1149    return; // already failing
1150  assert(s == start(), "");
1151}
1152
1153StartNode* Compile::start() const {
1154  assert(!failing(), "");
1155  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1156    Node* start = root()->fast_out(i);
1157    if( start->is_Start() )
1158      return start->as_Start();
1159  }
1160  fatal("Did not find Start node!");
1161  return NULL;
1162}
1163
1164//-------------------------------immutable_memory-------------------------------------
1165// Access immutable memory
1166Node* Compile::immutable_memory() {
1167  if (_immutable_memory != NULL) {
1168    return _immutable_memory;
1169  }
1170  StartNode* s = start();
1171  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1172    Node *p = s->fast_out(i);
1173    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1174      _immutable_memory = p;
1175      return _immutable_memory;
1176    }
1177  }
1178  ShouldNotReachHere();
1179  return NULL;
1180}
1181
1182//----------------------set_cached_top_node------------------------------------
1183// Install the cached top node, and make sure Node::is_top works correctly.
1184void Compile::set_cached_top_node(Node* tn) {
1185  if (tn != NULL)  verify_top(tn);
1186  Node* old_top = _top;
1187  _top = tn;
1188  // Calling Node::setup_is_top allows the nodes the chance to adjust
1189  // their _out arrays.
1190  if (_top != NULL)     _top->setup_is_top();
1191  if (old_top != NULL)  old_top->setup_is_top();
1192  assert(_top == NULL || top()->is_top(), "");
1193}
1194
1195#ifdef ASSERT
1196uint Compile::count_live_nodes_by_graph_walk() {
1197  Unique_Node_List useful(comp_arena());
1198  // Get useful node list by walking the graph.
1199  identify_useful_nodes(useful);
1200  return useful.size();
1201}
1202
1203void Compile::print_missing_nodes() {
1204
1205  // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1206  if ((_log == NULL) && (! PrintIdealNodeCount)) {
1207    return;
1208  }
1209
1210  // This is an expensive function. It is executed only when the user
1211  // specifies VerifyIdealNodeCount option or otherwise knows the
1212  // additional work that needs to be done to identify reachable nodes
1213  // by walking the flow graph and find the missing ones using
1214  // _dead_node_list.
1215
1216  Unique_Node_List useful(comp_arena());
1217  // Get useful node list by walking the graph.
1218  identify_useful_nodes(useful);
1219
1220  uint l_nodes = C->live_nodes();
1221  uint l_nodes_by_walk = useful.size();
1222
1223  if (l_nodes != l_nodes_by_walk) {
1224    if (_log != NULL) {
1225      _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1226      _log->stamp();
1227      _log->end_head();
1228    }
1229    VectorSet& useful_member_set = useful.member_set();
1230    int last_idx = l_nodes_by_walk;
1231    for (int i = 0; i < last_idx; i++) {
1232      if (useful_member_set.test(i)) {
1233        if (_dead_node_list.test(i)) {
1234          if (_log != NULL) {
1235            _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1236          }
1237          if (PrintIdealNodeCount) {
1238            // Print the log message to tty
1239              tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1240              useful.at(i)->dump();
1241          }
1242        }
1243      }
1244      else if (! _dead_node_list.test(i)) {
1245        if (_log != NULL) {
1246          _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1247        }
1248        if (PrintIdealNodeCount) {
1249          // Print the log message to tty
1250          tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1251        }
1252      }
1253    }
1254    if (_log != NULL) {
1255      _log->tail("mismatched_nodes");
1256    }
1257  }
1258}
1259void Compile::record_modified_node(Node* n) {
1260  if (_modified_nodes != NULL && !_inlining_incrementally &&
1261      n->outcnt() != 0 && !n->is_Con()) {
1262    _modified_nodes->push(n);
1263  }
1264}
1265
1266void Compile::remove_modified_node(Node* n) {
1267  if (_modified_nodes != NULL) {
1268    _modified_nodes->remove(n);
1269  }
1270}
1271#endif
1272
1273#ifndef PRODUCT
1274void Compile::verify_top(Node* tn) const {
1275  if (tn != NULL) {
1276    assert(tn->is_Con(), "top node must be a constant");
1277    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1278    assert(tn->in(0) != NULL, "must have live top node");
1279  }
1280}
1281#endif
1282
1283
1284///-------------------Managing Per-Node Debug & Profile Info-------------------
1285
1286void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1287  guarantee(arr != NULL, "");
1288  int num_blocks = arr->length();
1289  if (grow_by < num_blocks)  grow_by = num_blocks;
1290  int num_notes = grow_by * _node_notes_block_size;
1291  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1292  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1293  while (num_notes > 0) {
1294    arr->append(notes);
1295    notes     += _node_notes_block_size;
1296    num_notes -= _node_notes_block_size;
1297  }
1298  assert(num_notes == 0, "exact multiple, please");
1299}
1300
1301bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1302  if (source == NULL || dest == NULL)  return false;
1303
1304  if (dest->is_Con())
1305    return false;               // Do not push debug info onto constants.
1306
1307#ifdef ASSERT
1308  // Leave a bread crumb trail pointing to the original node:
1309  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1310    dest->set_debug_orig(source);
1311  }
1312#endif
1313
1314  if (node_note_array() == NULL)
1315    return false;               // Not collecting any notes now.
1316
1317  // This is a copy onto a pre-existing node, which may already have notes.
1318  // If both nodes have notes, do not overwrite any pre-existing notes.
1319  Node_Notes* source_notes = node_notes_at(source->_idx);
1320  if (source_notes == NULL || source_notes->is_clear())  return false;
1321  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1322  if (dest_notes == NULL || dest_notes->is_clear()) {
1323    return set_node_notes_at(dest->_idx, source_notes);
1324  }
1325
1326  Node_Notes merged_notes = (*source_notes);
1327  // The order of operations here ensures that dest notes will win...
1328  merged_notes.update_from(dest_notes);
1329  return set_node_notes_at(dest->_idx, &merged_notes);
1330}
1331
1332
1333//--------------------------allow_range_check_smearing-------------------------
1334// Gating condition for coalescing similar range checks.
1335// Sometimes we try 'speculatively' replacing a series of a range checks by a
1336// single covering check that is at least as strong as any of them.
1337// If the optimization succeeds, the simplified (strengthened) range check
1338// will always succeed.  If it fails, we will deopt, and then give up
1339// on the optimization.
1340bool Compile::allow_range_check_smearing() const {
1341  // If this method has already thrown a range-check,
1342  // assume it was because we already tried range smearing
1343  // and it failed.
1344  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1345  return !already_trapped;
1346}
1347
1348
1349//------------------------------flatten_alias_type-----------------------------
1350const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1351  int offset = tj->offset();
1352  TypePtr::PTR ptr = tj->ptr();
1353
1354  // Known instance (scalarizable allocation) alias only with itself.
1355  bool is_known_inst = tj->isa_oopptr() != NULL &&
1356                       tj->is_oopptr()->is_known_instance();
1357
1358  // Process weird unsafe references.
1359  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1360    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1361    assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1362    tj = TypeOopPtr::BOTTOM;
1363    ptr = tj->ptr();
1364    offset = tj->offset();
1365  }
1366
1367  // Array pointers need some flattening
1368  const TypeAryPtr *ta = tj->isa_aryptr();
1369  if (ta && ta->is_stable()) {
1370    // Erase stability property for alias analysis.
1371    tj = ta = ta->cast_to_stable(false);
1372  }
1373  if( ta && is_known_inst ) {
1374    if ( offset != Type::OffsetBot &&
1375         offset > arrayOopDesc::length_offset_in_bytes() ) {
1376      offset = Type::OffsetBot; // Flatten constant access into array body only
1377      tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1378    }
1379  } else if( ta && _AliasLevel >= 2 ) {
1380    // For arrays indexed by constant indices, we flatten the alias
1381    // space to include all of the array body.  Only the header, klass
1382    // and array length can be accessed un-aliased.
1383    if( offset != Type::OffsetBot ) {
1384      if( ta->const_oop() ) { // MethodData* or Method*
1385        offset = Type::OffsetBot;   // Flatten constant access into array body
1386        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1387      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1388        // range is OK as-is.
1389        tj = ta = TypeAryPtr::RANGE;
1390      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1391        tj = TypeInstPtr::KLASS; // all klass loads look alike
1392        ta = TypeAryPtr::RANGE; // generic ignored junk
1393        ptr = TypePtr::BotPTR;
1394      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1395        tj = TypeInstPtr::MARK;
1396        ta = TypeAryPtr::RANGE; // generic ignored junk
1397        ptr = TypePtr::BotPTR;
1398      } else {                  // Random constant offset into array body
1399        offset = Type::OffsetBot;   // Flatten constant access into array body
1400        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1401      }
1402    }
1403    // Arrays of fixed size alias with arrays of unknown size.
1404    if (ta->size() != TypeInt::POS) {
1405      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1406      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1407    }
1408    // Arrays of known objects become arrays of unknown objects.
1409    if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1410      const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1411      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1412    }
1413    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1414      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1415      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1416    }
1417    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1418    // cannot be distinguished by bytecode alone.
1419    if (ta->elem() == TypeInt::BOOL) {
1420      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1421      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1422      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1423    }
1424    // During the 2nd round of IterGVN, NotNull castings are removed.
1425    // Make sure the Bottom and NotNull variants alias the same.
1426    // Also, make sure exact and non-exact variants alias the same.
1427    if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1428      tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1429    }
1430  }
1431
1432  // Oop pointers need some flattening
1433  const TypeInstPtr *to = tj->isa_instptr();
1434  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1435    ciInstanceKlass *k = to->klass()->as_instance_klass();
1436    if( ptr == TypePtr::Constant ) {
1437      if (to->klass() != ciEnv::current()->Class_klass() ||
1438          offset < k->size_helper() * wordSize) {
1439        // No constant oop pointers (such as Strings); they alias with
1440        // unknown strings.
1441        assert(!is_known_inst, "not scalarizable allocation");
1442        tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1443      }
1444    } else if( is_known_inst ) {
1445      tj = to; // Keep NotNull and klass_is_exact for instance type
1446    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1447      // During the 2nd round of IterGVN, NotNull castings are removed.
1448      // Make sure the Bottom and NotNull variants alias the same.
1449      // Also, make sure exact and non-exact variants alias the same.
1450      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1451    }
1452    if (to->speculative() != NULL) {
1453      tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1454    }
1455    // Canonicalize the holder of this field
1456    if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1457      // First handle header references such as a LoadKlassNode, even if the
1458      // object's klass is unloaded at compile time (4965979).
1459      if (!is_known_inst) { // Do it only for non-instance types
1460        tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1461      }
1462    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1463      // Static fields are in the space above the normal instance
1464      // fields in the java.lang.Class instance.
1465      if (to->klass() != ciEnv::current()->Class_klass()) {
1466        to = NULL;
1467        tj = TypeOopPtr::BOTTOM;
1468        offset = tj->offset();
1469      }
1470    } else {
1471      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1472      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1473        if( is_known_inst ) {
1474          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1475        } else {
1476          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1477        }
1478      }
1479    }
1480  }
1481
1482  // Klass pointers to object array klasses need some flattening
1483  const TypeKlassPtr *tk = tj->isa_klassptr();
1484  if( tk ) {
1485    // If we are referencing a field within a Klass, we need
1486    // to assume the worst case of an Object.  Both exact and
1487    // inexact types must flatten to the same alias class so
1488    // use NotNull as the PTR.
1489    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1490
1491      tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1492                                   TypeKlassPtr::OBJECT->klass(),
1493                                   offset);
1494    }
1495
1496    ciKlass* klass = tk->klass();
1497    if( klass->is_obj_array_klass() ) {
1498      ciKlass* k = TypeAryPtr::OOPS->klass();
1499      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1500        k = TypeInstPtr::BOTTOM->klass();
1501      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1502    }
1503
1504    // Check for precise loads from the primary supertype array and force them
1505    // to the supertype cache alias index.  Check for generic array loads from
1506    // the primary supertype array and also force them to the supertype cache
1507    // alias index.  Since the same load can reach both, we need to merge
1508    // these 2 disparate memories into the same alias class.  Since the
1509    // primary supertype array is read-only, there's no chance of confusion
1510    // where we bypass an array load and an array store.
1511    int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1512    if (offset == Type::OffsetBot ||
1513        (offset >= primary_supers_offset &&
1514         offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1515        offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1516      offset = in_bytes(Klass::secondary_super_cache_offset());
1517      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1518    }
1519  }
1520
1521  // Flatten all Raw pointers together.
1522  if (tj->base() == Type::RawPtr)
1523    tj = TypeRawPtr::BOTTOM;
1524
1525  if (tj->base() == Type::AnyPtr)
1526    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1527
1528  // Flatten all to bottom for now
1529  switch( _AliasLevel ) {
1530  case 0:
1531    tj = TypePtr::BOTTOM;
1532    break;
1533  case 1:                       // Flatten to: oop, static, field or array
1534    switch (tj->base()) {
1535    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1536    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1537    case Type::AryPtr:   // do not distinguish arrays at all
1538    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1539    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1540    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1541    default: ShouldNotReachHere();
1542    }
1543    break;
1544  case 2:                       // No collapsing at level 2; keep all splits
1545  case 3:                       // No collapsing at level 3; keep all splits
1546    break;
1547  default:
1548    Unimplemented();
1549  }
1550
1551  offset = tj->offset();
1552  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1553
1554  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1555          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1556          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1557          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1558          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1559          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1560          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1561          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1562  assert( tj->ptr() != TypePtr::TopPTR &&
1563          tj->ptr() != TypePtr::AnyNull &&
1564          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1565//    assert( tj->ptr() != TypePtr::Constant ||
1566//            tj->base() == Type::RawPtr ||
1567//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1568
1569  return tj;
1570}
1571
1572void Compile::AliasType::Init(int i, const TypePtr* at) {
1573  _index = i;
1574  _adr_type = at;
1575  _field = NULL;
1576  _element = NULL;
1577  _is_rewritable = true; // default
1578  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1579  if (atoop != NULL && atoop->is_known_instance()) {
1580    const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1581    _general_index = Compile::current()->get_alias_index(gt);
1582  } else {
1583    _general_index = 0;
1584  }
1585}
1586
1587//---------------------------------print_on------------------------------------
1588#ifndef PRODUCT
1589void Compile::AliasType::print_on(outputStream* st) {
1590  if (index() < 10)
1591        st->print("@ <%d> ", index());
1592  else  st->print("@ <%d>",  index());
1593  st->print(is_rewritable() ? "   " : " RO");
1594  int offset = adr_type()->offset();
1595  if (offset == Type::OffsetBot)
1596        st->print(" +any");
1597  else  st->print(" +%-3d", offset);
1598  st->print(" in ");
1599  adr_type()->dump_on(st);
1600  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1601  if (field() != NULL && tjp) {
1602    if (tjp->klass()  != field()->holder() ||
1603        tjp->offset() != field()->offset_in_bytes()) {
1604      st->print(" != ");
1605      field()->print();
1606      st->print(" ***");
1607    }
1608  }
1609}
1610
1611void print_alias_types() {
1612  Compile* C = Compile::current();
1613  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1614  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1615    C->alias_type(idx)->print_on(tty);
1616    tty->cr();
1617  }
1618}
1619#endif
1620
1621
1622//----------------------------probe_alias_cache--------------------------------
1623Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1624  intptr_t key = (intptr_t) adr_type;
1625  key ^= key >> logAliasCacheSize;
1626  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1627}
1628
1629
1630//-----------------------------grow_alias_types--------------------------------
1631void Compile::grow_alias_types() {
1632  const int old_ats  = _max_alias_types; // how many before?
1633  const int new_ats  = old_ats;          // how many more?
1634  const int grow_ats = old_ats+new_ats;  // how many now?
1635  _max_alias_types = grow_ats;
1636  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1637  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1638  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1639  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1640}
1641
1642
1643//--------------------------------find_alias_type------------------------------
1644Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1645  if (_AliasLevel == 0)
1646    return alias_type(AliasIdxBot);
1647
1648  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1649  if (ace->_adr_type == adr_type) {
1650    return alias_type(ace->_index);
1651  }
1652
1653  // Handle special cases.
1654  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1655  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1656
1657  // Do it the slow way.
1658  const TypePtr* flat = flatten_alias_type(adr_type);
1659
1660#ifdef ASSERT
1661  assert(flat == flatten_alias_type(flat), "idempotent");
1662  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1663  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1664    const TypeOopPtr* foop = flat->is_oopptr();
1665    // Scalarizable allocations have exact klass always.
1666    bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1667    const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1668    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1669  }
1670  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1671#endif
1672
1673  int idx = AliasIdxTop;
1674  for (int i = 0; i < num_alias_types(); i++) {
1675    if (alias_type(i)->adr_type() == flat) {
1676      idx = i;
1677      break;
1678    }
1679  }
1680
1681  if (idx == AliasIdxTop) {
1682    if (no_create)  return NULL;
1683    // Grow the array if necessary.
1684    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1685    // Add a new alias type.
1686    idx = _num_alias_types++;
1687    _alias_types[idx]->Init(idx, flat);
1688    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1689    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1690    if (flat->isa_instptr()) {
1691      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1692          && flat->is_instptr()->klass() == env()->Class_klass())
1693        alias_type(idx)->set_rewritable(false);
1694    }
1695    if (flat->isa_aryptr()) {
1696#ifdef ASSERT
1697      const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1698      // (T_BYTE has the weakest alignment and size restrictions...)
1699      assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1700#endif
1701      if (flat->offset() == TypePtr::OffsetBot) {
1702        alias_type(idx)->set_element(flat->is_aryptr()->elem());
1703      }
1704    }
1705    if (flat->isa_klassptr()) {
1706      if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1707        alias_type(idx)->set_rewritable(false);
1708      if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1709        alias_type(idx)->set_rewritable(false);
1710      if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1711        alias_type(idx)->set_rewritable(false);
1712      if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1713        alias_type(idx)->set_rewritable(false);
1714    }
1715    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1716    // but the base pointer type is not distinctive enough to identify
1717    // references into JavaThread.)
1718
1719    // Check for final fields.
1720    const TypeInstPtr* tinst = flat->isa_instptr();
1721    if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1722      ciField* field;
1723      if (tinst->const_oop() != NULL &&
1724          tinst->klass() == ciEnv::current()->Class_klass() &&
1725          tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1726        // static field
1727        ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1728        field = k->get_field_by_offset(tinst->offset(), true);
1729      } else {
1730        ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1731        field = k->get_field_by_offset(tinst->offset(), false);
1732      }
1733      assert(field == NULL ||
1734             original_field == NULL ||
1735             (field->holder() == original_field->holder() &&
1736              field->offset() == original_field->offset() &&
1737              field->is_static() == original_field->is_static()), "wrong field?");
1738      // Set field() and is_rewritable() attributes.
1739      if (field != NULL)  alias_type(idx)->set_field(field);
1740    }
1741  }
1742
1743  // Fill the cache for next time.
1744  ace->_adr_type = adr_type;
1745  ace->_index    = idx;
1746  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1747
1748  // Might as well try to fill the cache for the flattened version, too.
1749  AliasCacheEntry* face = probe_alias_cache(flat);
1750  if (face->_adr_type == NULL) {
1751    face->_adr_type = flat;
1752    face->_index    = idx;
1753    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1754  }
1755
1756  return alias_type(idx);
1757}
1758
1759
1760Compile::AliasType* Compile::alias_type(ciField* field) {
1761  const TypeOopPtr* t;
1762  if (field->is_static())
1763    t = TypeInstPtr::make(field->holder()->java_mirror());
1764  else
1765    t = TypeOopPtr::make_from_klass_raw(field->holder());
1766  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1767  assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1768  return atp;
1769}
1770
1771
1772//------------------------------have_alias_type--------------------------------
1773bool Compile::have_alias_type(const TypePtr* adr_type) {
1774  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1775  if (ace->_adr_type == adr_type) {
1776    return true;
1777  }
1778
1779  // Handle special cases.
1780  if (adr_type == NULL)             return true;
1781  if (adr_type == TypePtr::BOTTOM)  return true;
1782
1783  return find_alias_type(adr_type, true, NULL) != NULL;
1784}
1785
1786//-----------------------------must_alias--------------------------------------
1787// True if all values of the given address type are in the given alias category.
1788bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1789  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1790  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1791  if (alias_idx == AliasIdxTop)         return false; // the empty category
1792  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1793
1794  // the only remaining possible overlap is identity
1795  int adr_idx = get_alias_index(adr_type);
1796  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1797  assert(adr_idx == alias_idx ||
1798         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1799          && adr_type                       != TypeOopPtr::BOTTOM),
1800         "should not be testing for overlap with an unsafe pointer");
1801  return adr_idx == alias_idx;
1802}
1803
1804//------------------------------can_alias--------------------------------------
1805// True if any values of the given address type are in the given alias category.
1806bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1807  if (alias_idx == AliasIdxTop)         return false; // the empty category
1808  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1809  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1810  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1811
1812  // the only remaining possible overlap is identity
1813  int adr_idx = get_alias_index(adr_type);
1814  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1815  return adr_idx == alias_idx;
1816}
1817
1818
1819
1820//---------------------------pop_warm_call-------------------------------------
1821WarmCallInfo* Compile::pop_warm_call() {
1822  WarmCallInfo* wci = _warm_calls;
1823  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1824  return wci;
1825}
1826
1827//----------------------------Inline_Warm--------------------------------------
1828int Compile::Inline_Warm() {
1829  // If there is room, try to inline some more warm call sites.
1830  // %%% Do a graph index compaction pass when we think we're out of space?
1831  if (!InlineWarmCalls)  return 0;
1832
1833  int calls_made_hot = 0;
1834  int room_to_grow   = NodeCountInliningCutoff - unique();
1835  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1836  int amount_grown   = 0;
1837  WarmCallInfo* call;
1838  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1839    int est_size = (int)call->size();
1840    if (est_size > (room_to_grow - amount_grown)) {
1841      // This one won't fit anyway.  Get rid of it.
1842      call->make_cold();
1843      continue;
1844    }
1845    call->make_hot();
1846    calls_made_hot++;
1847    amount_grown   += est_size;
1848    amount_to_grow -= est_size;
1849  }
1850
1851  if (calls_made_hot > 0)  set_major_progress();
1852  return calls_made_hot;
1853}
1854
1855
1856//----------------------------Finish_Warm--------------------------------------
1857void Compile::Finish_Warm() {
1858  if (!InlineWarmCalls)  return;
1859  if (failing())  return;
1860  if (warm_calls() == NULL)  return;
1861
1862  // Clean up loose ends, if we are out of space for inlining.
1863  WarmCallInfo* call;
1864  while ((call = pop_warm_call()) != NULL) {
1865    call->make_cold();
1866  }
1867}
1868
1869//---------------------cleanup_loop_predicates-----------------------
1870// Remove the opaque nodes that protect the predicates so that all unused
1871// checks and uncommon_traps will be eliminated from the ideal graph
1872void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1873  if (predicate_count()==0) return;
1874  for (int i = predicate_count(); i > 0; i--) {
1875    Node * n = predicate_opaque1_node(i-1);
1876    assert(n->Opcode() == Op_Opaque1, "must be");
1877    igvn.replace_node(n, n->in(1));
1878  }
1879  assert(predicate_count()==0, "should be clean!");
1880}
1881
1882// StringOpts and late inlining of string methods
1883void Compile::inline_string_calls(bool parse_time) {
1884  {
1885    // remove useless nodes to make the usage analysis simpler
1886    ResourceMark rm;
1887    PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1888  }
1889
1890  {
1891    ResourceMark rm;
1892    print_method(PHASE_BEFORE_STRINGOPTS, 3);
1893    PhaseStringOpts pso(initial_gvn(), for_igvn());
1894    print_method(PHASE_AFTER_STRINGOPTS, 3);
1895  }
1896
1897  // now inline anything that we skipped the first time around
1898  if (!parse_time) {
1899    _late_inlines_pos = _late_inlines.length();
1900  }
1901
1902  while (_string_late_inlines.length() > 0) {
1903    CallGenerator* cg = _string_late_inlines.pop();
1904    cg->do_late_inline();
1905    if (failing())  return;
1906  }
1907  _string_late_inlines.trunc_to(0);
1908}
1909
1910// Late inlining of boxing methods
1911void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1912  if (_boxing_late_inlines.length() > 0) {
1913    assert(has_boxed_value(), "inconsistent");
1914
1915    PhaseGVN* gvn = initial_gvn();
1916    set_inlining_incrementally(true);
1917
1918    assert( igvn._worklist.size() == 0, "should be done with igvn" );
1919    for_igvn()->clear();
1920    gvn->replace_with(&igvn);
1921
1922    _late_inlines_pos = _late_inlines.length();
1923
1924    while (_boxing_late_inlines.length() > 0) {
1925      CallGenerator* cg = _boxing_late_inlines.pop();
1926      cg->do_late_inline();
1927      if (failing())  return;
1928    }
1929    _boxing_late_inlines.trunc_to(0);
1930
1931    {
1932      ResourceMark rm;
1933      PhaseRemoveUseless pru(gvn, for_igvn());
1934    }
1935
1936    igvn = PhaseIterGVN(gvn);
1937    igvn.optimize();
1938
1939    set_inlining_progress(false);
1940    set_inlining_incrementally(false);
1941  }
1942}
1943
1944void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1945  assert(IncrementalInline, "incremental inlining should be on");
1946  PhaseGVN* gvn = initial_gvn();
1947
1948  set_inlining_progress(false);
1949  for_igvn()->clear();
1950  gvn->replace_with(&igvn);
1951
1952  int i = 0;
1953
1954  for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1955    CallGenerator* cg = _late_inlines.at(i);
1956    _late_inlines_pos = i+1;
1957    cg->do_late_inline();
1958    if (failing())  return;
1959  }
1960  int j = 0;
1961  for (; i < _late_inlines.length(); i++, j++) {
1962    _late_inlines.at_put(j, _late_inlines.at(i));
1963  }
1964  _late_inlines.trunc_to(j);
1965
1966  {
1967    ResourceMark rm;
1968    PhaseRemoveUseless pru(gvn, for_igvn());
1969  }
1970
1971  igvn = PhaseIterGVN(gvn);
1972}
1973
1974// Perform incremental inlining until bound on number of live nodes is reached
1975void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1976  PhaseGVN* gvn = initial_gvn();
1977
1978  set_inlining_incrementally(true);
1979  set_inlining_progress(true);
1980  uint low_live_nodes = 0;
1981
1982  while(inlining_progress() && _late_inlines.length() > 0) {
1983
1984    if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1985      if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1986        // PhaseIdealLoop is expensive so we only try it once we are
1987        // out of live nodes and we only try it again if the previous
1988        // helped got the number of nodes down significantly
1989        PhaseIdealLoop ideal_loop( igvn, false, true );
1990        if (failing())  return;
1991        low_live_nodes = live_nodes();
1992        _major_progress = true;
1993      }
1994
1995      if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1996        break;
1997      }
1998    }
1999
2000    inline_incrementally_one(igvn);
2001
2002    if (failing())  return;
2003
2004    igvn.optimize();
2005
2006    if (failing())  return;
2007  }
2008
2009  assert( igvn._worklist.size() == 0, "should be done with igvn" );
2010
2011  if (_string_late_inlines.length() > 0) {
2012    assert(has_stringbuilder(), "inconsistent");
2013    for_igvn()->clear();
2014    initial_gvn()->replace_with(&igvn);
2015
2016    inline_string_calls(false);
2017
2018    if (failing())  return;
2019
2020    {
2021      ResourceMark rm;
2022      PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2023    }
2024
2025    igvn = PhaseIterGVN(gvn);
2026
2027    igvn.optimize();
2028  }
2029
2030  set_inlining_incrementally(false);
2031}
2032
2033
2034//------------------------------Optimize---------------------------------------
2035// Given a graph, optimize it.
2036void Compile::Optimize() {
2037  TracePhase t1("optimizer", &_t_optimizer, true);
2038
2039#ifndef PRODUCT
2040  if (env()->break_at_compile()) {
2041    BREAKPOINT;
2042  }
2043
2044#endif
2045
2046  ResourceMark rm;
2047  int          loop_opts_cnt;
2048
2049  print_inlining_reinit();
2050
2051  NOT_PRODUCT( verify_graph_edges(); )
2052
2053  print_method(PHASE_AFTER_PARSING);
2054
2055 {
2056  // Iterative Global Value Numbering, including ideal transforms
2057  // Initialize IterGVN with types and values from parse-time GVN
2058  PhaseIterGVN igvn(initial_gvn());
2059#ifdef ASSERT
2060  _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2061#endif
2062  {
2063    NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2064    igvn.optimize();
2065  }
2066
2067  print_method(PHASE_ITER_GVN1, 2);
2068
2069  if (failing())  return;
2070
2071  {
2072    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2073    inline_incrementally(igvn);
2074  }
2075
2076  print_method(PHASE_INCREMENTAL_INLINE, 2);
2077
2078  if (failing())  return;
2079
2080  if (eliminate_boxing()) {
2081    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2082    // Inline valueOf() methods now.
2083    inline_boxing_calls(igvn);
2084
2085    if (AlwaysIncrementalInline) {
2086      inline_incrementally(igvn);
2087    }
2088
2089    print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2090
2091    if (failing())  return;
2092  }
2093
2094  // Remove the speculative part of types and clean up the graph from
2095  // the extra CastPP nodes whose only purpose is to carry them. Do
2096  // that early so that optimizations are not disrupted by the extra
2097  // CastPP nodes.
2098  remove_speculative_types(igvn);
2099
2100  // No more new expensive nodes will be added to the list from here
2101  // so keep only the actual candidates for optimizations.
2102  cleanup_expensive_nodes(igvn);
2103
2104  // Perform escape analysis
2105  if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2106    if (has_loops()) {
2107      // Cleanup graph (remove dead nodes).
2108      TracePhase t2("idealLoop", &_t_idealLoop, true);
2109      PhaseIdealLoop ideal_loop( igvn, false, true );
2110      if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2111      if (failing())  return;
2112    }
2113    ConnectionGraph::do_analysis(this, &igvn);
2114
2115    if (failing())  return;
2116
2117    // Optimize out fields loads from scalar replaceable allocations.
2118    igvn.optimize();
2119    print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2120
2121    if (failing())  return;
2122
2123    if (congraph() != NULL && macro_count() > 0) {
2124      NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2125      PhaseMacroExpand mexp(igvn);
2126      mexp.eliminate_macro_nodes();
2127      igvn.set_delay_transform(false);
2128
2129      igvn.optimize();
2130      print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2131
2132      if (failing())  return;
2133    }
2134  }
2135
2136  // Loop transforms on the ideal graph.  Range Check Elimination,
2137  // peeling, unrolling, etc.
2138
2139  // Set loop opts counter
2140  loop_opts_cnt = num_loop_opts();
2141  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2142    {
2143      TracePhase t2("idealLoop", &_t_idealLoop, true);
2144      PhaseIdealLoop ideal_loop( igvn, true );
2145      loop_opts_cnt--;
2146      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2147      if (failing())  return;
2148    }
2149    // Loop opts pass if partial peeling occurred in previous pass
2150    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2151      TracePhase t3("idealLoop", &_t_idealLoop, true);
2152      PhaseIdealLoop ideal_loop( igvn, false );
2153      loop_opts_cnt--;
2154      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2155      if (failing())  return;
2156    }
2157    // Loop opts pass for loop-unrolling before CCP
2158    if(major_progress() && (loop_opts_cnt > 0)) {
2159      TracePhase t4("idealLoop", &_t_idealLoop, true);
2160      PhaseIdealLoop ideal_loop( igvn, false );
2161      loop_opts_cnt--;
2162      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2163    }
2164    if (!failing()) {
2165      // Verify that last round of loop opts produced a valid graph
2166      NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2167      PhaseIdealLoop::verify(igvn);
2168    }
2169  }
2170  if (failing())  return;
2171
2172  // Conditional Constant Propagation;
2173  PhaseCCP ccp( &igvn );
2174  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2175  {
2176    TracePhase t2("ccp", &_t_ccp, true);
2177    ccp.do_transform();
2178  }
2179  print_method(PHASE_CPP1, 2);
2180
2181  assert( true, "Break here to ccp.dump_old2new_map()");
2182
2183  // Iterative Global Value Numbering, including ideal transforms
2184  {
2185    NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2186    igvn = ccp;
2187    igvn.optimize();
2188  }
2189
2190  print_method(PHASE_ITER_GVN2, 2);
2191
2192  if (failing())  return;
2193
2194  // Loop transforms on the ideal graph.  Range Check Elimination,
2195  // peeling, unrolling, etc.
2196  if(loop_opts_cnt > 0) {
2197    debug_only( int cnt = 0; );
2198    while(major_progress() && (loop_opts_cnt > 0)) {
2199      TracePhase t2("idealLoop", &_t_idealLoop, true);
2200      assert( cnt++ < 40, "infinite cycle in loop optimization" );
2201      PhaseIdealLoop ideal_loop( igvn, true);
2202      loop_opts_cnt--;
2203      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2204      if (failing())  return;
2205    }
2206  }
2207
2208  {
2209    // Verify that all previous optimizations produced a valid graph
2210    // at least to this point, even if no loop optimizations were done.
2211    NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2212    PhaseIdealLoop::verify(igvn);
2213  }
2214
2215  {
2216    NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2217    PhaseMacroExpand  mex(igvn);
2218    if (mex.expand_macro_nodes()) {
2219      assert(failing(), "must bail out w/ explicit message");
2220      return;
2221    }
2222  }
2223
2224  DEBUG_ONLY( _modified_nodes = NULL; )
2225 } // (End scope of igvn; run destructor if necessary for asserts.)
2226
2227  process_print_inlining();
2228  // A method with only infinite loops has no edges entering loops from root
2229  {
2230    NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2231    if (final_graph_reshaping()) {
2232      assert(failing(), "must bail out w/ explicit message");
2233      return;
2234    }
2235  }
2236
2237  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2238}
2239
2240
2241//------------------------------Code_Gen---------------------------------------
2242// Given a graph, generate code for it
2243void Compile::Code_Gen() {
2244  if (failing()) {
2245    return;
2246  }
2247
2248  // Perform instruction selection.  You might think we could reclaim Matcher
2249  // memory PDQ, but actually the Matcher is used in generating spill code.
2250  // Internals of the Matcher (including some VectorSets) must remain live
2251  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2252  // set a bit in reclaimed memory.
2253
2254  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2255  // nodes.  Mapping is only valid at the root of each matched subtree.
2256  NOT_PRODUCT( verify_graph_edges(); )
2257
2258  Matcher matcher;
2259  _matcher = &matcher;
2260  {
2261    TracePhase t2("matcher", &_t_matcher, true);
2262    matcher.match();
2263  }
2264  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2265  // nodes.  Mapping is only valid at the root of each matched subtree.
2266  NOT_PRODUCT( verify_graph_edges(); )
2267
2268  // If you have too many nodes, or if matching has failed, bail out
2269  check_node_count(0, "out of nodes matching instructions");
2270  if (failing()) {
2271    return;
2272  }
2273
2274  // Build a proper-looking CFG
2275  PhaseCFG cfg(node_arena(), root(), matcher);
2276  _cfg = &cfg;
2277  {
2278    NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2279    bool success = cfg.do_global_code_motion();
2280    if (!success) {
2281      return;
2282    }
2283
2284    print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2285    NOT_PRODUCT( verify_graph_edges(); )
2286    debug_only( cfg.verify(); )
2287  }
2288
2289  PhaseChaitin regalloc(unique(), cfg, matcher);
2290  _regalloc = &regalloc;
2291  {
2292    TracePhase t2("regalloc", &_t_registerAllocation, true);
2293    // Perform register allocation.  After Chaitin, use-def chains are
2294    // no longer accurate (at spill code) and so must be ignored.
2295    // Node->LRG->reg mappings are still accurate.
2296    _regalloc->Register_Allocate();
2297
2298    // Bail out if the allocator builds too many nodes
2299    if (failing()) {
2300      return;
2301    }
2302  }
2303
2304  // Prior to register allocation we kept empty basic blocks in case the
2305  // the allocator needed a place to spill.  After register allocation we
2306  // are not adding any new instructions.  If any basic block is empty, we
2307  // can now safely remove it.
2308  {
2309    NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2310    cfg.remove_empty_blocks();
2311    if (do_freq_based_layout()) {
2312      PhaseBlockLayout layout(cfg);
2313    } else {
2314      cfg.set_loop_alignment();
2315    }
2316    cfg.fixup_flow();
2317  }
2318
2319  // Apply peephole optimizations
2320  if( OptoPeephole ) {
2321    NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2322    PhasePeephole peep( _regalloc, cfg);
2323    peep.do_transform();
2324  }
2325
2326  // Do late expand if CPU requires this.
2327  if (Matcher::require_postalloc_expand) {
2328    NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2329    cfg.postalloc_expand(_regalloc);
2330  }
2331
2332  // Convert Nodes to instruction bits in a buffer
2333  {
2334    // %%%% workspace merge brought two timers together for one job
2335    TracePhase t2a("output", &_t_output, true);
2336    NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2337    Output();
2338  }
2339
2340  print_method(PHASE_FINAL_CODE);
2341
2342  // He's dead, Jim.
2343  _cfg     = (PhaseCFG*)0xdeadbeef;
2344  _regalloc = (PhaseChaitin*)0xdeadbeef;
2345}
2346
2347
2348//------------------------------dump_asm---------------------------------------
2349// Dump formatted assembly
2350#ifndef PRODUCT
2351void Compile::dump_asm(int *pcs, uint pc_limit) {
2352  bool cut_short = false;
2353  tty->print_cr("#");
2354  tty->print("#  ");  _tf->dump();  tty->cr();
2355  tty->print_cr("#");
2356
2357  // For all blocks
2358  int pc = 0x0;                 // Program counter
2359  char starts_bundle = ' ';
2360  _regalloc->dump_frame();
2361
2362  Node *n = NULL;
2363  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2364    if (VMThread::should_terminate()) {
2365      cut_short = true;
2366      break;
2367    }
2368    Block* block = _cfg->get_block(i);
2369    if (block->is_connector() && !Verbose) {
2370      continue;
2371    }
2372    n = block->head();
2373    if (pcs && n->_idx < pc_limit) {
2374      tty->print("%3.3x   ", pcs[n->_idx]);
2375    } else {
2376      tty->print("      ");
2377    }
2378    block->dump_head(_cfg);
2379    if (block->is_connector()) {
2380      tty->print_cr("        # Empty connector block");
2381    } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2382      tty->print_cr("        # Block is sole successor of call");
2383    }
2384
2385    // For all instructions
2386    Node *delay = NULL;
2387    for (uint j = 0; j < block->number_of_nodes(); j++) {
2388      if (VMThread::should_terminate()) {
2389        cut_short = true;
2390        break;
2391      }
2392      n = block->get_node(j);
2393      if (valid_bundle_info(n)) {
2394        Bundle* bundle = node_bundling(n);
2395        if (bundle->used_in_unconditional_delay()) {
2396          delay = n;
2397          continue;
2398        }
2399        if (bundle->starts_bundle()) {
2400          starts_bundle = '+';
2401        }
2402      }
2403
2404      if (WizardMode) {
2405        n->dump();
2406      }
2407
2408      if( !n->is_Region() &&    // Dont print in the Assembly
2409          !n->is_Phi() &&       // a few noisely useless nodes
2410          !n->is_Proj() &&
2411          !n->is_MachTemp() &&
2412          !n->is_SafePointScalarObject() &&
2413          !n->is_Catch() &&     // Would be nice to print exception table targets
2414          !n->is_MergeMem() &&  // Not very interesting
2415          !n->is_top() &&       // Debug info table constants
2416          !(n->is_Con() && !n->is_Mach())// Debug info table constants
2417          ) {
2418        if (pcs && n->_idx < pc_limit)
2419          tty->print("%3.3x", pcs[n->_idx]);
2420        else
2421          tty->print("   ");
2422        tty->print(" %c ", starts_bundle);
2423        starts_bundle = ' ';
2424        tty->print("\t");
2425        n->format(_regalloc, tty);
2426        tty->cr();
2427      }
2428
2429      // If we have an instruction with a delay slot, and have seen a delay,
2430      // then back up and print it
2431      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2432        assert(delay != NULL, "no unconditional delay instruction");
2433        if (WizardMode) delay->dump();
2434
2435        if (node_bundling(delay)->starts_bundle())
2436          starts_bundle = '+';
2437        if (pcs && n->_idx < pc_limit)
2438          tty->print("%3.3x", pcs[n->_idx]);
2439        else
2440          tty->print("   ");
2441        tty->print(" %c ", starts_bundle);
2442        starts_bundle = ' ';
2443        tty->print("\t");
2444        delay->format(_regalloc, tty);
2445        tty->cr();
2446        delay = NULL;
2447      }
2448
2449      // Dump the exception table as well
2450      if( n->is_Catch() && (Verbose || WizardMode) ) {
2451        // Print the exception table for this offset
2452        _handler_table.print_subtable_for(pc);
2453      }
2454    }
2455
2456    if (pcs && n->_idx < pc_limit)
2457      tty->print_cr("%3.3x", pcs[n->_idx]);
2458    else
2459      tty->cr();
2460
2461    assert(cut_short || delay == NULL, "no unconditional delay branch");
2462
2463  } // End of per-block dump
2464  tty->cr();
2465
2466  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2467}
2468#endif
2469
2470//------------------------------Final_Reshape_Counts---------------------------
2471// This class defines counters to help identify when a method
2472// may/must be executed using hardware with only 24-bit precision.
2473struct Final_Reshape_Counts : public StackObj {
2474  int  _call_count;             // count non-inlined 'common' calls
2475  int  _float_count;            // count float ops requiring 24-bit precision
2476  int  _double_count;           // count double ops requiring more precision
2477  int  _java_call_count;        // count non-inlined 'java' calls
2478  int  _inner_loop_count;       // count loops which need alignment
2479  VectorSet _visited;           // Visitation flags
2480  Node_List _tests;             // Set of IfNodes & PCTableNodes
2481
2482  Final_Reshape_Counts() :
2483    _call_count(0), _float_count(0), _double_count(0),
2484    _java_call_count(0), _inner_loop_count(0),
2485    _visited( Thread::current()->resource_area() ) { }
2486
2487  void inc_call_count  () { _call_count  ++; }
2488  void inc_float_count () { _float_count ++; }
2489  void inc_double_count() { _double_count++; }
2490  void inc_java_call_count() { _java_call_count++; }
2491  void inc_inner_loop_count() { _inner_loop_count++; }
2492
2493  int  get_call_count  () const { return _call_count  ; }
2494  int  get_float_count () const { return _float_count ; }
2495  int  get_double_count() const { return _double_count; }
2496  int  get_java_call_count() const { return _java_call_count; }
2497  int  get_inner_loop_count() const { return _inner_loop_count; }
2498};
2499
2500#ifdef ASSERT
2501static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2502  ciInstanceKlass *k = tp->klass()->as_instance_klass();
2503  // Make sure the offset goes inside the instance layout.
2504  return k->contains_field_offset(tp->offset());
2505  // Note that OffsetBot and OffsetTop are very negative.
2506}
2507#endif
2508
2509// Eliminate trivially redundant StoreCMs and accumulate their
2510// precedence edges.
2511void Compile::eliminate_redundant_card_marks(Node* n) {
2512  assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2513  if (n->in(MemNode::Address)->outcnt() > 1) {
2514    // There are multiple users of the same address so it might be
2515    // possible to eliminate some of the StoreCMs
2516    Node* mem = n->in(MemNode::Memory);
2517    Node* adr = n->in(MemNode::Address);
2518    Node* val = n->in(MemNode::ValueIn);
2519    Node* prev = n;
2520    bool done = false;
2521    // Walk the chain of StoreCMs eliminating ones that match.  As
2522    // long as it's a chain of single users then the optimization is
2523    // safe.  Eliminating partially redundant StoreCMs would require
2524    // cloning copies down the other paths.
2525    while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2526      if (adr == mem->in(MemNode::Address) &&
2527          val == mem->in(MemNode::ValueIn)) {
2528        // redundant StoreCM
2529        if (mem->req() > MemNode::OopStore) {
2530          // Hasn't been processed by this code yet.
2531          n->add_prec(mem->in(MemNode::OopStore));
2532        } else {
2533          // Already converted to precedence edge
2534          for (uint i = mem->req(); i < mem->len(); i++) {
2535            // Accumulate any precedence edges
2536            if (mem->in(i) != NULL) {
2537              n->add_prec(mem->in(i));
2538            }
2539          }
2540          // Everything above this point has been processed.
2541          done = true;
2542        }
2543        // Eliminate the previous StoreCM
2544        prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2545        assert(mem->outcnt() == 0, "should be dead");
2546        mem->disconnect_inputs(NULL, this);
2547      } else {
2548        prev = mem;
2549      }
2550      mem = prev->in(MemNode::Memory);
2551    }
2552  }
2553}
2554
2555//------------------------------final_graph_reshaping_impl----------------------
2556// Implement items 1-5 from final_graph_reshaping below.
2557void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2558
2559  if ( n->outcnt() == 0 ) return; // dead node
2560  uint nop = n->Opcode();
2561
2562  // Check for 2-input instruction with "last use" on right input.
2563  // Swap to left input.  Implements item (2).
2564  if( n->req() == 3 &&          // two-input instruction
2565      n->in(1)->outcnt() > 1 && // left use is NOT a last use
2566      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2567      n->in(2)->outcnt() == 1 &&// right use IS a last use
2568      !n->in(2)->is_Con() ) {   // right use is not a constant
2569    // Check for commutative opcode
2570    switch( nop ) {
2571    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2572    case Op_MaxI:  case Op_MinI:
2573    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2574    case Op_AndL:  case Op_XorL:  case Op_OrL:
2575    case Op_AndI:  case Op_XorI:  case Op_OrI: {
2576      // Move "last use" input to left by swapping inputs
2577      n->swap_edges(1, 2);
2578      break;
2579    }
2580    default:
2581      break;
2582    }
2583  }
2584
2585#ifdef ASSERT
2586  if( n->is_Mem() ) {
2587    int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2588    assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2589            // oop will be recorded in oop map if load crosses safepoint
2590            n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2591                             LoadNode::is_immutable_value(n->in(MemNode::Address))),
2592            "raw memory operations should have control edge");
2593  }
2594#endif
2595  // Count FPU ops and common calls, implements item (3)
2596  switch( nop ) {
2597  // Count all float operations that may use FPU
2598  case Op_AddF:
2599  case Op_SubF:
2600  case Op_MulF:
2601  case Op_DivF:
2602  case Op_NegF:
2603  case Op_ModF:
2604  case Op_ConvI2F:
2605  case Op_ConF:
2606  case Op_CmpF:
2607  case Op_CmpF3:
2608  // case Op_ConvL2F: // longs are split into 32-bit halves
2609    frc.inc_float_count();
2610    break;
2611
2612  case Op_ConvF2D:
2613  case Op_ConvD2F:
2614    frc.inc_float_count();
2615    frc.inc_double_count();
2616    break;
2617
2618  // Count all double operations that may use FPU
2619  case Op_AddD:
2620  case Op_SubD:
2621  case Op_MulD:
2622  case Op_DivD:
2623  case Op_NegD:
2624  case Op_ModD:
2625  case Op_ConvI2D:
2626  case Op_ConvD2I:
2627  // case Op_ConvL2D: // handled by leaf call
2628  // case Op_ConvD2L: // handled by leaf call
2629  case Op_ConD:
2630  case Op_CmpD:
2631  case Op_CmpD3:
2632    frc.inc_double_count();
2633    break;
2634  case Op_Opaque1:              // Remove Opaque Nodes before matching
2635  case Op_Opaque2:              // Remove Opaque Nodes before matching
2636  case Op_Opaque3:
2637    n->subsume_by(n->in(1), this);
2638    break;
2639  case Op_CallStaticJava:
2640  case Op_CallJava:
2641  case Op_CallDynamicJava:
2642    frc.inc_java_call_count(); // Count java call site;
2643  case Op_CallRuntime:
2644  case Op_CallLeaf:
2645  case Op_CallLeafNoFP: {
2646    assert( n->is_Call(), "" );
2647    CallNode *call = n->as_Call();
2648    // Count call sites where the FP mode bit would have to be flipped.
2649    // Do not count uncommon runtime calls:
2650    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2651    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2652    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2653      frc.inc_call_count();   // Count the call site
2654    } else {                  // See if uncommon argument is shared
2655      Node *n = call->in(TypeFunc::Parms);
2656      int nop = n->Opcode();
2657      // Clone shared simple arguments to uncommon calls, item (1).
2658      if( n->outcnt() > 1 &&
2659          !n->is_Proj() &&
2660          nop != Op_CreateEx &&
2661          nop != Op_CheckCastPP &&
2662          nop != Op_DecodeN &&
2663          nop != Op_DecodeNKlass &&
2664          !n->is_Mem() ) {
2665        Node *x = n->clone();
2666        call->set_req( TypeFunc::Parms, x );
2667      }
2668    }
2669    break;
2670  }
2671
2672  case Op_StoreD:
2673  case Op_LoadD:
2674  case Op_LoadD_unaligned:
2675    frc.inc_double_count();
2676    goto handle_mem;
2677  case Op_StoreF:
2678  case Op_LoadF:
2679    frc.inc_float_count();
2680    goto handle_mem;
2681
2682  case Op_StoreCM:
2683    {
2684      // Convert OopStore dependence into precedence edge
2685      Node* prec = n->in(MemNode::OopStore);
2686      n->del_req(MemNode::OopStore);
2687      n->add_prec(prec);
2688      eliminate_redundant_card_marks(n);
2689    }
2690
2691    // fall through
2692
2693  case Op_StoreB:
2694  case Op_StoreC:
2695  case Op_StorePConditional:
2696  case Op_StoreI:
2697  case Op_StoreL:
2698  case Op_StoreIConditional:
2699  case Op_StoreLConditional:
2700  case Op_CompareAndSwapI:
2701  case Op_CompareAndSwapL:
2702  case Op_CompareAndSwapP:
2703  case Op_CompareAndSwapN:
2704  case Op_GetAndAddI:
2705  case Op_GetAndAddL:
2706  case Op_GetAndSetI:
2707  case Op_GetAndSetL:
2708  case Op_GetAndSetP:
2709  case Op_GetAndSetN:
2710  case Op_StoreP:
2711  case Op_StoreN:
2712  case Op_StoreNKlass:
2713  case Op_LoadB:
2714  case Op_LoadUB:
2715  case Op_LoadUS:
2716  case Op_LoadI:
2717  case Op_LoadKlass:
2718  case Op_LoadNKlass:
2719  case Op_LoadL:
2720  case Op_LoadL_unaligned:
2721  case Op_LoadPLocked:
2722  case Op_LoadP:
2723  case Op_LoadN:
2724  case Op_LoadRange:
2725  case Op_LoadS: {
2726  handle_mem:
2727#ifdef ASSERT
2728    if( VerifyOptoOopOffsets ) {
2729      assert( n->is_Mem(), "" );
2730      MemNode *mem  = (MemNode*)n;
2731      // Check to see if address types have grounded out somehow.
2732      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2733      assert( !tp || oop_offset_is_sane(tp), "" );
2734    }
2735#endif
2736    break;
2737  }
2738
2739  case Op_AddP: {               // Assert sane base pointers
2740    Node *addp = n->in(AddPNode::Address);
2741    assert( !addp->is_AddP() ||
2742            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2743            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2744            "Base pointers must match" );
2745#ifdef _LP64
2746    if ((UseCompressedOops || UseCompressedClassPointers) &&
2747        addp->Opcode() == Op_ConP &&
2748        addp == n->in(AddPNode::Base) &&
2749        n->in(AddPNode::Offset)->is_Con()) {
2750      // Use addressing with narrow klass to load with offset on x86.
2751      // On sparc loading 32-bits constant and decoding it have less
2752      // instructions (4) then load 64-bits constant (7).
2753      // Do this transformation here since IGVN will convert ConN back to ConP.
2754      const Type* t = addp->bottom_type();
2755      if (t->isa_oopptr() || t->isa_klassptr()) {
2756        Node* nn = NULL;
2757
2758        int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2759
2760        // Look for existing ConN node of the same exact type.
2761        Node* r  = root();
2762        uint cnt = r->outcnt();
2763        for (uint i = 0; i < cnt; i++) {
2764          Node* m = r->raw_out(i);
2765          if (m!= NULL && m->Opcode() == op &&
2766              m->bottom_type()->make_ptr() == t) {
2767            nn = m;
2768            break;
2769          }
2770        }
2771        if (nn != NULL) {
2772          // Decode a narrow oop to match address
2773          // [R12 + narrow_oop_reg<<3 + offset]
2774          if (t->isa_oopptr()) {
2775            nn = new DecodeNNode(nn, t);
2776          } else {
2777            nn = new DecodeNKlassNode(nn, t);
2778          }
2779          n->set_req(AddPNode::Base, nn);
2780          n->set_req(AddPNode::Address, nn);
2781          if (addp->outcnt() == 0) {
2782            addp->disconnect_inputs(NULL, this);
2783          }
2784        }
2785      }
2786    }
2787#endif
2788    break;
2789  }
2790
2791#ifdef _LP64
2792  case Op_CastPP:
2793    if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2794      Node* in1 = n->in(1);
2795      const Type* t = n->bottom_type();
2796      Node* new_in1 = in1->clone();
2797      new_in1->as_DecodeN()->set_type(t);
2798
2799      if (!Matcher::narrow_oop_use_complex_address()) {
2800        //
2801        // x86, ARM and friends can handle 2 adds in addressing mode
2802        // and Matcher can fold a DecodeN node into address by using
2803        // a narrow oop directly and do implicit NULL check in address:
2804        //
2805        // [R12 + narrow_oop_reg<<3 + offset]
2806        // NullCheck narrow_oop_reg
2807        //
2808        // On other platforms (Sparc) we have to keep new DecodeN node and
2809        // use it to do implicit NULL check in address:
2810        //
2811        // decode_not_null narrow_oop_reg, base_reg
2812        // [base_reg + offset]
2813        // NullCheck base_reg
2814        //
2815        // Pin the new DecodeN node to non-null path on these platform (Sparc)
2816        // to keep the information to which NULL check the new DecodeN node
2817        // corresponds to use it as value in implicit_null_check().
2818        //
2819        new_in1->set_req(0, n->in(0));
2820      }
2821
2822      n->subsume_by(new_in1, this);
2823      if (in1->outcnt() == 0) {
2824        in1->disconnect_inputs(NULL, this);
2825      }
2826    }
2827    break;
2828
2829  case Op_CmpP:
2830    // Do this transformation here to preserve CmpPNode::sub() and
2831    // other TypePtr related Ideal optimizations (for example, ptr nullness).
2832    if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2833      Node* in1 = n->in(1);
2834      Node* in2 = n->in(2);
2835      if (!in1->is_DecodeNarrowPtr()) {
2836        in2 = in1;
2837        in1 = n->in(2);
2838      }
2839      assert(in1->is_DecodeNarrowPtr(), "sanity");
2840
2841      Node* new_in2 = NULL;
2842      if (in2->is_DecodeNarrowPtr()) {
2843        assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2844        new_in2 = in2->in(1);
2845      } else if (in2->Opcode() == Op_ConP) {
2846        const Type* t = in2->bottom_type();
2847        if (t == TypePtr::NULL_PTR) {
2848          assert(in1->is_DecodeN(), "compare klass to null?");
2849          // Don't convert CmpP null check into CmpN if compressed
2850          // oops implicit null check is not generated.
2851          // This will allow to generate normal oop implicit null check.
2852          if (Matcher::gen_narrow_oop_implicit_null_checks())
2853            new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2854          //
2855          // This transformation together with CastPP transformation above
2856          // will generated code for implicit NULL checks for compressed oops.
2857          //
2858          // The original code after Optimize()
2859          //
2860          //    LoadN memory, narrow_oop_reg
2861          //    decode narrow_oop_reg, base_reg
2862          //    CmpP base_reg, NULL
2863          //    CastPP base_reg // NotNull
2864          //    Load [base_reg + offset], val_reg
2865          //
2866          // after these transformations will be
2867          //
2868          //    LoadN memory, narrow_oop_reg
2869          //    CmpN narrow_oop_reg, NULL
2870          //    decode_not_null narrow_oop_reg, base_reg
2871          //    Load [base_reg + offset], val_reg
2872          //
2873          // and the uncommon path (== NULL) will use narrow_oop_reg directly
2874          // since narrow oops can be used in debug info now (see the code in
2875          // final_graph_reshaping_walk()).
2876          //
2877          // At the end the code will be matched to
2878          // on x86:
2879          //
2880          //    Load_narrow_oop memory, narrow_oop_reg
2881          //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2882          //    NullCheck narrow_oop_reg
2883          //
2884          // and on sparc:
2885          //
2886          //    Load_narrow_oop memory, narrow_oop_reg
2887          //    decode_not_null narrow_oop_reg, base_reg
2888          //    Load [base_reg + offset], val_reg
2889          //    NullCheck base_reg
2890          //
2891        } else if (t->isa_oopptr()) {
2892          new_in2 = ConNode::make(t->make_narrowoop());
2893        } else if (t->isa_klassptr()) {
2894          new_in2 = ConNode::make(t->make_narrowklass());
2895        }
2896      }
2897      if (new_in2 != NULL) {
2898        Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2899        n->subsume_by(cmpN, this);
2900        if (in1->outcnt() == 0) {
2901          in1->disconnect_inputs(NULL, this);
2902        }
2903        if (in2->outcnt() == 0) {
2904          in2->disconnect_inputs(NULL, this);
2905        }
2906      }
2907    }
2908    break;
2909
2910  case Op_DecodeN:
2911  case Op_DecodeNKlass:
2912    assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2913    // DecodeN could be pinned when it can't be fold into
2914    // an address expression, see the code for Op_CastPP above.
2915    assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2916    break;
2917
2918  case Op_EncodeP:
2919  case Op_EncodePKlass: {
2920    Node* in1 = n->in(1);
2921    if (in1->is_DecodeNarrowPtr()) {
2922      n->subsume_by(in1->in(1), this);
2923    } else if (in1->Opcode() == Op_ConP) {
2924      const Type* t = in1->bottom_type();
2925      if (t == TypePtr::NULL_PTR) {
2926        assert(t->isa_oopptr(), "null klass?");
2927        n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
2928      } else if (t->isa_oopptr()) {
2929        n->subsume_by(ConNode::make(t->make_narrowoop()), this);
2930      } else if (t->isa_klassptr()) {
2931        n->subsume_by(ConNode::make(t->make_narrowklass()), this);
2932      }
2933    }
2934    if (in1->outcnt() == 0) {
2935      in1->disconnect_inputs(NULL, this);
2936    }
2937    break;
2938  }
2939
2940  case Op_Proj: {
2941    if (OptimizeStringConcat) {
2942      ProjNode* p = n->as_Proj();
2943      if (p->_is_io_use) {
2944        // Separate projections were used for the exception path which
2945        // are normally removed by a late inline.  If it wasn't inlined
2946        // then they will hang around and should just be replaced with
2947        // the original one.
2948        Node* proj = NULL;
2949        // Replace with just one
2950        for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2951          Node *use = i.get();
2952          if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2953            proj = use;
2954            break;
2955          }
2956        }
2957        assert(proj != NULL, "must be found");
2958        p->subsume_by(proj, this);
2959      }
2960    }
2961    break;
2962  }
2963
2964  case Op_Phi:
2965    if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2966      // The EncodeP optimization may create Phi with the same edges
2967      // for all paths. It is not handled well by Register Allocator.
2968      Node* unique_in = n->in(1);
2969      assert(unique_in != NULL, "");
2970      uint cnt = n->req();
2971      for (uint i = 2; i < cnt; i++) {
2972        Node* m = n->in(i);
2973        assert(m != NULL, "");
2974        if (unique_in != m)
2975          unique_in = NULL;
2976      }
2977      if (unique_in != NULL) {
2978        n->subsume_by(unique_in, this);
2979      }
2980    }
2981    break;
2982
2983#endif
2984
2985  case Op_ModI:
2986    if (UseDivMod) {
2987      // Check if a%b and a/b both exist
2988      Node* d = n->find_similar(Op_DivI);
2989      if (d) {
2990        // Replace them with a fused divmod if supported
2991        if (Matcher::has_match_rule(Op_DivModI)) {
2992          DivModINode* divmod = DivModINode::make(n);
2993          d->subsume_by(divmod->div_proj(), this);
2994          n->subsume_by(divmod->mod_proj(), this);
2995        } else {
2996          // replace a%b with a-((a/b)*b)
2997          Node* mult = new MulINode(d, d->in(2));
2998          Node* sub  = new SubINode(d->in(1), mult);
2999          n->subsume_by(sub, this);
3000        }
3001      }
3002    }
3003    break;
3004
3005  case Op_ModL:
3006    if (UseDivMod) {
3007      // Check if a%b and a/b both exist
3008      Node* d = n->find_similar(Op_DivL);
3009      if (d) {
3010        // Replace them with a fused divmod if supported
3011        if (Matcher::has_match_rule(Op_DivModL)) {
3012          DivModLNode* divmod = DivModLNode::make(n);
3013          d->subsume_by(divmod->div_proj(), this);
3014          n->subsume_by(divmod->mod_proj(), this);
3015        } else {
3016          // replace a%b with a-((a/b)*b)
3017          Node* mult = new MulLNode(d, d->in(2));
3018          Node* sub  = new SubLNode(d->in(1), mult);
3019          n->subsume_by(sub, this);
3020        }
3021      }
3022    }
3023    break;
3024
3025  case Op_LoadVector:
3026  case Op_StoreVector:
3027    break;
3028
3029  case Op_PackB:
3030  case Op_PackS:
3031  case Op_PackI:
3032  case Op_PackF:
3033  case Op_PackL:
3034  case Op_PackD:
3035    if (n->req()-1 > 2) {
3036      // Replace many operand PackNodes with a binary tree for matching
3037      PackNode* p = (PackNode*) n;
3038      Node* btp = p->binary_tree_pack(1, n->req());
3039      n->subsume_by(btp, this);
3040    }
3041    break;
3042  case Op_Loop:
3043  case Op_CountedLoop:
3044    if (n->as_Loop()->is_inner_loop()) {
3045      frc.inc_inner_loop_count();
3046    }
3047    break;
3048  case Op_LShiftI:
3049  case Op_RShiftI:
3050  case Op_URShiftI:
3051  case Op_LShiftL:
3052  case Op_RShiftL:
3053  case Op_URShiftL:
3054    if (Matcher::need_masked_shift_count) {
3055      // The cpu's shift instructions don't restrict the count to the
3056      // lower 5/6 bits. We need to do the masking ourselves.
3057      Node* in2 = n->in(2);
3058      juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3059      const TypeInt* t = in2->find_int_type();
3060      if (t != NULL && t->is_con()) {
3061        juint shift = t->get_con();
3062        if (shift > mask) { // Unsigned cmp
3063          n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3064        }
3065      } else {
3066        if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3067          Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3068          n->set_req(2, shift);
3069        }
3070      }
3071      if (in2->outcnt() == 0) { // Remove dead node
3072        in2->disconnect_inputs(NULL, this);
3073      }
3074    }
3075    break;
3076  case Op_MemBarStoreStore:
3077  case Op_MemBarRelease:
3078    // Break the link with AllocateNode: it is no longer useful and
3079    // confuses register allocation.
3080    if (n->req() > MemBarNode::Precedent) {
3081      n->set_req(MemBarNode::Precedent, top());
3082    }
3083    break;
3084  default:
3085    assert( !n->is_Call(), "" );
3086    assert( !n->is_Mem(), "" );
3087    break;
3088  }
3089
3090  // Collect CFG split points
3091  if (n->is_MultiBranch())
3092    frc._tests.push(n);
3093}
3094
3095//------------------------------final_graph_reshaping_walk---------------------
3096// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3097// requires that the walk visits a node's inputs before visiting the node.
3098void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3099  ResourceArea *area = Thread::current()->resource_area();
3100  Unique_Node_List sfpt(area);
3101
3102  frc._visited.set(root->_idx); // first, mark node as visited
3103  uint cnt = root->req();
3104  Node *n = root;
3105  uint  i = 0;
3106  while (true) {
3107    if (i < cnt) {
3108      // Place all non-visited non-null inputs onto stack
3109      Node* m = n->in(i);
3110      ++i;
3111      if (m != NULL && !frc._visited.test_set(m->_idx)) {
3112        if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3113          // compute worst case interpreter size in case of a deoptimization
3114          update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3115
3116          sfpt.push(m);
3117        }
3118        cnt = m->req();
3119        nstack.push(n, i); // put on stack parent and next input's index
3120        n = m;
3121        i = 0;
3122      }
3123    } else {
3124      // Now do post-visit work
3125      final_graph_reshaping_impl( n, frc );
3126      if (nstack.is_empty())
3127        break;             // finished
3128      n = nstack.node();   // Get node from stack
3129      cnt = n->req();
3130      i = nstack.index();
3131      nstack.pop();        // Shift to the next node on stack
3132    }
3133  }
3134
3135  // Skip next transformation if compressed oops are not used.
3136  if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3137      (!UseCompressedOops && !UseCompressedClassPointers))
3138    return;
3139
3140  // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3141  // It could be done for an uncommon traps or any safepoints/calls
3142  // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3143  while (sfpt.size() > 0) {
3144    n = sfpt.pop();
3145    JVMState *jvms = n->as_SafePoint()->jvms();
3146    assert(jvms != NULL, "sanity");
3147    int start = jvms->debug_start();
3148    int end   = n->req();
3149    bool is_uncommon = (n->is_CallStaticJava() &&
3150                        n->as_CallStaticJava()->uncommon_trap_request() != 0);
3151    for (int j = start; j < end; j++) {
3152      Node* in = n->in(j);
3153      if (in->is_DecodeNarrowPtr()) {
3154        bool safe_to_skip = true;
3155        if (!is_uncommon ) {
3156          // Is it safe to skip?
3157          for (uint i = 0; i < in->outcnt(); i++) {
3158            Node* u = in->raw_out(i);
3159            if (!u->is_SafePoint() ||
3160                 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3161              safe_to_skip = false;
3162            }
3163          }
3164        }
3165        if (safe_to_skip) {
3166          n->set_req(j, in->in(1));
3167        }
3168        if (in->outcnt() == 0) {
3169          in->disconnect_inputs(NULL, this);
3170        }
3171      }
3172    }
3173  }
3174}
3175
3176//------------------------------final_graph_reshaping--------------------------
3177// Final Graph Reshaping.
3178//
3179// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3180//     and not commoned up and forced early.  Must come after regular
3181//     optimizations to avoid GVN undoing the cloning.  Clone constant
3182//     inputs to Loop Phis; these will be split by the allocator anyways.
3183//     Remove Opaque nodes.
3184// (2) Move last-uses by commutative operations to the left input to encourage
3185//     Intel update-in-place two-address operations and better register usage
3186//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3187//     calls canonicalizing them back.
3188// (3) Count the number of double-precision FP ops, single-precision FP ops
3189//     and call sites.  On Intel, we can get correct rounding either by
3190//     forcing singles to memory (requires extra stores and loads after each
3191//     FP bytecode) or we can set a rounding mode bit (requires setting and
3192//     clearing the mode bit around call sites).  The mode bit is only used
3193//     if the relative frequency of single FP ops to calls is low enough.
3194//     This is a key transform for SPEC mpeg_audio.
3195// (4) Detect infinite loops; blobs of code reachable from above but not
3196//     below.  Several of the Code_Gen algorithms fail on such code shapes,
3197//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3198//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3199//     Detection is by looking for IfNodes where only 1 projection is
3200//     reachable from below or CatchNodes missing some targets.
3201// (5) Assert for insane oop offsets in debug mode.
3202
3203bool Compile::final_graph_reshaping() {
3204  // an infinite loop may have been eliminated by the optimizer,
3205  // in which case the graph will be empty.
3206  if (root()->req() == 1) {
3207    record_method_not_compilable("trivial infinite loop");
3208    return true;
3209  }
3210
3211  // Expensive nodes have their control input set to prevent the GVN
3212  // from freely commoning them. There's no GVN beyond this point so
3213  // no need to keep the control input. We want the expensive nodes to
3214  // be freely moved to the least frequent code path by gcm.
3215  assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3216  for (int i = 0; i < expensive_count(); i++) {
3217    _expensive_nodes->at(i)->set_req(0, NULL);
3218  }
3219
3220  Final_Reshape_Counts frc;
3221
3222  // Visit everybody reachable!
3223  // Allocate stack of size C->unique()/2 to avoid frequent realloc
3224  Node_Stack nstack(unique() >> 1);
3225  final_graph_reshaping_walk(nstack, root(), frc);
3226
3227  // Check for unreachable (from below) code (i.e., infinite loops).
3228  for( uint i = 0; i < frc._tests.size(); i++ ) {
3229    MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3230    // Get number of CFG targets.
3231    // Note that PCTables include exception targets after calls.
3232    uint required_outcnt = n->required_outcnt();
3233    if (n->outcnt() != required_outcnt) {
3234      // Check for a few special cases.  Rethrow Nodes never take the
3235      // 'fall-thru' path, so expected kids is 1 less.
3236      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3237        if (n->in(0)->in(0)->is_Call()) {
3238          CallNode *call = n->in(0)->in(0)->as_Call();
3239          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3240            required_outcnt--;      // Rethrow always has 1 less kid
3241          } else if (call->req() > TypeFunc::Parms &&
3242                     call->is_CallDynamicJava()) {
3243            // Check for null receiver. In such case, the optimizer has
3244            // detected that the virtual call will always result in a null
3245            // pointer exception. The fall-through projection of this CatchNode
3246            // will not be populated.
3247            Node *arg0 = call->in(TypeFunc::Parms);
3248            if (arg0->is_Type() &&
3249                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3250              required_outcnt--;
3251            }
3252          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3253                     call->req() > TypeFunc::Parms+1 &&
3254                     call->is_CallStaticJava()) {
3255            // Check for negative array length. In such case, the optimizer has
3256            // detected that the allocation attempt will always result in an
3257            // exception. There is no fall-through projection of this CatchNode .
3258            Node *arg1 = call->in(TypeFunc::Parms+1);
3259            if (arg1->is_Type() &&
3260                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3261              required_outcnt--;
3262            }
3263          }
3264        }
3265      }
3266      // Recheck with a better notion of 'required_outcnt'
3267      if (n->outcnt() != required_outcnt) {
3268        record_method_not_compilable("malformed control flow");
3269        return true;            // Not all targets reachable!
3270      }
3271    }
3272    // Check that I actually visited all kids.  Unreached kids
3273    // must be infinite loops.
3274    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3275      if (!frc._visited.test(n->fast_out(j)->_idx)) {
3276        record_method_not_compilable("infinite loop");
3277        return true;            // Found unvisited kid; must be unreach
3278      }
3279  }
3280
3281  // If original bytecodes contained a mixture of floats and doubles
3282  // check if the optimizer has made it homogenous, item (3).
3283  if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3284      frc.get_float_count() > 32 &&
3285      frc.get_double_count() == 0 &&
3286      (10 * frc.get_call_count() < frc.get_float_count()) ) {
3287    set_24_bit_selection_and_mode( false,  true );
3288  }
3289
3290  set_java_calls(frc.get_java_call_count());
3291  set_inner_loops(frc.get_inner_loop_count());
3292
3293  // No infinite loops, no reason to bail out.
3294  return false;
3295}
3296
3297//-----------------------------too_many_traps----------------------------------
3298// Report if there are too many traps at the current method and bci.
3299// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3300bool Compile::too_many_traps(ciMethod* method,
3301                             int bci,
3302                             Deoptimization::DeoptReason reason) {
3303  ciMethodData* md = method->method_data();
3304  if (md->is_empty()) {
3305    // Assume the trap has not occurred, or that it occurred only
3306    // because of a transient condition during start-up in the interpreter.
3307    return false;
3308  }
3309  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3310  if (md->has_trap_at(bci, m, reason) != 0) {
3311    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3312    // Also, if there are multiple reasons, or if there is no per-BCI record,
3313    // assume the worst.
3314    if (log())
3315      log()->elem("observe trap='%s' count='%d'",
3316                  Deoptimization::trap_reason_name(reason),
3317                  md->trap_count(reason));
3318    return true;
3319  } else {
3320    // Ignore method/bci and see if there have been too many globally.
3321    return too_many_traps(reason, md);
3322  }
3323}
3324
3325// Less-accurate variant which does not require a method and bci.
3326bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3327                             ciMethodData* logmd) {
3328  if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3329    // Too many traps globally.
3330    // Note that we use cumulative trap_count, not just md->trap_count.
3331    if (log()) {
3332      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3333      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3334                  Deoptimization::trap_reason_name(reason),
3335                  mcount, trap_count(reason));
3336    }
3337    return true;
3338  } else {
3339    // The coast is clear.
3340    return false;
3341  }
3342}
3343
3344//--------------------------too_many_recompiles--------------------------------
3345// Report if there are too many recompiles at the current method and bci.
3346// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3347// Is not eager to return true, since this will cause the compiler to use
3348// Action_none for a trap point, to avoid too many recompilations.
3349bool Compile::too_many_recompiles(ciMethod* method,
3350                                  int bci,
3351                                  Deoptimization::DeoptReason reason) {
3352  ciMethodData* md = method->method_data();
3353  if (md->is_empty()) {
3354    // Assume the trap has not occurred, or that it occurred only
3355    // because of a transient condition during start-up in the interpreter.
3356    return false;
3357  }
3358  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3359  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3360  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3361  Deoptimization::DeoptReason per_bc_reason
3362    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3363  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3364  if ((per_bc_reason == Deoptimization::Reason_none
3365       || md->has_trap_at(bci, m, reason) != 0)
3366      // The trap frequency measure we care about is the recompile count:
3367      && md->trap_recompiled_at(bci, m)
3368      && md->overflow_recompile_count() >= bc_cutoff) {
3369    // Do not emit a trap here if it has already caused recompilations.
3370    // Also, if there are multiple reasons, or if there is no per-BCI record,
3371    // assume the worst.
3372    if (log())
3373      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3374                  Deoptimization::trap_reason_name(reason),
3375                  md->trap_count(reason),
3376                  md->overflow_recompile_count());
3377    return true;
3378  } else if (trap_count(reason) != 0
3379             && decompile_count() >= m_cutoff) {
3380    // Too many recompiles globally, and we have seen this sort of trap.
3381    // Use cumulative decompile_count, not just md->decompile_count.
3382    if (log())
3383      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3384                  Deoptimization::trap_reason_name(reason),
3385                  md->trap_count(reason), trap_count(reason),
3386                  md->decompile_count(), decompile_count());
3387    return true;
3388  } else {
3389    // The coast is clear.
3390    return false;
3391  }
3392}
3393
3394// Compute when not to trap. Used by matching trap based nodes and
3395// NullCheck optimization.
3396void Compile::set_allowed_deopt_reasons() {
3397  _allowed_reasons = 0;
3398  if (is_method_compilation()) {
3399    for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3400      assert(rs < BitsPerInt, "recode bit map");
3401      if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3402        _allowed_reasons |= nth_bit(rs);
3403      }
3404    }
3405  }
3406}
3407
3408#ifndef PRODUCT
3409//------------------------------verify_graph_edges---------------------------
3410// Walk the Graph and verify that there is a one-to-one correspondence
3411// between Use-Def edges and Def-Use edges in the graph.
3412void Compile::verify_graph_edges(bool no_dead_code) {
3413  if (VerifyGraphEdges) {
3414    ResourceArea *area = Thread::current()->resource_area();
3415    Unique_Node_List visited(area);
3416    // Call recursive graph walk to check edges
3417    _root->verify_edges(visited);
3418    if (no_dead_code) {
3419      // Now make sure that no visited node is used by an unvisited node.
3420      bool dead_nodes = false;
3421      Unique_Node_List checked(area);
3422      while (visited.size() > 0) {
3423        Node* n = visited.pop();
3424        checked.push(n);
3425        for (uint i = 0; i < n->outcnt(); i++) {
3426          Node* use = n->raw_out(i);
3427          if (checked.member(use))  continue;  // already checked
3428          if (visited.member(use))  continue;  // already in the graph
3429          if (use->is_Con())        continue;  // a dead ConNode is OK
3430          // At this point, we have found a dead node which is DU-reachable.
3431          if (!dead_nodes) {
3432            tty->print_cr("*** Dead nodes reachable via DU edges:");
3433            dead_nodes = true;
3434          }
3435          use->dump(2);
3436          tty->print_cr("---");
3437          checked.push(use);  // No repeats; pretend it is now checked.
3438        }
3439      }
3440      assert(!dead_nodes, "using nodes must be reachable from root");
3441    }
3442  }
3443}
3444
3445// Verify GC barriers consistency
3446// Currently supported:
3447// - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3448void Compile::verify_barriers() {
3449  if (UseG1GC) {
3450    // Verify G1 pre-barriers
3451    const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3452
3453    ResourceArea *area = Thread::current()->resource_area();
3454    Unique_Node_List visited(area);
3455    Node_List worklist(area);
3456    // We're going to walk control flow backwards starting from the Root
3457    worklist.push(_root);
3458    while (worklist.size() > 0) {
3459      Node* x = worklist.pop();
3460      if (x == NULL || x == top()) continue;
3461      if (visited.member(x)) {
3462        continue;
3463      } else {
3464        visited.push(x);
3465      }
3466
3467      if (x->is_Region()) {
3468        for (uint i = 1; i < x->req(); i++) {
3469          worklist.push(x->in(i));
3470        }
3471      } else {
3472        worklist.push(x->in(0));
3473        // We are looking for the pattern:
3474        //                            /->ThreadLocal
3475        // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3476        //              \->ConI(0)
3477        // We want to verify that the If and the LoadB have the same control
3478        // See GraphKit::g1_write_barrier_pre()
3479        if (x->is_If()) {
3480          IfNode *iff = x->as_If();
3481          if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3482            CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3483            if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3484                && cmp->in(1)->is_Load()) {
3485              LoadNode* load = cmp->in(1)->as_Load();
3486              if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3487                  && load->in(2)->in(3)->is_Con()
3488                  && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3489
3490                Node* if_ctrl = iff->in(0);
3491                Node* load_ctrl = load->in(0);
3492
3493                if (if_ctrl != load_ctrl) {
3494                  // Skip possible CProj->NeverBranch in infinite loops
3495                  if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3496                      && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3497                    if_ctrl = if_ctrl->in(0)->in(0);
3498                  }
3499                }
3500                assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3501              }
3502            }
3503          }
3504        }
3505      }
3506    }
3507  }
3508}
3509
3510#endif
3511
3512// The Compile object keeps track of failure reasons separately from the ciEnv.
3513// This is required because there is not quite a 1-1 relation between the
3514// ciEnv and its compilation task and the Compile object.  Note that one
3515// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3516// to backtrack and retry without subsuming loads.  Other than this backtracking
3517// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3518// by the logic in C2Compiler.
3519void Compile::record_failure(const char* reason) {
3520  if (log() != NULL) {
3521    log()->elem("failure reason='%s' phase='compile'", reason);
3522  }
3523  if (_failure_reason == NULL) {
3524    // Record the first failure reason.
3525    _failure_reason = reason;
3526  }
3527
3528  EventCompilerFailure event;
3529  if (event.should_commit()) {
3530    event.set_compileID(Compile::compile_id());
3531    event.set_failure(reason);
3532    event.commit();
3533  }
3534
3535  if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3536    C->print_method(PHASE_FAILURE);
3537  }
3538  _root = NULL;  // flush the graph, too
3539}
3540
3541Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3542  : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3543    _phase_name(name), _dolog(dolog)
3544{
3545  if (dolog) {
3546    C = Compile::current();
3547    _log = C->log();
3548  } else {
3549    C = NULL;
3550    _log = NULL;
3551  }
3552  if (_log != NULL) {
3553    _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3554    _log->stamp();
3555    _log->end_head();
3556  }
3557}
3558
3559Compile::TracePhase::~TracePhase() {
3560
3561  C = Compile::current();
3562  if (_dolog) {
3563    _log = C->log();
3564  } else {
3565    _log = NULL;
3566  }
3567
3568#ifdef ASSERT
3569  if (PrintIdealNodeCount) {
3570    tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3571                  _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3572  }
3573
3574  if (VerifyIdealNodeCount) {
3575    Compile::current()->print_missing_nodes();
3576  }
3577#endif
3578
3579  if (_log != NULL) {
3580    _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3581  }
3582}
3583
3584//=============================================================================
3585// Two Constant's are equal when the type and the value are equal.
3586bool Compile::Constant::operator==(const Constant& other) {
3587  if (type()          != other.type()         )  return false;
3588  if (can_be_reused() != other.can_be_reused())  return false;
3589  // For floating point values we compare the bit pattern.
3590  switch (type()) {
3591  case T_FLOAT:   return (_v._value.i == other._v._value.i);
3592  case T_LONG:
3593  case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3594  case T_OBJECT:
3595  case T_ADDRESS: return (_v._value.l == other._v._value.l);
3596  case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3597  case T_METADATA: return (_v._metadata == other._v._metadata);
3598  default: ShouldNotReachHere();
3599  }
3600  return false;
3601}
3602
3603static int type_to_size_in_bytes(BasicType t) {
3604  switch (t) {
3605  case T_LONG:    return sizeof(jlong  );
3606  case T_FLOAT:   return sizeof(jfloat );
3607  case T_DOUBLE:  return sizeof(jdouble);
3608  case T_METADATA: return sizeof(Metadata*);
3609    // We use T_VOID as marker for jump-table entries (labels) which
3610    // need an internal word relocation.
3611  case T_VOID:
3612  case T_ADDRESS:
3613  case T_OBJECT:  return sizeof(jobject);
3614  }
3615
3616  ShouldNotReachHere();
3617  return -1;
3618}
3619
3620int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3621  // sort descending
3622  if (a->freq() > b->freq())  return -1;
3623  if (a->freq() < b->freq())  return  1;
3624  return 0;
3625}
3626
3627void Compile::ConstantTable::calculate_offsets_and_size() {
3628  // First, sort the array by frequencies.
3629  _constants.sort(qsort_comparator);
3630
3631#ifdef ASSERT
3632  // Make sure all jump-table entries were sorted to the end of the
3633  // array (they have a negative frequency).
3634  bool found_void = false;
3635  for (int i = 0; i < _constants.length(); i++) {
3636    Constant con = _constants.at(i);
3637    if (con.type() == T_VOID)
3638      found_void = true;  // jump-tables
3639    else
3640      assert(!found_void, "wrong sorting");
3641  }
3642#endif
3643
3644  int offset = 0;
3645  for (int i = 0; i < _constants.length(); i++) {
3646    Constant* con = _constants.adr_at(i);
3647
3648    // Align offset for type.
3649    int typesize = type_to_size_in_bytes(con->type());
3650    offset = align_size_up(offset, typesize);
3651    con->set_offset(offset);   // set constant's offset
3652
3653    if (con->type() == T_VOID) {
3654      MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3655      offset = offset + typesize * n->outcnt();  // expand jump-table
3656    } else {
3657      offset = offset + typesize;
3658    }
3659  }
3660
3661  // Align size up to the next section start (which is insts; see
3662  // CodeBuffer::align_at_start).
3663  assert(_size == -1, "already set?");
3664  _size = align_size_up(offset, CodeEntryAlignment);
3665}
3666
3667void Compile::ConstantTable::emit(CodeBuffer& cb) {
3668  MacroAssembler _masm(&cb);
3669  for (int i = 0; i < _constants.length(); i++) {
3670    Constant con = _constants.at(i);
3671    address constant_addr;
3672    switch (con.type()) {
3673    case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3674    case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3675    case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3676    case T_OBJECT: {
3677      jobject obj = con.get_jobject();
3678      int oop_index = _masm.oop_recorder()->find_index(obj);
3679      constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3680      break;
3681    }
3682    case T_ADDRESS: {
3683      address addr = (address) con.get_jobject();
3684      constant_addr = _masm.address_constant(addr);
3685      break;
3686    }
3687    // We use T_VOID as marker for jump-table entries (labels) which
3688    // need an internal word relocation.
3689    case T_VOID: {
3690      MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3691      // Fill the jump-table with a dummy word.  The real value is
3692      // filled in later in fill_jump_table.
3693      address dummy = (address) n;
3694      constant_addr = _masm.address_constant(dummy);
3695      // Expand jump-table
3696      for (uint i = 1; i < n->outcnt(); i++) {
3697        address temp_addr = _masm.address_constant(dummy + i);
3698        assert(temp_addr, "consts section too small");
3699      }
3700      break;
3701    }
3702    case T_METADATA: {
3703      Metadata* obj = con.get_metadata();
3704      int metadata_index = _masm.oop_recorder()->find_index(obj);
3705      constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3706      break;
3707    }
3708    default: ShouldNotReachHere();
3709    }
3710    assert(constant_addr, "consts section too small");
3711    assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3712            err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3713  }
3714}
3715
3716int Compile::ConstantTable::find_offset(Constant& con) const {
3717  int idx = _constants.find(con);
3718  assert(idx != -1, "constant must be in constant table");
3719  int offset = _constants.at(idx).offset();
3720  assert(offset != -1, "constant table not emitted yet?");
3721  return offset;
3722}
3723
3724void Compile::ConstantTable::add(Constant& con) {
3725  if (con.can_be_reused()) {
3726    int idx = _constants.find(con);
3727    if (idx != -1 && _constants.at(idx).can_be_reused()) {
3728      _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3729      return;
3730    }
3731  }
3732  (void) _constants.append(con);
3733}
3734
3735Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3736  Block* b = Compile::current()->cfg()->get_block_for_node(n);
3737  Constant con(type, value, b->_freq);
3738  add(con);
3739  return con;
3740}
3741
3742Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3743  Constant con(metadata);
3744  add(con);
3745  return con;
3746}
3747
3748Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3749  jvalue value;
3750  BasicType type = oper->type()->basic_type();
3751  switch (type) {
3752  case T_LONG:    value.j = oper->constantL(); break;
3753  case T_FLOAT:   value.f = oper->constantF(); break;
3754  case T_DOUBLE:  value.d = oper->constantD(); break;
3755  case T_OBJECT:
3756  case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3757  case T_METADATA: return add((Metadata*)oper->constant()); break;
3758  default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3759  }
3760  return add(n, type, value);
3761}
3762
3763Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3764  jvalue value;
3765  // We can use the node pointer here to identify the right jump-table
3766  // as this method is called from Compile::Fill_buffer right before
3767  // the MachNodes are emitted and the jump-table is filled (means the
3768  // MachNode pointers do not change anymore).
3769  value.l = (jobject) n;
3770  Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3771  add(con);
3772  return con;
3773}
3774
3775void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3776  // If called from Compile::scratch_emit_size do nothing.
3777  if (Compile::current()->in_scratch_emit_size())  return;
3778
3779  assert(labels.is_nonempty(), "must be");
3780  assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3781
3782  // Since MachConstantNode::constant_offset() also contains
3783  // table_base_offset() we need to subtract the table_base_offset()
3784  // to get the plain offset into the constant table.
3785  int offset = n->constant_offset() - table_base_offset();
3786
3787  MacroAssembler _masm(&cb);
3788  address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3789
3790  for (uint i = 0; i < n->outcnt(); i++) {
3791    address* constant_addr = &jump_table_base[i];
3792    assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3793    *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3794    cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3795  }
3796}
3797
3798//----------------------------static_subtype_check-----------------------------
3799// Shortcut important common cases when superklass is exact:
3800// (0) superklass is java.lang.Object (can occur in reflective code)
3801// (1) subklass is already limited to a subtype of superklass => always ok
3802// (2) subklass does not overlap with superklass => always fail
3803// (3) superklass has NO subtypes and we can check with a simple compare.
3804int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3805  if (StressReflectiveCode) {
3806    return SSC_full_test;       // Let caller generate the general case.
3807  }
3808
3809  if (superk == env()->Object_klass()) {
3810    return SSC_always_true;     // (0) this test cannot fail
3811  }
3812
3813  ciType* superelem = superk;
3814  if (superelem->is_array_klass())
3815    superelem = superelem->as_array_klass()->base_element_type();
3816
3817  if (!subk->is_interface()) {  // cannot trust static interface types yet
3818    if (subk->is_subtype_of(superk)) {
3819      return SSC_always_true;   // (1) false path dead; no dynamic test needed
3820    }
3821    if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3822        !superk->is_subtype_of(subk)) {
3823      return SSC_always_false;
3824    }
3825  }
3826
3827  // If casting to an instance klass, it must have no subtypes
3828  if (superk->is_interface()) {
3829    // Cannot trust interfaces yet.
3830    // %%% S.B. superk->nof_implementors() == 1
3831  } else if (superelem->is_instance_klass()) {
3832    ciInstanceKlass* ik = superelem->as_instance_klass();
3833    if (!ik->has_subklass() && !ik->is_interface()) {
3834      if (!ik->is_final()) {
3835        // Add a dependency if there is a chance of a later subclass.
3836        dependencies()->assert_leaf_type(ik);
3837      }
3838      return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3839    }
3840  } else {
3841    // A primitive array type has no subtypes.
3842    return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3843  }
3844
3845  return SSC_full_test;
3846}
3847
3848// The message about the current inlining is accumulated in
3849// _print_inlining_stream and transfered into the _print_inlining_list
3850// once we know whether inlining succeeds or not. For regular
3851// inlining, messages are appended to the buffer pointed by
3852// _print_inlining_idx in the _print_inlining_list. For late inlining,
3853// a new buffer is added after _print_inlining_idx in the list. This
3854// way we can update the inlining message for late inlining call site
3855// when the inlining is attempted again.
3856void Compile::print_inlining_init() {
3857  if (print_inlining() || print_intrinsics()) {
3858    _print_inlining_stream = new stringStream();
3859    _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3860  }
3861}
3862
3863void Compile::print_inlining_reinit() {
3864  if (print_inlining() || print_intrinsics()) {
3865    // Re allocate buffer when we change ResourceMark
3866    _print_inlining_stream = new stringStream();
3867  }
3868}
3869
3870void Compile::print_inlining_reset() {
3871  _print_inlining_stream->reset();
3872}
3873
3874void Compile::print_inlining_commit() {
3875  assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3876  // Transfer the message from _print_inlining_stream to the current
3877  // _print_inlining_list buffer and clear _print_inlining_stream.
3878  _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3879  print_inlining_reset();
3880}
3881
3882void Compile::print_inlining_push() {
3883  // Add new buffer to the _print_inlining_list at current position
3884  _print_inlining_idx++;
3885  _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3886}
3887
3888Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3889  return _print_inlining_list->at(_print_inlining_idx);
3890}
3891
3892void Compile::print_inlining_update(CallGenerator* cg) {
3893  if (print_inlining() || print_intrinsics()) {
3894    if (!cg->is_late_inline()) {
3895      if (print_inlining_current().cg() != NULL) {
3896        print_inlining_push();
3897      }
3898      print_inlining_commit();
3899    } else {
3900      if (print_inlining_current().cg() != cg &&
3901          (print_inlining_current().cg() != NULL ||
3902           print_inlining_current().ss()->size() != 0)) {
3903        print_inlining_push();
3904      }
3905      print_inlining_commit();
3906      print_inlining_current().set_cg(cg);
3907    }
3908  }
3909}
3910
3911void Compile::print_inlining_move_to(CallGenerator* cg) {
3912  // We resume inlining at a late inlining call site. Locate the
3913  // corresponding inlining buffer so that we can update it.
3914  if (print_inlining()) {
3915    for (int i = 0; i < _print_inlining_list->length(); i++) {
3916      if (_print_inlining_list->adr_at(i)->cg() == cg) {
3917        _print_inlining_idx = i;
3918        return;
3919      }
3920    }
3921    ShouldNotReachHere();
3922  }
3923}
3924
3925void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3926  if (print_inlining()) {
3927    assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3928    assert(print_inlining_current().cg() == cg, "wrong entry");
3929    // replace message with new message
3930    _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3931    print_inlining_commit();
3932    print_inlining_current().set_cg(cg);
3933  }
3934}
3935
3936void Compile::print_inlining_assert_ready() {
3937  assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3938}
3939
3940void Compile::process_print_inlining() {
3941  bool do_print_inlining = print_inlining() || print_intrinsics();
3942  if (do_print_inlining || log() != NULL) {
3943    // Print inlining message for candidates that we couldn't inline
3944    // for lack of space
3945    for (int i = 0; i < _late_inlines.length(); i++) {
3946      CallGenerator* cg = _late_inlines.at(i);
3947      if (!cg->is_mh_late_inline()) {
3948        const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3949        if (do_print_inlining) {
3950          cg->print_inlining_late(msg);
3951        }
3952        log_late_inline_failure(cg, msg);
3953      }
3954    }
3955  }
3956  if (do_print_inlining) {
3957    ResourceMark rm;
3958    stringStream ss;
3959    for (int i = 0; i < _print_inlining_list->length(); i++) {
3960      ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3961    }
3962    size_t end = ss.size();
3963    _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
3964    strncpy(_print_inlining_output, ss.base(), end+1);
3965    _print_inlining_output[end] = 0;
3966  }
3967}
3968
3969void Compile::dump_print_inlining() {
3970  if (_print_inlining_output != NULL) {
3971    tty->print_raw(_print_inlining_output);
3972  }
3973}
3974
3975void Compile::log_late_inline(CallGenerator* cg) {
3976  if (log() != NULL) {
3977    log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3978                cg->unique_id());
3979    JVMState* p = cg->call_node()->jvms();
3980    while (p != NULL) {
3981      log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
3982      p = p->caller();
3983    }
3984    log()->tail("late_inline");
3985  }
3986}
3987
3988void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
3989  log_late_inline(cg);
3990  if (log() != NULL) {
3991    log()->inline_fail(msg);
3992  }
3993}
3994
3995void Compile::log_inline_id(CallGenerator* cg) {
3996  if (log() != NULL) {
3997    // The LogCompilation tool needs a unique way to identify late
3998    // inline call sites. This id must be unique for this call site in
3999    // this compilation. Try to have it unique across compilations as
4000    // well because it can be convenient when grepping through the log
4001    // file.
4002    // Distinguish OSR compilations from others in case CICountOSR is
4003    // on.
4004    jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4005    cg->set_unique_id(id);
4006    log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4007  }
4008}
4009
4010void Compile::log_inline_failure(const char* msg) {
4011  if (C->log() != NULL) {
4012    C->log()->inline_fail(msg);
4013  }
4014}
4015
4016
4017// Dump inlining replay data to the stream.
4018// Don't change thread state and acquire any locks.
4019void Compile::dump_inline_data(outputStream* out) {
4020  InlineTree* inl_tree = ilt();
4021  if (inl_tree != NULL) {
4022    out->print(" inline %d", inl_tree->count());
4023    inl_tree->dump_replay_data(out);
4024  }
4025}
4026
4027int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4028  if (n1->Opcode() < n2->Opcode())      return -1;
4029  else if (n1->Opcode() > n2->Opcode()) return 1;
4030
4031  assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
4032  for (uint i = 1; i < n1->req(); i++) {
4033    if (n1->in(i) < n2->in(i))      return -1;
4034    else if (n1->in(i) > n2->in(i)) return 1;
4035  }
4036
4037  return 0;
4038}
4039
4040int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4041  Node* n1 = *n1p;
4042  Node* n2 = *n2p;
4043
4044  return cmp_expensive_nodes(n1, n2);
4045}
4046
4047void Compile::sort_expensive_nodes() {
4048  if (!expensive_nodes_sorted()) {
4049    _expensive_nodes->sort(cmp_expensive_nodes);
4050  }
4051}
4052
4053bool Compile::expensive_nodes_sorted() const {
4054  for (int i = 1; i < _expensive_nodes->length(); i++) {
4055    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4056      return false;
4057    }
4058  }
4059  return true;
4060}
4061
4062bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4063  if (_expensive_nodes->length() == 0) {
4064    return false;
4065  }
4066
4067  assert(OptimizeExpensiveOps, "optimization off?");
4068
4069  // Take this opportunity to remove dead nodes from the list
4070  int j = 0;
4071  for (int i = 0; i < _expensive_nodes->length(); i++) {
4072    Node* n = _expensive_nodes->at(i);
4073    if (!n->is_unreachable(igvn)) {
4074      assert(n->is_expensive(), "should be expensive");
4075      _expensive_nodes->at_put(j, n);
4076      j++;
4077    }
4078  }
4079  _expensive_nodes->trunc_to(j);
4080
4081  // Then sort the list so that similar nodes are next to each other
4082  // and check for at least two nodes of identical kind with same data
4083  // inputs.
4084  sort_expensive_nodes();
4085
4086  for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4087    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4088      return true;
4089    }
4090  }
4091
4092  return false;
4093}
4094
4095void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4096  if (_expensive_nodes->length() == 0) {
4097    return;
4098  }
4099
4100  assert(OptimizeExpensiveOps, "optimization off?");
4101
4102  // Sort to bring similar nodes next to each other and clear the
4103  // control input of nodes for which there's only a single copy.
4104  sort_expensive_nodes();
4105
4106  int j = 0;
4107  int identical = 0;
4108  int i = 0;
4109  bool modified = false;
4110  for (; i < _expensive_nodes->length()-1; i++) {
4111    assert(j <= i, "can't write beyond current index");
4112    if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4113      identical++;
4114      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4115      continue;
4116    }
4117    if (identical > 0) {
4118      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4119      identical = 0;
4120    } else {
4121      Node* n = _expensive_nodes->at(i);
4122      igvn.replace_input_of(n, 0, NULL);
4123      igvn.hash_insert(n);
4124      modified = true;
4125    }
4126  }
4127  if (identical > 0) {
4128    _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4129  } else if (_expensive_nodes->length() >= 1) {
4130    Node* n = _expensive_nodes->at(i);
4131    igvn.replace_input_of(n, 0, NULL);
4132    igvn.hash_insert(n);
4133    modified = true;
4134  }
4135  _expensive_nodes->trunc_to(j);
4136  if (modified) {
4137    igvn.optimize();
4138  }
4139}
4140
4141void Compile::add_expensive_node(Node * n) {
4142  assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4143  assert(n->is_expensive(), "expensive nodes with non-null control here only");
4144  assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4145  if (OptimizeExpensiveOps) {
4146    _expensive_nodes->append(n);
4147  } else {
4148    // Clear control input and let IGVN optimize expensive nodes if
4149    // OptimizeExpensiveOps is off.
4150    n->set_req(0, NULL);
4151  }
4152}
4153
4154/**
4155 * Remove the speculative part of types and clean up the graph
4156 */
4157void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4158  if (UseTypeSpeculation) {
4159    Unique_Node_List worklist;
4160    worklist.push(root());
4161    int modified = 0;
4162    // Go over all type nodes that carry a speculative type, drop the
4163    // speculative part of the type and enqueue the node for an igvn
4164    // which may optimize it out.
4165    for (uint next = 0; next < worklist.size(); ++next) {
4166      Node *n  = worklist.at(next);
4167      if (n->is_Type()) {
4168        TypeNode* tn = n->as_Type();
4169        const Type* t = tn->type();
4170        const Type* t_no_spec = t->remove_speculative();
4171        if (t_no_spec != t) {
4172          bool in_hash = igvn.hash_delete(n);
4173          assert(in_hash, "node should be in igvn hash table");
4174          tn->set_type(t_no_spec);
4175          igvn.hash_insert(n);
4176          igvn._worklist.push(n); // give it a chance to go away
4177          modified++;
4178        }
4179      }
4180      uint max = n->len();
4181      for( uint i = 0; i < max; ++i ) {
4182        Node *m = n->in(i);
4183        if (not_a_node(m))  continue;
4184        worklist.push(m);
4185      }
4186    }
4187    // Drop the speculative part of all types in the igvn's type table
4188    igvn.remove_speculative_types();
4189    if (modified > 0) {
4190      igvn.optimize();
4191    }
4192#ifdef ASSERT
4193    // Verify that after the IGVN is over no speculative type has resurfaced
4194    worklist.clear();
4195    worklist.push(root());
4196    for (uint next = 0; next < worklist.size(); ++next) {
4197      Node *n  = worklist.at(next);
4198      const Type* t = igvn.type_or_null(n);
4199      assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4200      if (n->is_Type()) {
4201        t = n->as_Type()->type();
4202        assert(t == t->remove_speculative(), "no more speculative types");
4203      }
4204      uint max = n->len();
4205      for( uint i = 0; i < max; ++i ) {
4206        Node *m = n->in(i);
4207        if (not_a_node(m))  continue;
4208        worklist.push(m);
4209      }
4210    }
4211    igvn.check_no_speculative_types();
4212#endif
4213  }
4214}
4215
4216// Auxiliary method to support randomized stressing/fuzzing.
4217//
4218// This method can be called the arbitrary number of times, with current count
4219// as the argument. The logic allows selecting a single candidate from the
4220// running list of candidates as follows:
4221//    int count = 0;
4222//    Cand* selected = null;
4223//    while(cand = cand->next()) {
4224//      if (randomized_select(++count)) {
4225//        selected = cand;
4226//      }
4227//    }
4228//
4229// Including count equalizes the chances any candidate is "selected".
4230// This is useful when we don't have the complete list of candidates to choose
4231// from uniformly. In this case, we need to adjust the randomicity of the
4232// selection, or else we will end up biasing the selection towards the latter
4233// candidates.
4234//
4235// Quick back-envelope calculation shows that for the list of n candidates
4236// the equal probability for the candidate to persist as "best" can be
4237// achieved by replacing it with "next" k-th candidate with the probability
4238// of 1/k. It can be easily shown that by the end of the run, the
4239// probability for any candidate is converged to 1/n, thus giving the
4240// uniform distribution among all the candidates.
4241//
4242// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4243#define RANDOMIZED_DOMAIN_POW 29
4244#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4245#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4246bool Compile::randomized_select(int count) {
4247  assert(count > 0, "only positive");
4248  return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4249}
4250