compile.cpp revision 6760:22b98ab2a69f
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "ci/ciReplay.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/exceptionHandlerTable.hpp"
31#include "code/nmethod.hpp"
32#include "compiler/compileLog.hpp"
33#include "compiler/disassembler.hpp"
34#include "compiler/oopMap.hpp"
35#include "opto/addnode.hpp"
36#include "opto/block.hpp"
37#include "opto/c2compiler.hpp"
38#include "opto/callGenerator.hpp"
39#include "opto/callnode.hpp"
40#include "opto/cfgnode.hpp"
41#include "opto/chaitin.hpp"
42#include "opto/compile.hpp"
43#include "opto/connode.hpp"
44#include "opto/divnode.hpp"
45#include "opto/escape.hpp"
46#include "opto/idealGraphPrinter.hpp"
47#include "opto/loopnode.hpp"
48#include "opto/machnode.hpp"
49#include "opto/macro.hpp"
50#include "opto/matcher.hpp"
51#include "opto/mathexactnode.hpp"
52#include "opto/memnode.hpp"
53#include "opto/mulnode.hpp"
54#include "opto/narrowptrnode.hpp"
55#include "opto/node.hpp"
56#include "opto/opcodes.hpp"
57#include "opto/output.hpp"
58#include "opto/parse.hpp"
59#include "opto/phaseX.hpp"
60#include "opto/rootnode.hpp"
61#include "opto/runtime.hpp"
62#include "opto/stringopts.hpp"
63#include "opto/type.hpp"
64#include "opto/vectornode.hpp"
65#include "runtime/arguments.hpp"
66#include "runtime/signature.hpp"
67#include "runtime/stubRoutines.hpp"
68#include "runtime/timer.hpp"
69#include "trace/tracing.hpp"
70#include "utilities/copy.hpp"
71
72
73// -------------------- Compile::mach_constant_base_node -----------------------
74// Constant table base node singleton.
75MachConstantBaseNode* Compile::mach_constant_base_node() {
76  if (_mach_constant_base_node == NULL) {
77    _mach_constant_base_node = new MachConstantBaseNode();
78    _mach_constant_base_node->add_req(C->root());
79  }
80  return _mach_constant_base_node;
81}
82
83
84/// Support for intrinsics.
85
86// Return the index at which m must be inserted (or already exists).
87// The sort order is by the address of the ciMethod, with is_virtual as minor key.
88int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
89#ifdef ASSERT
90  for (int i = 1; i < _intrinsics->length(); i++) {
91    CallGenerator* cg1 = _intrinsics->at(i-1);
92    CallGenerator* cg2 = _intrinsics->at(i);
93    assert(cg1->method() != cg2->method()
94           ? cg1->method()     < cg2->method()
95           : cg1->is_virtual() < cg2->is_virtual(),
96           "compiler intrinsics list must stay sorted");
97  }
98#endif
99  // Binary search sorted list, in decreasing intervals [lo, hi].
100  int lo = 0, hi = _intrinsics->length()-1;
101  while (lo <= hi) {
102    int mid = (uint)(hi + lo) / 2;
103    ciMethod* mid_m = _intrinsics->at(mid)->method();
104    if (m < mid_m) {
105      hi = mid-1;
106    } else if (m > mid_m) {
107      lo = mid+1;
108    } else {
109      // look at minor sort key
110      bool mid_virt = _intrinsics->at(mid)->is_virtual();
111      if (is_virtual < mid_virt) {
112        hi = mid-1;
113      } else if (is_virtual > mid_virt) {
114        lo = mid+1;
115      } else {
116        return mid;  // exact match
117      }
118    }
119  }
120  return lo;  // inexact match
121}
122
123void Compile::register_intrinsic(CallGenerator* cg) {
124  if (_intrinsics == NULL) {
125    _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
126  }
127  // This code is stolen from ciObjectFactory::insert.
128  // Really, GrowableArray should have methods for
129  // insert_at, remove_at, and binary_search.
130  int len = _intrinsics->length();
131  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
132  if (index == len) {
133    _intrinsics->append(cg);
134  } else {
135#ifdef ASSERT
136    CallGenerator* oldcg = _intrinsics->at(index);
137    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
138#endif
139    _intrinsics->append(_intrinsics->at(len-1));
140    int pos;
141    for (pos = len-2; pos >= index; pos--) {
142      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
143    }
144    _intrinsics->at_put(index, cg);
145  }
146  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
147}
148
149CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
150  assert(m->is_loaded(), "don't try this on unloaded methods");
151  if (_intrinsics != NULL) {
152    int index = intrinsic_insertion_index(m, is_virtual);
153    if (index < _intrinsics->length()
154        && _intrinsics->at(index)->method() == m
155        && _intrinsics->at(index)->is_virtual() == is_virtual) {
156      return _intrinsics->at(index);
157    }
158  }
159  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
160  if (m->intrinsic_id() != vmIntrinsics::_none &&
161      m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
162    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
163    if (cg != NULL) {
164      // Save it for next time:
165      register_intrinsic(cg);
166      return cg;
167    } else {
168      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
169    }
170  }
171  return NULL;
172}
173
174// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
175// in library_call.cpp.
176
177
178#ifndef PRODUCT
179// statistics gathering...
180
181juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
182jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
183
184bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
185  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
186  int oflags = _intrinsic_hist_flags[id];
187  assert(flags != 0, "what happened?");
188  if (is_virtual) {
189    flags |= _intrinsic_virtual;
190  }
191  bool changed = (flags != oflags);
192  if ((flags & _intrinsic_worked) != 0) {
193    juint count = (_intrinsic_hist_count[id] += 1);
194    if (count == 1) {
195      changed = true;           // first time
196    }
197    // increment the overall count also:
198    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
199  }
200  if (changed) {
201    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
202      // Something changed about the intrinsic's virtuality.
203      if ((flags & _intrinsic_virtual) != 0) {
204        // This is the first use of this intrinsic as a virtual call.
205        if (oflags != 0) {
206          // We already saw it as a non-virtual, so note both cases.
207          flags |= _intrinsic_both;
208        }
209      } else if ((oflags & _intrinsic_both) == 0) {
210        // This is the first use of this intrinsic as a non-virtual
211        flags |= _intrinsic_both;
212      }
213    }
214    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
215  }
216  // update the overall flags also:
217  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
218  return changed;
219}
220
221static char* format_flags(int flags, char* buf) {
222  buf[0] = 0;
223  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
224  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
225  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
226  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
227  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
228  if (buf[0] == 0)  strcat(buf, ",");
229  assert(buf[0] == ',', "must be");
230  return &buf[1];
231}
232
233void Compile::print_intrinsic_statistics() {
234  char flagsbuf[100];
235  ttyLocker ttyl;
236  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
237  tty->print_cr("Compiler intrinsic usage:");
238  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
239  if (total == 0)  total = 1;  // avoid div0 in case of no successes
240  #define PRINT_STAT_LINE(name, c, f) \
241    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
242  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
243    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
244    int   flags = _intrinsic_hist_flags[id];
245    juint count = _intrinsic_hist_count[id];
246    if ((flags | count) != 0) {
247      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
248    }
249  }
250  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
251  if (xtty != NULL)  xtty->tail("statistics");
252}
253
254void Compile::print_statistics() {
255  { ttyLocker ttyl;
256    if (xtty != NULL)  xtty->head("statistics type='opto'");
257    Parse::print_statistics();
258    PhaseCCP::print_statistics();
259    PhaseRegAlloc::print_statistics();
260    Scheduling::print_statistics();
261    PhasePeephole::print_statistics();
262    PhaseIdealLoop::print_statistics();
263    if (xtty != NULL)  xtty->tail("statistics");
264  }
265  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
266    // put this under its own <statistics> element.
267    print_intrinsic_statistics();
268  }
269}
270#endif //PRODUCT
271
272// Support for bundling info
273Bundle* Compile::node_bundling(const Node *n) {
274  assert(valid_bundle_info(n), "oob");
275  return &_node_bundling_base[n->_idx];
276}
277
278bool Compile::valid_bundle_info(const Node *n) {
279  return (_node_bundling_limit > n->_idx);
280}
281
282
283void Compile::gvn_replace_by(Node* n, Node* nn) {
284  for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
285    Node* use = n->last_out(i);
286    bool is_in_table = initial_gvn()->hash_delete(use);
287    uint uses_found = 0;
288    for (uint j = 0; j < use->len(); j++) {
289      if (use->in(j) == n) {
290        if (j < use->req())
291          use->set_req(j, nn);
292        else
293          use->set_prec(j, nn);
294        uses_found++;
295      }
296    }
297    if (is_in_table) {
298      // reinsert into table
299      initial_gvn()->hash_find_insert(use);
300    }
301    record_for_igvn(use);
302    i -= uses_found;    // we deleted 1 or more copies of this edge
303  }
304}
305
306
307static inline bool not_a_node(const Node* n) {
308  if (n == NULL)                   return true;
309  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
310  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
311  return false;
312}
313
314// Identify all nodes that are reachable from below, useful.
315// Use breadth-first pass that records state in a Unique_Node_List,
316// recursive traversal is slower.
317void Compile::identify_useful_nodes(Unique_Node_List &useful) {
318  int estimated_worklist_size = unique();
319  useful.map( estimated_worklist_size, NULL );  // preallocate space
320
321  // Initialize worklist
322  if (root() != NULL)     { useful.push(root()); }
323  // If 'top' is cached, declare it useful to preserve cached node
324  if( cached_top_node() ) { useful.push(cached_top_node()); }
325
326  // Push all useful nodes onto the list, breadthfirst
327  for( uint next = 0; next < useful.size(); ++next ) {
328    assert( next < unique(), "Unique useful nodes < total nodes");
329    Node *n  = useful.at(next);
330    uint max = n->len();
331    for( uint i = 0; i < max; ++i ) {
332      Node *m = n->in(i);
333      if (not_a_node(m))  continue;
334      useful.push(m);
335    }
336  }
337}
338
339// Update dead_node_list with any missing dead nodes using useful
340// list. Consider all non-useful nodes to be useless i.e., dead nodes.
341void Compile::update_dead_node_list(Unique_Node_List &useful) {
342  uint max_idx = unique();
343  VectorSet& useful_node_set = useful.member_set();
344
345  for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
346    // If node with index node_idx is not in useful set,
347    // mark it as dead in dead node list.
348    if (! useful_node_set.test(node_idx) ) {
349      record_dead_node(node_idx);
350    }
351  }
352}
353
354void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
355  int shift = 0;
356  for (int i = 0; i < inlines->length(); i++) {
357    CallGenerator* cg = inlines->at(i);
358    CallNode* call = cg->call_node();
359    if (shift > 0) {
360      inlines->at_put(i-shift, cg);
361    }
362    if (!useful.member(call)) {
363      shift++;
364    }
365  }
366  inlines->trunc_to(inlines->length()-shift);
367}
368
369// Disconnect all useless nodes by disconnecting those at the boundary.
370void Compile::remove_useless_nodes(Unique_Node_List &useful) {
371  uint next = 0;
372  while (next < useful.size()) {
373    Node *n = useful.at(next++);
374    if (n->is_SafePoint()) {
375      // We're done with a parsing phase. Replaced nodes are not valid
376      // beyond that point.
377      n->as_SafePoint()->delete_replaced_nodes();
378    }
379    // Use raw traversal of out edges since this code removes out edges
380    int max = n->outcnt();
381    for (int j = 0; j < max; ++j) {
382      Node* child = n->raw_out(j);
383      if (! useful.member(child)) {
384        assert(!child->is_top() || child != top(),
385               "If top is cached in Compile object it is in useful list");
386        // Only need to remove this out-edge to the useless node
387        n->raw_del_out(j);
388        --j;
389        --max;
390      }
391    }
392    if (n->outcnt() == 1 && n->has_special_unique_user()) {
393      record_for_igvn(n->unique_out());
394    }
395  }
396  // Remove useless macro and predicate opaq nodes
397  for (int i = C->macro_count()-1; i >= 0; i--) {
398    Node* n = C->macro_node(i);
399    if (!useful.member(n)) {
400      remove_macro_node(n);
401    }
402  }
403  // Remove useless expensive node
404  for (int i = C->expensive_count()-1; i >= 0; i--) {
405    Node* n = C->expensive_node(i);
406    if (!useful.member(n)) {
407      remove_expensive_node(n);
408    }
409  }
410  // clean up the late inline lists
411  remove_useless_late_inlines(&_string_late_inlines, useful);
412  remove_useless_late_inlines(&_boxing_late_inlines, useful);
413  remove_useless_late_inlines(&_late_inlines, useful);
414  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
415}
416
417//------------------------------frame_size_in_words-----------------------------
418// frame_slots in units of words
419int Compile::frame_size_in_words() const {
420  // shift is 0 in LP32 and 1 in LP64
421  const int shift = (LogBytesPerWord - LogBytesPerInt);
422  int words = _frame_slots >> shift;
423  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
424  return words;
425}
426
427// To bang the stack of this compiled method we use the stack size
428// that the interpreter would need in case of a deoptimization. This
429// removes the need to bang the stack in the deoptimization blob which
430// in turn simplifies stack overflow handling.
431int Compile::bang_size_in_bytes() const {
432  return MAX2(_interpreter_frame_size, frame_size_in_bytes());
433}
434
435// ============================================================================
436//------------------------------CompileWrapper---------------------------------
437class CompileWrapper : public StackObj {
438  Compile *const _compile;
439 public:
440  CompileWrapper(Compile* compile);
441
442  ~CompileWrapper();
443};
444
445CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
446  // the Compile* pointer is stored in the current ciEnv:
447  ciEnv* env = compile->env();
448  assert(env == ciEnv::current(), "must already be a ciEnv active");
449  assert(env->compiler_data() == NULL, "compile already active?");
450  env->set_compiler_data(compile);
451  assert(compile == Compile::current(), "sanity");
452
453  compile->set_type_dict(NULL);
454  compile->set_type_hwm(NULL);
455  compile->set_type_last_size(0);
456  compile->set_last_tf(NULL, NULL);
457  compile->set_indexSet_arena(NULL);
458  compile->set_indexSet_free_block_list(NULL);
459  compile->init_type_arena();
460  Type::Initialize(compile);
461  _compile->set_scratch_buffer_blob(NULL);
462  _compile->begin_method();
463}
464CompileWrapper::~CompileWrapper() {
465  _compile->end_method();
466  if (_compile->scratch_buffer_blob() != NULL)
467    BufferBlob::free(_compile->scratch_buffer_blob());
468  _compile->env()->set_compiler_data(NULL);
469}
470
471
472//----------------------------print_compile_messages---------------------------
473void Compile::print_compile_messages() {
474#ifndef PRODUCT
475  // Check if recompiling
476  if (_subsume_loads == false && PrintOpto) {
477    // Recompiling without allowing machine instructions to subsume loads
478    tty->print_cr("*********************************************************");
479    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
480    tty->print_cr("*********************************************************");
481  }
482  if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
483    // Recompiling without escape analysis
484    tty->print_cr("*********************************************************");
485    tty->print_cr("** Bailout: Recompile without escape analysis          **");
486    tty->print_cr("*********************************************************");
487  }
488  if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
489    // Recompiling without boxing elimination
490    tty->print_cr("*********************************************************");
491    tty->print_cr("** Bailout: Recompile without boxing elimination       **");
492    tty->print_cr("*********************************************************");
493  }
494  if (env()->break_at_compile()) {
495    // Open the debugger when compiling this method.
496    tty->print("### Breaking when compiling: ");
497    method()->print_short_name();
498    tty->cr();
499    BREAKPOINT;
500  }
501
502  if( PrintOpto ) {
503    if (is_osr_compilation()) {
504      tty->print("[OSR]%3d", _compile_id);
505    } else {
506      tty->print("%3d", _compile_id);
507    }
508  }
509#endif
510}
511
512
513//-----------------------init_scratch_buffer_blob------------------------------
514// Construct a temporary BufferBlob and cache it for this compile.
515void Compile::init_scratch_buffer_blob(int const_size) {
516  // If there is already a scratch buffer blob allocated and the
517  // constant section is big enough, use it.  Otherwise free the
518  // current and allocate a new one.
519  BufferBlob* blob = scratch_buffer_blob();
520  if ((blob != NULL) && (const_size <= _scratch_const_size)) {
521    // Use the current blob.
522  } else {
523    if (blob != NULL) {
524      BufferBlob::free(blob);
525    }
526
527    ResourceMark rm;
528    _scratch_const_size = const_size;
529    int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
530    blob = BufferBlob::create("Compile::scratch_buffer", size);
531    // Record the buffer blob for next time.
532    set_scratch_buffer_blob(blob);
533    // Have we run out of code space?
534    if (scratch_buffer_blob() == NULL) {
535      // Let CompilerBroker disable further compilations.
536      record_failure("Not enough space for scratch buffer in CodeCache");
537      return;
538    }
539  }
540
541  // Initialize the relocation buffers
542  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
543  set_scratch_locs_memory(locs_buf);
544}
545
546
547//-----------------------scratch_emit_size-------------------------------------
548// Helper function that computes size by emitting code
549uint Compile::scratch_emit_size(const Node* n) {
550  // Start scratch_emit_size section.
551  set_in_scratch_emit_size(true);
552
553  // Emit into a trash buffer and count bytes emitted.
554  // This is a pretty expensive way to compute a size,
555  // but it works well enough if seldom used.
556  // All common fixed-size instructions are given a size
557  // method by the AD file.
558  // Note that the scratch buffer blob and locs memory are
559  // allocated at the beginning of the compile task, and
560  // may be shared by several calls to scratch_emit_size.
561  // The allocation of the scratch buffer blob is particularly
562  // expensive, since it has to grab the code cache lock.
563  BufferBlob* blob = this->scratch_buffer_blob();
564  assert(blob != NULL, "Initialize BufferBlob at start");
565  assert(blob->size() > MAX_inst_size, "sanity");
566  relocInfo* locs_buf = scratch_locs_memory();
567  address blob_begin = blob->content_begin();
568  address blob_end   = (address)locs_buf;
569  assert(blob->content_contains(blob_end), "sanity");
570  CodeBuffer buf(blob_begin, blob_end - blob_begin);
571  buf.initialize_consts_size(_scratch_const_size);
572  buf.initialize_stubs_size(MAX_stubs_size);
573  assert(locs_buf != NULL, "sanity");
574  int lsize = MAX_locs_size / 3;
575  buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
576  buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
577  buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
578
579  // Do the emission.
580
581  Label fakeL; // Fake label for branch instructions.
582  Label*   saveL = NULL;
583  uint save_bnum = 0;
584  bool is_branch = n->is_MachBranch();
585  if (is_branch) {
586    MacroAssembler masm(&buf);
587    masm.bind(fakeL);
588    n->as_MachBranch()->save_label(&saveL, &save_bnum);
589    n->as_MachBranch()->label_set(&fakeL, 0);
590  }
591  n->emit(buf, this->regalloc());
592  if (is_branch) // Restore label.
593    n->as_MachBranch()->label_set(saveL, save_bnum);
594
595  // End scratch_emit_size section.
596  set_in_scratch_emit_size(false);
597
598  return buf.insts_size();
599}
600
601
602// ============================================================================
603//------------------------------Compile standard-------------------------------
604debug_only( int Compile::_debug_idx = 100000; )
605
606// Compile a method.  entry_bci is -1 for normal compilations and indicates
607// the continuation bci for on stack replacement.
608
609
610Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
611                  bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
612                : Phase(Compiler),
613                  _env(ci_env),
614                  _log(ci_env->log()),
615                  _compile_id(ci_env->compile_id()),
616                  _save_argument_registers(false),
617                  _stub_name(NULL),
618                  _stub_function(NULL),
619                  _stub_entry_point(NULL),
620                  _method(target),
621                  _entry_bci(osr_bci),
622                  _initial_gvn(NULL),
623                  _for_igvn(NULL),
624                  _warm_calls(NULL),
625                  _subsume_loads(subsume_loads),
626                  _do_escape_analysis(do_escape_analysis),
627                  _eliminate_boxing(eliminate_boxing),
628                  _failure_reason(NULL),
629                  _code_buffer("Compile::Fill_buffer"),
630                  _orig_pc_slot(0),
631                  _orig_pc_slot_offset_in_bytes(0),
632                  _has_method_handle_invokes(false),
633                  _mach_constant_base_node(NULL),
634                  _node_bundling_limit(0),
635                  _node_bundling_base(NULL),
636                  _java_calls(0),
637                  _inner_loops(0),
638                  _scratch_const_size(-1),
639                  _in_scratch_emit_size(false),
640                  _dead_node_list(comp_arena()),
641                  _dead_node_count(0),
642#ifndef PRODUCT
643                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
644                  _in_dump_cnt(0),
645                  _printer(IdealGraphPrinter::printer()),
646#endif
647                  _congraph(NULL),
648                  _replay_inline_data(NULL),
649                  _late_inlines(comp_arena(), 2, 0, NULL),
650                  _string_late_inlines(comp_arena(), 2, 0, NULL),
651                  _boxing_late_inlines(comp_arena(), 2, 0, NULL),
652                  _late_inlines_pos(0),
653                  _number_of_mh_late_inlines(0),
654                  _inlining_progress(false),
655                  _inlining_incrementally(false),
656                  _print_inlining_list(NULL),
657                  _print_inlining_stream(NULL),
658                  _print_inlining_idx(0),
659                  _print_inlining_output(NULL),
660                  _interpreter_frame_size(0) {
661  C = this;
662
663  CompileWrapper cw(this);
664#ifndef PRODUCT
665  if (TimeCompiler2) {
666    tty->print(" ");
667    target->holder()->name()->print();
668    tty->print(".");
669    target->print_short_name();
670    tty->print("  ");
671  }
672  TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
673  TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
674  bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
675  if (!print_opto_assembly) {
676    bool print_assembly = (PrintAssembly || _method->should_print_assembly());
677    if (print_assembly && !Disassembler::can_decode()) {
678      tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
679      print_opto_assembly = true;
680    }
681  }
682  set_print_assembly(print_opto_assembly);
683  set_parsed_irreducible_loop(false);
684
685  if (method()->has_option("ReplayInline")) {
686    _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
687  }
688#endif
689  set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
690  set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
691  set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
692
693  if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
694    // Make sure the method being compiled gets its own MDO,
695    // so we can at least track the decompile_count().
696    // Need MDO to record RTM code generation state.
697    method()->ensure_method_data();
698  }
699
700  Init(::AliasLevel);
701
702
703  print_compile_messages();
704
705  _ilt = InlineTree::build_inline_tree_root();
706
707  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
708  assert(num_alias_types() >= AliasIdxRaw, "");
709
710#define MINIMUM_NODE_HASH  1023
711  // Node list that Iterative GVN will start with
712  Unique_Node_List for_igvn(comp_arena());
713  set_for_igvn(&for_igvn);
714
715  // GVN that will be run immediately on new nodes
716  uint estimated_size = method()->code_size()*4+64;
717  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
718  PhaseGVN gvn(node_arena(), estimated_size);
719  set_initial_gvn(&gvn);
720
721  print_inlining_init();
722  { // Scope for timing the parser
723    TracePhase t3("parse", &_t_parser, true);
724
725    // Put top into the hash table ASAP.
726    initial_gvn()->transform_no_reclaim(top());
727
728    // Set up tf(), start(), and find a CallGenerator.
729    CallGenerator* cg = NULL;
730    if (is_osr_compilation()) {
731      const TypeTuple *domain = StartOSRNode::osr_domain();
732      const TypeTuple *range = TypeTuple::make_range(method()->signature());
733      init_tf(TypeFunc::make(domain, range));
734      StartNode* s = new StartOSRNode(root(), domain);
735      initial_gvn()->set_type_bottom(s);
736      init_start(s);
737      cg = CallGenerator::for_osr(method(), entry_bci());
738    } else {
739      // Normal case.
740      init_tf(TypeFunc::make(method()));
741      StartNode* s = new StartNode(root(), tf()->domain());
742      initial_gvn()->set_type_bottom(s);
743      init_start(s);
744      if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
745        // With java.lang.ref.reference.get() we must go through the
746        // intrinsic when G1 is enabled - even when get() is the root
747        // method of the compile - so that, if necessary, the value in
748        // the referent field of the reference object gets recorded by
749        // the pre-barrier code.
750        // Specifically, if G1 is enabled, the value in the referent
751        // field is recorded by the G1 SATB pre barrier. This will
752        // result in the referent being marked live and the reference
753        // object removed from the list of discovered references during
754        // reference processing.
755        cg = find_intrinsic(method(), false);
756      }
757      if (cg == NULL) {
758        float past_uses = method()->interpreter_invocation_count();
759        float expected_uses = past_uses;
760        cg = CallGenerator::for_inline(method(), expected_uses);
761      }
762    }
763    if (failing())  return;
764    if (cg == NULL) {
765      record_method_not_compilable_all_tiers("cannot parse method");
766      return;
767    }
768    JVMState* jvms = build_start_state(start(), tf());
769    if ((jvms = cg->generate(jvms)) == NULL) {
770      record_method_not_compilable("method parse failed");
771      return;
772    }
773    GraphKit kit(jvms);
774
775    if (!kit.stopped()) {
776      // Accept return values, and transfer control we know not where.
777      // This is done by a special, unique ReturnNode bound to root.
778      return_values(kit.jvms());
779    }
780
781    if (kit.has_exceptions()) {
782      // Any exceptions that escape from this call must be rethrown
783      // to whatever caller is dynamically above us on the stack.
784      // This is done by a special, unique RethrowNode bound to root.
785      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
786    }
787
788    assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
789
790    if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
791      inline_string_calls(true);
792    }
793
794    if (failing())  return;
795
796    print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
797
798    // Remove clutter produced by parsing.
799    if (!failing()) {
800      ResourceMark rm;
801      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
802    }
803  }
804
805  // Note:  Large methods are capped off in do_one_bytecode().
806  if (failing())  return;
807
808  // After parsing, node notes are no longer automagic.
809  // They must be propagated by register_new_node_with_optimizer(),
810  // clone(), or the like.
811  set_default_node_notes(NULL);
812
813  for (;;) {
814    int successes = Inline_Warm();
815    if (failing())  return;
816    if (successes == 0)  break;
817  }
818
819  // Drain the list.
820  Finish_Warm();
821#ifndef PRODUCT
822  if (_printer) {
823    _printer->print_inlining(this);
824  }
825#endif
826
827  if (failing())  return;
828  NOT_PRODUCT( verify_graph_edges(); )
829
830  // Now optimize
831  Optimize();
832  if (failing())  return;
833  NOT_PRODUCT( verify_graph_edges(); )
834
835#ifndef PRODUCT
836  if (PrintIdeal) {
837    ttyLocker ttyl;  // keep the following output all in one block
838    // This output goes directly to the tty, not the compiler log.
839    // To enable tools to match it up with the compilation activity,
840    // be sure to tag this tty output with the compile ID.
841    if (xtty != NULL) {
842      xtty->head("ideal compile_id='%d'%s", compile_id(),
843                 is_osr_compilation()    ? " compile_kind='osr'" :
844                 "");
845    }
846    root()->dump(9999);
847    if (xtty != NULL) {
848      xtty->tail("ideal");
849    }
850  }
851#endif
852
853  NOT_PRODUCT( verify_barriers(); )
854
855  // Dump compilation data to replay it.
856  if (method()->has_option("DumpReplay")) {
857    env()->dump_replay_data(_compile_id);
858  }
859  if (method()->has_option("DumpInline") && (ilt() != NULL)) {
860    env()->dump_inline_data(_compile_id);
861  }
862
863  // Now that we know the size of all the monitors we can add a fixed slot
864  // for the original deopt pc.
865
866  _orig_pc_slot =  fixed_slots();
867  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
868  set_fixed_slots(next_slot);
869
870  // Compute when to use implicit null checks. Used by matching trap based
871  // nodes and NullCheck optimization.
872  set_allowed_deopt_reasons();
873
874  // Now generate code
875  Code_Gen();
876  if (failing())  return;
877
878  // Check if we want to skip execution of all compiled code.
879  {
880#ifndef PRODUCT
881    if (OptoNoExecute) {
882      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
883      return;
884    }
885    TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
886#endif
887
888    if (is_osr_compilation()) {
889      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
890      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
891    } else {
892      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
893      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
894    }
895
896    env()->register_method(_method, _entry_bci,
897                           &_code_offsets,
898                           _orig_pc_slot_offset_in_bytes,
899                           code_buffer(),
900                           frame_size_in_words(), _oop_map_set,
901                           &_handler_table, &_inc_table,
902                           compiler,
903                           env()->comp_level(),
904                           has_unsafe_access(),
905                           SharedRuntime::is_wide_vector(max_vector_size()),
906                           rtm_state()
907                           );
908
909    if (log() != NULL) // Print code cache state into compiler log
910      log()->code_cache_state();
911  }
912}
913
914//------------------------------Compile----------------------------------------
915// Compile a runtime stub
916Compile::Compile( ciEnv* ci_env,
917                  TypeFunc_generator generator,
918                  address stub_function,
919                  const char *stub_name,
920                  int is_fancy_jump,
921                  bool pass_tls,
922                  bool save_arg_registers,
923                  bool return_pc )
924  : Phase(Compiler),
925    _env(ci_env),
926    _log(ci_env->log()),
927    _compile_id(0),
928    _save_argument_registers(save_arg_registers),
929    _method(NULL),
930    _stub_name(stub_name),
931    _stub_function(stub_function),
932    _stub_entry_point(NULL),
933    _entry_bci(InvocationEntryBci),
934    _initial_gvn(NULL),
935    _for_igvn(NULL),
936    _warm_calls(NULL),
937    _orig_pc_slot(0),
938    _orig_pc_slot_offset_in_bytes(0),
939    _subsume_loads(true),
940    _do_escape_analysis(false),
941    _eliminate_boxing(false),
942    _failure_reason(NULL),
943    _code_buffer("Compile::Fill_buffer"),
944    _has_method_handle_invokes(false),
945    _mach_constant_base_node(NULL),
946    _node_bundling_limit(0),
947    _node_bundling_base(NULL),
948    _java_calls(0),
949    _inner_loops(0),
950#ifndef PRODUCT
951    _trace_opto_output(TraceOptoOutput),
952    _in_dump_cnt(0),
953    _printer(NULL),
954#endif
955    _dead_node_list(comp_arena()),
956    _dead_node_count(0),
957    _congraph(NULL),
958    _replay_inline_data(NULL),
959    _number_of_mh_late_inlines(0),
960    _inlining_progress(false),
961    _inlining_incrementally(false),
962    _print_inlining_list(NULL),
963    _print_inlining_stream(NULL),
964    _print_inlining_idx(0),
965    _print_inlining_output(NULL),
966    _allowed_reasons(0),
967    _interpreter_frame_size(0) {
968  C = this;
969
970#ifndef PRODUCT
971  TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
972  TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
973  set_print_assembly(PrintFrameConverterAssembly);
974  set_parsed_irreducible_loop(false);
975#endif
976  set_has_irreducible_loop(false); // no loops
977
978  CompileWrapper cw(this);
979  Init(/*AliasLevel=*/ 0);
980  init_tf((*generator)());
981
982  {
983    // The following is a dummy for the sake of GraphKit::gen_stub
984    Unique_Node_List for_igvn(comp_arena());
985    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
986    PhaseGVN gvn(Thread::current()->resource_area(),255);
987    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
988    gvn.transform_no_reclaim(top());
989
990    GraphKit kit;
991    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
992  }
993
994  NOT_PRODUCT( verify_graph_edges(); )
995  Code_Gen();
996  if (failing())  return;
997
998
999  // Entry point will be accessed using compile->stub_entry_point();
1000  if (code_buffer() == NULL) {
1001    Matcher::soft_match_failure();
1002  } else {
1003    if (PrintAssembly && (WizardMode || Verbose))
1004      tty->print_cr("### Stub::%s", stub_name);
1005
1006    if (!failing()) {
1007      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1008
1009      // Make the NMethod
1010      // For now we mark the frame as never safe for profile stackwalking
1011      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1012                                                      code_buffer(),
1013                                                      CodeOffsets::frame_never_safe,
1014                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
1015                                                      frame_size_in_words(),
1016                                                      _oop_map_set,
1017                                                      save_arg_registers);
1018      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1019
1020      _stub_entry_point = rs->entry_point();
1021    }
1022  }
1023}
1024
1025//------------------------------Init-------------------------------------------
1026// Prepare for a single compilation
1027void Compile::Init(int aliaslevel) {
1028  _unique  = 0;
1029  _regalloc = NULL;
1030
1031  _tf      = NULL;  // filled in later
1032  _top     = NULL;  // cached later
1033  _matcher = NULL;  // filled in later
1034  _cfg     = NULL;  // filled in later
1035
1036  set_24_bit_selection_and_mode(Use24BitFP, false);
1037
1038  _node_note_array = NULL;
1039  _default_node_notes = NULL;
1040
1041  _immutable_memory = NULL; // filled in at first inquiry
1042
1043  // Globally visible Nodes
1044  // First set TOP to NULL to give safe behavior during creation of RootNode
1045  set_cached_top_node(NULL);
1046  set_root(new RootNode());
1047  // Now that you have a Root to point to, create the real TOP
1048  set_cached_top_node( new ConNode(Type::TOP) );
1049  set_recent_alloc(NULL, NULL);
1050
1051  // Create Debug Information Recorder to record scopes, oopmaps, etc.
1052  env()->set_oop_recorder(new OopRecorder(env()->arena()));
1053  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1054  env()->set_dependencies(new Dependencies(env()));
1055
1056  _fixed_slots = 0;
1057  set_has_split_ifs(false);
1058  set_has_loops(has_method() && method()->has_loops()); // first approximation
1059  set_has_stringbuilder(false);
1060  set_has_boxed_value(false);
1061  _trap_can_recompile = false;  // no traps emitted yet
1062  _major_progress = true; // start out assuming good things will happen
1063  set_has_unsafe_access(false);
1064  set_max_vector_size(0);
1065  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1066  set_decompile_count(0);
1067
1068  set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1069  set_num_loop_opts(LoopOptsCount);
1070  set_do_inlining(Inline);
1071  set_max_inline_size(MaxInlineSize);
1072  set_freq_inline_size(FreqInlineSize);
1073  set_do_scheduling(OptoScheduling);
1074  set_do_count_invocations(false);
1075  set_do_method_data_update(false);
1076  set_age_code(has_method() && method()->profile_aging());
1077  set_rtm_state(NoRTM); // No RTM lock eliding by default
1078#if INCLUDE_RTM_OPT
1079  if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1080    int rtm_state = method()->method_data()->rtm_state();
1081    if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1082      // Don't generate RTM lock eliding code.
1083      set_rtm_state(NoRTM);
1084    } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1085      // Generate RTM lock eliding code without abort ratio calculation code.
1086      set_rtm_state(UseRTM);
1087    } else if (UseRTMDeopt) {
1088      // Generate RTM lock eliding code and include abort ratio calculation
1089      // code if UseRTMDeopt is on.
1090      set_rtm_state(ProfileRTM);
1091    }
1092  }
1093#endif
1094  if (debug_info()->recording_non_safepoints()) {
1095    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1096                        (comp_arena(), 8, 0, NULL));
1097    set_default_node_notes(Node_Notes::make(this));
1098  }
1099
1100  // // -- Initialize types before each compile --
1101  // // Update cached type information
1102  // if( _method && _method->constants() )
1103  //   Type::update_loaded_types(_method, _method->constants());
1104
1105  // Init alias_type map.
1106  if (!_do_escape_analysis && aliaslevel == 3)
1107    aliaslevel = 2;  // No unique types without escape analysis
1108  _AliasLevel = aliaslevel;
1109  const int grow_ats = 16;
1110  _max_alias_types = grow_ats;
1111  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1112  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1113  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1114  {
1115    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1116  }
1117  // Initialize the first few types.
1118  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1119  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1120  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1121  _num_alias_types = AliasIdxRaw+1;
1122  // Zero out the alias type cache.
1123  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1124  // A NULL adr_type hits in the cache right away.  Preload the right answer.
1125  probe_alias_cache(NULL)->_index = AliasIdxTop;
1126
1127  _intrinsics = NULL;
1128  _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1129  _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1130  _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1131  register_library_intrinsics();
1132}
1133
1134//---------------------------init_start----------------------------------------
1135// Install the StartNode on this compile object.
1136void Compile::init_start(StartNode* s) {
1137  if (failing())
1138    return; // already failing
1139  assert(s == start(), "");
1140}
1141
1142StartNode* Compile::start() const {
1143  assert(!failing(), "");
1144  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1145    Node* start = root()->fast_out(i);
1146    if( start->is_Start() )
1147      return start->as_Start();
1148  }
1149  fatal("Did not find Start node!");
1150  return NULL;
1151}
1152
1153//-------------------------------immutable_memory-------------------------------------
1154// Access immutable memory
1155Node* Compile::immutable_memory() {
1156  if (_immutable_memory != NULL) {
1157    return _immutable_memory;
1158  }
1159  StartNode* s = start();
1160  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1161    Node *p = s->fast_out(i);
1162    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1163      _immutable_memory = p;
1164      return _immutable_memory;
1165    }
1166  }
1167  ShouldNotReachHere();
1168  return NULL;
1169}
1170
1171//----------------------set_cached_top_node------------------------------------
1172// Install the cached top node, and make sure Node::is_top works correctly.
1173void Compile::set_cached_top_node(Node* tn) {
1174  if (tn != NULL)  verify_top(tn);
1175  Node* old_top = _top;
1176  _top = tn;
1177  // Calling Node::setup_is_top allows the nodes the chance to adjust
1178  // their _out arrays.
1179  if (_top != NULL)     _top->setup_is_top();
1180  if (old_top != NULL)  old_top->setup_is_top();
1181  assert(_top == NULL || top()->is_top(), "");
1182}
1183
1184#ifdef ASSERT
1185uint Compile::count_live_nodes_by_graph_walk() {
1186  Unique_Node_List useful(comp_arena());
1187  // Get useful node list by walking the graph.
1188  identify_useful_nodes(useful);
1189  return useful.size();
1190}
1191
1192void Compile::print_missing_nodes() {
1193
1194  // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1195  if ((_log == NULL) && (! PrintIdealNodeCount)) {
1196    return;
1197  }
1198
1199  // This is an expensive function. It is executed only when the user
1200  // specifies VerifyIdealNodeCount option or otherwise knows the
1201  // additional work that needs to be done to identify reachable nodes
1202  // by walking the flow graph and find the missing ones using
1203  // _dead_node_list.
1204
1205  Unique_Node_List useful(comp_arena());
1206  // Get useful node list by walking the graph.
1207  identify_useful_nodes(useful);
1208
1209  uint l_nodes = C->live_nodes();
1210  uint l_nodes_by_walk = useful.size();
1211
1212  if (l_nodes != l_nodes_by_walk) {
1213    if (_log != NULL) {
1214      _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1215      _log->stamp();
1216      _log->end_head();
1217    }
1218    VectorSet& useful_member_set = useful.member_set();
1219    int last_idx = l_nodes_by_walk;
1220    for (int i = 0; i < last_idx; i++) {
1221      if (useful_member_set.test(i)) {
1222        if (_dead_node_list.test(i)) {
1223          if (_log != NULL) {
1224            _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1225          }
1226          if (PrintIdealNodeCount) {
1227            // Print the log message to tty
1228              tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1229              useful.at(i)->dump();
1230          }
1231        }
1232      }
1233      else if (! _dead_node_list.test(i)) {
1234        if (_log != NULL) {
1235          _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1236        }
1237        if (PrintIdealNodeCount) {
1238          // Print the log message to tty
1239          tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1240        }
1241      }
1242    }
1243    if (_log != NULL) {
1244      _log->tail("mismatched_nodes");
1245    }
1246  }
1247}
1248#endif
1249
1250#ifndef PRODUCT
1251void Compile::verify_top(Node* tn) const {
1252  if (tn != NULL) {
1253    assert(tn->is_Con(), "top node must be a constant");
1254    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1255    assert(tn->in(0) != NULL, "must have live top node");
1256  }
1257}
1258#endif
1259
1260
1261///-------------------Managing Per-Node Debug & Profile Info-------------------
1262
1263void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1264  guarantee(arr != NULL, "");
1265  int num_blocks = arr->length();
1266  if (grow_by < num_blocks)  grow_by = num_blocks;
1267  int num_notes = grow_by * _node_notes_block_size;
1268  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1269  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1270  while (num_notes > 0) {
1271    arr->append(notes);
1272    notes     += _node_notes_block_size;
1273    num_notes -= _node_notes_block_size;
1274  }
1275  assert(num_notes == 0, "exact multiple, please");
1276}
1277
1278bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1279  if (source == NULL || dest == NULL)  return false;
1280
1281  if (dest->is_Con())
1282    return false;               // Do not push debug info onto constants.
1283
1284#ifdef ASSERT
1285  // Leave a bread crumb trail pointing to the original node:
1286  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1287    dest->set_debug_orig(source);
1288  }
1289#endif
1290
1291  if (node_note_array() == NULL)
1292    return false;               // Not collecting any notes now.
1293
1294  // This is a copy onto a pre-existing node, which may already have notes.
1295  // If both nodes have notes, do not overwrite any pre-existing notes.
1296  Node_Notes* source_notes = node_notes_at(source->_idx);
1297  if (source_notes == NULL || source_notes->is_clear())  return false;
1298  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1299  if (dest_notes == NULL || dest_notes->is_clear()) {
1300    return set_node_notes_at(dest->_idx, source_notes);
1301  }
1302
1303  Node_Notes merged_notes = (*source_notes);
1304  // The order of operations here ensures that dest notes will win...
1305  merged_notes.update_from(dest_notes);
1306  return set_node_notes_at(dest->_idx, &merged_notes);
1307}
1308
1309
1310//--------------------------allow_range_check_smearing-------------------------
1311// Gating condition for coalescing similar range checks.
1312// Sometimes we try 'speculatively' replacing a series of a range checks by a
1313// single covering check that is at least as strong as any of them.
1314// If the optimization succeeds, the simplified (strengthened) range check
1315// will always succeed.  If it fails, we will deopt, and then give up
1316// on the optimization.
1317bool Compile::allow_range_check_smearing() const {
1318  // If this method has already thrown a range-check,
1319  // assume it was because we already tried range smearing
1320  // and it failed.
1321  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1322  return !already_trapped;
1323}
1324
1325
1326//------------------------------flatten_alias_type-----------------------------
1327const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1328  int offset = tj->offset();
1329  TypePtr::PTR ptr = tj->ptr();
1330
1331  // Known instance (scalarizable allocation) alias only with itself.
1332  bool is_known_inst = tj->isa_oopptr() != NULL &&
1333                       tj->is_oopptr()->is_known_instance();
1334
1335  // Process weird unsafe references.
1336  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1337    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1338    assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1339    tj = TypeOopPtr::BOTTOM;
1340    ptr = tj->ptr();
1341    offset = tj->offset();
1342  }
1343
1344  // Array pointers need some flattening
1345  const TypeAryPtr *ta = tj->isa_aryptr();
1346  if (ta && ta->is_stable()) {
1347    // Erase stability property for alias analysis.
1348    tj = ta = ta->cast_to_stable(false);
1349  }
1350  if( ta && is_known_inst ) {
1351    if ( offset != Type::OffsetBot &&
1352         offset > arrayOopDesc::length_offset_in_bytes() ) {
1353      offset = Type::OffsetBot; // Flatten constant access into array body only
1354      tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1355    }
1356  } else if( ta && _AliasLevel >= 2 ) {
1357    // For arrays indexed by constant indices, we flatten the alias
1358    // space to include all of the array body.  Only the header, klass
1359    // and array length can be accessed un-aliased.
1360    if( offset != Type::OffsetBot ) {
1361      if( ta->const_oop() ) { // MethodData* or Method*
1362        offset = Type::OffsetBot;   // Flatten constant access into array body
1363        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1364      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1365        // range is OK as-is.
1366        tj = ta = TypeAryPtr::RANGE;
1367      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1368        tj = TypeInstPtr::KLASS; // all klass loads look alike
1369        ta = TypeAryPtr::RANGE; // generic ignored junk
1370        ptr = TypePtr::BotPTR;
1371      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1372        tj = TypeInstPtr::MARK;
1373        ta = TypeAryPtr::RANGE; // generic ignored junk
1374        ptr = TypePtr::BotPTR;
1375      } else {                  // Random constant offset into array body
1376        offset = Type::OffsetBot;   // Flatten constant access into array body
1377        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1378      }
1379    }
1380    // Arrays of fixed size alias with arrays of unknown size.
1381    if (ta->size() != TypeInt::POS) {
1382      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1383      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1384    }
1385    // Arrays of known objects become arrays of unknown objects.
1386    if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1387      const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1388      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1389    }
1390    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1391      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1392      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1393    }
1394    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1395    // cannot be distinguished by bytecode alone.
1396    if (ta->elem() == TypeInt::BOOL) {
1397      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1398      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1399      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1400    }
1401    // During the 2nd round of IterGVN, NotNull castings are removed.
1402    // Make sure the Bottom and NotNull variants alias the same.
1403    // Also, make sure exact and non-exact variants alias the same.
1404    if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1405      tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1406    }
1407  }
1408
1409  // Oop pointers need some flattening
1410  const TypeInstPtr *to = tj->isa_instptr();
1411  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1412    ciInstanceKlass *k = to->klass()->as_instance_klass();
1413    if( ptr == TypePtr::Constant ) {
1414      if (to->klass() != ciEnv::current()->Class_klass() ||
1415          offset < k->size_helper() * wordSize) {
1416        // No constant oop pointers (such as Strings); they alias with
1417        // unknown strings.
1418        assert(!is_known_inst, "not scalarizable allocation");
1419        tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1420      }
1421    } else if( is_known_inst ) {
1422      tj = to; // Keep NotNull and klass_is_exact for instance type
1423    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1424      // During the 2nd round of IterGVN, NotNull castings are removed.
1425      // Make sure the Bottom and NotNull variants alias the same.
1426      // Also, make sure exact and non-exact variants alias the same.
1427      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1428    }
1429    if (to->speculative() != NULL) {
1430      tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1431    }
1432    // Canonicalize the holder of this field
1433    if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1434      // First handle header references such as a LoadKlassNode, even if the
1435      // object's klass is unloaded at compile time (4965979).
1436      if (!is_known_inst) { // Do it only for non-instance types
1437        tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1438      }
1439    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1440      // Static fields are in the space above the normal instance
1441      // fields in the java.lang.Class instance.
1442      if (to->klass() != ciEnv::current()->Class_klass()) {
1443        to = NULL;
1444        tj = TypeOopPtr::BOTTOM;
1445        offset = tj->offset();
1446      }
1447    } else {
1448      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1449      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1450        if( is_known_inst ) {
1451          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1452        } else {
1453          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1454        }
1455      }
1456    }
1457  }
1458
1459  // Klass pointers to object array klasses need some flattening
1460  const TypeKlassPtr *tk = tj->isa_klassptr();
1461  if( tk ) {
1462    // If we are referencing a field within a Klass, we need
1463    // to assume the worst case of an Object.  Both exact and
1464    // inexact types must flatten to the same alias class so
1465    // use NotNull as the PTR.
1466    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1467
1468      tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1469                                   TypeKlassPtr::OBJECT->klass(),
1470                                   offset);
1471    }
1472
1473    ciKlass* klass = tk->klass();
1474    if( klass->is_obj_array_klass() ) {
1475      ciKlass* k = TypeAryPtr::OOPS->klass();
1476      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1477        k = TypeInstPtr::BOTTOM->klass();
1478      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1479    }
1480
1481    // Check for precise loads from the primary supertype array and force them
1482    // to the supertype cache alias index.  Check for generic array loads from
1483    // the primary supertype array and also force them to the supertype cache
1484    // alias index.  Since the same load can reach both, we need to merge
1485    // these 2 disparate memories into the same alias class.  Since the
1486    // primary supertype array is read-only, there's no chance of confusion
1487    // where we bypass an array load and an array store.
1488    int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1489    if (offset == Type::OffsetBot ||
1490        (offset >= primary_supers_offset &&
1491         offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1492        offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1493      offset = in_bytes(Klass::secondary_super_cache_offset());
1494      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1495    }
1496  }
1497
1498  // Flatten all Raw pointers together.
1499  if (tj->base() == Type::RawPtr)
1500    tj = TypeRawPtr::BOTTOM;
1501
1502  if (tj->base() == Type::AnyPtr)
1503    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1504
1505  // Flatten all to bottom for now
1506  switch( _AliasLevel ) {
1507  case 0:
1508    tj = TypePtr::BOTTOM;
1509    break;
1510  case 1:                       // Flatten to: oop, static, field or array
1511    switch (tj->base()) {
1512    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1513    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1514    case Type::AryPtr:   // do not distinguish arrays at all
1515    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1516    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1517    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1518    default: ShouldNotReachHere();
1519    }
1520    break;
1521  case 2:                       // No collapsing at level 2; keep all splits
1522  case 3:                       // No collapsing at level 3; keep all splits
1523    break;
1524  default:
1525    Unimplemented();
1526  }
1527
1528  offset = tj->offset();
1529  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1530
1531  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1532          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1533          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1534          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1535          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1536          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1537          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1538          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1539  assert( tj->ptr() != TypePtr::TopPTR &&
1540          tj->ptr() != TypePtr::AnyNull &&
1541          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1542//    assert( tj->ptr() != TypePtr::Constant ||
1543//            tj->base() == Type::RawPtr ||
1544//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1545
1546  return tj;
1547}
1548
1549void Compile::AliasType::Init(int i, const TypePtr* at) {
1550  _index = i;
1551  _adr_type = at;
1552  _field = NULL;
1553  _element = NULL;
1554  _is_rewritable = true; // default
1555  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1556  if (atoop != NULL && atoop->is_known_instance()) {
1557    const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1558    _general_index = Compile::current()->get_alias_index(gt);
1559  } else {
1560    _general_index = 0;
1561  }
1562}
1563
1564//---------------------------------print_on------------------------------------
1565#ifndef PRODUCT
1566void Compile::AliasType::print_on(outputStream* st) {
1567  if (index() < 10)
1568        st->print("@ <%d> ", index());
1569  else  st->print("@ <%d>",  index());
1570  st->print(is_rewritable() ? "   " : " RO");
1571  int offset = adr_type()->offset();
1572  if (offset == Type::OffsetBot)
1573        st->print(" +any");
1574  else  st->print(" +%-3d", offset);
1575  st->print(" in ");
1576  adr_type()->dump_on(st);
1577  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1578  if (field() != NULL && tjp) {
1579    if (tjp->klass()  != field()->holder() ||
1580        tjp->offset() != field()->offset_in_bytes()) {
1581      st->print(" != ");
1582      field()->print();
1583      st->print(" ***");
1584    }
1585  }
1586}
1587
1588void print_alias_types() {
1589  Compile* C = Compile::current();
1590  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1591  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1592    C->alias_type(idx)->print_on(tty);
1593    tty->cr();
1594  }
1595}
1596#endif
1597
1598
1599//----------------------------probe_alias_cache--------------------------------
1600Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1601  intptr_t key = (intptr_t) adr_type;
1602  key ^= key >> logAliasCacheSize;
1603  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1604}
1605
1606
1607//-----------------------------grow_alias_types--------------------------------
1608void Compile::grow_alias_types() {
1609  const int old_ats  = _max_alias_types; // how many before?
1610  const int new_ats  = old_ats;          // how many more?
1611  const int grow_ats = old_ats+new_ats;  // how many now?
1612  _max_alias_types = grow_ats;
1613  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1614  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1615  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1616  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1617}
1618
1619
1620//--------------------------------find_alias_type------------------------------
1621Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1622  if (_AliasLevel == 0)
1623    return alias_type(AliasIdxBot);
1624
1625  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1626  if (ace->_adr_type == adr_type) {
1627    return alias_type(ace->_index);
1628  }
1629
1630  // Handle special cases.
1631  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1632  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1633
1634  // Do it the slow way.
1635  const TypePtr* flat = flatten_alias_type(adr_type);
1636
1637#ifdef ASSERT
1638  assert(flat == flatten_alias_type(flat), "idempotent");
1639  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1640  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1641    const TypeOopPtr* foop = flat->is_oopptr();
1642    // Scalarizable allocations have exact klass always.
1643    bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1644    const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1645    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1646  }
1647  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1648#endif
1649
1650  int idx = AliasIdxTop;
1651  for (int i = 0; i < num_alias_types(); i++) {
1652    if (alias_type(i)->adr_type() == flat) {
1653      idx = i;
1654      break;
1655    }
1656  }
1657
1658  if (idx == AliasIdxTop) {
1659    if (no_create)  return NULL;
1660    // Grow the array if necessary.
1661    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1662    // Add a new alias type.
1663    idx = _num_alias_types++;
1664    _alias_types[idx]->Init(idx, flat);
1665    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1666    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1667    if (flat->isa_instptr()) {
1668      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1669          && flat->is_instptr()->klass() == env()->Class_klass())
1670        alias_type(idx)->set_rewritable(false);
1671    }
1672    if (flat->isa_aryptr()) {
1673#ifdef ASSERT
1674      const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1675      // (T_BYTE has the weakest alignment and size restrictions...)
1676      assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1677#endif
1678      if (flat->offset() == TypePtr::OffsetBot) {
1679        alias_type(idx)->set_element(flat->is_aryptr()->elem());
1680      }
1681    }
1682    if (flat->isa_klassptr()) {
1683      if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1684        alias_type(idx)->set_rewritable(false);
1685      if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1686        alias_type(idx)->set_rewritable(false);
1687      if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1688        alias_type(idx)->set_rewritable(false);
1689      if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1690        alias_type(idx)->set_rewritable(false);
1691    }
1692    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1693    // but the base pointer type is not distinctive enough to identify
1694    // references into JavaThread.)
1695
1696    // Check for final fields.
1697    const TypeInstPtr* tinst = flat->isa_instptr();
1698    if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1699      ciField* field;
1700      if (tinst->const_oop() != NULL &&
1701          tinst->klass() == ciEnv::current()->Class_klass() &&
1702          tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1703        // static field
1704        ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1705        field = k->get_field_by_offset(tinst->offset(), true);
1706      } else {
1707        ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1708        field = k->get_field_by_offset(tinst->offset(), false);
1709      }
1710      assert(field == NULL ||
1711             original_field == NULL ||
1712             (field->holder() == original_field->holder() &&
1713              field->offset() == original_field->offset() &&
1714              field->is_static() == original_field->is_static()), "wrong field?");
1715      // Set field() and is_rewritable() attributes.
1716      if (field != NULL)  alias_type(idx)->set_field(field);
1717    }
1718  }
1719
1720  // Fill the cache for next time.
1721  ace->_adr_type = adr_type;
1722  ace->_index    = idx;
1723  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1724
1725  // Might as well try to fill the cache for the flattened version, too.
1726  AliasCacheEntry* face = probe_alias_cache(flat);
1727  if (face->_adr_type == NULL) {
1728    face->_adr_type = flat;
1729    face->_index    = idx;
1730    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1731  }
1732
1733  return alias_type(idx);
1734}
1735
1736
1737Compile::AliasType* Compile::alias_type(ciField* field) {
1738  const TypeOopPtr* t;
1739  if (field->is_static())
1740    t = TypeInstPtr::make(field->holder()->java_mirror());
1741  else
1742    t = TypeOopPtr::make_from_klass_raw(field->holder());
1743  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1744  assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1745  return atp;
1746}
1747
1748
1749//------------------------------have_alias_type--------------------------------
1750bool Compile::have_alias_type(const TypePtr* adr_type) {
1751  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1752  if (ace->_adr_type == adr_type) {
1753    return true;
1754  }
1755
1756  // Handle special cases.
1757  if (adr_type == NULL)             return true;
1758  if (adr_type == TypePtr::BOTTOM)  return true;
1759
1760  return find_alias_type(adr_type, true, NULL) != NULL;
1761}
1762
1763//-----------------------------must_alias--------------------------------------
1764// True if all values of the given address type are in the given alias category.
1765bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1766  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1767  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1768  if (alias_idx == AliasIdxTop)         return false; // the empty category
1769  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1770
1771  // the only remaining possible overlap is identity
1772  int adr_idx = get_alias_index(adr_type);
1773  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1774  assert(adr_idx == alias_idx ||
1775         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1776          && adr_type                       != TypeOopPtr::BOTTOM),
1777         "should not be testing for overlap with an unsafe pointer");
1778  return adr_idx == alias_idx;
1779}
1780
1781//------------------------------can_alias--------------------------------------
1782// True if any values of the given address type are in the given alias category.
1783bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1784  if (alias_idx == AliasIdxTop)         return false; // the empty category
1785  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1786  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1787  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1788
1789  // the only remaining possible overlap is identity
1790  int adr_idx = get_alias_index(adr_type);
1791  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1792  return adr_idx == alias_idx;
1793}
1794
1795
1796
1797//---------------------------pop_warm_call-------------------------------------
1798WarmCallInfo* Compile::pop_warm_call() {
1799  WarmCallInfo* wci = _warm_calls;
1800  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1801  return wci;
1802}
1803
1804//----------------------------Inline_Warm--------------------------------------
1805int Compile::Inline_Warm() {
1806  // If there is room, try to inline some more warm call sites.
1807  // %%% Do a graph index compaction pass when we think we're out of space?
1808  if (!InlineWarmCalls)  return 0;
1809
1810  int calls_made_hot = 0;
1811  int room_to_grow   = NodeCountInliningCutoff - unique();
1812  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1813  int amount_grown   = 0;
1814  WarmCallInfo* call;
1815  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1816    int est_size = (int)call->size();
1817    if (est_size > (room_to_grow - amount_grown)) {
1818      // This one won't fit anyway.  Get rid of it.
1819      call->make_cold();
1820      continue;
1821    }
1822    call->make_hot();
1823    calls_made_hot++;
1824    amount_grown   += est_size;
1825    amount_to_grow -= est_size;
1826  }
1827
1828  if (calls_made_hot > 0)  set_major_progress();
1829  return calls_made_hot;
1830}
1831
1832
1833//----------------------------Finish_Warm--------------------------------------
1834void Compile::Finish_Warm() {
1835  if (!InlineWarmCalls)  return;
1836  if (failing())  return;
1837  if (warm_calls() == NULL)  return;
1838
1839  // Clean up loose ends, if we are out of space for inlining.
1840  WarmCallInfo* call;
1841  while ((call = pop_warm_call()) != NULL) {
1842    call->make_cold();
1843  }
1844}
1845
1846//---------------------cleanup_loop_predicates-----------------------
1847// Remove the opaque nodes that protect the predicates so that all unused
1848// checks and uncommon_traps will be eliminated from the ideal graph
1849void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1850  if (predicate_count()==0) return;
1851  for (int i = predicate_count(); i > 0; i--) {
1852    Node * n = predicate_opaque1_node(i-1);
1853    assert(n->Opcode() == Op_Opaque1, "must be");
1854    igvn.replace_node(n, n->in(1));
1855  }
1856  assert(predicate_count()==0, "should be clean!");
1857}
1858
1859// StringOpts and late inlining of string methods
1860void Compile::inline_string_calls(bool parse_time) {
1861  {
1862    // remove useless nodes to make the usage analysis simpler
1863    ResourceMark rm;
1864    PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1865  }
1866
1867  {
1868    ResourceMark rm;
1869    print_method(PHASE_BEFORE_STRINGOPTS, 3);
1870    PhaseStringOpts pso(initial_gvn(), for_igvn());
1871    print_method(PHASE_AFTER_STRINGOPTS, 3);
1872  }
1873
1874  // now inline anything that we skipped the first time around
1875  if (!parse_time) {
1876    _late_inlines_pos = _late_inlines.length();
1877  }
1878
1879  while (_string_late_inlines.length() > 0) {
1880    CallGenerator* cg = _string_late_inlines.pop();
1881    cg->do_late_inline();
1882    if (failing())  return;
1883  }
1884  _string_late_inlines.trunc_to(0);
1885}
1886
1887// Late inlining of boxing methods
1888void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1889  if (_boxing_late_inlines.length() > 0) {
1890    assert(has_boxed_value(), "inconsistent");
1891
1892    PhaseGVN* gvn = initial_gvn();
1893    set_inlining_incrementally(true);
1894
1895    assert( igvn._worklist.size() == 0, "should be done with igvn" );
1896    for_igvn()->clear();
1897    gvn->replace_with(&igvn);
1898
1899    _late_inlines_pos = _late_inlines.length();
1900
1901    while (_boxing_late_inlines.length() > 0) {
1902      CallGenerator* cg = _boxing_late_inlines.pop();
1903      cg->do_late_inline();
1904      if (failing())  return;
1905    }
1906    _boxing_late_inlines.trunc_to(0);
1907
1908    {
1909      ResourceMark rm;
1910      PhaseRemoveUseless pru(gvn, for_igvn());
1911    }
1912
1913    igvn = PhaseIterGVN(gvn);
1914    igvn.optimize();
1915
1916    set_inlining_progress(false);
1917    set_inlining_incrementally(false);
1918  }
1919}
1920
1921void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1922  assert(IncrementalInline, "incremental inlining should be on");
1923  PhaseGVN* gvn = initial_gvn();
1924
1925  set_inlining_progress(false);
1926  for_igvn()->clear();
1927  gvn->replace_with(&igvn);
1928
1929  int i = 0;
1930
1931  for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1932    CallGenerator* cg = _late_inlines.at(i);
1933    _late_inlines_pos = i+1;
1934    cg->do_late_inline();
1935    if (failing())  return;
1936  }
1937  int j = 0;
1938  for (; i < _late_inlines.length(); i++, j++) {
1939    _late_inlines.at_put(j, _late_inlines.at(i));
1940  }
1941  _late_inlines.trunc_to(j);
1942
1943  {
1944    ResourceMark rm;
1945    PhaseRemoveUseless pru(gvn, for_igvn());
1946  }
1947
1948  igvn = PhaseIterGVN(gvn);
1949}
1950
1951// Perform incremental inlining until bound on number of live nodes is reached
1952void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1953  PhaseGVN* gvn = initial_gvn();
1954
1955  set_inlining_incrementally(true);
1956  set_inlining_progress(true);
1957  uint low_live_nodes = 0;
1958
1959  while(inlining_progress() && _late_inlines.length() > 0) {
1960
1961    if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1962      if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1963        // PhaseIdealLoop is expensive so we only try it once we are
1964        // out of live nodes and we only try it again if the previous
1965        // helped got the number of nodes down significantly
1966        PhaseIdealLoop ideal_loop( igvn, false, true );
1967        if (failing())  return;
1968        low_live_nodes = live_nodes();
1969        _major_progress = true;
1970      }
1971
1972      if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1973        break;
1974      }
1975    }
1976
1977    inline_incrementally_one(igvn);
1978
1979    if (failing())  return;
1980
1981    igvn.optimize();
1982
1983    if (failing())  return;
1984  }
1985
1986  assert( igvn._worklist.size() == 0, "should be done with igvn" );
1987
1988  if (_string_late_inlines.length() > 0) {
1989    assert(has_stringbuilder(), "inconsistent");
1990    for_igvn()->clear();
1991    initial_gvn()->replace_with(&igvn);
1992
1993    inline_string_calls(false);
1994
1995    if (failing())  return;
1996
1997    {
1998      ResourceMark rm;
1999      PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2000    }
2001
2002    igvn = PhaseIterGVN(gvn);
2003
2004    igvn.optimize();
2005  }
2006
2007  set_inlining_incrementally(false);
2008}
2009
2010
2011//------------------------------Optimize---------------------------------------
2012// Given a graph, optimize it.
2013void Compile::Optimize() {
2014  TracePhase t1("optimizer", &_t_optimizer, true);
2015
2016#ifndef PRODUCT
2017  if (env()->break_at_compile()) {
2018    BREAKPOINT;
2019  }
2020
2021#endif
2022
2023  ResourceMark rm;
2024  int          loop_opts_cnt;
2025
2026  print_inlining_reinit();
2027
2028  NOT_PRODUCT( verify_graph_edges(); )
2029
2030  print_method(PHASE_AFTER_PARSING);
2031
2032 {
2033  // Iterative Global Value Numbering, including ideal transforms
2034  // Initialize IterGVN with types and values from parse-time GVN
2035  PhaseIterGVN igvn(initial_gvn());
2036  {
2037    NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2038    igvn.optimize();
2039  }
2040
2041  print_method(PHASE_ITER_GVN1, 2);
2042
2043  if (failing())  return;
2044
2045  {
2046    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2047    inline_incrementally(igvn);
2048  }
2049
2050  print_method(PHASE_INCREMENTAL_INLINE, 2);
2051
2052  if (failing())  return;
2053
2054  if (eliminate_boxing()) {
2055    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2056    // Inline valueOf() methods now.
2057    inline_boxing_calls(igvn);
2058
2059    if (AlwaysIncrementalInline) {
2060      inline_incrementally(igvn);
2061    }
2062
2063    print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2064
2065    if (failing())  return;
2066  }
2067
2068  // Remove the speculative part of types and clean up the graph from
2069  // the extra CastPP nodes whose only purpose is to carry them. Do
2070  // that early so that optimizations are not disrupted by the extra
2071  // CastPP nodes.
2072  remove_speculative_types(igvn);
2073
2074  // No more new expensive nodes will be added to the list from here
2075  // so keep only the actual candidates for optimizations.
2076  cleanup_expensive_nodes(igvn);
2077
2078  // Perform escape analysis
2079  if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2080    if (has_loops()) {
2081      // Cleanup graph (remove dead nodes).
2082      TracePhase t2("idealLoop", &_t_idealLoop, true);
2083      PhaseIdealLoop ideal_loop( igvn, false, true );
2084      if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2085      if (failing())  return;
2086    }
2087    ConnectionGraph::do_analysis(this, &igvn);
2088
2089    if (failing())  return;
2090
2091    // Optimize out fields loads from scalar replaceable allocations.
2092    igvn.optimize();
2093    print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2094
2095    if (failing())  return;
2096
2097    if (congraph() != NULL && macro_count() > 0) {
2098      NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2099      PhaseMacroExpand mexp(igvn);
2100      mexp.eliminate_macro_nodes();
2101      igvn.set_delay_transform(false);
2102
2103      igvn.optimize();
2104      print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2105
2106      if (failing())  return;
2107    }
2108  }
2109
2110  // Loop transforms on the ideal graph.  Range Check Elimination,
2111  // peeling, unrolling, etc.
2112
2113  // Set loop opts counter
2114  loop_opts_cnt = num_loop_opts();
2115  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2116    {
2117      TracePhase t2("idealLoop", &_t_idealLoop, true);
2118      PhaseIdealLoop ideal_loop( igvn, true );
2119      loop_opts_cnt--;
2120      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2121      if (failing())  return;
2122    }
2123    // Loop opts pass if partial peeling occurred in previous pass
2124    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2125      TracePhase t3("idealLoop", &_t_idealLoop, true);
2126      PhaseIdealLoop ideal_loop( igvn, false );
2127      loop_opts_cnt--;
2128      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2129      if (failing())  return;
2130    }
2131    // Loop opts pass for loop-unrolling before CCP
2132    if(major_progress() && (loop_opts_cnt > 0)) {
2133      TracePhase t4("idealLoop", &_t_idealLoop, true);
2134      PhaseIdealLoop ideal_loop( igvn, false );
2135      loop_opts_cnt--;
2136      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2137    }
2138    if (!failing()) {
2139      // Verify that last round of loop opts produced a valid graph
2140      NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2141      PhaseIdealLoop::verify(igvn);
2142    }
2143  }
2144  if (failing())  return;
2145
2146  // Conditional Constant Propagation;
2147  PhaseCCP ccp( &igvn );
2148  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2149  {
2150    TracePhase t2("ccp", &_t_ccp, true);
2151    ccp.do_transform();
2152  }
2153  print_method(PHASE_CPP1, 2);
2154
2155  assert( true, "Break here to ccp.dump_old2new_map()");
2156
2157  // Iterative Global Value Numbering, including ideal transforms
2158  {
2159    NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2160    igvn = ccp;
2161    igvn.optimize();
2162  }
2163
2164  print_method(PHASE_ITER_GVN2, 2);
2165
2166  if (failing())  return;
2167
2168  // Loop transforms on the ideal graph.  Range Check Elimination,
2169  // peeling, unrolling, etc.
2170  if(loop_opts_cnt > 0) {
2171    debug_only( int cnt = 0; );
2172    while(major_progress() && (loop_opts_cnt > 0)) {
2173      TracePhase t2("idealLoop", &_t_idealLoop, true);
2174      assert( cnt++ < 40, "infinite cycle in loop optimization" );
2175      PhaseIdealLoop ideal_loop( igvn, true);
2176      loop_opts_cnt--;
2177      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2178      if (failing())  return;
2179    }
2180  }
2181
2182  {
2183    // Verify that all previous optimizations produced a valid graph
2184    // at least to this point, even if no loop optimizations were done.
2185    NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2186    PhaseIdealLoop::verify(igvn);
2187  }
2188
2189  {
2190    NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2191    PhaseMacroExpand  mex(igvn);
2192    if (mex.expand_macro_nodes()) {
2193      assert(failing(), "must bail out w/ explicit message");
2194      return;
2195    }
2196  }
2197
2198 } // (End scope of igvn; run destructor if necessary for asserts.)
2199
2200  process_print_inlining();
2201  // A method with only infinite loops has no edges entering loops from root
2202  {
2203    NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2204    if (final_graph_reshaping()) {
2205      assert(failing(), "must bail out w/ explicit message");
2206      return;
2207    }
2208  }
2209
2210  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2211}
2212
2213
2214//------------------------------Code_Gen---------------------------------------
2215// Given a graph, generate code for it
2216void Compile::Code_Gen() {
2217  if (failing()) {
2218    return;
2219  }
2220
2221  // Perform instruction selection.  You might think we could reclaim Matcher
2222  // memory PDQ, but actually the Matcher is used in generating spill code.
2223  // Internals of the Matcher (including some VectorSets) must remain live
2224  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2225  // set a bit in reclaimed memory.
2226
2227  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2228  // nodes.  Mapping is only valid at the root of each matched subtree.
2229  NOT_PRODUCT( verify_graph_edges(); )
2230
2231  Matcher matcher;
2232  _matcher = &matcher;
2233  {
2234    TracePhase t2("matcher", &_t_matcher, true);
2235    matcher.match();
2236  }
2237  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2238  // nodes.  Mapping is only valid at the root of each matched subtree.
2239  NOT_PRODUCT( verify_graph_edges(); )
2240
2241  // If you have too many nodes, or if matching has failed, bail out
2242  check_node_count(0, "out of nodes matching instructions");
2243  if (failing()) {
2244    return;
2245  }
2246
2247  // Build a proper-looking CFG
2248  PhaseCFG cfg(node_arena(), root(), matcher);
2249  _cfg = &cfg;
2250  {
2251    NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2252    bool success = cfg.do_global_code_motion();
2253    if (!success) {
2254      return;
2255    }
2256
2257    print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2258    NOT_PRODUCT( verify_graph_edges(); )
2259    debug_only( cfg.verify(); )
2260  }
2261
2262  PhaseChaitin regalloc(unique(), cfg, matcher);
2263  _regalloc = &regalloc;
2264  {
2265    TracePhase t2("regalloc", &_t_registerAllocation, true);
2266    // Perform register allocation.  After Chaitin, use-def chains are
2267    // no longer accurate (at spill code) and so must be ignored.
2268    // Node->LRG->reg mappings are still accurate.
2269    _regalloc->Register_Allocate();
2270
2271    // Bail out if the allocator builds too many nodes
2272    if (failing()) {
2273      return;
2274    }
2275  }
2276
2277  // Prior to register allocation we kept empty basic blocks in case the
2278  // the allocator needed a place to spill.  After register allocation we
2279  // are not adding any new instructions.  If any basic block is empty, we
2280  // can now safely remove it.
2281  {
2282    NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2283    cfg.remove_empty_blocks();
2284    if (do_freq_based_layout()) {
2285      PhaseBlockLayout layout(cfg);
2286    } else {
2287      cfg.set_loop_alignment();
2288    }
2289    cfg.fixup_flow();
2290  }
2291
2292  // Apply peephole optimizations
2293  if( OptoPeephole ) {
2294    NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2295    PhasePeephole peep( _regalloc, cfg);
2296    peep.do_transform();
2297  }
2298
2299  // Do late expand if CPU requires this.
2300  if (Matcher::require_postalloc_expand) {
2301    NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2302    cfg.postalloc_expand(_regalloc);
2303  }
2304
2305  // Convert Nodes to instruction bits in a buffer
2306  {
2307    // %%%% workspace merge brought two timers together for one job
2308    TracePhase t2a("output", &_t_output, true);
2309    NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2310    Output();
2311  }
2312
2313  print_method(PHASE_FINAL_CODE);
2314
2315  // He's dead, Jim.
2316  _cfg     = (PhaseCFG*)0xdeadbeef;
2317  _regalloc = (PhaseChaitin*)0xdeadbeef;
2318}
2319
2320
2321//------------------------------dump_asm---------------------------------------
2322// Dump formatted assembly
2323#ifndef PRODUCT
2324void Compile::dump_asm(int *pcs, uint pc_limit) {
2325  bool cut_short = false;
2326  tty->print_cr("#");
2327  tty->print("#  ");  _tf->dump();  tty->cr();
2328  tty->print_cr("#");
2329
2330  // For all blocks
2331  int pc = 0x0;                 // Program counter
2332  char starts_bundle = ' ';
2333  _regalloc->dump_frame();
2334
2335  Node *n = NULL;
2336  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2337    if (VMThread::should_terminate()) {
2338      cut_short = true;
2339      break;
2340    }
2341    Block* block = _cfg->get_block(i);
2342    if (block->is_connector() && !Verbose) {
2343      continue;
2344    }
2345    n = block->head();
2346    if (pcs && n->_idx < pc_limit) {
2347      tty->print("%3.3x   ", pcs[n->_idx]);
2348    } else {
2349      tty->print("      ");
2350    }
2351    block->dump_head(_cfg);
2352    if (block->is_connector()) {
2353      tty->print_cr("        # Empty connector block");
2354    } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2355      tty->print_cr("        # Block is sole successor of call");
2356    }
2357
2358    // For all instructions
2359    Node *delay = NULL;
2360    for (uint j = 0; j < block->number_of_nodes(); j++) {
2361      if (VMThread::should_terminate()) {
2362        cut_short = true;
2363        break;
2364      }
2365      n = block->get_node(j);
2366      if (valid_bundle_info(n)) {
2367        Bundle* bundle = node_bundling(n);
2368        if (bundle->used_in_unconditional_delay()) {
2369          delay = n;
2370          continue;
2371        }
2372        if (bundle->starts_bundle()) {
2373          starts_bundle = '+';
2374        }
2375      }
2376
2377      if (WizardMode) {
2378        n->dump();
2379      }
2380
2381      if( !n->is_Region() &&    // Dont print in the Assembly
2382          !n->is_Phi() &&       // a few noisely useless nodes
2383          !n->is_Proj() &&
2384          !n->is_MachTemp() &&
2385          !n->is_SafePointScalarObject() &&
2386          !n->is_Catch() &&     // Would be nice to print exception table targets
2387          !n->is_MergeMem() &&  // Not very interesting
2388          !n->is_top() &&       // Debug info table constants
2389          !(n->is_Con() && !n->is_Mach())// Debug info table constants
2390          ) {
2391        if (pcs && n->_idx < pc_limit)
2392          tty->print("%3.3x", pcs[n->_idx]);
2393        else
2394          tty->print("   ");
2395        tty->print(" %c ", starts_bundle);
2396        starts_bundle = ' ';
2397        tty->print("\t");
2398        n->format(_regalloc, tty);
2399        tty->cr();
2400      }
2401
2402      // If we have an instruction with a delay slot, and have seen a delay,
2403      // then back up and print it
2404      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2405        assert(delay != NULL, "no unconditional delay instruction");
2406        if (WizardMode) delay->dump();
2407
2408        if (node_bundling(delay)->starts_bundle())
2409          starts_bundle = '+';
2410        if (pcs && n->_idx < pc_limit)
2411          tty->print("%3.3x", pcs[n->_idx]);
2412        else
2413          tty->print("   ");
2414        tty->print(" %c ", starts_bundle);
2415        starts_bundle = ' ';
2416        tty->print("\t");
2417        delay->format(_regalloc, tty);
2418        tty->cr();
2419        delay = NULL;
2420      }
2421
2422      // Dump the exception table as well
2423      if( n->is_Catch() && (Verbose || WizardMode) ) {
2424        // Print the exception table for this offset
2425        _handler_table.print_subtable_for(pc);
2426      }
2427    }
2428
2429    if (pcs && n->_idx < pc_limit)
2430      tty->print_cr("%3.3x", pcs[n->_idx]);
2431    else
2432      tty->cr();
2433
2434    assert(cut_short || delay == NULL, "no unconditional delay branch");
2435
2436  } // End of per-block dump
2437  tty->cr();
2438
2439  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2440}
2441#endif
2442
2443//------------------------------Final_Reshape_Counts---------------------------
2444// This class defines counters to help identify when a method
2445// may/must be executed using hardware with only 24-bit precision.
2446struct Final_Reshape_Counts : public StackObj {
2447  int  _call_count;             // count non-inlined 'common' calls
2448  int  _float_count;            // count float ops requiring 24-bit precision
2449  int  _double_count;           // count double ops requiring more precision
2450  int  _java_call_count;        // count non-inlined 'java' calls
2451  int  _inner_loop_count;       // count loops which need alignment
2452  VectorSet _visited;           // Visitation flags
2453  Node_List _tests;             // Set of IfNodes & PCTableNodes
2454
2455  Final_Reshape_Counts() :
2456    _call_count(0), _float_count(0), _double_count(0),
2457    _java_call_count(0), _inner_loop_count(0),
2458    _visited( Thread::current()->resource_area() ) { }
2459
2460  void inc_call_count  () { _call_count  ++; }
2461  void inc_float_count () { _float_count ++; }
2462  void inc_double_count() { _double_count++; }
2463  void inc_java_call_count() { _java_call_count++; }
2464  void inc_inner_loop_count() { _inner_loop_count++; }
2465
2466  int  get_call_count  () const { return _call_count  ; }
2467  int  get_float_count () const { return _float_count ; }
2468  int  get_double_count() const { return _double_count; }
2469  int  get_java_call_count() const { return _java_call_count; }
2470  int  get_inner_loop_count() const { return _inner_loop_count; }
2471};
2472
2473#ifdef ASSERT
2474static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2475  ciInstanceKlass *k = tp->klass()->as_instance_klass();
2476  // Make sure the offset goes inside the instance layout.
2477  return k->contains_field_offset(tp->offset());
2478  // Note that OffsetBot and OffsetTop are very negative.
2479}
2480#endif
2481
2482// Eliminate trivially redundant StoreCMs and accumulate their
2483// precedence edges.
2484void Compile::eliminate_redundant_card_marks(Node* n) {
2485  assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2486  if (n->in(MemNode::Address)->outcnt() > 1) {
2487    // There are multiple users of the same address so it might be
2488    // possible to eliminate some of the StoreCMs
2489    Node* mem = n->in(MemNode::Memory);
2490    Node* adr = n->in(MemNode::Address);
2491    Node* val = n->in(MemNode::ValueIn);
2492    Node* prev = n;
2493    bool done = false;
2494    // Walk the chain of StoreCMs eliminating ones that match.  As
2495    // long as it's a chain of single users then the optimization is
2496    // safe.  Eliminating partially redundant StoreCMs would require
2497    // cloning copies down the other paths.
2498    while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2499      if (adr == mem->in(MemNode::Address) &&
2500          val == mem->in(MemNode::ValueIn)) {
2501        // redundant StoreCM
2502        if (mem->req() > MemNode::OopStore) {
2503          // Hasn't been processed by this code yet.
2504          n->add_prec(mem->in(MemNode::OopStore));
2505        } else {
2506          // Already converted to precedence edge
2507          for (uint i = mem->req(); i < mem->len(); i++) {
2508            // Accumulate any precedence edges
2509            if (mem->in(i) != NULL) {
2510              n->add_prec(mem->in(i));
2511            }
2512          }
2513          // Everything above this point has been processed.
2514          done = true;
2515        }
2516        // Eliminate the previous StoreCM
2517        prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2518        assert(mem->outcnt() == 0, "should be dead");
2519        mem->disconnect_inputs(NULL, this);
2520      } else {
2521        prev = mem;
2522      }
2523      mem = prev->in(MemNode::Memory);
2524    }
2525  }
2526}
2527
2528//------------------------------final_graph_reshaping_impl----------------------
2529// Implement items 1-5 from final_graph_reshaping below.
2530void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2531
2532  if ( n->outcnt() == 0 ) return; // dead node
2533  uint nop = n->Opcode();
2534
2535  // Check for 2-input instruction with "last use" on right input.
2536  // Swap to left input.  Implements item (2).
2537  if( n->req() == 3 &&          // two-input instruction
2538      n->in(1)->outcnt() > 1 && // left use is NOT a last use
2539      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2540      n->in(2)->outcnt() == 1 &&// right use IS a last use
2541      !n->in(2)->is_Con() ) {   // right use is not a constant
2542    // Check for commutative opcode
2543    switch( nop ) {
2544    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2545    case Op_MaxI:  case Op_MinI:
2546    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2547    case Op_AndL:  case Op_XorL:  case Op_OrL:
2548    case Op_AndI:  case Op_XorI:  case Op_OrI: {
2549      // Move "last use" input to left by swapping inputs
2550      n->swap_edges(1, 2);
2551      break;
2552    }
2553    default:
2554      break;
2555    }
2556  }
2557
2558#ifdef ASSERT
2559  if( n->is_Mem() ) {
2560    int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2561    assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2562            // oop will be recorded in oop map if load crosses safepoint
2563            n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2564                             LoadNode::is_immutable_value(n->in(MemNode::Address))),
2565            "raw memory operations should have control edge");
2566  }
2567#endif
2568  // Count FPU ops and common calls, implements item (3)
2569  switch( nop ) {
2570  // Count all float operations that may use FPU
2571  case Op_AddF:
2572  case Op_SubF:
2573  case Op_MulF:
2574  case Op_DivF:
2575  case Op_NegF:
2576  case Op_ModF:
2577  case Op_ConvI2F:
2578  case Op_ConF:
2579  case Op_CmpF:
2580  case Op_CmpF3:
2581  // case Op_ConvL2F: // longs are split into 32-bit halves
2582    frc.inc_float_count();
2583    break;
2584
2585  case Op_ConvF2D:
2586  case Op_ConvD2F:
2587    frc.inc_float_count();
2588    frc.inc_double_count();
2589    break;
2590
2591  // Count all double operations that may use FPU
2592  case Op_AddD:
2593  case Op_SubD:
2594  case Op_MulD:
2595  case Op_DivD:
2596  case Op_NegD:
2597  case Op_ModD:
2598  case Op_ConvI2D:
2599  case Op_ConvD2I:
2600  // case Op_ConvL2D: // handled by leaf call
2601  // case Op_ConvD2L: // handled by leaf call
2602  case Op_ConD:
2603  case Op_CmpD:
2604  case Op_CmpD3:
2605    frc.inc_double_count();
2606    break;
2607  case Op_Opaque1:              // Remove Opaque Nodes before matching
2608  case Op_Opaque2:              // Remove Opaque Nodes before matching
2609  case Op_Opaque3:
2610    n->subsume_by(n->in(1), this);
2611    break;
2612  case Op_CallStaticJava:
2613  case Op_CallJava:
2614  case Op_CallDynamicJava:
2615    frc.inc_java_call_count(); // Count java call site;
2616  case Op_CallRuntime:
2617  case Op_CallLeaf:
2618  case Op_CallLeafNoFP: {
2619    assert( n->is_Call(), "" );
2620    CallNode *call = n->as_Call();
2621    // Count call sites where the FP mode bit would have to be flipped.
2622    // Do not count uncommon runtime calls:
2623    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2624    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2625    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2626      frc.inc_call_count();   // Count the call site
2627    } else {                  // See if uncommon argument is shared
2628      Node *n = call->in(TypeFunc::Parms);
2629      int nop = n->Opcode();
2630      // Clone shared simple arguments to uncommon calls, item (1).
2631      if( n->outcnt() > 1 &&
2632          !n->is_Proj() &&
2633          nop != Op_CreateEx &&
2634          nop != Op_CheckCastPP &&
2635          nop != Op_DecodeN &&
2636          nop != Op_DecodeNKlass &&
2637          !n->is_Mem() ) {
2638        Node *x = n->clone();
2639        call->set_req( TypeFunc::Parms, x );
2640      }
2641    }
2642    break;
2643  }
2644
2645  case Op_StoreD:
2646  case Op_LoadD:
2647  case Op_LoadD_unaligned:
2648    frc.inc_double_count();
2649    goto handle_mem;
2650  case Op_StoreF:
2651  case Op_LoadF:
2652    frc.inc_float_count();
2653    goto handle_mem;
2654
2655  case Op_StoreCM:
2656    {
2657      // Convert OopStore dependence into precedence edge
2658      Node* prec = n->in(MemNode::OopStore);
2659      n->del_req(MemNode::OopStore);
2660      n->add_prec(prec);
2661      eliminate_redundant_card_marks(n);
2662    }
2663
2664    // fall through
2665
2666  case Op_StoreB:
2667  case Op_StoreC:
2668  case Op_StorePConditional:
2669  case Op_StoreI:
2670  case Op_StoreL:
2671  case Op_StoreIConditional:
2672  case Op_StoreLConditional:
2673  case Op_CompareAndSwapI:
2674  case Op_CompareAndSwapL:
2675  case Op_CompareAndSwapP:
2676  case Op_CompareAndSwapN:
2677  case Op_GetAndAddI:
2678  case Op_GetAndAddL:
2679  case Op_GetAndSetI:
2680  case Op_GetAndSetL:
2681  case Op_GetAndSetP:
2682  case Op_GetAndSetN:
2683  case Op_StoreP:
2684  case Op_StoreN:
2685  case Op_StoreNKlass:
2686  case Op_LoadB:
2687  case Op_LoadUB:
2688  case Op_LoadUS:
2689  case Op_LoadI:
2690  case Op_LoadKlass:
2691  case Op_LoadNKlass:
2692  case Op_LoadL:
2693  case Op_LoadL_unaligned:
2694  case Op_LoadPLocked:
2695  case Op_LoadP:
2696  case Op_LoadN:
2697  case Op_LoadRange:
2698  case Op_LoadS: {
2699  handle_mem:
2700#ifdef ASSERT
2701    if( VerifyOptoOopOffsets ) {
2702      assert( n->is_Mem(), "" );
2703      MemNode *mem  = (MemNode*)n;
2704      // Check to see if address types have grounded out somehow.
2705      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2706      assert( !tp || oop_offset_is_sane(tp), "" );
2707    }
2708#endif
2709    break;
2710  }
2711
2712  case Op_AddP: {               // Assert sane base pointers
2713    Node *addp = n->in(AddPNode::Address);
2714    assert( !addp->is_AddP() ||
2715            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2716            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2717            "Base pointers must match" );
2718#ifdef _LP64
2719    if ((UseCompressedOops || UseCompressedClassPointers) &&
2720        addp->Opcode() == Op_ConP &&
2721        addp == n->in(AddPNode::Base) &&
2722        n->in(AddPNode::Offset)->is_Con()) {
2723      // Use addressing with narrow klass to load with offset on x86.
2724      // On sparc loading 32-bits constant and decoding it have less
2725      // instructions (4) then load 64-bits constant (7).
2726      // Do this transformation here since IGVN will convert ConN back to ConP.
2727      const Type* t = addp->bottom_type();
2728      if (t->isa_oopptr() || t->isa_klassptr()) {
2729        Node* nn = NULL;
2730
2731        int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2732
2733        // Look for existing ConN node of the same exact type.
2734        Node* r  = root();
2735        uint cnt = r->outcnt();
2736        for (uint i = 0; i < cnt; i++) {
2737          Node* m = r->raw_out(i);
2738          if (m!= NULL && m->Opcode() == op &&
2739              m->bottom_type()->make_ptr() == t) {
2740            nn = m;
2741            break;
2742          }
2743        }
2744        if (nn != NULL) {
2745          // Decode a narrow oop to match address
2746          // [R12 + narrow_oop_reg<<3 + offset]
2747          if (t->isa_oopptr()) {
2748            nn = new DecodeNNode(nn, t);
2749          } else {
2750            nn = new DecodeNKlassNode(nn, t);
2751          }
2752          n->set_req(AddPNode::Base, nn);
2753          n->set_req(AddPNode::Address, nn);
2754          if (addp->outcnt() == 0) {
2755            addp->disconnect_inputs(NULL, this);
2756          }
2757        }
2758      }
2759    }
2760#endif
2761    break;
2762  }
2763
2764#ifdef _LP64
2765  case Op_CastPP:
2766    if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2767      Node* in1 = n->in(1);
2768      const Type* t = n->bottom_type();
2769      Node* new_in1 = in1->clone();
2770      new_in1->as_DecodeN()->set_type(t);
2771
2772      if (!Matcher::narrow_oop_use_complex_address()) {
2773        //
2774        // x86, ARM and friends can handle 2 adds in addressing mode
2775        // and Matcher can fold a DecodeN node into address by using
2776        // a narrow oop directly and do implicit NULL check in address:
2777        //
2778        // [R12 + narrow_oop_reg<<3 + offset]
2779        // NullCheck narrow_oop_reg
2780        //
2781        // On other platforms (Sparc) we have to keep new DecodeN node and
2782        // use it to do implicit NULL check in address:
2783        //
2784        // decode_not_null narrow_oop_reg, base_reg
2785        // [base_reg + offset]
2786        // NullCheck base_reg
2787        //
2788        // Pin the new DecodeN node to non-null path on these platform (Sparc)
2789        // to keep the information to which NULL check the new DecodeN node
2790        // corresponds to use it as value in implicit_null_check().
2791        //
2792        new_in1->set_req(0, n->in(0));
2793      }
2794
2795      n->subsume_by(new_in1, this);
2796      if (in1->outcnt() == 0) {
2797        in1->disconnect_inputs(NULL, this);
2798      }
2799    }
2800    break;
2801
2802  case Op_CmpP:
2803    // Do this transformation here to preserve CmpPNode::sub() and
2804    // other TypePtr related Ideal optimizations (for example, ptr nullness).
2805    if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2806      Node* in1 = n->in(1);
2807      Node* in2 = n->in(2);
2808      if (!in1->is_DecodeNarrowPtr()) {
2809        in2 = in1;
2810        in1 = n->in(2);
2811      }
2812      assert(in1->is_DecodeNarrowPtr(), "sanity");
2813
2814      Node* new_in2 = NULL;
2815      if (in2->is_DecodeNarrowPtr()) {
2816        assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2817        new_in2 = in2->in(1);
2818      } else if (in2->Opcode() == Op_ConP) {
2819        const Type* t = in2->bottom_type();
2820        if (t == TypePtr::NULL_PTR) {
2821          assert(in1->is_DecodeN(), "compare klass to null?");
2822          // Don't convert CmpP null check into CmpN if compressed
2823          // oops implicit null check is not generated.
2824          // This will allow to generate normal oop implicit null check.
2825          if (Matcher::gen_narrow_oop_implicit_null_checks())
2826            new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2827          //
2828          // This transformation together with CastPP transformation above
2829          // will generated code for implicit NULL checks for compressed oops.
2830          //
2831          // The original code after Optimize()
2832          //
2833          //    LoadN memory, narrow_oop_reg
2834          //    decode narrow_oop_reg, base_reg
2835          //    CmpP base_reg, NULL
2836          //    CastPP base_reg // NotNull
2837          //    Load [base_reg + offset], val_reg
2838          //
2839          // after these transformations will be
2840          //
2841          //    LoadN memory, narrow_oop_reg
2842          //    CmpN narrow_oop_reg, NULL
2843          //    decode_not_null narrow_oop_reg, base_reg
2844          //    Load [base_reg + offset], val_reg
2845          //
2846          // and the uncommon path (== NULL) will use narrow_oop_reg directly
2847          // since narrow oops can be used in debug info now (see the code in
2848          // final_graph_reshaping_walk()).
2849          //
2850          // At the end the code will be matched to
2851          // on x86:
2852          //
2853          //    Load_narrow_oop memory, narrow_oop_reg
2854          //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2855          //    NullCheck narrow_oop_reg
2856          //
2857          // and on sparc:
2858          //
2859          //    Load_narrow_oop memory, narrow_oop_reg
2860          //    decode_not_null narrow_oop_reg, base_reg
2861          //    Load [base_reg + offset], val_reg
2862          //    NullCheck base_reg
2863          //
2864        } else if (t->isa_oopptr()) {
2865          new_in2 = ConNode::make(this, t->make_narrowoop());
2866        } else if (t->isa_klassptr()) {
2867          new_in2 = ConNode::make(this, t->make_narrowklass());
2868        }
2869      }
2870      if (new_in2 != NULL) {
2871        Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2872        n->subsume_by(cmpN, this);
2873        if (in1->outcnt() == 0) {
2874          in1->disconnect_inputs(NULL, this);
2875        }
2876        if (in2->outcnt() == 0) {
2877          in2->disconnect_inputs(NULL, this);
2878        }
2879      }
2880    }
2881    break;
2882
2883  case Op_DecodeN:
2884  case Op_DecodeNKlass:
2885    assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2886    // DecodeN could be pinned when it can't be fold into
2887    // an address expression, see the code for Op_CastPP above.
2888    assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2889    break;
2890
2891  case Op_EncodeP:
2892  case Op_EncodePKlass: {
2893    Node* in1 = n->in(1);
2894    if (in1->is_DecodeNarrowPtr()) {
2895      n->subsume_by(in1->in(1), this);
2896    } else if (in1->Opcode() == Op_ConP) {
2897      const Type* t = in1->bottom_type();
2898      if (t == TypePtr::NULL_PTR) {
2899        assert(t->isa_oopptr(), "null klass?");
2900        n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2901      } else if (t->isa_oopptr()) {
2902        n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2903      } else if (t->isa_klassptr()) {
2904        n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2905      }
2906    }
2907    if (in1->outcnt() == 0) {
2908      in1->disconnect_inputs(NULL, this);
2909    }
2910    break;
2911  }
2912
2913  case Op_Proj: {
2914    if (OptimizeStringConcat) {
2915      ProjNode* p = n->as_Proj();
2916      if (p->_is_io_use) {
2917        // Separate projections were used for the exception path which
2918        // are normally removed by a late inline.  If it wasn't inlined
2919        // then they will hang around and should just be replaced with
2920        // the original one.
2921        Node* proj = NULL;
2922        // Replace with just one
2923        for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2924          Node *use = i.get();
2925          if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2926            proj = use;
2927            break;
2928          }
2929        }
2930        assert(proj != NULL, "must be found");
2931        p->subsume_by(proj, this);
2932      }
2933    }
2934    break;
2935  }
2936
2937  case Op_Phi:
2938    if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2939      // The EncodeP optimization may create Phi with the same edges
2940      // for all paths. It is not handled well by Register Allocator.
2941      Node* unique_in = n->in(1);
2942      assert(unique_in != NULL, "");
2943      uint cnt = n->req();
2944      for (uint i = 2; i < cnt; i++) {
2945        Node* m = n->in(i);
2946        assert(m != NULL, "");
2947        if (unique_in != m)
2948          unique_in = NULL;
2949      }
2950      if (unique_in != NULL) {
2951        n->subsume_by(unique_in, this);
2952      }
2953    }
2954    break;
2955
2956#endif
2957
2958  case Op_ModI:
2959    if (UseDivMod) {
2960      // Check if a%b and a/b both exist
2961      Node* d = n->find_similar(Op_DivI);
2962      if (d) {
2963        // Replace them with a fused divmod if supported
2964        if (Matcher::has_match_rule(Op_DivModI)) {
2965          DivModINode* divmod = DivModINode::make(this, n);
2966          d->subsume_by(divmod->div_proj(), this);
2967          n->subsume_by(divmod->mod_proj(), this);
2968        } else {
2969          // replace a%b with a-((a/b)*b)
2970          Node* mult = new MulINode(d, d->in(2));
2971          Node* sub  = new SubINode(d->in(1), mult);
2972          n->subsume_by(sub, this);
2973        }
2974      }
2975    }
2976    break;
2977
2978  case Op_ModL:
2979    if (UseDivMod) {
2980      // Check if a%b and a/b both exist
2981      Node* d = n->find_similar(Op_DivL);
2982      if (d) {
2983        // Replace them with a fused divmod if supported
2984        if (Matcher::has_match_rule(Op_DivModL)) {
2985          DivModLNode* divmod = DivModLNode::make(this, n);
2986          d->subsume_by(divmod->div_proj(), this);
2987          n->subsume_by(divmod->mod_proj(), this);
2988        } else {
2989          // replace a%b with a-((a/b)*b)
2990          Node* mult = new MulLNode(d, d->in(2));
2991          Node* sub  = new SubLNode(d->in(1), mult);
2992          n->subsume_by(sub, this);
2993        }
2994      }
2995    }
2996    break;
2997
2998  case Op_LoadVector:
2999  case Op_StoreVector:
3000    break;
3001
3002  case Op_PackB:
3003  case Op_PackS:
3004  case Op_PackI:
3005  case Op_PackF:
3006  case Op_PackL:
3007  case Op_PackD:
3008    if (n->req()-1 > 2) {
3009      // Replace many operand PackNodes with a binary tree for matching
3010      PackNode* p = (PackNode*) n;
3011      Node* btp = p->binary_tree_pack(this, 1, n->req());
3012      n->subsume_by(btp, this);
3013    }
3014    break;
3015  case Op_Loop:
3016  case Op_CountedLoop:
3017    if (n->as_Loop()->is_inner_loop()) {
3018      frc.inc_inner_loop_count();
3019    }
3020    break;
3021  case Op_LShiftI:
3022  case Op_RShiftI:
3023  case Op_URShiftI:
3024  case Op_LShiftL:
3025  case Op_RShiftL:
3026  case Op_URShiftL:
3027    if (Matcher::need_masked_shift_count) {
3028      // The cpu's shift instructions don't restrict the count to the
3029      // lower 5/6 bits. We need to do the masking ourselves.
3030      Node* in2 = n->in(2);
3031      juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3032      const TypeInt* t = in2->find_int_type();
3033      if (t != NULL && t->is_con()) {
3034        juint shift = t->get_con();
3035        if (shift > mask) { // Unsigned cmp
3036          n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3037        }
3038      } else {
3039        if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3040          Node* shift = new AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3041          n->set_req(2, shift);
3042        }
3043      }
3044      if (in2->outcnt() == 0) { // Remove dead node
3045        in2->disconnect_inputs(NULL, this);
3046      }
3047    }
3048    break;
3049  case Op_MemBarStoreStore:
3050  case Op_MemBarRelease:
3051    // Break the link with AllocateNode: it is no longer useful and
3052    // confuses register allocation.
3053    if (n->req() > MemBarNode::Precedent) {
3054      n->set_req(MemBarNode::Precedent, top());
3055    }
3056    break;
3057  default:
3058    assert( !n->is_Call(), "" );
3059    assert( !n->is_Mem(), "" );
3060    break;
3061  }
3062
3063  // Collect CFG split points
3064  if (n->is_MultiBranch())
3065    frc._tests.push(n);
3066}
3067
3068//------------------------------final_graph_reshaping_walk---------------------
3069// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3070// requires that the walk visits a node's inputs before visiting the node.
3071void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3072  ResourceArea *area = Thread::current()->resource_area();
3073  Unique_Node_List sfpt(area);
3074
3075  frc._visited.set(root->_idx); // first, mark node as visited
3076  uint cnt = root->req();
3077  Node *n = root;
3078  uint  i = 0;
3079  while (true) {
3080    if (i < cnt) {
3081      // Place all non-visited non-null inputs onto stack
3082      Node* m = n->in(i);
3083      ++i;
3084      if (m != NULL && !frc._visited.test_set(m->_idx)) {
3085        if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3086          // compute worst case interpreter size in case of a deoptimization
3087          update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3088
3089          sfpt.push(m);
3090        }
3091        cnt = m->req();
3092        nstack.push(n, i); // put on stack parent and next input's index
3093        n = m;
3094        i = 0;
3095      }
3096    } else {
3097      // Now do post-visit work
3098      final_graph_reshaping_impl( n, frc );
3099      if (nstack.is_empty())
3100        break;             // finished
3101      n = nstack.node();   // Get node from stack
3102      cnt = n->req();
3103      i = nstack.index();
3104      nstack.pop();        // Shift to the next node on stack
3105    }
3106  }
3107
3108  // Skip next transformation if compressed oops are not used.
3109  if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3110      (!UseCompressedOops && !UseCompressedClassPointers))
3111    return;
3112
3113  // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3114  // It could be done for an uncommon traps or any safepoints/calls
3115  // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3116  while (sfpt.size() > 0) {
3117    n = sfpt.pop();
3118    JVMState *jvms = n->as_SafePoint()->jvms();
3119    assert(jvms != NULL, "sanity");
3120    int start = jvms->debug_start();
3121    int end   = n->req();
3122    bool is_uncommon = (n->is_CallStaticJava() &&
3123                        n->as_CallStaticJava()->uncommon_trap_request() != 0);
3124    for (int j = start; j < end; j++) {
3125      Node* in = n->in(j);
3126      if (in->is_DecodeNarrowPtr()) {
3127        bool safe_to_skip = true;
3128        if (!is_uncommon ) {
3129          // Is it safe to skip?
3130          for (uint i = 0; i < in->outcnt(); i++) {
3131            Node* u = in->raw_out(i);
3132            if (!u->is_SafePoint() ||
3133                 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3134              safe_to_skip = false;
3135            }
3136          }
3137        }
3138        if (safe_to_skip) {
3139          n->set_req(j, in->in(1));
3140        }
3141        if (in->outcnt() == 0) {
3142          in->disconnect_inputs(NULL, this);
3143        }
3144      }
3145    }
3146  }
3147}
3148
3149//------------------------------final_graph_reshaping--------------------------
3150// Final Graph Reshaping.
3151//
3152// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3153//     and not commoned up and forced early.  Must come after regular
3154//     optimizations to avoid GVN undoing the cloning.  Clone constant
3155//     inputs to Loop Phis; these will be split by the allocator anyways.
3156//     Remove Opaque nodes.
3157// (2) Move last-uses by commutative operations to the left input to encourage
3158//     Intel update-in-place two-address operations and better register usage
3159//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3160//     calls canonicalizing them back.
3161// (3) Count the number of double-precision FP ops, single-precision FP ops
3162//     and call sites.  On Intel, we can get correct rounding either by
3163//     forcing singles to memory (requires extra stores and loads after each
3164//     FP bytecode) or we can set a rounding mode bit (requires setting and
3165//     clearing the mode bit around call sites).  The mode bit is only used
3166//     if the relative frequency of single FP ops to calls is low enough.
3167//     This is a key transform for SPEC mpeg_audio.
3168// (4) Detect infinite loops; blobs of code reachable from above but not
3169//     below.  Several of the Code_Gen algorithms fail on such code shapes,
3170//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3171//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3172//     Detection is by looking for IfNodes where only 1 projection is
3173//     reachable from below or CatchNodes missing some targets.
3174// (5) Assert for insane oop offsets in debug mode.
3175
3176bool Compile::final_graph_reshaping() {
3177  // an infinite loop may have been eliminated by the optimizer,
3178  // in which case the graph will be empty.
3179  if (root()->req() == 1) {
3180    record_method_not_compilable("trivial infinite loop");
3181    return true;
3182  }
3183
3184  // Expensive nodes have their control input set to prevent the GVN
3185  // from freely commoning them. There's no GVN beyond this point so
3186  // no need to keep the control input. We want the expensive nodes to
3187  // be freely moved to the least frequent code path by gcm.
3188  assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3189  for (int i = 0; i < expensive_count(); i++) {
3190    _expensive_nodes->at(i)->set_req(0, NULL);
3191  }
3192
3193  Final_Reshape_Counts frc;
3194
3195  // Visit everybody reachable!
3196  // Allocate stack of size C->unique()/2 to avoid frequent realloc
3197  Node_Stack nstack(unique() >> 1);
3198  final_graph_reshaping_walk(nstack, root(), frc);
3199
3200  // Check for unreachable (from below) code (i.e., infinite loops).
3201  for( uint i = 0; i < frc._tests.size(); i++ ) {
3202    MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3203    // Get number of CFG targets.
3204    // Note that PCTables include exception targets after calls.
3205    uint required_outcnt = n->required_outcnt();
3206    if (n->outcnt() != required_outcnt) {
3207      // Check for a few special cases.  Rethrow Nodes never take the
3208      // 'fall-thru' path, so expected kids is 1 less.
3209      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3210        if (n->in(0)->in(0)->is_Call()) {
3211          CallNode *call = n->in(0)->in(0)->as_Call();
3212          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3213            required_outcnt--;      // Rethrow always has 1 less kid
3214          } else if (call->req() > TypeFunc::Parms &&
3215                     call->is_CallDynamicJava()) {
3216            // Check for null receiver. In such case, the optimizer has
3217            // detected that the virtual call will always result in a null
3218            // pointer exception. The fall-through projection of this CatchNode
3219            // will not be populated.
3220            Node *arg0 = call->in(TypeFunc::Parms);
3221            if (arg0->is_Type() &&
3222                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3223              required_outcnt--;
3224            }
3225          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3226                     call->req() > TypeFunc::Parms+1 &&
3227                     call->is_CallStaticJava()) {
3228            // Check for negative array length. In such case, the optimizer has
3229            // detected that the allocation attempt will always result in an
3230            // exception. There is no fall-through projection of this CatchNode .
3231            Node *arg1 = call->in(TypeFunc::Parms+1);
3232            if (arg1->is_Type() &&
3233                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3234              required_outcnt--;
3235            }
3236          }
3237        }
3238      }
3239      // Recheck with a better notion of 'required_outcnt'
3240      if (n->outcnt() != required_outcnt) {
3241        record_method_not_compilable("malformed control flow");
3242        return true;            // Not all targets reachable!
3243      }
3244    }
3245    // Check that I actually visited all kids.  Unreached kids
3246    // must be infinite loops.
3247    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3248      if (!frc._visited.test(n->fast_out(j)->_idx)) {
3249        record_method_not_compilable("infinite loop");
3250        return true;            // Found unvisited kid; must be unreach
3251      }
3252  }
3253
3254  // If original bytecodes contained a mixture of floats and doubles
3255  // check if the optimizer has made it homogenous, item (3).
3256  if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3257      frc.get_float_count() > 32 &&
3258      frc.get_double_count() == 0 &&
3259      (10 * frc.get_call_count() < frc.get_float_count()) ) {
3260    set_24_bit_selection_and_mode( false,  true );
3261  }
3262
3263  set_java_calls(frc.get_java_call_count());
3264  set_inner_loops(frc.get_inner_loop_count());
3265
3266  // No infinite loops, no reason to bail out.
3267  return false;
3268}
3269
3270//-----------------------------too_many_traps----------------------------------
3271// Report if there are too many traps at the current method and bci.
3272// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3273bool Compile::too_many_traps(ciMethod* method,
3274                             int bci,
3275                             Deoptimization::DeoptReason reason) {
3276  ciMethodData* md = method->method_data();
3277  if (md->is_empty()) {
3278    // Assume the trap has not occurred, or that it occurred only
3279    // because of a transient condition during start-up in the interpreter.
3280    return false;
3281  }
3282  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3283  if (md->has_trap_at(bci, m, reason) != 0) {
3284    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3285    // Also, if there are multiple reasons, or if there is no per-BCI record,
3286    // assume the worst.
3287    if (log())
3288      log()->elem("observe trap='%s' count='%d'",
3289                  Deoptimization::trap_reason_name(reason),
3290                  md->trap_count(reason));
3291    return true;
3292  } else {
3293    // Ignore method/bci and see if there have been too many globally.
3294    return too_many_traps(reason, md);
3295  }
3296}
3297
3298// Less-accurate variant which does not require a method and bci.
3299bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3300                             ciMethodData* logmd) {
3301  if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3302    // Too many traps globally.
3303    // Note that we use cumulative trap_count, not just md->trap_count.
3304    if (log()) {
3305      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3306      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3307                  Deoptimization::trap_reason_name(reason),
3308                  mcount, trap_count(reason));
3309    }
3310    return true;
3311  } else {
3312    // The coast is clear.
3313    return false;
3314  }
3315}
3316
3317//--------------------------too_many_recompiles--------------------------------
3318// Report if there are too many recompiles at the current method and bci.
3319// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3320// Is not eager to return true, since this will cause the compiler to use
3321// Action_none for a trap point, to avoid too many recompilations.
3322bool Compile::too_many_recompiles(ciMethod* method,
3323                                  int bci,
3324                                  Deoptimization::DeoptReason reason) {
3325  ciMethodData* md = method->method_data();
3326  if (md->is_empty()) {
3327    // Assume the trap has not occurred, or that it occurred only
3328    // because of a transient condition during start-up in the interpreter.
3329    return false;
3330  }
3331  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3332  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3333  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3334  Deoptimization::DeoptReason per_bc_reason
3335    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3336  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3337  if ((per_bc_reason == Deoptimization::Reason_none
3338       || md->has_trap_at(bci, m, reason) != 0)
3339      // The trap frequency measure we care about is the recompile count:
3340      && md->trap_recompiled_at(bci, m)
3341      && md->overflow_recompile_count() >= bc_cutoff) {
3342    // Do not emit a trap here if it has already caused recompilations.
3343    // Also, if there are multiple reasons, or if there is no per-BCI record,
3344    // assume the worst.
3345    if (log())
3346      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3347                  Deoptimization::trap_reason_name(reason),
3348                  md->trap_count(reason),
3349                  md->overflow_recompile_count());
3350    return true;
3351  } else if (trap_count(reason) != 0
3352             && decompile_count() >= m_cutoff) {
3353    // Too many recompiles globally, and we have seen this sort of trap.
3354    // Use cumulative decompile_count, not just md->decompile_count.
3355    if (log())
3356      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3357                  Deoptimization::trap_reason_name(reason),
3358                  md->trap_count(reason), trap_count(reason),
3359                  md->decompile_count(), decompile_count());
3360    return true;
3361  } else {
3362    // The coast is clear.
3363    return false;
3364  }
3365}
3366
3367// Compute when not to trap. Used by matching trap based nodes and
3368// NullCheck optimization.
3369void Compile::set_allowed_deopt_reasons() {
3370  _allowed_reasons = 0;
3371  if (is_method_compilation()) {
3372    for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3373      assert(rs < BitsPerInt, "recode bit map");
3374      if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3375        _allowed_reasons |= nth_bit(rs);
3376      }
3377    }
3378  }
3379}
3380
3381#ifndef PRODUCT
3382//------------------------------verify_graph_edges---------------------------
3383// Walk the Graph and verify that there is a one-to-one correspondence
3384// between Use-Def edges and Def-Use edges in the graph.
3385void Compile::verify_graph_edges(bool no_dead_code) {
3386  if (VerifyGraphEdges) {
3387    ResourceArea *area = Thread::current()->resource_area();
3388    Unique_Node_List visited(area);
3389    // Call recursive graph walk to check edges
3390    _root->verify_edges(visited);
3391    if (no_dead_code) {
3392      // Now make sure that no visited node is used by an unvisited node.
3393      bool dead_nodes = false;
3394      Unique_Node_List checked(area);
3395      while (visited.size() > 0) {
3396        Node* n = visited.pop();
3397        checked.push(n);
3398        for (uint i = 0; i < n->outcnt(); i++) {
3399          Node* use = n->raw_out(i);
3400          if (checked.member(use))  continue;  // already checked
3401          if (visited.member(use))  continue;  // already in the graph
3402          if (use->is_Con())        continue;  // a dead ConNode is OK
3403          // At this point, we have found a dead node which is DU-reachable.
3404          if (!dead_nodes) {
3405            tty->print_cr("*** Dead nodes reachable via DU edges:");
3406            dead_nodes = true;
3407          }
3408          use->dump(2);
3409          tty->print_cr("---");
3410          checked.push(use);  // No repeats; pretend it is now checked.
3411        }
3412      }
3413      assert(!dead_nodes, "using nodes must be reachable from root");
3414    }
3415  }
3416}
3417
3418// Verify GC barriers consistency
3419// Currently supported:
3420// - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3421void Compile::verify_barriers() {
3422  if (UseG1GC) {
3423    // Verify G1 pre-barriers
3424    const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3425
3426    ResourceArea *area = Thread::current()->resource_area();
3427    Unique_Node_List visited(area);
3428    Node_List worklist(area);
3429    // We're going to walk control flow backwards starting from the Root
3430    worklist.push(_root);
3431    while (worklist.size() > 0) {
3432      Node* x = worklist.pop();
3433      if (x == NULL || x == top()) continue;
3434      if (visited.member(x)) {
3435        continue;
3436      } else {
3437        visited.push(x);
3438      }
3439
3440      if (x->is_Region()) {
3441        for (uint i = 1; i < x->req(); i++) {
3442          worklist.push(x->in(i));
3443        }
3444      } else {
3445        worklist.push(x->in(0));
3446        // We are looking for the pattern:
3447        //                            /->ThreadLocal
3448        // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3449        //              \->ConI(0)
3450        // We want to verify that the If and the LoadB have the same control
3451        // See GraphKit::g1_write_barrier_pre()
3452        if (x->is_If()) {
3453          IfNode *iff = x->as_If();
3454          if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3455            CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3456            if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3457                && cmp->in(1)->is_Load()) {
3458              LoadNode* load = cmp->in(1)->as_Load();
3459              if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3460                  && load->in(2)->in(3)->is_Con()
3461                  && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3462
3463                Node* if_ctrl = iff->in(0);
3464                Node* load_ctrl = load->in(0);
3465
3466                if (if_ctrl != load_ctrl) {
3467                  // Skip possible CProj->NeverBranch in infinite loops
3468                  if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3469                      && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3470                    if_ctrl = if_ctrl->in(0)->in(0);
3471                  }
3472                }
3473                assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3474              }
3475            }
3476          }
3477        }
3478      }
3479    }
3480  }
3481}
3482
3483#endif
3484
3485// The Compile object keeps track of failure reasons separately from the ciEnv.
3486// This is required because there is not quite a 1-1 relation between the
3487// ciEnv and its compilation task and the Compile object.  Note that one
3488// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3489// to backtrack and retry without subsuming loads.  Other than this backtracking
3490// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3491// by the logic in C2Compiler.
3492void Compile::record_failure(const char* reason) {
3493  if (log() != NULL) {
3494    log()->elem("failure reason='%s' phase='compile'", reason);
3495  }
3496  if (_failure_reason == NULL) {
3497    // Record the first failure reason.
3498    _failure_reason = reason;
3499  }
3500
3501  EventCompilerFailure event;
3502  if (event.should_commit()) {
3503    event.set_compileID(Compile::compile_id());
3504    event.set_failure(reason);
3505    event.commit();
3506  }
3507
3508  if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3509    C->print_method(PHASE_FAILURE);
3510  }
3511  _root = NULL;  // flush the graph, too
3512}
3513
3514Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3515  : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3516    _phase_name(name), _dolog(dolog)
3517{
3518  if (dolog) {
3519    C = Compile::current();
3520    _log = C->log();
3521  } else {
3522    C = NULL;
3523    _log = NULL;
3524  }
3525  if (_log != NULL) {
3526    _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3527    _log->stamp();
3528    _log->end_head();
3529  }
3530}
3531
3532Compile::TracePhase::~TracePhase() {
3533
3534  C = Compile::current();
3535  if (_dolog) {
3536    _log = C->log();
3537  } else {
3538    _log = NULL;
3539  }
3540
3541#ifdef ASSERT
3542  if (PrintIdealNodeCount) {
3543    tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3544                  _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3545  }
3546
3547  if (VerifyIdealNodeCount) {
3548    Compile::current()->print_missing_nodes();
3549  }
3550#endif
3551
3552  if (_log != NULL) {
3553    _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3554  }
3555}
3556
3557//=============================================================================
3558// Two Constant's are equal when the type and the value are equal.
3559bool Compile::Constant::operator==(const Constant& other) {
3560  if (type()          != other.type()         )  return false;
3561  if (can_be_reused() != other.can_be_reused())  return false;
3562  // For floating point values we compare the bit pattern.
3563  switch (type()) {
3564  case T_FLOAT:   return (_v._value.i == other._v._value.i);
3565  case T_LONG:
3566  case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3567  case T_OBJECT:
3568  case T_ADDRESS: return (_v._value.l == other._v._value.l);
3569  case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3570  case T_METADATA: return (_v._metadata == other._v._metadata);
3571  default: ShouldNotReachHere();
3572  }
3573  return false;
3574}
3575
3576static int type_to_size_in_bytes(BasicType t) {
3577  switch (t) {
3578  case T_LONG:    return sizeof(jlong  );
3579  case T_FLOAT:   return sizeof(jfloat );
3580  case T_DOUBLE:  return sizeof(jdouble);
3581  case T_METADATA: return sizeof(Metadata*);
3582    // We use T_VOID as marker for jump-table entries (labels) which
3583    // need an internal word relocation.
3584  case T_VOID:
3585  case T_ADDRESS:
3586  case T_OBJECT:  return sizeof(jobject);
3587  }
3588
3589  ShouldNotReachHere();
3590  return -1;
3591}
3592
3593int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3594  // sort descending
3595  if (a->freq() > b->freq())  return -1;
3596  if (a->freq() < b->freq())  return  1;
3597  return 0;
3598}
3599
3600void Compile::ConstantTable::calculate_offsets_and_size() {
3601  // First, sort the array by frequencies.
3602  _constants.sort(qsort_comparator);
3603
3604#ifdef ASSERT
3605  // Make sure all jump-table entries were sorted to the end of the
3606  // array (they have a negative frequency).
3607  bool found_void = false;
3608  for (int i = 0; i < _constants.length(); i++) {
3609    Constant con = _constants.at(i);
3610    if (con.type() == T_VOID)
3611      found_void = true;  // jump-tables
3612    else
3613      assert(!found_void, "wrong sorting");
3614  }
3615#endif
3616
3617  int offset = 0;
3618  for (int i = 0; i < _constants.length(); i++) {
3619    Constant* con = _constants.adr_at(i);
3620
3621    // Align offset for type.
3622    int typesize = type_to_size_in_bytes(con->type());
3623    offset = align_size_up(offset, typesize);
3624    con->set_offset(offset);   // set constant's offset
3625
3626    if (con->type() == T_VOID) {
3627      MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3628      offset = offset + typesize * n->outcnt();  // expand jump-table
3629    } else {
3630      offset = offset + typesize;
3631    }
3632  }
3633
3634  // Align size up to the next section start (which is insts; see
3635  // CodeBuffer::align_at_start).
3636  assert(_size == -1, "already set?");
3637  _size = align_size_up(offset, CodeEntryAlignment);
3638}
3639
3640void Compile::ConstantTable::emit(CodeBuffer& cb) {
3641  MacroAssembler _masm(&cb);
3642  for (int i = 0; i < _constants.length(); i++) {
3643    Constant con = _constants.at(i);
3644    address constant_addr;
3645    switch (con.type()) {
3646    case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3647    case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3648    case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3649    case T_OBJECT: {
3650      jobject obj = con.get_jobject();
3651      int oop_index = _masm.oop_recorder()->find_index(obj);
3652      constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3653      break;
3654    }
3655    case T_ADDRESS: {
3656      address addr = (address) con.get_jobject();
3657      constant_addr = _masm.address_constant(addr);
3658      break;
3659    }
3660    // We use T_VOID as marker for jump-table entries (labels) which
3661    // need an internal word relocation.
3662    case T_VOID: {
3663      MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3664      // Fill the jump-table with a dummy word.  The real value is
3665      // filled in later in fill_jump_table.
3666      address dummy = (address) n;
3667      constant_addr = _masm.address_constant(dummy);
3668      // Expand jump-table
3669      for (uint i = 1; i < n->outcnt(); i++) {
3670        address temp_addr = _masm.address_constant(dummy + i);
3671        assert(temp_addr, "consts section too small");
3672      }
3673      break;
3674    }
3675    case T_METADATA: {
3676      Metadata* obj = con.get_metadata();
3677      int metadata_index = _masm.oop_recorder()->find_index(obj);
3678      constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3679      break;
3680    }
3681    default: ShouldNotReachHere();
3682    }
3683    assert(constant_addr, "consts section too small");
3684    assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3685            err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3686  }
3687}
3688
3689int Compile::ConstantTable::find_offset(Constant& con) const {
3690  int idx = _constants.find(con);
3691  assert(idx != -1, "constant must be in constant table");
3692  int offset = _constants.at(idx).offset();
3693  assert(offset != -1, "constant table not emitted yet?");
3694  return offset;
3695}
3696
3697void Compile::ConstantTable::add(Constant& con) {
3698  if (con.can_be_reused()) {
3699    int idx = _constants.find(con);
3700    if (idx != -1 && _constants.at(idx).can_be_reused()) {
3701      _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3702      return;
3703    }
3704  }
3705  (void) _constants.append(con);
3706}
3707
3708Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3709  Block* b = Compile::current()->cfg()->get_block_for_node(n);
3710  Constant con(type, value, b->_freq);
3711  add(con);
3712  return con;
3713}
3714
3715Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3716  Constant con(metadata);
3717  add(con);
3718  return con;
3719}
3720
3721Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3722  jvalue value;
3723  BasicType type = oper->type()->basic_type();
3724  switch (type) {
3725  case T_LONG:    value.j = oper->constantL(); break;
3726  case T_FLOAT:   value.f = oper->constantF(); break;
3727  case T_DOUBLE:  value.d = oper->constantD(); break;
3728  case T_OBJECT:
3729  case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3730  case T_METADATA: return add((Metadata*)oper->constant()); break;
3731  default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3732  }
3733  return add(n, type, value);
3734}
3735
3736Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3737  jvalue value;
3738  // We can use the node pointer here to identify the right jump-table
3739  // as this method is called from Compile::Fill_buffer right before
3740  // the MachNodes are emitted and the jump-table is filled (means the
3741  // MachNode pointers do not change anymore).
3742  value.l = (jobject) n;
3743  Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3744  add(con);
3745  return con;
3746}
3747
3748void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3749  // If called from Compile::scratch_emit_size do nothing.
3750  if (Compile::current()->in_scratch_emit_size())  return;
3751
3752  assert(labels.is_nonempty(), "must be");
3753  assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3754
3755  // Since MachConstantNode::constant_offset() also contains
3756  // table_base_offset() we need to subtract the table_base_offset()
3757  // to get the plain offset into the constant table.
3758  int offset = n->constant_offset() - table_base_offset();
3759
3760  MacroAssembler _masm(&cb);
3761  address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3762
3763  for (uint i = 0; i < n->outcnt(); i++) {
3764    address* constant_addr = &jump_table_base[i];
3765    assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3766    *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3767    cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3768  }
3769}
3770
3771// The message about the current inlining is accumulated in
3772// _print_inlining_stream and transfered into the _print_inlining_list
3773// once we know whether inlining succeeds or not. For regular
3774// inlining, messages are appended to the buffer pointed by
3775// _print_inlining_idx in the _print_inlining_list. For late inlining,
3776// a new buffer is added after _print_inlining_idx in the list. This
3777// way we can update the inlining message for late inlining call site
3778// when the inlining is attempted again.
3779void Compile::print_inlining_init() {
3780  if (print_inlining() || print_intrinsics()) {
3781    _print_inlining_stream = new stringStream();
3782    _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3783  }
3784}
3785
3786void Compile::print_inlining_reinit() {
3787  if (print_inlining() || print_intrinsics()) {
3788    // Re allocate buffer when we change ResourceMark
3789    _print_inlining_stream = new stringStream();
3790  }
3791}
3792
3793void Compile::print_inlining_reset() {
3794  _print_inlining_stream->reset();
3795}
3796
3797void Compile::print_inlining_commit() {
3798  assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3799  // Transfer the message from _print_inlining_stream to the current
3800  // _print_inlining_list buffer and clear _print_inlining_stream.
3801  _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3802  print_inlining_reset();
3803}
3804
3805void Compile::print_inlining_push() {
3806  // Add new buffer to the _print_inlining_list at current position
3807  _print_inlining_idx++;
3808  _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3809}
3810
3811Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3812  return _print_inlining_list->at(_print_inlining_idx);
3813}
3814
3815void Compile::print_inlining_update(CallGenerator* cg) {
3816  if (print_inlining() || print_intrinsics()) {
3817    if (!cg->is_late_inline()) {
3818      if (print_inlining_current().cg() != NULL) {
3819        print_inlining_push();
3820      }
3821      print_inlining_commit();
3822    } else {
3823      if (print_inlining_current().cg() != cg &&
3824          (print_inlining_current().cg() != NULL ||
3825           print_inlining_current().ss()->size() != 0)) {
3826        print_inlining_push();
3827      }
3828      print_inlining_commit();
3829      print_inlining_current().set_cg(cg);
3830    }
3831  }
3832}
3833
3834void Compile::print_inlining_move_to(CallGenerator* cg) {
3835  // We resume inlining at a late inlining call site. Locate the
3836  // corresponding inlining buffer so that we can update it.
3837  if (print_inlining()) {
3838    for (int i = 0; i < _print_inlining_list->length(); i++) {
3839      if (_print_inlining_list->adr_at(i)->cg() == cg) {
3840        _print_inlining_idx = i;
3841        return;
3842      }
3843    }
3844    ShouldNotReachHere();
3845  }
3846}
3847
3848void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3849  if (print_inlining()) {
3850    assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3851    assert(print_inlining_current().cg() == cg, "wrong entry");
3852    // replace message with new message
3853    _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3854    print_inlining_commit();
3855    print_inlining_current().set_cg(cg);
3856  }
3857}
3858
3859void Compile::print_inlining_assert_ready() {
3860  assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3861}
3862
3863void Compile::process_print_inlining() {
3864  bool do_print_inlining = print_inlining() || print_intrinsics();
3865  if (do_print_inlining || log() != NULL) {
3866    // Print inlining message for candidates that we couldn't inline
3867    // for lack of space
3868    for (int i = 0; i < _late_inlines.length(); i++) {
3869      CallGenerator* cg = _late_inlines.at(i);
3870      if (!cg->is_mh_late_inline()) {
3871        const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3872        if (do_print_inlining) {
3873          cg->print_inlining_late(msg);
3874        }
3875        log_late_inline_failure(cg, msg);
3876      }
3877    }
3878  }
3879  if (do_print_inlining) {
3880    ResourceMark rm;
3881    stringStream ss;
3882    for (int i = 0; i < _print_inlining_list->length(); i++) {
3883      ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3884    }
3885    size_t end = ss.size();
3886    _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
3887    strncpy(_print_inlining_output, ss.base(), end+1);
3888    _print_inlining_output[end] = 0;
3889  }
3890}
3891
3892void Compile::dump_print_inlining() {
3893  if (_print_inlining_output != NULL) {
3894    tty->print_raw(_print_inlining_output);
3895  }
3896}
3897
3898void Compile::log_late_inline(CallGenerator* cg) {
3899  if (log() != NULL) {
3900    log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3901                cg->unique_id());
3902    JVMState* p = cg->call_node()->jvms();
3903    while (p != NULL) {
3904      log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
3905      p = p->caller();
3906    }
3907    log()->tail("late_inline");
3908  }
3909}
3910
3911void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
3912  log_late_inline(cg);
3913  if (log() != NULL) {
3914    log()->inline_fail(msg);
3915  }
3916}
3917
3918void Compile::log_inline_id(CallGenerator* cg) {
3919  if (log() != NULL) {
3920    // The LogCompilation tool needs a unique way to identify late
3921    // inline call sites. This id must be unique for this call site in
3922    // this compilation. Try to have it unique across compilations as
3923    // well because it can be convenient when grepping through the log
3924    // file.
3925    // Distinguish OSR compilations from others in case CICountOSR is
3926    // on.
3927    jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
3928    cg->set_unique_id(id);
3929    log()->elem("inline_id id='" JLONG_FORMAT "'", id);
3930  }
3931}
3932
3933void Compile::log_inline_failure(const char* msg) {
3934  if (C->log() != NULL) {
3935    C->log()->inline_fail(msg);
3936  }
3937}
3938
3939
3940// Dump inlining replay data to the stream.
3941// Don't change thread state and acquire any locks.
3942void Compile::dump_inline_data(outputStream* out) {
3943  InlineTree* inl_tree = ilt();
3944  if (inl_tree != NULL) {
3945    out->print(" inline %d", inl_tree->count());
3946    inl_tree->dump_replay_data(out);
3947  }
3948}
3949
3950int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3951  if (n1->Opcode() < n2->Opcode())      return -1;
3952  else if (n1->Opcode() > n2->Opcode()) return 1;
3953
3954  assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3955  for (uint i = 1; i < n1->req(); i++) {
3956    if (n1->in(i) < n2->in(i))      return -1;
3957    else if (n1->in(i) > n2->in(i)) return 1;
3958  }
3959
3960  return 0;
3961}
3962
3963int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3964  Node* n1 = *n1p;
3965  Node* n2 = *n2p;
3966
3967  return cmp_expensive_nodes(n1, n2);
3968}
3969
3970void Compile::sort_expensive_nodes() {
3971  if (!expensive_nodes_sorted()) {
3972    _expensive_nodes->sort(cmp_expensive_nodes);
3973  }
3974}
3975
3976bool Compile::expensive_nodes_sorted() const {
3977  for (int i = 1; i < _expensive_nodes->length(); i++) {
3978    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3979      return false;
3980    }
3981  }
3982  return true;
3983}
3984
3985bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3986  if (_expensive_nodes->length() == 0) {
3987    return false;
3988  }
3989
3990  assert(OptimizeExpensiveOps, "optimization off?");
3991
3992  // Take this opportunity to remove dead nodes from the list
3993  int j = 0;
3994  for (int i = 0; i < _expensive_nodes->length(); i++) {
3995    Node* n = _expensive_nodes->at(i);
3996    if (!n->is_unreachable(igvn)) {
3997      assert(n->is_expensive(), "should be expensive");
3998      _expensive_nodes->at_put(j, n);
3999      j++;
4000    }
4001  }
4002  _expensive_nodes->trunc_to(j);
4003
4004  // Then sort the list so that similar nodes are next to each other
4005  // and check for at least two nodes of identical kind with same data
4006  // inputs.
4007  sort_expensive_nodes();
4008
4009  for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4010    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4011      return true;
4012    }
4013  }
4014
4015  return false;
4016}
4017
4018void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4019  if (_expensive_nodes->length() == 0) {
4020    return;
4021  }
4022
4023  assert(OptimizeExpensiveOps, "optimization off?");
4024
4025  // Sort to bring similar nodes next to each other and clear the
4026  // control input of nodes for which there's only a single copy.
4027  sort_expensive_nodes();
4028
4029  int j = 0;
4030  int identical = 0;
4031  int i = 0;
4032  for (; i < _expensive_nodes->length()-1; i++) {
4033    assert(j <= i, "can't write beyond current index");
4034    if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4035      identical++;
4036      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4037      continue;
4038    }
4039    if (identical > 0) {
4040      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4041      identical = 0;
4042    } else {
4043      Node* n = _expensive_nodes->at(i);
4044      igvn.hash_delete(n);
4045      n->set_req(0, NULL);
4046      igvn.hash_insert(n);
4047    }
4048  }
4049  if (identical > 0) {
4050    _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4051  } else if (_expensive_nodes->length() >= 1) {
4052    Node* n = _expensive_nodes->at(i);
4053    igvn.hash_delete(n);
4054    n->set_req(0, NULL);
4055    igvn.hash_insert(n);
4056  }
4057  _expensive_nodes->trunc_to(j);
4058}
4059
4060void Compile::add_expensive_node(Node * n) {
4061  assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4062  assert(n->is_expensive(), "expensive nodes with non-null control here only");
4063  assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4064  if (OptimizeExpensiveOps) {
4065    _expensive_nodes->append(n);
4066  } else {
4067    // Clear control input and let IGVN optimize expensive nodes if
4068    // OptimizeExpensiveOps is off.
4069    n->set_req(0, NULL);
4070  }
4071}
4072
4073/**
4074 * Remove the speculative part of types and clean up the graph
4075 */
4076void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4077  if (UseTypeSpeculation) {
4078    Unique_Node_List worklist;
4079    worklist.push(root());
4080    int modified = 0;
4081    // Go over all type nodes that carry a speculative type, drop the
4082    // speculative part of the type and enqueue the node for an igvn
4083    // which may optimize it out.
4084    for (uint next = 0; next < worklist.size(); ++next) {
4085      Node *n  = worklist.at(next);
4086      if (n->is_Type()) {
4087        TypeNode* tn = n->as_Type();
4088        const Type* t = tn->type();
4089        const Type* t_no_spec = t->remove_speculative();
4090        if (t_no_spec != t) {
4091          bool in_hash = igvn.hash_delete(n);
4092          assert(in_hash, "node should be in igvn hash table");
4093          tn->set_type(t_no_spec);
4094          igvn.hash_insert(n);
4095          igvn._worklist.push(n); // give it a chance to go away
4096          modified++;
4097        }
4098      }
4099      uint max = n->len();
4100      for( uint i = 0; i < max; ++i ) {
4101        Node *m = n->in(i);
4102        if (not_a_node(m))  continue;
4103        worklist.push(m);
4104      }
4105    }
4106    // Drop the speculative part of all types in the igvn's type table
4107    igvn.remove_speculative_types();
4108    if (modified > 0) {
4109      igvn.optimize();
4110    }
4111#ifdef ASSERT
4112    // Verify that after the IGVN is over no speculative type has resurfaced
4113    worklist.clear();
4114    worklist.push(root());
4115    for (uint next = 0; next < worklist.size(); ++next) {
4116      Node *n  = worklist.at(next);
4117      const Type* t = igvn.type_or_null(n);
4118      assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4119      if (n->is_Type()) {
4120        t = n->as_Type()->type();
4121        assert(t == t->remove_speculative(), "no more speculative types");
4122      }
4123      uint max = n->len();
4124      for( uint i = 0; i < max; ++i ) {
4125        Node *m = n->in(i);
4126        if (not_a_node(m))  continue;
4127        worklist.push(m);
4128      }
4129    }
4130    igvn.check_no_speculative_types();
4131#endif
4132  }
4133}
4134
4135// Auxiliary method to support randomized stressing/fuzzing.
4136//
4137// This method can be called the arbitrary number of times, with current count
4138// as the argument. The logic allows selecting a single candidate from the
4139// running list of candidates as follows:
4140//    int count = 0;
4141//    Cand* selected = null;
4142//    while(cand = cand->next()) {
4143//      if (randomized_select(++count)) {
4144//        selected = cand;
4145//      }
4146//    }
4147//
4148// Including count equalizes the chances any candidate is "selected".
4149// This is useful when we don't have the complete list of candidates to choose
4150// from uniformly. In this case, we need to adjust the randomicity of the
4151// selection, or else we will end up biasing the selection towards the latter
4152// candidates.
4153//
4154// Quick back-envelope calculation shows that for the list of n candidates
4155// the equal probability for the candidate to persist as "best" can be
4156// achieved by replacing it with "next" k-th candidate with the probability
4157// of 1/k. It can be easily shown that by the end of the run, the
4158// probability for any candidate is converged to 1/n, thus giving the
4159// uniform distribution among all the candidates.
4160//
4161// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4162#define RANDOMIZED_DOMAIN_POW 29
4163#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4164#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4165bool Compile::randomized_select(int count) {
4166  assert(count > 0, "only positive");
4167  return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4168}
4169