compile.cpp revision 5966:e2722a66aba7
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "code/exceptionHandlerTable.hpp"
30#include "code/nmethod.hpp"
31#include "compiler/compileLog.hpp"
32#include "compiler/disassembler.hpp"
33#include "compiler/oopMap.hpp"
34#include "opto/addnode.hpp"
35#include "opto/block.hpp"
36#include "opto/c2compiler.hpp"
37#include "opto/callGenerator.hpp"
38#include "opto/callnode.hpp"
39#include "opto/cfgnode.hpp"
40#include "opto/chaitin.hpp"
41#include "opto/compile.hpp"
42#include "opto/connode.hpp"
43#include "opto/divnode.hpp"
44#include "opto/escape.hpp"
45#include "opto/idealGraphPrinter.hpp"
46#include "opto/loopnode.hpp"
47#include "opto/machnode.hpp"
48#include "opto/macro.hpp"
49#include "opto/matcher.hpp"
50#include "opto/memnode.hpp"
51#include "opto/mulnode.hpp"
52#include "opto/node.hpp"
53#include "opto/opcodes.hpp"
54#include "opto/output.hpp"
55#include "opto/parse.hpp"
56#include "opto/phaseX.hpp"
57#include "opto/rootnode.hpp"
58#include "opto/runtime.hpp"
59#include "opto/stringopts.hpp"
60#include "opto/type.hpp"
61#include "opto/vectornode.hpp"
62#include "runtime/arguments.hpp"
63#include "runtime/signature.hpp"
64#include "runtime/stubRoutines.hpp"
65#include "runtime/timer.hpp"
66#include "trace/tracing.hpp"
67#include "utilities/copy.hpp"
68#ifdef TARGET_ARCH_MODEL_x86_32
69# include "adfiles/ad_x86_32.hpp"
70#endif
71#ifdef TARGET_ARCH_MODEL_x86_64
72# include "adfiles/ad_x86_64.hpp"
73#endif
74#ifdef TARGET_ARCH_MODEL_sparc
75# include "adfiles/ad_sparc.hpp"
76#endif
77#ifdef TARGET_ARCH_MODEL_zero
78# include "adfiles/ad_zero.hpp"
79#endif
80#ifdef TARGET_ARCH_MODEL_arm
81# include "adfiles/ad_arm.hpp"
82#endif
83#ifdef TARGET_ARCH_MODEL_ppc_32
84# include "adfiles/ad_ppc_32.hpp"
85#endif
86#ifdef TARGET_ARCH_MODEL_ppc_64
87# include "adfiles/ad_ppc_64.hpp"
88#endif
89
90
91// -------------------- Compile::mach_constant_base_node -----------------------
92// Constant table base node singleton.
93MachConstantBaseNode* Compile::mach_constant_base_node() {
94  if (_mach_constant_base_node == NULL) {
95    _mach_constant_base_node = new (C) MachConstantBaseNode();
96    _mach_constant_base_node->add_req(C->root());
97  }
98  return _mach_constant_base_node;
99}
100
101
102/// Support for intrinsics.
103
104// Return the index at which m must be inserted (or already exists).
105// The sort order is by the address of the ciMethod, with is_virtual as minor key.
106int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
107#ifdef ASSERT
108  for (int i = 1; i < _intrinsics->length(); i++) {
109    CallGenerator* cg1 = _intrinsics->at(i-1);
110    CallGenerator* cg2 = _intrinsics->at(i);
111    assert(cg1->method() != cg2->method()
112           ? cg1->method()     < cg2->method()
113           : cg1->is_virtual() < cg2->is_virtual(),
114           "compiler intrinsics list must stay sorted");
115  }
116#endif
117  // Binary search sorted list, in decreasing intervals [lo, hi].
118  int lo = 0, hi = _intrinsics->length()-1;
119  while (lo <= hi) {
120    int mid = (uint)(hi + lo) / 2;
121    ciMethod* mid_m = _intrinsics->at(mid)->method();
122    if (m < mid_m) {
123      hi = mid-1;
124    } else if (m > mid_m) {
125      lo = mid+1;
126    } else {
127      // look at minor sort key
128      bool mid_virt = _intrinsics->at(mid)->is_virtual();
129      if (is_virtual < mid_virt) {
130        hi = mid-1;
131      } else if (is_virtual > mid_virt) {
132        lo = mid+1;
133      } else {
134        return mid;  // exact match
135      }
136    }
137  }
138  return lo;  // inexact match
139}
140
141void Compile::register_intrinsic(CallGenerator* cg) {
142  if (_intrinsics == NULL) {
143    _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
144  }
145  // This code is stolen from ciObjectFactory::insert.
146  // Really, GrowableArray should have methods for
147  // insert_at, remove_at, and binary_search.
148  int len = _intrinsics->length();
149  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
150  if (index == len) {
151    _intrinsics->append(cg);
152  } else {
153#ifdef ASSERT
154    CallGenerator* oldcg = _intrinsics->at(index);
155    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
156#endif
157    _intrinsics->append(_intrinsics->at(len-1));
158    int pos;
159    for (pos = len-2; pos >= index; pos--) {
160      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
161    }
162    _intrinsics->at_put(index, cg);
163  }
164  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
165}
166
167CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
168  assert(m->is_loaded(), "don't try this on unloaded methods");
169  if (_intrinsics != NULL) {
170    int index = intrinsic_insertion_index(m, is_virtual);
171    if (index < _intrinsics->length()
172        && _intrinsics->at(index)->method() == m
173        && _intrinsics->at(index)->is_virtual() == is_virtual) {
174      return _intrinsics->at(index);
175    }
176  }
177  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
178  if (m->intrinsic_id() != vmIntrinsics::_none &&
179      m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
180    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
181    if (cg != NULL) {
182      // Save it for next time:
183      register_intrinsic(cg);
184      return cg;
185    } else {
186      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
187    }
188  }
189  return NULL;
190}
191
192// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
193// in library_call.cpp.
194
195
196#ifndef PRODUCT
197// statistics gathering...
198
199juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
200jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
201
202bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
203  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
204  int oflags = _intrinsic_hist_flags[id];
205  assert(flags != 0, "what happened?");
206  if (is_virtual) {
207    flags |= _intrinsic_virtual;
208  }
209  bool changed = (flags != oflags);
210  if ((flags & _intrinsic_worked) != 0) {
211    juint count = (_intrinsic_hist_count[id] += 1);
212    if (count == 1) {
213      changed = true;           // first time
214    }
215    // increment the overall count also:
216    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
217  }
218  if (changed) {
219    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
220      // Something changed about the intrinsic's virtuality.
221      if ((flags & _intrinsic_virtual) != 0) {
222        // This is the first use of this intrinsic as a virtual call.
223        if (oflags != 0) {
224          // We already saw it as a non-virtual, so note both cases.
225          flags |= _intrinsic_both;
226        }
227      } else if ((oflags & _intrinsic_both) == 0) {
228        // This is the first use of this intrinsic as a non-virtual
229        flags |= _intrinsic_both;
230      }
231    }
232    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
233  }
234  // update the overall flags also:
235  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
236  return changed;
237}
238
239static char* format_flags(int flags, char* buf) {
240  buf[0] = 0;
241  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
242  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
243  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
244  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
245  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
246  if (buf[0] == 0)  strcat(buf, ",");
247  assert(buf[0] == ',', "must be");
248  return &buf[1];
249}
250
251void Compile::print_intrinsic_statistics() {
252  char flagsbuf[100];
253  ttyLocker ttyl;
254  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
255  tty->print_cr("Compiler intrinsic usage:");
256  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
257  if (total == 0)  total = 1;  // avoid div0 in case of no successes
258  #define PRINT_STAT_LINE(name, c, f) \
259    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
260  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
261    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
262    int   flags = _intrinsic_hist_flags[id];
263    juint count = _intrinsic_hist_count[id];
264    if ((flags | count) != 0) {
265      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
266    }
267  }
268  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
269  if (xtty != NULL)  xtty->tail("statistics");
270}
271
272void Compile::print_statistics() {
273  { ttyLocker ttyl;
274    if (xtty != NULL)  xtty->head("statistics type='opto'");
275    Parse::print_statistics();
276    PhaseCCP::print_statistics();
277    PhaseRegAlloc::print_statistics();
278    Scheduling::print_statistics();
279    PhasePeephole::print_statistics();
280    PhaseIdealLoop::print_statistics();
281    if (xtty != NULL)  xtty->tail("statistics");
282  }
283  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
284    // put this under its own <statistics> element.
285    print_intrinsic_statistics();
286  }
287}
288#endif //PRODUCT
289
290// Support for bundling info
291Bundle* Compile::node_bundling(const Node *n) {
292  assert(valid_bundle_info(n), "oob");
293  return &_node_bundling_base[n->_idx];
294}
295
296bool Compile::valid_bundle_info(const Node *n) {
297  return (_node_bundling_limit > n->_idx);
298}
299
300
301void Compile::gvn_replace_by(Node* n, Node* nn) {
302  for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
303    Node* use = n->last_out(i);
304    bool is_in_table = initial_gvn()->hash_delete(use);
305    uint uses_found = 0;
306    for (uint j = 0; j < use->len(); j++) {
307      if (use->in(j) == n) {
308        if (j < use->req())
309          use->set_req(j, nn);
310        else
311          use->set_prec(j, nn);
312        uses_found++;
313      }
314    }
315    if (is_in_table) {
316      // reinsert into table
317      initial_gvn()->hash_find_insert(use);
318    }
319    record_for_igvn(use);
320    i -= uses_found;    // we deleted 1 or more copies of this edge
321  }
322}
323
324
325static inline bool not_a_node(const Node* n) {
326  if (n == NULL)                   return true;
327  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
328  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
329  return false;
330}
331
332// Identify all nodes that are reachable from below, useful.
333// Use breadth-first pass that records state in a Unique_Node_List,
334// recursive traversal is slower.
335void Compile::identify_useful_nodes(Unique_Node_List &useful) {
336  int estimated_worklist_size = unique();
337  useful.map( estimated_worklist_size, NULL );  // preallocate space
338
339  // Initialize worklist
340  if (root() != NULL)     { useful.push(root()); }
341  // If 'top' is cached, declare it useful to preserve cached node
342  if( cached_top_node() ) { useful.push(cached_top_node()); }
343
344  // Push all useful nodes onto the list, breadthfirst
345  for( uint next = 0; next < useful.size(); ++next ) {
346    assert( next < unique(), "Unique useful nodes < total nodes");
347    Node *n  = useful.at(next);
348    uint max = n->len();
349    for( uint i = 0; i < max; ++i ) {
350      Node *m = n->in(i);
351      if (not_a_node(m))  continue;
352      useful.push(m);
353    }
354  }
355}
356
357// Update dead_node_list with any missing dead nodes using useful
358// list. Consider all non-useful nodes to be useless i.e., dead nodes.
359void Compile::update_dead_node_list(Unique_Node_List &useful) {
360  uint max_idx = unique();
361  VectorSet& useful_node_set = useful.member_set();
362
363  for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
364    // If node with index node_idx is not in useful set,
365    // mark it as dead in dead node list.
366    if (! useful_node_set.test(node_idx) ) {
367      record_dead_node(node_idx);
368    }
369  }
370}
371
372void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
373  int shift = 0;
374  for (int i = 0; i < inlines->length(); i++) {
375    CallGenerator* cg = inlines->at(i);
376    CallNode* call = cg->call_node();
377    if (shift > 0) {
378      inlines->at_put(i-shift, cg);
379    }
380    if (!useful.member(call)) {
381      shift++;
382    }
383  }
384  inlines->trunc_to(inlines->length()-shift);
385}
386
387// Disconnect all useless nodes by disconnecting those at the boundary.
388void Compile::remove_useless_nodes(Unique_Node_List &useful) {
389  uint next = 0;
390  while (next < useful.size()) {
391    Node *n = useful.at(next++);
392    // Use raw traversal of out edges since this code removes out edges
393    int max = n->outcnt();
394    for (int j = 0; j < max; ++j) {
395      Node* child = n->raw_out(j);
396      if (! useful.member(child)) {
397        assert(!child->is_top() || child != top(),
398               "If top is cached in Compile object it is in useful list");
399        // Only need to remove this out-edge to the useless node
400        n->raw_del_out(j);
401        --j;
402        --max;
403      }
404    }
405    if (n->outcnt() == 1 && n->has_special_unique_user()) {
406      record_for_igvn(n->unique_out());
407    }
408  }
409  // Remove useless macro and predicate opaq nodes
410  for (int i = C->macro_count()-1; i >= 0; i--) {
411    Node* n = C->macro_node(i);
412    if (!useful.member(n)) {
413      remove_macro_node(n);
414    }
415  }
416  // Remove useless expensive node
417  for (int i = C->expensive_count()-1; i >= 0; i--) {
418    Node* n = C->expensive_node(i);
419    if (!useful.member(n)) {
420      remove_expensive_node(n);
421    }
422  }
423  // clean up the late inline lists
424  remove_useless_late_inlines(&_string_late_inlines, useful);
425  remove_useless_late_inlines(&_boxing_late_inlines, useful);
426  remove_useless_late_inlines(&_late_inlines, useful);
427  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
428}
429
430//------------------------------frame_size_in_words-----------------------------
431// frame_slots in units of words
432int Compile::frame_size_in_words() const {
433  // shift is 0 in LP32 and 1 in LP64
434  const int shift = (LogBytesPerWord - LogBytesPerInt);
435  int words = _frame_slots >> shift;
436  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
437  return words;
438}
439
440// ============================================================================
441//------------------------------CompileWrapper---------------------------------
442class CompileWrapper : public StackObj {
443  Compile *const _compile;
444 public:
445  CompileWrapper(Compile* compile);
446
447  ~CompileWrapper();
448};
449
450CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
451  // the Compile* pointer is stored in the current ciEnv:
452  ciEnv* env = compile->env();
453  assert(env == ciEnv::current(), "must already be a ciEnv active");
454  assert(env->compiler_data() == NULL, "compile already active?");
455  env->set_compiler_data(compile);
456  assert(compile == Compile::current(), "sanity");
457
458  compile->set_type_dict(NULL);
459  compile->set_type_hwm(NULL);
460  compile->set_type_last_size(0);
461  compile->set_last_tf(NULL, NULL);
462  compile->set_indexSet_arena(NULL);
463  compile->set_indexSet_free_block_list(NULL);
464  compile->init_type_arena();
465  Type::Initialize(compile);
466  _compile->set_scratch_buffer_blob(NULL);
467  _compile->begin_method();
468}
469CompileWrapper::~CompileWrapper() {
470  _compile->end_method();
471  if (_compile->scratch_buffer_blob() != NULL)
472    BufferBlob::free(_compile->scratch_buffer_blob());
473  _compile->env()->set_compiler_data(NULL);
474}
475
476
477//----------------------------print_compile_messages---------------------------
478void Compile::print_compile_messages() {
479#ifndef PRODUCT
480  // Check if recompiling
481  if (_subsume_loads == false && PrintOpto) {
482    // Recompiling without allowing machine instructions to subsume loads
483    tty->print_cr("*********************************************************");
484    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
485    tty->print_cr("*********************************************************");
486  }
487  if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
488    // Recompiling without escape analysis
489    tty->print_cr("*********************************************************");
490    tty->print_cr("** Bailout: Recompile without escape analysis          **");
491    tty->print_cr("*********************************************************");
492  }
493  if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
494    // Recompiling without boxing elimination
495    tty->print_cr("*********************************************************");
496    tty->print_cr("** Bailout: Recompile without boxing elimination       **");
497    tty->print_cr("*********************************************************");
498  }
499  if (env()->break_at_compile()) {
500    // Open the debugger when compiling this method.
501    tty->print("### Breaking when compiling: ");
502    method()->print_short_name();
503    tty->cr();
504    BREAKPOINT;
505  }
506
507  if( PrintOpto ) {
508    if (is_osr_compilation()) {
509      tty->print("[OSR]%3d", _compile_id);
510    } else {
511      tty->print("%3d", _compile_id);
512    }
513  }
514#endif
515}
516
517
518//-----------------------init_scratch_buffer_blob------------------------------
519// Construct a temporary BufferBlob and cache it for this compile.
520void Compile::init_scratch_buffer_blob(int const_size) {
521  // If there is already a scratch buffer blob allocated and the
522  // constant section is big enough, use it.  Otherwise free the
523  // current and allocate a new one.
524  BufferBlob* blob = scratch_buffer_blob();
525  if ((blob != NULL) && (const_size <= _scratch_const_size)) {
526    // Use the current blob.
527  } else {
528    if (blob != NULL) {
529      BufferBlob::free(blob);
530    }
531
532    ResourceMark rm;
533    _scratch_const_size = const_size;
534    int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
535    blob = BufferBlob::create("Compile::scratch_buffer", size);
536    // Record the buffer blob for next time.
537    set_scratch_buffer_blob(blob);
538    // Have we run out of code space?
539    if (scratch_buffer_blob() == NULL) {
540      // Let CompilerBroker disable further compilations.
541      record_failure("Not enough space for scratch buffer in CodeCache");
542      return;
543    }
544  }
545
546  // Initialize the relocation buffers
547  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
548  set_scratch_locs_memory(locs_buf);
549}
550
551
552//-----------------------scratch_emit_size-------------------------------------
553// Helper function that computes size by emitting code
554uint Compile::scratch_emit_size(const Node* n) {
555  // Start scratch_emit_size section.
556  set_in_scratch_emit_size(true);
557
558  // Emit into a trash buffer and count bytes emitted.
559  // This is a pretty expensive way to compute a size,
560  // but it works well enough if seldom used.
561  // All common fixed-size instructions are given a size
562  // method by the AD file.
563  // Note that the scratch buffer blob and locs memory are
564  // allocated at the beginning of the compile task, and
565  // may be shared by several calls to scratch_emit_size.
566  // The allocation of the scratch buffer blob is particularly
567  // expensive, since it has to grab the code cache lock.
568  BufferBlob* blob = this->scratch_buffer_blob();
569  assert(blob != NULL, "Initialize BufferBlob at start");
570  assert(blob->size() > MAX_inst_size, "sanity");
571  relocInfo* locs_buf = scratch_locs_memory();
572  address blob_begin = blob->content_begin();
573  address blob_end   = (address)locs_buf;
574  assert(blob->content_contains(blob_end), "sanity");
575  CodeBuffer buf(blob_begin, blob_end - blob_begin);
576  buf.initialize_consts_size(_scratch_const_size);
577  buf.initialize_stubs_size(MAX_stubs_size);
578  assert(locs_buf != NULL, "sanity");
579  int lsize = MAX_locs_size / 3;
580  buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
581  buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
582  buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
583
584  // Do the emission.
585
586  Label fakeL; // Fake label for branch instructions.
587  Label*   saveL = NULL;
588  uint save_bnum = 0;
589  bool is_branch = n->is_MachBranch();
590  if (is_branch) {
591    MacroAssembler masm(&buf);
592    masm.bind(fakeL);
593    n->as_MachBranch()->save_label(&saveL, &save_bnum);
594    n->as_MachBranch()->label_set(&fakeL, 0);
595  }
596  n->emit(buf, this->regalloc());
597  if (is_branch) // Restore label.
598    n->as_MachBranch()->label_set(saveL, save_bnum);
599
600  // End scratch_emit_size section.
601  set_in_scratch_emit_size(false);
602
603  return buf.insts_size();
604}
605
606
607// ============================================================================
608//------------------------------Compile standard-------------------------------
609debug_only( int Compile::_debug_idx = 100000; )
610
611// Compile a method.  entry_bci is -1 for normal compilations and indicates
612// the continuation bci for on stack replacement.
613
614
615Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
616                  bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
617                : Phase(Compiler),
618                  _env(ci_env),
619                  _log(ci_env->log()),
620                  _compile_id(ci_env->compile_id()),
621                  _save_argument_registers(false),
622                  _stub_name(NULL),
623                  _stub_function(NULL),
624                  _stub_entry_point(NULL),
625                  _method(target),
626                  _entry_bci(osr_bci),
627                  _initial_gvn(NULL),
628                  _for_igvn(NULL),
629                  _warm_calls(NULL),
630                  _subsume_loads(subsume_loads),
631                  _do_escape_analysis(do_escape_analysis),
632                  _eliminate_boxing(eliminate_boxing),
633                  _failure_reason(NULL),
634                  _code_buffer("Compile::Fill_buffer"),
635                  _orig_pc_slot(0),
636                  _orig_pc_slot_offset_in_bytes(0),
637                  _has_method_handle_invokes(false),
638                  _mach_constant_base_node(NULL),
639                  _node_bundling_limit(0),
640                  _node_bundling_base(NULL),
641                  _java_calls(0),
642                  _inner_loops(0),
643                  _scratch_const_size(-1),
644                  _in_scratch_emit_size(false),
645                  _dead_node_list(comp_arena()),
646                  _dead_node_count(0),
647#ifndef PRODUCT
648                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
649                  _printer(IdealGraphPrinter::printer()),
650#endif
651                  _congraph(NULL),
652                  _late_inlines(comp_arena(), 2, 0, NULL),
653                  _string_late_inlines(comp_arena(), 2, 0, NULL),
654                  _boxing_late_inlines(comp_arena(), 2, 0, NULL),
655                  _late_inlines_pos(0),
656                  _number_of_mh_late_inlines(0),
657                  _inlining_progress(false),
658                  _inlining_incrementally(false),
659                  _print_inlining_list(NULL),
660                  _print_inlining(0) {
661  C = this;
662
663  CompileWrapper cw(this);
664#ifndef PRODUCT
665  if (TimeCompiler2) {
666    tty->print(" ");
667    target->holder()->name()->print();
668    tty->print(".");
669    target->print_short_name();
670    tty->print("  ");
671  }
672  TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
673  TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
674  bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
675  if (!print_opto_assembly) {
676    bool print_assembly = (PrintAssembly || _method->should_print_assembly());
677    if (print_assembly && !Disassembler::can_decode()) {
678      tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
679      print_opto_assembly = true;
680    }
681  }
682  set_print_assembly(print_opto_assembly);
683  set_parsed_irreducible_loop(false);
684#endif
685
686  if (ProfileTraps) {
687    // Make sure the method being compiled gets its own MDO,
688    // so we can at least track the decompile_count().
689    method()->ensure_method_data();
690  }
691
692  Init(::AliasLevel);
693
694
695  print_compile_messages();
696
697  if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
698    _ilt = InlineTree::build_inline_tree_root();
699  else
700    _ilt = NULL;
701
702  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
703  assert(num_alias_types() >= AliasIdxRaw, "");
704
705#define MINIMUM_NODE_HASH  1023
706  // Node list that Iterative GVN will start with
707  Unique_Node_List for_igvn(comp_arena());
708  set_for_igvn(&for_igvn);
709
710  // GVN that will be run immediately on new nodes
711  uint estimated_size = method()->code_size()*4+64;
712  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
713  PhaseGVN gvn(node_arena(), estimated_size);
714  set_initial_gvn(&gvn);
715
716  if (PrintInlining  || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
717    _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
718  }
719  { // Scope for timing the parser
720    TracePhase t3("parse", &_t_parser, true);
721
722    // Put top into the hash table ASAP.
723    initial_gvn()->transform_no_reclaim(top());
724
725    // Set up tf(), start(), and find a CallGenerator.
726    CallGenerator* cg = NULL;
727    if (is_osr_compilation()) {
728      const TypeTuple *domain = StartOSRNode::osr_domain();
729      const TypeTuple *range = TypeTuple::make_range(method()->signature());
730      init_tf(TypeFunc::make(domain, range));
731      StartNode* s = new (this) StartOSRNode(root(), domain);
732      initial_gvn()->set_type_bottom(s);
733      init_start(s);
734      cg = CallGenerator::for_osr(method(), entry_bci());
735    } else {
736      // Normal case.
737      init_tf(TypeFunc::make(method()));
738      StartNode* s = new (this) StartNode(root(), tf()->domain());
739      initial_gvn()->set_type_bottom(s);
740      init_start(s);
741      if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
742        // With java.lang.ref.reference.get() we must go through the
743        // intrinsic when G1 is enabled - even when get() is the root
744        // method of the compile - so that, if necessary, the value in
745        // the referent field of the reference object gets recorded by
746        // the pre-barrier code.
747        // Specifically, if G1 is enabled, the value in the referent
748        // field is recorded by the G1 SATB pre barrier. This will
749        // result in the referent being marked live and the reference
750        // object removed from the list of discovered references during
751        // reference processing.
752        cg = find_intrinsic(method(), false);
753      }
754      if (cg == NULL) {
755        float past_uses = method()->interpreter_invocation_count();
756        float expected_uses = past_uses;
757        cg = CallGenerator::for_inline(method(), expected_uses);
758      }
759    }
760    if (failing())  return;
761    if (cg == NULL) {
762      record_method_not_compilable_all_tiers("cannot parse method");
763      return;
764    }
765    JVMState* jvms = build_start_state(start(), tf());
766    if ((jvms = cg->generate(jvms)) == NULL) {
767      record_method_not_compilable("method parse failed");
768      return;
769    }
770    GraphKit kit(jvms);
771
772    if (!kit.stopped()) {
773      // Accept return values, and transfer control we know not where.
774      // This is done by a special, unique ReturnNode bound to root.
775      return_values(kit.jvms());
776    }
777
778    if (kit.has_exceptions()) {
779      // Any exceptions that escape from this call must be rethrown
780      // to whatever caller is dynamically above us on the stack.
781      // This is done by a special, unique RethrowNode bound to root.
782      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
783    }
784
785    assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
786
787    if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
788      inline_string_calls(true);
789    }
790
791    if (failing())  return;
792
793    print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
794
795    // Remove clutter produced by parsing.
796    if (!failing()) {
797      ResourceMark rm;
798      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
799    }
800  }
801
802  // Note:  Large methods are capped off in do_one_bytecode().
803  if (failing())  return;
804
805  // After parsing, node notes are no longer automagic.
806  // They must be propagated by register_new_node_with_optimizer(),
807  // clone(), or the like.
808  set_default_node_notes(NULL);
809
810  for (;;) {
811    int successes = Inline_Warm();
812    if (failing())  return;
813    if (successes == 0)  break;
814  }
815
816  // Drain the list.
817  Finish_Warm();
818#ifndef PRODUCT
819  if (_printer) {
820    _printer->print_inlining(this);
821  }
822#endif
823
824  if (failing())  return;
825  NOT_PRODUCT( verify_graph_edges(); )
826
827  // Now optimize
828  Optimize();
829  if (failing())  return;
830  NOT_PRODUCT( verify_graph_edges(); )
831
832#ifndef PRODUCT
833  if (PrintIdeal) {
834    ttyLocker ttyl;  // keep the following output all in one block
835    // This output goes directly to the tty, not the compiler log.
836    // To enable tools to match it up with the compilation activity,
837    // be sure to tag this tty output with the compile ID.
838    if (xtty != NULL) {
839      xtty->head("ideal compile_id='%d'%s", compile_id(),
840                 is_osr_compilation()    ? " compile_kind='osr'" :
841                 "");
842    }
843    root()->dump(9999);
844    if (xtty != NULL) {
845      xtty->tail("ideal");
846    }
847  }
848#endif
849
850  // Now that we know the size of all the monitors we can add a fixed slot
851  // for the original deopt pc.
852
853  _orig_pc_slot =  fixed_slots();
854  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
855  set_fixed_slots(next_slot);
856
857  // Now generate code
858  Code_Gen();
859  if (failing())  return;
860
861  // Check if we want to skip execution of all compiled code.
862  {
863#ifndef PRODUCT
864    if (OptoNoExecute) {
865      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
866      return;
867    }
868    TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
869#endif
870
871    if (is_osr_compilation()) {
872      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
873      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
874    } else {
875      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
876      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
877    }
878
879    env()->register_method(_method, _entry_bci,
880                           &_code_offsets,
881                           _orig_pc_slot_offset_in_bytes,
882                           code_buffer(),
883                           frame_size_in_words(), _oop_map_set,
884                           &_handler_table, &_inc_table,
885                           compiler,
886                           env()->comp_level(),
887                           has_unsafe_access(),
888                           SharedRuntime::is_wide_vector(max_vector_size())
889                           );
890
891    if (log() != NULL) // Print code cache state into compiler log
892      log()->code_cache_state();
893  }
894}
895
896//------------------------------Compile----------------------------------------
897// Compile a runtime stub
898Compile::Compile( ciEnv* ci_env,
899                  TypeFunc_generator generator,
900                  address stub_function,
901                  const char *stub_name,
902                  int is_fancy_jump,
903                  bool pass_tls,
904                  bool save_arg_registers,
905                  bool return_pc )
906  : Phase(Compiler),
907    _env(ci_env),
908    _log(ci_env->log()),
909    _compile_id(0),
910    _save_argument_registers(save_arg_registers),
911    _method(NULL),
912    _stub_name(stub_name),
913    _stub_function(stub_function),
914    _stub_entry_point(NULL),
915    _entry_bci(InvocationEntryBci),
916    _initial_gvn(NULL),
917    _for_igvn(NULL),
918    _warm_calls(NULL),
919    _orig_pc_slot(0),
920    _orig_pc_slot_offset_in_bytes(0),
921    _subsume_loads(true),
922    _do_escape_analysis(false),
923    _eliminate_boxing(false),
924    _failure_reason(NULL),
925    _code_buffer("Compile::Fill_buffer"),
926    _has_method_handle_invokes(false),
927    _mach_constant_base_node(NULL),
928    _node_bundling_limit(0),
929    _node_bundling_base(NULL),
930    _java_calls(0),
931    _inner_loops(0),
932#ifndef PRODUCT
933    _trace_opto_output(TraceOptoOutput),
934    _printer(NULL),
935#endif
936    _dead_node_list(comp_arena()),
937    _dead_node_count(0),
938    _congraph(NULL),
939    _number_of_mh_late_inlines(0),
940    _inlining_progress(false),
941    _inlining_incrementally(false),
942    _print_inlining_list(NULL),
943    _print_inlining(0) {
944  C = this;
945
946#ifndef PRODUCT
947  TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
948  TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
949  set_print_assembly(PrintFrameConverterAssembly);
950  set_parsed_irreducible_loop(false);
951#endif
952  CompileWrapper cw(this);
953  Init(/*AliasLevel=*/ 0);
954  init_tf((*generator)());
955
956  {
957    // The following is a dummy for the sake of GraphKit::gen_stub
958    Unique_Node_List for_igvn(comp_arena());
959    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
960    PhaseGVN gvn(Thread::current()->resource_area(),255);
961    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
962    gvn.transform_no_reclaim(top());
963
964    GraphKit kit;
965    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
966  }
967
968  NOT_PRODUCT( verify_graph_edges(); )
969  Code_Gen();
970  if (failing())  return;
971
972
973  // Entry point will be accessed using compile->stub_entry_point();
974  if (code_buffer() == NULL) {
975    Matcher::soft_match_failure();
976  } else {
977    if (PrintAssembly && (WizardMode || Verbose))
978      tty->print_cr("### Stub::%s", stub_name);
979
980    if (!failing()) {
981      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
982
983      // Make the NMethod
984      // For now we mark the frame as never safe for profile stackwalking
985      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
986                                                      code_buffer(),
987                                                      CodeOffsets::frame_never_safe,
988                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
989                                                      frame_size_in_words(),
990                                                      _oop_map_set,
991                                                      save_arg_registers);
992      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
993
994      _stub_entry_point = rs->entry_point();
995    }
996  }
997}
998
999//------------------------------Init-------------------------------------------
1000// Prepare for a single compilation
1001void Compile::Init(int aliaslevel) {
1002  _unique  = 0;
1003  _regalloc = NULL;
1004
1005  _tf      = NULL;  // filled in later
1006  _top     = NULL;  // cached later
1007  _matcher = NULL;  // filled in later
1008  _cfg     = NULL;  // filled in later
1009
1010  set_24_bit_selection_and_mode(Use24BitFP, false);
1011
1012  _node_note_array = NULL;
1013  _default_node_notes = NULL;
1014
1015  _immutable_memory = NULL; // filled in at first inquiry
1016
1017  // Globally visible Nodes
1018  // First set TOP to NULL to give safe behavior during creation of RootNode
1019  set_cached_top_node(NULL);
1020  set_root(new (this) RootNode());
1021  // Now that you have a Root to point to, create the real TOP
1022  set_cached_top_node( new (this) ConNode(Type::TOP) );
1023  set_recent_alloc(NULL, NULL);
1024
1025  // Create Debug Information Recorder to record scopes, oopmaps, etc.
1026  env()->set_oop_recorder(new OopRecorder(env()->arena()));
1027  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1028  env()->set_dependencies(new Dependencies(env()));
1029
1030  _fixed_slots = 0;
1031  set_has_split_ifs(false);
1032  set_has_loops(has_method() && method()->has_loops()); // first approximation
1033  set_has_stringbuilder(false);
1034  set_has_boxed_value(false);
1035  _trap_can_recompile = false;  // no traps emitted yet
1036  _major_progress = true; // start out assuming good things will happen
1037  set_has_unsafe_access(false);
1038  set_max_vector_size(0);
1039  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1040  set_decompile_count(0);
1041
1042  set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1043  set_num_loop_opts(LoopOptsCount);
1044  set_do_inlining(Inline);
1045  set_max_inline_size(MaxInlineSize);
1046  set_freq_inline_size(FreqInlineSize);
1047  set_do_scheduling(OptoScheduling);
1048  set_do_count_invocations(false);
1049  set_do_method_data_update(false);
1050
1051  if (debug_info()->recording_non_safepoints()) {
1052    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1053                        (comp_arena(), 8, 0, NULL));
1054    set_default_node_notes(Node_Notes::make(this));
1055  }
1056
1057  // // -- Initialize types before each compile --
1058  // // Update cached type information
1059  // if( _method && _method->constants() )
1060  //   Type::update_loaded_types(_method, _method->constants());
1061
1062  // Init alias_type map.
1063  if (!_do_escape_analysis && aliaslevel == 3)
1064    aliaslevel = 2;  // No unique types without escape analysis
1065  _AliasLevel = aliaslevel;
1066  const int grow_ats = 16;
1067  _max_alias_types = grow_ats;
1068  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1069  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1070  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1071  {
1072    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1073  }
1074  // Initialize the first few types.
1075  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1076  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1077  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1078  _num_alias_types = AliasIdxRaw+1;
1079  // Zero out the alias type cache.
1080  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1081  // A NULL adr_type hits in the cache right away.  Preload the right answer.
1082  probe_alias_cache(NULL)->_index = AliasIdxTop;
1083
1084  _intrinsics = NULL;
1085  _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1086  _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1087  _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1088  register_library_intrinsics();
1089}
1090
1091//---------------------------init_start----------------------------------------
1092// Install the StartNode on this compile object.
1093void Compile::init_start(StartNode* s) {
1094  if (failing())
1095    return; // already failing
1096  assert(s == start(), "");
1097}
1098
1099StartNode* Compile::start() const {
1100  assert(!failing(), "");
1101  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1102    Node* start = root()->fast_out(i);
1103    if( start->is_Start() )
1104      return start->as_Start();
1105  }
1106  ShouldNotReachHere();
1107  return NULL;
1108}
1109
1110//-------------------------------immutable_memory-------------------------------------
1111// Access immutable memory
1112Node* Compile::immutable_memory() {
1113  if (_immutable_memory != NULL) {
1114    return _immutable_memory;
1115  }
1116  StartNode* s = start();
1117  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1118    Node *p = s->fast_out(i);
1119    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1120      _immutable_memory = p;
1121      return _immutable_memory;
1122    }
1123  }
1124  ShouldNotReachHere();
1125  return NULL;
1126}
1127
1128//----------------------set_cached_top_node------------------------------------
1129// Install the cached top node, and make sure Node::is_top works correctly.
1130void Compile::set_cached_top_node(Node* tn) {
1131  if (tn != NULL)  verify_top(tn);
1132  Node* old_top = _top;
1133  _top = tn;
1134  // Calling Node::setup_is_top allows the nodes the chance to adjust
1135  // their _out arrays.
1136  if (_top != NULL)     _top->setup_is_top();
1137  if (old_top != NULL)  old_top->setup_is_top();
1138  assert(_top == NULL || top()->is_top(), "");
1139}
1140
1141#ifdef ASSERT
1142uint Compile::count_live_nodes_by_graph_walk() {
1143  Unique_Node_List useful(comp_arena());
1144  // Get useful node list by walking the graph.
1145  identify_useful_nodes(useful);
1146  return useful.size();
1147}
1148
1149void Compile::print_missing_nodes() {
1150
1151  // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1152  if ((_log == NULL) && (! PrintIdealNodeCount)) {
1153    return;
1154  }
1155
1156  // This is an expensive function. It is executed only when the user
1157  // specifies VerifyIdealNodeCount option or otherwise knows the
1158  // additional work that needs to be done to identify reachable nodes
1159  // by walking the flow graph and find the missing ones using
1160  // _dead_node_list.
1161
1162  Unique_Node_List useful(comp_arena());
1163  // Get useful node list by walking the graph.
1164  identify_useful_nodes(useful);
1165
1166  uint l_nodes = C->live_nodes();
1167  uint l_nodes_by_walk = useful.size();
1168
1169  if (l_nodes != l_nodes_by_walk) {
1170    if (_log != NULL) {
1171      _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1172      _log->stamp();
1173      _log->end_head();
1174    }
1175    VectorSet& useful_member_set = useful.member_set();
1176    int last_idx = l_nodes_by_walk;
1177    for (int i = 0; i < last_idx; i++) {
1178      if (useful_member_set.test(i)) {
1179        if (_dead_node_list.test(i)) {
1180          if (_log != NULL) {
1181            _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1182          }
1183          if (PrintIdealNodeCount) {
1184            // Print the log message to tty
1185              tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1186              useful.at(i)->dump();
1187          }
1188        }
1189      }
1190      else if (! _dead_node_list.test(i)) {
1191        if (_log != NULL) {
1192          _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1193        }
1194        if (PrintIdealNodeCount) {
1195          // Print the log message to tty
1196          tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1197        }
1198      }
1199    }
1200    if (_log != NULL) {
1201      _log->tail("mismatched_nodes");
1202    }
1203  }
1204}
1205#endif
1206
1207#ifndef PRODUCT
1208void Compile::verify_top(Node* tn) const {
1209  if (tn != NULL) {
1210    assert(tn->is_Con(), "top node must be a constant");
1211    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1212    assert(tn->in(0) != NULL, "must have live top node");
1213  }
1214}
1215#endif
1216
1217
1218///-------------------Managing Per-Node Debug & Profile Info-------------------
1219
1220void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1221  guarantee(arr != NULL, "");
1222  int num_blocks = arr->length();
1223  if (grow_by < num_blocks)  grow_by = num_blocks;
1224  int num_notes = grow_by * _node_notes_block_size;
1225  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1226  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1227  while (num_notes > 0) {
1228    arr->append(notes);
1229    notes     += _node_notes_block_size;
1230    num_notes -= _node_notes_block_size;
1231  }
1232  assert(num_notes == 0, "exact multiple, please");
1233}
1234
1235bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1236  if (source == NULL || dest == NULL)  return false;
1237
1238  if (dest->is_Con())
1239    return false;               // Do not push debug info onto constants.
1240
1241#ifdef ASSERT
1242  // Leave a bread crumb trail pointing to the original node:
1243  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1244    dest->set_debug_orig(source);
1245  }
1246#endif
1247
1248  if (node_note_array() == NULL)
1249    return false;               // Not collecting any notes now.
1250
1251  // This is a copy onto a pre-existing node, which may already have notes.
1252  // If both nodes have notes, do not overwrite any pre-existing notes.
1253  Node_Notes* source_notes = node_notes_at(source->_idx);
1254  if (source_notes == NULL || source_notes->is_clear())  return false;
1255  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1256  if (dest_notes == NULL || dest_notes->is_clear()) {
1257    return set_node_notes_at(dest->_idx, source_notes);
1258  }
1259
1260  Node_Notes merged_notes = (*source_notes);
1261  // The order of operations here ensures that dest notes will win...
1262  merged_notes.update_from(dest_notes);
1263  return set_node_notes_at(dest->_idx, &merged_notes);
1264}
1265
1266
1267//--------------------------allow_range_check_smearing-------------------------
1268// Gating condition for coalescing similar range checks.
1269// Sometimes we try 'speculatively' replacing a series of a range checks by a
1270// single covering check that is at least as strong as any of them.
1271// If the optimization succeeds, the simplified (strengthened) range check
1272// will always succeed.  If it fails, we will deopt, and then give up
1273// on the optimization.
1274bool Compile::allow_range_check_smearing() const {
1275  // If this method has already thrown a range-check,
1276  // assume it was because we already tried range smearing
1277  // and it failed.
1278  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1279  return !already_trapped;
1280}
1281
1282
1283//------------------------------flatten_alias_type-----------------------------
1284const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1285  int offset = tj->offset();
1286  TypePtr::PTR ptr = tj->ptr();
1287
1288  // Known instance (scalarizable allocation) alias only with itself.
1289  bool is_known_inst = tj->isa_oopptr() != NULL &&
1290                       tj->is_oopptr()->is_known_instance();
1291
1292  // Process weird unsafe references.
1293  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1294    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1295    assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1296    tj = TypeOopPtr::BOTTOM;
1297    ptr = tj->ptr();
1298    offset = tj->offset();
1299  }
1300
1301  // Array pointers need some flattening
1302  const TypeAryPtr *ta = tj->isa_aryptr();
1303  if( ta && is_known_inst ) {
1304    if ( offset != Type::OffsetBot &&
1305         offset > arrayOopDesc::length_offset_in_bytes() ) {
1306      offset = Type::OffsetBot; // Flatten constant access into array body only
1307      tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1308    }
1309  } else if( ta && _AliasLevel >= 2 ) {
1310    // For arrays indexed by constant indices, we flatten the alias
1311    // space to include all of the array body.  Only the header, klass
1312    // and array length can be accessed un-aliased.
1313    if( offset != Type::OffsetBot ) {
1314      if( ta->const_oop() ) { // MethodData* or Method*
1315        offset = Type::OffsetBot;   // Flatten constant access into array body
1316        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1317      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1318        // range is OK as-is.
1319        tj = ta = TypeAryPtr::RANGE;
1320      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1321        tj = TypeInstPtr::KLASS; // all klass loads look alike
1322        ta = TypeAryPtr::RANGE; // generic ignored junk
1323        ptr = TypePtr::BotPTR;
1324      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1325        tj = TypeInstPtr::MARK;
1326        ta = TypeAryPtr::RANGE; // generic ignored junk
1327        ptr = TypePtr::BotPTR;
1328      } else {                  // Random constant offset into array body
1329        offset = Type::OffsetBot;   // Flatten constant access into array body
1330        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1331      }
1332    }
1333    // Arrays of fixed size alias with arrays of unknown size.
1334    if (ta->size() != TypeInt::POS) {
1335      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1336      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1337    }
1338    // Arrays of known objects become arrays of unknown objects.
1339    if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1340      const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1341      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1342    }
1343    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1344      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1345      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1346    }
1347    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1348    // cannot be distinguished by bytecode alone.
1349    if (ta->elem() == TypeInt::BOOL) {
1350      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1351      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1352      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1353    }
1354    // During the 2nd round of IterGVN, NotNull castings are removed.
1355    // Make sure the Bottom and NotNull variants alias the same.
1356    // Also, make sure exact and non-exact variants alias the same.
1357    if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1358      tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1359    }
1360  }
1361
1362  // Oop pointers need some flattening
1363  const TypeInstPtr *to = tj->isa_instptr();
1364  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1365    ciInstanceKlass *k = to->klass()->as_instance_klass();
1366    if( ptr == TypePtr::Constant ) {
1367      if (to->klass() != ciEnv::current()->Class_klass() ||
1368          offset < k->size_helper() * wordSize) {
1369        // No constant oop pointers (such as Strings); they alias with
1370        // unknown strings.
1371        assert(!is_known_inst, "not scalarizable allocation");
1372        tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1373      }
1374    } else if( is_known_inst ) {
1375      tj = to; // Keep NotNull and klass_is_exact for instance type
1376    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1377      // During the 2nd round of IterGVN, NotNull castings are removed.
1378      // Make sure the Bottom and NotNull variants alias the same.
1379      // Also, make sure exact and non-exact variants alias the same.
1380      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1381    }
1382    // Canonicalize the holder of this field
1383    if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1384      // First handle header references such as a LoadKlassNode, even if the
1385      // object's klass is unloaded at compile time (4965979).
1386      if (!is_known_inst) { // Do it only for non-instance types
1387        tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1388      }
1389    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1390      // Static fields are in the space above the normal instance
1391      // fields in the java.lang.Class instance.
1392      if (to->klass() != ciEnv::current()->Class_klass()) {
1393        to = NULL;
1394        tj = TypeOopPtr::BOTTOM;
1395        offset = tj->offset();
1396      }
1397    } else {
1398      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1399      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1400        if( is_known_inst ) {
1401          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1402        } else {
1403          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1404        }
1405      }
1406    }
1407  }
1408
1409  // Klass pointers to object array klasses need some flattening
1410  const TypeKlassPtr *tk = tj->isa_klassptr();
1411  if( tk ) {
1412    // If we are referencing a field within a Klass, we need
1413    // to assume the worst case of an Object.  Both exact and
1414    // inexact types must flatten to the same alias class so
1415    // use NotNull as the PTR.
1416    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1417
1418      tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1419                                   TypeKlassPtr::OBJECT->klass(),
1420                                   offset);
1421    }
1422
1423    ciKlass* klass = tk->klass();
1424    if( klass->is_obj_array_klass() ) {
1425      ciKlass* k = TypeAryPtr::OOPS->klass();
1426      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1427        k = TypeInstPtr::BOTTOM->klass();
1428      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1429    }
1430
1431    // Check for precise loads from the primary supertype array and force them
1432    // to the supertype cache alias index.  Check for generic array loads from
1433    // the primary supertype array and also force them to the supertype cache
1434    // alias index.  Since the same load can reach both, we need to merge
1435    // these 2 disparate memories into the same alias class.  Since the
1436    // primary supertype array is read-only, there's no chance of confusion
1437    // where we bypass an array load and an array store.
1438    int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1439    if (offset == Type::OffsetBot ||
1440        (offset >= primary_supers_offset &&
1441         offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1442        offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1443      offset = in_bytes(Klass::secondary_super_cache_offset());
1444      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1445    }
1446  }
1447
1448  // Flatten all Raw pointers together.
1449  if (tj->base() == Type::RawPtr)
1450    tj = TypeRawPtr::BOTTOM;
1451
1452  if (tj->base() == Type::AnyPtr)
1453    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1454
1455  // Flatten all to bottom for now
1456  switch( _AliasLevel ) {
1457  case 0:
1458    tj = TypePtr::BOTTOM;
1459    break;
1460  case 1:                       // Flatten to: oop, static, field or array
1461    switch (tj->base()) {
1462    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1463    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1464    case Type::AryPtr:   // do not distinguish arrays at all
1465    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1466    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1467    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1468    default: ShouldNotReachHere();
1469    }
1470    break;
1471  case 2:                       // No collapsing at level 2; keep all splits
1472  case 3:                       // No collapsing at level 3; keep all splits
1473    break;
1474  default:
1475    Unimplemented();
1476  }
1477
1478  offset = tj->offset();
1479  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1480
1481  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1482          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1483          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1484          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1485          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1486          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1487          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1488          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1489  assert( tj->ptr() != TypePtr::TopPTR &&
1490          tj->ptr() != TypePtr::AnyNull &&
1491          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1492//    assert( tj->ptr() != TypePtr::Constant ||
1493//            tj->base() == Type::RawPtr ||
1494//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1495
1496  return tj;
1497}
1498
1499void Compile::AliasType::Init(int i, const TypePtr* at) {
1500  _index = i;
1501  _adr_type = at;
1502  _field = NULL;
1503  _is_rewritable = true; // default
1504  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1505  if (atoop != NULL && atoop->is_known_instance()) {
1506    const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1507    _general_index = Compile::current()->get_alias_index(gt);
1508  } else {
1509    _general_index = 0;
1510  }
1511}
1512
1513//---------------------------------print_on------------------------------------
1514#ifndef PRODUCT
1515void Compile::AliasType::print_on(outputStream* st) {
1516  if (index() < 10)
1517        st->print("@ <%d> ", index());
1518  else  st->print("@ <%d>",  index());
1519  st->print(is_rewritable() ? "   " : " RO");
1520  int offset = adr_type()->offset();
1521  if (offset == Type::OffsetBot)
1522        st->print(" +any");
1523  else  st->print(" +%-3d", offset);
1524  st->print(" in ");
1525  adr_type()->dump_on(st);
1526  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1527  if (field() != NULL && tjp) {
1528    if (tjp->klass()  != field()->holder() ||
1529        tjp->offset() != field()->offset_in_bytes()) {
1530      st->print(" != ");
1531      field()->print();
1532      st->print(" ***");
1533    }
1534  }
1535}
1536
1537void print_alias_types() {
1538  Compile* C = Compile::current();
1539  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1540  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1541    C->alias_type(idx)->print_on(tty);
1542    tty->cr();
1543  }
1544}
1545#endif
1546
1547
1548//----------------------------probe_alias_cache--------------------------------
1549Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1550  intptr_t key = (intptr_t) adr_type;
1551  key ^= key >> logAliasCacheSize;
1552  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1553}
1554
1555
1556//-----------------------------grow_alias_types--------------------------------
1557void Compile::grow_alias_types() {
1558  const int old_ats  = _max_alias_types; // how many before?
1559  const int new_ats  = old_ats;          // how many more?
1560  const int grow_ats = old_ats+new_ats;  // how many now?
1561  _max_alias_types = grow_ats;
1562  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1563  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1564  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1565  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1566}
1567
1568
1569//--------------------------------find_alias_type------------------------------
1570Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1571  if (_AliasLevel == 0)
1572    return alias_type(AliasIdxBot);
1573
1574  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1575  if (ace->_adr_type == adr_type) {
1576    return alias_type(ace->_index);
1577  }
1578
1579  // Handle special cases.
1580  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1581  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1582
1583  // Do it the slow way.
1584  const TypePtr* flat = flatten_alias_type(adr_type);
1585
1586#ifdef ASSERT
1587  assert(flat == flatten_alias_type(flat), "idempotent");
1588  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1589  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1590    const TypeOopPtr* foop = flat->is_oopptr();
1591    // Scalarizable allocations have exact klass always.
1592    bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1593    const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1594    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1595  }
1596  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1597#endif
1598
1599  int idx = AliasIdxTop;
1600  for (int i = 0; i < num_alias_types(); i++) {
1601    if (alias_type(i)->adr_type() == flat) {
1602      idx = i;
1603      break;
1604    }
1605  }
1606
1607  if (idx == AliasIdxTop) {
1608    if (no_create)  return NULL;
1609    // Grow the array if necessary.
1610    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1611    // Add a new alias type.
1612    idx = _num_alias_types++;
1613    _alias_types[idx]->Init(idx, flat);
1614    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1615    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1616    if (flat->isa_instptr()) {
1617      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1618          && flat->is_instptr()->klass() == env()->Class_klass())
1619        alias_type(idx)->set_rewritable(false);
1620    }
1621    if (flat->isa_klassptr()) {
1622      if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1623        alias_type(idx)->set_rewritable(false);
1624      if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1625        alias_type(idx)->set_rewritable(false);
1626      if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1627        alias_type(idx)->set_rewritable(false);
1628      if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1629        alias_type(idx)->set_rewritable(false);
1630    }
1631    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1632    // but the base pointer type is not distinctive enough to identify
1633    // references into JavaThread.)
1634
1635    // Check for final fields.
1636    const TypeInstPtr* tinst = flat->isa_instptr();
1637    if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1638      ciField* field;
1639      if (tinst->const_oop() != NULL &&
1640          tinst->klass() == ciEnv::current()->Class_klass() &&
1641          tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1642        // static field
1643        ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1644        field = k->get_field_by_offset(tinst->offset(), true);
1645      } else {
1646        ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1647        field = k->get_field_by_offset(tinst->offset(), false);
1648      }
1649      assert(field == NULL ||
1650             original_field == NULL ||
1651             (field->holder() == original_field->holder() &&
1652              field->offset() == original_field->offset() &&
1653              field->is_static() == original_field->is_static()), "wrong field?");
1654      // Set field() and is_rewritable() attributes.
1655      if (field != NULL)  alias_type(idx)->set_field(field);
1656    }
1657  }
1658
1659  // Fill the cache for next time.
1660  ace->_adr_type = adr_type;
1661  ace->_index    = idx;
1662  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1663
1664  // Might as well try to fill the cache for the flattened version, too.
1665  AliasCacheEntry* face = probe_alias_cache(flat);
1666  if (face->_adr_type == NULL) {
1667    face->_adr_type = flat;
1668    face->_index    = idx;
1669    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1670  }
1671
1672  return alias_type(idx);
1673}
1674
1675
1676Compile::AliasType* Compile::alias_type(ciField* field) {
1677  const TypeOopPtr* t;
1678  if (field->is_static())
1679    t = TypeInstPtr::make(field->holder()->java_mirror());
1680  else
1681    t = TypeOopPtr::make_from_klass_raw(field->holder());
1682  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1683  assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1684  return atp;
1685}
1686
1687
1688//------------------------------have_alias_type--------------------------------
1689bool Compile::have_alias_type(const TypePtr* adr_type) {
1690  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1691  if (ace->_adr_type == adr_type) {
1692    return true;
1693  }
1694
1695  // Handle special cases.
1696  if (adr_type == NULL)             return true;
1697  if (adr_type == TypePtr::BOTTOM)  return true;
1698
1699  return find_alias_type(adr_type, true, NULL) != NULL;
1700}
1701
1702//-----------------------------must_alias--------------------------------------
1703// True if all values of the given address type are in the given alias category.
1704bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1705  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1706  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1707  if (alias_idx == AliasIdxTop)         return false; // the empty category
1708  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1709
1710  // the only remaining possible overlap is identity
1711  int adr_idx = get_alias_index(adr_type);
1712  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1713  assert(adr_idx == alias_idx ||
1714         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1715          && adr_type                       != TypeOopPtr::BOTTOM),
1716         "should not be testing for overlap with an unsafe pointer");
1717  return adr_idx == alias_idx;
1718}
1719
1720//------------------------------can_alias--------------------------------------
1721// True if any values of the given address type are in the given alias category.
1722bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1723  if (alias_idx == AliasIdxTop)         return false; // the empty category
1724  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1725  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1726  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1727
1728  // the only remaining possible overlap is identity
1729  int adr_idx = get_alias_index(adr_type);
1730  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1731  return adr_idx == alias_idx;
1732}
1733
1734
1735
1736//---------------------------pop_warm_call-------------------------------------
1737WarmCallInfo* Compile::pop_warm_call() {
1738  WarmCallInfo* wci = _warm_calls;
1739  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1740  return wci;
1741}
1742
1743//----------------------------Inline_Warm--------------------------------------
1744int Compile::Inline_Warm() {
1745  // If there is room, try to inline some more warm call sites.
1746  // %%% Do a graph index compaction pass when we think we're out of space?
1747  if (!InlineWarmCalls)  return 0;
1748
1749  int calls_made_hot = 0;
1750  int room_to_grow   = NodeCountInliningCutoff - unique();
1751  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1752  int amount_grown   = 0;
1753  WarmCallInfo* call;
1754  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1755    int est_size = (int)call->size();
1756    if (est_size > (room_to_grow - amount_grown)) {
1757      // This one won't fit anyway.  Get rid of it.
1758      call->make_cold();
1759      continue;
1760    }
1761    call->make_hot();
1762    calls_made_hot++;
1763    amount_grown   += est_size;
1764    amount_to_grow -= est_size;
1765  }
1766
1767  if (calls_made_hot > 0)  set_major_progress();
1768  return calls_made_hot;
1769}
1770
1771
1772//----------------------------Finish_Warm--------------------------------------
1773void Compile::Finish_Warm() {
1774  if (!InlineWarmCalls)  return;
1775  if (failing())  return;
1776  if (warm_calls() == NULL)  return;
1777
1778  // Clean up loose ends, if we are out of space for inlining.
1779  WarmCallInfo* call;
1780  while ((call = pop_warm_call()) != NULL) {
1781    call->make_cold();
1782  }
1783}
1784
1785//---------------------cleanup_loop_predicates-----------------------
1786// Remove the opaque nodes that protect the predicates so that all unused
1787// checks and uncommon_traps will be eliminated from the ideal graph
1788void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1789  if (predicate_count()==0) return;
1790  for (int i = predicate_count(); i > 0; i--) {
1791    Node * n = predicate_opaque1_node(i-1);
1792    assert(n->Opcode() == Op_Opaque1, "must be");
1793    igvn.replace_node(n, n->in(1));
1794  }
1795  assert(predicate_count()==0, "should be clean!");
1796}
1797
1798// StringOpts and late inlining of string methods
1799void Compile::inline_string_calls(bool parse_time) {
1800  {
1801    // remove useless nodes to make the usage analysis simpler
1802    ResourceMark rm;
1803    PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1804  }
1805
1806  {
1807    ResourceMark rm;
1808    print_method(PHASE_BEFORE_STRINGOPTS, 3);
1809    PhaseStringOpts pso(initial_gvn(), for_igvn());
1810    print_method(PHASE_AFTER_STRINGOPTS, 3);
1811  }
1812
1813  // now inline anything that we skipped the first time around
1814  if (!parse_time) {
1815    _late_inlines_pos = _late_inlines.length();
1816  }
1817
1818  while (_string_late_inlines.length() > 0) {
1819    CallGenerator* cg = _string_late_inlines.pop();
1820    cg->do_late_inline();
1821    if (failing())  return;
1822  }
1823  _string_late_inlines.trunc_to(0);
1824}
1825
1826// Late inlining of boxing methods
1827void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1828  if (_boxing_late_inlines.length() > 0) {
1829    assert(has_boxed_value(), "inconsistent");
1830
1831    PhaseGVN* gvn = initial_gvn();
1832    set_inlining_incrementally(true);
1833
1834    assert( igvn._worklist.size() == 0, "should be done with igvn" );
1835    for_igvn()->clear();
1836    gvn->replace_with(&igvn);
1837
1838    while (_boxing_late_inlines.length() > 0) {
1839      CallGenerator* cg = _boxing_late_inlines.pop();
1840      cg->do_late_inline();
1841      if (failing())  return;
1842    }
1843    _boxing_late_inlines.trunc_to(0);
1844
1845    {
1846      ResourceMark rm;
1847      PhaseRemoveUseless pru(gvn, for_igvn());
1848    }
1849
1850    igvn = PhaseIterGVN(gvn);
1851    igvn.optimize();
1852
1853    set_inlining_progress(false);
1854    set_inlining_incrementally(false);
1855  }
1856}
1857
1858void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1859  assert(IncrementalInline, "incremental inlining should be on");
1860  PhaseGVN* gvn = initial_gvn();
1861
1862  set_inlining_progress(false);
1863  for_igvn()->clear();
1864  gvn->replace_with(&igvn);
1865
1866  int i = 0;
1867
1868  for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1869    CallGenerator* cg = _late_inlines.at(i);
1870    _late_inlines_pos = i+1;
1871    cg->do_late_inline();
1872    if (failing())  return;
1873  }
1874  int j = 0;
1875  for (; i < _late_inlines.length(); i++, j++) {
1876    _late_inlines.at_put(j, _late_inlines.at(i));
1877  }
1878  _late_inlines.trunc_to(j);
1879
1880  {
1881    ResourceMark rm;
1882    PhaseRemoveUseless pru(gvn, for_igvn());
1883  }
1884
1885  igvn = PhaseIterGVN(gvn);
1886}
1887
1888// Perform incremental inlining until bound on number of live nodes is reached
1889void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1890  PhaseGVN* gvn = initial_gvn();
1891
1892  set_inlining_incrementally(true);
1893  set_inlining_progress(true);
1894  uint low_live_nodes = 0;
1895
1896  while(inlining_progress() && _late_inlines.length() > 0) {
1897
1898    if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1899      if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1900        // PhaseIdealLoop is expensive so we only try it once we are
1901        // out of loop and we only try it again if the previous helped
1902        // got the number of nodes down significantly
1903        PhaseIdealLoop ideal_loop( igvn, false, true );
1904        if (failing())  return;
1905        low_live_nodes = live_nodes();
1906        _major_progress = true;
1907      }
1908
1909      if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1910        break;
1911      }
1912    }
1913
1914    inline_incrementally_one(igvn);
1915
1916    if (failing())  return;
1917
1918    igvn.optimize();
1919
1920    if (failing())  return;
1921  }
1922
1923  assert( igvn._worklist.size() == 0, "should be done with igvn" );
1924
1925  if (_string_late_inlines.length() > 0) {
1926    assert(has_stringbuilder(), "inconsistent");
1927    for_igvn()->clear();
1928    initial_gvn()->replace_with(&igvn);
1929
1930    inline_string_calls(false);
1931
1932    if (failing())  return;
1933
1934    {
1935      ResourceMark rm;
1936      PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1937    }
1938
1939    igvn = PhaseIterGVN(gvn);
1940
1941    igvn.optimize();
1942  }
1943
1944  set_inlining_incrementally(false);
1945}
1946
1947
1948//------------------------------Optimize---------------------------------------
1949// Given a graph, optimize it.
1950void Compile::Optimize() {
1951  TracePhase t1("optimizer", &_t_optimizer, true);
1952
1953#ifndef PRODUCT
1954  if (env()->break_at_compile()) {
1955    BREAKPOINT;
1956  }
1957
1958#endif
1959
1960  ResourceMark rm;
1961  int          loop_opts_cnt;
1962
1963  NOT_PRODUCT( verify_graph_edges(); )
1964
1965  print_method(PHASE_AFTER_PARSING);
1966
1967 {
1968  // Iterative Global Value Numbering, including ideal transforms
1969  // Initialize IterGVN with types and values from parse-time GVN
1970  PhaseIterGVN igvn(initial_gvn());
1971  {
1972    NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1973    igvn.optimize();
1974  }
1975
1976  print_method(PHASE_ITER_GVN1, 2);
1977
1978  if (failing())  return;
1979
1980  {
1981    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
1982    inline_incrementally(igvn);
1983  }
1984
1985  print_method(PHASE_INCREMENTAL_INLINE, 2);
1986
1987  if (failing())  return;
1988
1989  if (eliminate_boxing()) {
1990    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
1991    // Inline valueOf() methods now.
1992    inline_boxing_calls(igvn);
1993
1994    print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
1995
1996    if (failing())  return;
1997  }
1998
1999  // No more new expensive nodes will be added to the list from here
2000  // so keep only the actual candidates for optimizations.
2001  cleanup_expensive_nodes(igvn);
2002
2003  // Perform escape analysis
2004  if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2005    if (has_loops()) {
2006      // Cleanup graph (remove dead nodes).
2007      TracePhase t2("idealLoop", &_t_idealLoop, true);
2008      PhaseIdealLoop ideal_loop( igvn, false, true );
2009      if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2010      if (failing())  return;
2011    }
2012    ConnectionGraph::do_analysis(this, &igvn);
2013
2014    if (failing())  return;
2015
2016    // Optimize out fields loads from scalar replaceable allocations.
2017    igvn.optimize();
2018    print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2019
2020    if (failing())  return;
2021
2022    if (congraph() != NULL && macro_count() > 0) {
2023      NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2024      PhaseMacroExpand mexp(igvn);
2025      mexp.eliminate_macro_nodes();
2026      igvn.set_delay_transform(false);
2027
2028      igvn.optimize();
2029      print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2030
2031      if (failing())  return;
2032    }
2033  }
2034
2035  // Loop transforms on the ideal graph.  Range Check Elimination,
2036  // peeling, unrolling, etc.
2037
2038  // Set loop opts counter
2039  loop_opts_cnt = num_loop_opts();
2040  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2041    {
2042      TracePhase t2("idealLoop", &_t_idealLoop, true);
2043      PhaseIdealLoop ideal_loop( igvn, true );
2044      loop_opts_cnt--;
2045      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2046      if (failing())  return;
2047    }
2048    // Loop opts pass if partial peeling occurred in previous pass
2049    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2050      TracePhase t3("idealLoop", &_t_idealLoop, true);
2051      PhaseIdealLoop ideal_loop( igvn, false );
2052      loop_opts_cnt--;
2053      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2054      if (failing())  return;
2055    }
2056    // Loop opts pass for loop-unrolling before CCP
2057    if(major_progress() && (loop_opts_cnt > 0)) {
2058      TracePhase t4("idealLoop", &_t_idealLoop, true);
2059      PhaseIdealLoop ideal_loop( igvn, false );
2060      loop_opts_cnt--;
2061      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2062    }
2063    if (!failing()) {
2064      // Verify that last round of loop opts produced a valid graph
2065      NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2066      PhaseIdealLoop::verify(igvn);
2067    }
2068  }
2069  if (failing())  return;
2070
2071  // Conditional Constant Propagation;
2072  PhaseCCP ccp( &igvn );
2073  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2074  {
2075    TracePhase t2("ccp", &_t_ccp, true);
2076    ccp.do_transform();
2077  }
2078  print_method(PHASE_CPP1, 2);
2079
2080  assert( true, "Break here to ccp.dump_old2new_map()");
2081
2082  // Iterative Global Value Numbering, including ideal transforms
2083  {
2084    NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2085    igvn = ccp;
2086    igvn.optimize();
2087  }
2088
2089  print_method(PHASE_ITER_GVN2, 2);
2090
2091  if (failing())  return;
2092
2093  // Loop transforms on the ideal graph.  Range Check Elimination,
2094  // peeling, unrolling, etc.
2095  if(loop_opts_cnt > 0) {
2096    debug_only( int cnt = 0; );
2097    while(major_progress() && (loop_opts_cnt > 0)) {
2098      TracePhase t2("idealLoop", &_t_idealLoop, true);
2099      assert( cnt++ < 40, "infinite cycle in loop optimization" );
2100      PhaseIdealLoop ideal_loop( igvn, true);
2101      loop_opts_cnt--;
2102      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2103      if (failing())  return;
2104    }
2105  }
2106
2107  {
2108    // Verify that all previous optimizations produced a valid graph
2109    // at least to this point, even if no loop optimizations were done.
2110    NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2111    PhaseIdealLoop::verify(igvn);
2112  }
2113
2114  {
2115    NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2116    PhaseMacroExpand  mex(igvn);
2117    if (mex.expand_macro_nodes()) {
2118      assert(failing(), "must bail out w/ explicit message");
2119      return;
2120    }
2121  }
2122
2123 } // (End scope of igvn; run destructor if necessary for asserts.)
2124
2125  dump_inlining();
2126  // A method with only infinite loops has no edges entering loops from root
2127  {
2128    NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2129    if (final_graph_reshaping()) {
2130      assert(failing(), "must bail out w/ explicit message");
2131      return;
2132    }
2133  }
2134
2135  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2136}
2137
2138
2139//------------------------------Code_Gen---------------------------------------
2140// Given a graph, generate code for it
2141void Compile::Code_Gen() {
2142  if (failing()) {
2143    return;
2144  }
2145
2146  // Perform instruction selection.  You might think we could reclaim Matcher
2147  // memory PDQ, but actually the Matcher is used in generating spill code.
2148  // Internals of the Matcher (including some VectorSets) must remain live
2149  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2150  // set a bit in reclaimed memory.
2151
2152  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2153  // nodes.  Mapping is only valid at the root of each matched subtree.
2154  NOT_PRODUCT( verify_graph_edges(); )
2155
2156  Matcher matcher;
2157  _matcher = &matcher;
2158  {
2159    TracePhase t2("matcher", &_t_matcher, true);
2160    matcher.match();
2161  }
2162  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2163  // nodes.  Mapping is only valid at the root of each matched subtree.
2164  NOT_PRODUCT( verify_graph_edges(); )
2165
2166  // If you have too many nodes, or if matching has failed, bail out
2167  check_node_count(0, "out of nodes matching instructions");
2168  if (failing()) {
2169    return;
2170  }
2171
2172  // Build a proper-looking CFG
2173  PhaseCFG cfg(node_arena(), root(), matcher);
2174  _cfg = &cfg;
2175  {
2176    NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2177    bool success = cfg.do_global_code_motion();
2178    if (!success) {
2179      return;
2180    }
2181
2182    print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2183    NOT_PRODUCT( verify_graph_edges(); )
2184    debug_only( cfg.verify(); )
2185  }
2186
2187  PhaseChaitin regalloc(unique(), cfg, matcher);
2188  _regalloc = &regalloc;
2189  {
2190    TracePhase t2("regalloc", &_t_registerAllocation, true);
2191    // Perform register allocation.  After Chaitin, use-def chains are
2192    // no longer accurate (at spill code) and so must be ignored.
2193    // Node->LRG->reg mappings are still accurate.
2194    _regalloc->Register_Allocate();
2195
2196    // Bail out if the allocator builds too many nodes
2197    if (failing()) {
2198      return;
2199    }
2200  }
2201
2202  // Prior to register allocation we kept empty basic blocks in case the
2203  // the allocator needed a place to spill.  After register allocation we
2204  // are not adding any new instructions.  If any basic block is empty, we
2205  // can now safely remove it.
2206  {
2207    NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2208    cfg.remove_empty_blocks();
2209    if (do_freq_based_layout()) {
2210      PhaseBlockLayout layout(cfg);
2211    } else {
2212      cfg.set_loop_alignment();
2213    }
2214    cfg.fixup_flow();
2215  }
2216
2217  // Apply peephole optimizations
2218  if( OptoPeephole ) {
2219    NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2220    PhasePeephole peep( _regalloc, cfg);
2221    peep.do_transform();
2222  }
2223
2224  // Convert Nodes to instruction bits in a buffer
2225  {
2226    // %%%% workspace merge brought two timers together for one job
2227    TracePhase t2a("output", &_t_output, true);
2228    NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2229    Output();
2230  }
2231
2232  print_method(PHASE_FINAL_CODE);
2233
2234  // He's dead, Jim.
2235  _cfg     = (PhaseCFG*)0xdeadbeef;
2236  _regalloc = (PhaseChaitin*)0xdeadbeef;
2237}
2238
2239
2240//------------------------------dump_asm---------------------------------------
2241// Dump formatted assembly
2242#ifndef PRODUCT
2243void Compile::dump_asm(int *pcs, uint pc_limit) {
2244  bool cut_short = false;
2245  tty->print_cr("#");
2246  tty->print("#  ");  _tf->dump();  tty->cr();
2247  tty->print_cr("#");
2248
2249  // For all blocks
2250  int pc = 0x0;                 // Program counter
2251  char starts_bundle = ' ';
2252  _regalloc->dump_frame();
2253
2254  Node *n = NULL;
2255  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2256    if (VMThread::should_terminate()) {
2257      cut_short = true;
2258      break;
2259    }
2260    Block* block = _cfg->get_block(i);
2261    if (block->is_connector() && !Verbose) {
2262      continue;
2263    }
2264    n = block->_nodes[0];
2265    if (pcs && n->_idx < pc_limit) {
2266      tty->print("%3.3x   ", pcs[n->_idx]);
2267    } else {
2268      tty->print("      ");
2269    }
2270    block->dump_head(_cfg);
2271    if (block->is_connector()) {
2272      tty->print_cr("        # Empty connector block");
2273    } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2274      tty->print_cr("        # Block is sole successor of call");
2275    }
2276
2277    // For all instructions
2278    Node *delay = NULL;
2279    for (uint j = 0; j < block->_nodes.size(); j++) {
2280      if (VMThread::should_terminate()) {
2281        cut_short = true;
2282        break;
2283      }
2284      n = block->_nodes[j];
2285      if (valid_bundle_info(n)) {
2286        Bundle* bundle = node_bundling(n);
2287        if (bundle->used_in_unconditional_delay()) {
2288          delay = n;
2289          continue;
2290        }
2291        if (bundle->starts_bundle()) {
2292          starts_bundle = '+';
2293        }
2294      }
2295
2296      if (WizardMode) {
2297        n->dump();
2298      }
2299
2300      if( !n->is_Region() &&    // Dont print in the Assembly
2301          !n->is_Phi() &&       // a few noisely useless nodes
2302          !n->is_Proj() &&
2303          !n->is_MachTemp() &&
2304          !n->is_SafePointScalarObject() &&
2305          !n->is_Catch() &&     // Would be nice to print exception table targets
2306          !n->is_MergeMem() &&  // Not very interesting
2307          !n->is_top() &&       // Debug info table constants
2308          !(n->is_Con() && !n->is_Mach())// Debug info table constants
2309          ) {
2310        if (pcs && n->_idx < pc_limit)
2311          tty->print("%3.3x", pcs[n->_idx]);
2312        else
2313          tty->print("   ");
2314        tty->print(" %c ", starts_bundle);
2315        starts_bundle = ' ';
2316        tty->print("\t");
2317        n->format(_regalloc, tty);
2318        tty->cr();
2319      }
2320
2321      // If we have an instruction with a delay slot, and have seen a delay,
2322      // then back up and print it
2323      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2324        assert(delay != NULL, "no unconditional delay instruction");
2325        if (WizardMode) delay->dump();
2326
2327        if (node_bundling(delay)->starts_bundle())
2328          starts_bundle = '+';
2329        if (pcs && n->_idx < pc_limit)
2330          tty->print("%3.3x", pcs[n->_idx]);
2331        else
2332          tty->print("   ");
2333        tty->print(" %c ", starts_bundle);
2334        starts_bundle = ' ';
2335        tty->print("\t");
2336        delay->format(_regalloc, tty);
2337        tty->print_cr("");
2338        delay = NULL;
2339      }
2340
2341      // Dump the exception table as well
2342      if( n->is_Catch() && (Verbose || WizardMode) ) {
2343        // Print the exception table for this offset
2344        _handler_table.print_subtable_for(pc);
2345      }
2346    }
2347
2348    if (pcs && n->_idx < pc_limit)
2349      tty->print_cr("%3.3x", pcs[n->_idx]);
2350    else
2351      tty->print_cr("");
2352
2353    assert(cut_short || delay == NULL, "no unconditional delay branch");
2354
2355  } // End of per-block dump
2356  tty->print_cr("");
2357
2358  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2359}
2360#endif
2361
2362//------------------------------Final_Reshape_Counts---------------------------
2363// This class defines counters to help identify when a method
2364// may/must be executed using hardware with only 24-bit precision.
2365struct Final_Reshape_Counts : public StackObj {
2366  int  _call_count;             // count non-inlined 'common' calls
2367  int  _float_count;            // count float ops requiring 24-bit precision
2368  int  _double_count;           // count double ops requiring more precision
2369  int  _java_call_count;        // count non-inlined 'java' calls
2370  int  _inner_loop_count;       // count loops which need alignment
2371  VectorSet _visited;           // Visitation flags
2372  Node_List _tests;             // Set of IfNodes & PCTableNodes
2373
2374  Final_Reshape_Counts() :
2375    _call_count(0), _float_count(0), _double_count(0),
2376    _java_call_count(0), _inner_loop_count(0),
2377    _visited( Thread::current()->resource_area() ) { }
2378
2379  void inc_call_count  () { _call_count  ++; }
2380  void inc_float_count () { _float_count ++; }
2381  void inc_double_count() { _double_count++; }
2382  void inc_java_call_count() { _java_call_count++; }
2383  void inc_inner_loop_count() { _inner_loop_count++; }
2384
2385  int  get_call_count  () const { return _call_count  ; }
2386  int  get_float_count () const { return _float_count ; }
2387  int  get_double_count() const { return _double_count; }
2388  int  get_java_call_count() const { return _java_call_count; }
2389  int  get_inner_loop_count() const { return _inner_loop_count; }
2390};
2391
2392#ifdef ASSERT
2393static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2394  ciInstanceKlass *k = tp->klass()->as_instance_klass();
2395  // Make sure the offset goes inside the instance layout.
2396  return k->contains_field_offset(tp->offset());
2397  // Note that OffsetBot and OffsetTop are very negative.
2398}
2399#endif
2400
2401// Eliminate trivially redundant StoreCMs and accumulate their
2402// precedence edges.
2403void Compile::eliminate_redundant_card_marks(Node* n) {
2404  assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2405  if (n->in(MemNode::Address)->outcnt() > 1) {
2406    // There are multiple users of the same address so it might be
2407    // possible to eliminate some of the StoreCMs
2408    Node* mem = n->in(MemNode::Memory);
2409    Node* adr = n->in(MemNode::Address);
2410    Node* val = n->in(MemNode::ValueIn);
2411    Node* prev = n;
2412    bool done = false;
2413    // Walk the chain of StoreCMs eliminating ones that match.  As
2414    // long as it's a chain of single users then the optimization is
2415    // safe.  Eliminating partially redundant StoreCMs would require
2416    // cloning copies down the other paths.
2417    while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2418      if (adr == mem->in(MemNode::Address) &&
2419          val == mem->in(MemNode::ValueIn)) {
2420        // redundant StoreCM
2421        if (mem->req() > MemNode::OopStore) {
2422          // Hasn't been processed by this code yet.
2423          n->add_prec(mem->in(MemNode::OopStore));
2424        } else {
2425          // Already converted to precedence edge
2426          for (uint i = mem->req(); i < mem->len(); i++) {
2427            // Accumulate any precedence edges
2428            if (mem->in(i) != NULL) {
2429              n->add_prec(mem->in(i));
2430            }
2431          }
2432          // Everything above this point has been processed.
2433          done = true;
2434        }
2435        // Eliminate the previous StoreCM
2436        prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2437        assert(mem->outcnt() == 0, "should be dead");
2438        mem->disconnect_inputs(NULL, this);
2439      } else {
2440        prev = mem;
2441      }
2442      mem = prev->in(MemNode::Memory);
2443    }
2444  }
2445}
2446
2447//------------------------------final_graph_reshaping_impl----------------------
2448// Implement items 1-5 from final_graph_reshaping below.
2449void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2450
2451  if ( n->outcnt() == 0 ) return; // dead node
2452  uint nop = n->Opcode();
2453
2454  // Check for 2-input instruction with "last use" on right input.
2455  // Swap to left input.  Implements item (2).
2456  if( n->req() == 3 &&          // two-input instruction
2457      n->in(1)->outcnt() > 1 && // left use is NOT a last use
2458      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2459      n->in(2)->outcnt() == 1 &&// right use IS a last use
2460      !n->in(2)->is_Con() ) {   // right use is not a constant
2461    // Check for commutative opcode
2462    switch( nop ) {
2463    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2464    case Op_MaxI:  case Op_MinI:
2465    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2466    case Op_AndL:  case Op_XorL:  case Op_OrL:
2467    case Op_AndI:  case Op_XorI:  case Op_OrI: {
2468      // Move "last use" input to left by swapping inputs
2469      n->swap_edges(1, 2);
2470      break;
2471    }
2472    default:
2473      break;
2474    }
2475  }
2476
2477#ifdef ASSERT
2478  if( n->is_Mem() ) {
2479    int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2480    assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2481            // oop will be recorded in oop map if load crosses safepoint
2482            n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2483                             LoadNode::is_immutable_value(n->in(MemNode::Address))),
2484            "raw memory operations should have control edge");
2485  }
2486#endif
2487  // Count FPU ops and common calls, implements item (3)
2488  switch( nop ) {
2489  // Count all float operations that may use FPU
2490  case Op_AddF:
2491  case Op_SubF:
2492  case Op_MulF:
2493  case Op_DivF:
2494  case Op_NegF:
2495  case Op_ModF:
2496  case Op_ConvI2F:
2497  case Op_ConF:
2498  case Op_CmpF:
2499  case Op_CmpF3:
2500  // case Op_ConvL2F: // longs are split into 32-bit halves
2501    frc.inc_float_count();
2502    break;
2503
2504  case Op_ConvF2D:
2505  case Op_ConvD2F:
2506    frc.inc_float_count();
2507    frc.inc_double_count();
2508    break;
2509
2510  // Count all double operations that may use FPU
2511  case Op_AddD:
2512  case Op_SubD:
2513  case Op_MulD:
2514  case Op_DivD:
2515  case Op_NegD:
2516  case Op_ModD:
2517  case Op_ConvI2D:
2518  case Op_ConvD2I:
2519  // case Op_ConvL2D: // handled by leaf call
2520  // case Op_ConvD2L: // handled by leaf call
2521  case Op_ConD:
2522  case Op_CmpD:
2523  case Op_CmpD3:
2524    frc.inc_double_count();
2525    break;
2526  case Op_Opaque1:              // Remove Opaque Nodes before matching
2527  case Op_Opaque2:              // Remove Opaque Nodes before matching
2528    n->subsume_by(n->in(1), this);
2529    break;
2530  case Op_CallStaticJava:
2531  case Op_CallJava:
2532  case Op_CallDynamicJava:
2533    frc.inc_java_call_count(); // Count java call site;
2534  case Op_CallRuntime:
2535  case Op_CallLeaf:
2536  case Op_CallLeafNoFP: {
2537    assert( n->is_Call(), "" );
2538    CallNode *call = n->as_Call();
2539    // Count call sites where the FP mode bit would have to be flipped.
2540    // Do not count uncommon runtime calls:
2541    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2542    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2543    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2544      frc.inc_call_count();   // Count the call site
2545    } else {                  // See if uncommon argument is shared
2546      Node *n = call->in(TypeFunc::Parms);
2547      int nop = n->Opcode();
2548      // Clone shared simple arguments to uncommon calls, item (1).
2549      if( n->outcnt() > 1 &&
2550          !n->is_Proj() &&
2551          nop != Op_CreateEx &&
2552          nop != Op_CheckCastPP &&
2553          nop != Op_DecodeN &&
2554          nop != Op_DecodeNKlass &&
2555          !n->is_Mem() ) {
2556        Node *x = n->clone();
2557        call->set_req( TypeFunc::Parms, x );
2558      }
2559    }
2560    break;
2561  }
2562
2563  case Op_StoreD:
2564  case Op_LoadD:
2565  case Op_LoadD_unaligned:
2566    frc.inc_double_count();
2567    goto handle_mem;
2568  case Op_StoreF:
2569  case Op_LoadF:
2570    frc.inc_float_count();
2571    goto handle_mem;
2572
2573  case Op_StoreCM:
2574    {
2575      // Convert OopStore dependence into precedence edge
2576      Node* prec = n->in(MemNode::OopStore);
2577      n->del_req(MemNode::OopStore);
2578      n->add_prec(prec);
2579      eliminate_redundant_card_marks(n);
2580    }
2581
2582    // fall through
2583
2584  case Op_StoreB:
2585  case Op_StoreC:
2586  case Op_StorePConditional:
2587  case Op_StoreI:
2588  case Op_StoreL:
2589  case Op_StoreIConditional:
2590  case Op_StoreLConditional:
2591  case Op_CompareAndSwapI:
2592  case Op_CompareAndSwapL:
2593  case Op_CompareAndSwapP:
2594  case Op_CompareAndSwapN:
2595  case Op_GetAndAddI:
2596  case Op_GetAndAddL:
2597  case Op_GetAndSetI:
2598  case Op_GetAndSetL:
2599  case Op_GetAndSetP:
2600  case Op_GetAndSetN:
2601  case Op_StoreP:
2602  case Op_StoreN:
2603  case Op_StoreNKlass:
2604  case Op_LoadB:
2605  case Op_LoadUB:
2606  case Op_LoadUS:
2607  case Op_LoadI:
2608  case Op_LoadKlass:
2609  case Op_LoadNKlass:
2610  case Op_LoadL:
2611  case Op_LoadL_unaligned:
2612  case Op_LoadPLocked:
2613  case Op_LoadP:
2614  case Op_LoadN:
2615  case Op_LoadRange:
2616  case Op_LoadS: {
2617  handle_mem:
2618#ifdef ASSERT
2619    if( VerifyOptoOopOffsets ) {
2620      assert( n->is_Mem(), "" );
2621      MemNode *mem  = (MemNode*)n;
2622      // Check to see if address types have grounded out somehow.
2623      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2624      assert( !tp || oop_offset_is_sane(tp), "" );
2625    }
2626#endif
2627    break;
2628  }
2629
2630  case Op_AddP: {               // Assert sane base pointers
2631    Node *addp = n->in(AddPNode::Address);
2632    assert( !addp->is_AddP() ||
2633            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2634            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2635            "Base pointers must match" );
2636#ifdef _LP64
2637    if ((UseCompressedOops || UseCompressedKlassPointers) &&
2638        addp->Opcode() == Op_ConP &&
2639        addp == n->in(AddPNode::Base) &&
2640        n->in(AddPNode::Offset)->is_Con()) {
2641      // Use addressing with narrow klass to load with offset on x86.
2642      // On sparc loading 32-bits constant and decoding it have less
2643      // instructions (4) then load 64-bits constant (7).
2644      // Do this transformation here since IGVN will convert ConN back to ConP.
2645      const Type* t = addp->bottom_type();
2646      if (t->isa_oopptr() || t->isa_klassptr()) {
2647        Node* nn = NULL;
2648
2649        int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2650
2651        // Look for existing ConN node of the same exact type.
2652        Node* r  = root();
2653        uint cnt = r->outcnt();
2654        for (uint i = 0; i < cnt; i++) {
2655          Node* m = r->raw_out(i);
2656          if (m!= NULL && m->Opcode() == op &&
2657              m->bottom_type()->make_ptr() == t) {
2658            nn = m;
2659            break;
2660          }
2661        }
2662        if (nn != NULL) {
2663          // Decode a narrow oop to match address
2664          // [R12 + narrow_oop_reg<<3 + offset]
2665          if (t->isa_oopptr()) {
2666            nn = new (this) DecodeNNode(nn, t);
2667          } else {
2668            nn = new (this) DecodeNKlassNode(nn, t);
2669          }
2670          n->set_req(AddPNode::Base, nn);
2671          n->set_req(AddPNode::Address, nn);
2672          if (addp->outcnt() == 0) {
2673            addp->disconnect_inputs(NULL, this);
2674          }
2675        }
2676      }
2677    }
2678#endif
2679    break;
2680  }
2681
2682#ifdef _LP64
2683  case Op_CastPP:
2684    if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2685      Node* in1 = n->in(1);
2686      const Type* t = n->bottom_type();
2687      Node* new_in1 = in1->clone();
2688      new_in1->as_DecodeN()->set_type(t);
2689
2690      if (!Matcher::narrow_oop_use_complex_address()) {
2691        //
2692        // x86, ARM and friends can handle 2 adds in addressing mode
2693        // and Matcher can fold a DecodeN node into address by using
2694        // a narrow oop directly and do implicit NULL check in address:
2695        //
2696        // [R12 + narrow_oop_reg<<3 + offset]
2697        // NullCheck narrow_oop_reg
2698        //
2699        // On other platforms (Sparc) we have to keep new DecodeN node and
2700        // use it to do implicit NULL check in address:
2701        //
2702        // decode_not_null narrow_oop_reg, base_reg
2703        // [base_reg + offset]
2704        // NullCheck base_reg
2705        //
2706        // Pin the new DecodeN node to non-null path on these platform (Sparc)
2707        // to keep the information to which NULL check the new DecodeN node
2708        // corresponds to use it as value in implicit_null_check().
2709        //
2710        new_in1->set_req(0, n->in(0));
2711      }
2712
2713      n->subsume_by(new_in1, this);
2714      if (in1->outcnt() == 0) {
2715        in1->disconnect_inputs(NULL, this);
2716      }
2717    }
2718    break;
2719
2720  case Op_CmpP:
2721    // Do this transformation here to preserve CmpPNode::sub() and
2722    // other TypePtr related Ideal optimizations (for example, ptr nullness).
2723    if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2724      Node* in1 = n->in(1);
2725      Node* in2 = n->in(2);
2726      if (!in1->is_DecodeNarrowPtr()) {
2727        in2 = in1;
2728        in1 = n->in(2);
2729      }
2730      assert(in1->is_DecodeNarrowPtr(), "sanity");
2731
2732      Node* new_in2 = NULL;
2733      if (in2->is_DecodeNarrowPtr()) {
2734        assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2735        new_in2 = in2->in(1);
2736      } else if (in2->Opcode() == Op_ConP) {
2737        const Type* t = in2->bottom_type();
2738        if (t == TypePtr::NULL_PTR) {
2739          assert(in1->is_DecodeN(), "compare klass to null?");
2740          // Don't convert CmpP null check into CmpN if compressed
2741          // oops implicit null check is not generated.
2742          // This will allow to generate normal oop implicit null check.
2743          if (Matcher::gen_narrow_oop_implicit_null_checks())
2744            new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2745          //
2746          // This transformation together with CastPP transformation above
2747          // will generated code for implicit NULL checks for compressed oops.
2748          //
2749          // The original code after Optimize()
2750          //
2751          //    LoadN memory, narrow_oop_reg
2752          //    decode narrow_oop_reg, base_reg
2753          //    CmpP base_reg, NULL
2754          //    CastPP base_reg // NotNull
2755          //    Load [base_reg + offset], val_reg
2756          //
2757          // after these transformations will be
2758          //
2759          //    LoadN memory, narrow_oop_reg
2760          //    CmpN narrow_oop_reg, NULL
2761          //    decode_not_null narrow_oop_reg, base_reg
2762          //    Load [base_reg + offset], val_reg
2763          //
2764          // and the uncommon path (== NULL) will use narrow_oop_reg directly
2765          // since narrow oops can be used in debug info now (see the code in
2766          // final_graph_reshaping_walk()).
2767          //
2768          // At the end the code will be matched to
2769          // on x86:
2770          //
2771          //    Load_narrow_oop memory, narrow_oop_reg
2772          //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2773          //    NullCheck narrow_oop_reg
2774          //
2775          // and on sparc:
2776          //
2777          //    Load_narrow_oop memory, narrow_oop_reg
2778          //    decode_not_null narrow_oop_reg, base_reg
2779          //    Load [base_reg + offset], val_reg
2780          //    NullCheck base_reg
2781          //
2782        } else if (t->isa_oopptr()) {
2783          new_in2 = ConNode::make(this, t->make_narrowoop());
2784        } else if (t->isa_klassptr()) {
2785          new_in2 = ConNode::make(this, t->make_narrowklass());
2786        }
2787      }
2788      if (new_in2 != NULL) {
2789        Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2790        n->subsume_by(cmpN, this);
2791        if (in1->outcnt() == 0) {
2792          in1->disconnect_inputs(NULL, this);
2793        }
2794        if (in2->outcnt() == 0) {
2795          in2->disconnect_inputs(NULL, this);
2796        }
2797      }
2798    }
2799    break;
2800
2801  case Op_DecodeN:
2802  case Op_DecodeNKlass:
2803    assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2804    // DecodeN could be pinned when it can't be fold into
2805    // an address expression, see the code for Op_CastPP above.
2806    assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2807    break;
2808
2809  case Op_EncodeP:
2810  case Op_EncodePKlass: {
2811    Node* in1 = n->in(1);
2812    if (in1->is_DecodeNarrowPtr()) {
2813      n->subsume_by(in1->in(1), this);
2814    } else if (in1->Opcode() == Op_ConP) {
2815      const Type* t = in1->bottom_type();
2816      if (t == TypePtr::NULL_PTR) {
2817        assert(t->isa_oopptr(), "null klass?");
2818        n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2819      } else if (t->isa_oopptr()) {
2820        n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2821      } else if (t->isa_klassptr()) {
2822        n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2823      }
2824    }
2825    if (in1->outcnt() == 0) {
2826      in1->disconnect_inputs(NULL, this);
2827    }
2828    break;
2829  }
2830
2831  case Op_Proj: {
2832    if (OptimizeStringConcat) {
2833      ProjNode* p = n->as_Proj();
2834      if (p->_is_io_use) {
2835        // Separate projections were used for the exception path which
2836        // are normally removed by a late inline.  If it wasn't inlined
2837        // then they will hang around and should just be replaced with
2838        // the original one.
2839        Node* proj = NULL;
2840        // Replace with just one
2841        for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2842          Node *use = i.get();
2843          if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2844            proj = use;
2845            break;
2846          }
2847        }
2848        assert(proj != NULL, "must be found");
2849        p->subsume_by(proj, this);
2850      }
2851    }
2852    break;
2853  }
2854
2855  case Op_Phi:
2856    if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2857      // The EncodeP optimization may create Phi with the same edges
2858      // for all paths. It is not handled well by Register Allocator.
2859      Node* unique_in = n->in(1);
2860      assert(unique_in != NULL, "");
2861      uint cnt = n->req();
2862      for (uint i = 2; i < cnt; i++) {
2863        Node* m = n->in(i);
2864        assert(m != NULL, "");
2865        if (unique_in != m)
2866          unique_in = NULL;
2867      }
2868      if (unique_in != NULL) {
2869        n->subsume_by(unique_in, this);
2870      }
2871    }
2872    break;
2873
2874#endif
2875
2876  case Op_ModI:
2877    if (UseDivMod) {
2878      // Check if a%b and a/b both exist
2879      Node* d = n->find_similar(Op_DivI);
2880      if (d) {
2881        // Replace them with a fused divmod if supported
2882        if (Matcher::has_match_rule(Op_DivModI)) {
2883          DivModINode* divmod = DivModINode::make(this, n);
2884          d->subsume_by(divmod->div_proj(), this);
2885          n->subsume_by(divmod->mod_proj(), this);
2886        } else {
2887          // replace a%b with a-((a/b)*b)
2888          Node* mult = new (this) MulINode(d, d->in(2));
2889          Node* sub  = new (this) SubINode(d->in(1), mult);
2890          n->subsume_by(sub, this);
2891        }
2892      }
2893    }
2894    break;
2895
2896  case Op_ModL:
2897    if (UseDivMod) {
2898      // Check if a%b and a/b both exist
2899      Node* d = n->find_similar(Op_DivL);
2900      if (d) {
2901        // Replace them with a fused divmod if supported
2902        if (Matcher::has_match_rule(Op_DivModL)) {
2903          DivModLNode* divmod = DivModLNode::make(this, n);
2904          d->subsume_by(divmod->div_proj(), this);
2905          n->subsume_by(divmod->mod_proj(), this);
2906        } else {
2907          // replace a%b with a-((a/b)*b)
2908          Node* mult = new (this) MulLNode(d, d->in(2));
2909          Node* sub  = new (this) SubLNode(d->in(1), mult);
2910          n->subsume_by(sub, this);
2911        }
2912      }
2913    }
2914    break;
2915
2916  case Op_LoadVector:
2917  case Op_StoreVector:
2918    break;
2919
2920  case Op_PackB:
2921  case Op_PackS:
2922  case Op_PackI:
2923  case Op_PackF:
2924  case Op_PackL:
2925  case Op_PackD:
2926    if (n->req()-1 > 2) {
2927      // Replace many operand PackNodes with a binary tree for matching
2928      PackNode* p = (PackNode*) n;
2929      Node* btp = p->binary_tree_pack(this, 1, n->req());
2930      n->subsume_by(btp, this);
2931    }
2932    break;
2933  case Op_Loop:
2934  case Op_CountedLoop:
2935    if (n->as_Loop()->is_inner_loop()) {
2936      frc.inc_inner_loop_count();
2937    }
2938    break;
2939  case Op_LShiftI:
2940  case Op_RShiftI:
2941  case Op_URShiftI:
2942  case Op_LShiftL:
2943  case Op_RShiftL:
2944  case Op_URShiftL:
2945    if (Matcher::need_masked_shift_count) {
2946      // The cpu's shift instructions don't restrict the count to the
2947      // lower 5/6 bits. We need to do the masking ourselves.
2948      Node* in2 = n->in(2);
2949      juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2950      const TypeInt* t = in2->find_int_type();
2951      if (t != NULL && t->is_con()) {
2952        juint shift = t->get_con();
2953        if (shift > mask) { // Unsigned cmp
2954          n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2955        }
2956      } else {
2957        if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2958          Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2959          n->set_req(2, shift);
2960        }
2961      }
2962      if (in2->outcnt() == 0) { // Remove dead node
2963        in2->disconnect_inputs(NULL, this);
2964      }
2965    }
2966    break;
2967  case Op_MemBarStoreStore:
2968  case Op_MemBarRelease:
2969    // Break the link with AllocateNode: it is no longer useful and
2970    // confuses register allocation.
2971    if (n->req() > MemBarNode::Precedent) {
2972      n->set_req(MemBarNode::Precedent, top());
2973    }
2974    break;
2975  default:
2976    assert( !n->is_Call(), "" );
2977    assert( !n->is_Mem(), "" );
2978    break;
2979  }
2980
2981  // Collect CFG split points
2982  if (n->is_MultiBranch())
2983    frc._tests.push(n);
2984}
2985
2986//------------------------------final_graph_reshaping_walk---------------------
2987// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2988// requires that the walk visits a node's inputs before visiting the node.
2989void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2990  ResourceArea *area = Thread::current()->resource_area();
2991  Unique_Node_List sfpt(area);
2992
2993  frc._visited.set(root->_idx); // first, mark node as visited
2994  uint cnt = root->req();
2995  Node *n = root;
2996  uint  i = 0;
2997  while (true) {
2998    if (i < cnt) {
2999      // Place all non-visited non-null inputs onto stack
3000      Node* m = n->in(i);
3001      ++i;
3002      if (m != NULL && !frc._visited.test_set(m->_idx)) {
3003        if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3004          sfpt.push(m);
3005        cnt = m->req();
3006        nstack.push(n, i); // put on stack parent and next input's index
3007        n = m;
3008        i = 0;
3009      }
3010    } else {
3011      // Now do post-visit work
3012      final_graph_reshaping_impl( n, frc );
3013      if (nstack.is_empty())
3014        break;             // finished
3015      n = nstack.node();   // Get node from stack
3016      cnt = n->req();
3017      i = nstack.index();
3018      nstack.pop();        // Shift to the next node on stack
3019    }
3020  }
3021
3022  // Skip next transformation if compressed oops are not used.
3023  if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3024      (!UseCompressedOops && !UseCompressedKlassPointers))
3025    return;
3026
3027  // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3028  // It could be done for an uncommon traps or any safepoints/calls
3029  // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3030  while (sfpt.size() > 0) {
3031    n = sfpt.pop();
3032    JVMState *jvms = n->as_SafePoint()->jvms();
3033    assert(jvms != NULL, "sanity");
3034    int start = jvms->debug_start();
3035    int end   = n->req();
3036    bool is_uncommon = (n->is_CallStaticJava() &&
3037                        n->as_CallStaticJava()->uncommon_trap_request() != 0);
3038    for (int j = start; j < end; j++) {
3039      Node* in = n->in(j);
3040      if (in->is_DecodeNarrowPtr()) {
3041        bool safe_to_skip = true;
3042        if (!is_uncommon ) {
3043          // Is it safe to skip?
3044          for (uint i = 0; i < in->outcnt(); i++) {
3045            Node* u = in->raw_out(i);
3046            if (!u->is_SafePoint() ||
3047                 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3048              safe_to_skip = false;
3049            }
3050          }
3051        }
3052        if (safe_to_skip) {
3053          n->set_req(j, in->in(1));
3054        }
3055        if (in->outcnt() == 0) {
3056          in->disconnect_inputs(NULL, this);
3057        }
3058      }
3059    }
3060  }
3061}
3062
3063//------------------------------final_graph_reshaping--------------------------
3064// Final Graph Reshaping.
3065//
3066// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3067//     and not commoned up and forced early.  Must come after regular
3068//     optimizations to avoid GVN undoing the cloning.  Clone constant
3069//     inputs to Loop Phis; these will be split by the allocator anyways.
3070//     Remove Opaque nodes.
3071// (2) Move last-uses by commutative operations to the left input to encourage
3072//     Intel update-in-place two-address operations and better register usage
3073//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3074//     calls canonicalizing them back.
3075// (3) Count the number of double-precision FP ops, single-precision FP ops
3076//     and call sites.  On Intel, we can get correct rounding either by
3077//     forcing singles to memory (requires extra stores and loads after each
3078//     FP bytecode) or we can set a rounding mode bit (requires setting and
3079//     clearing the mode bit around call sites).  The mode bit is only used
3080//     if the relative frequency of single FP ops to calls is low enough.
3081//     This is a key transform for SPEC mpeg_audio.
3082// (4) Detect infinite loops; blobs of code reachable from above but not
3083//     below.  Several of the Code_Gen algorithms fail on such code shapes,
3084//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3085//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3086//     Detection is by looking for IfNodes where only 1 projection is
3087//     reachable from below or CatchNodes missing some targets.
3088// (5) Assert for insane oop offsets in debug mode.
3089
3090bool Compile::final_graph_reshaping() {
3091  // an infinite loop may have been eliminated by the optimizer,
3092  // in which case the graph will be empty.
3093  if (root()->req() == 1) {
3094    record_method_not_compilable("trivial infinite loop");
3095    return true;
3096  }
3097
3098  // Expensive nodes have their control input set to prevent the GVN
3099  // from freely commoning them. There's no GVN beyond this point so
3100  // no need to keep the control input. We want the expensive nodes to
3101  // be freely moved to the least frequent code path by gcm.
3102  assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3103  for (int i = 0; i < expensive_count(); i++) {
3104    _expensive_nodes->at(i)->set_req(0, NULL);
3105  }
3106
3107  Final_Reshape_Counts frc;
3108
3109  // Visit everybody reachable!
3110  // Allocate stack of size C->unique()/2 to avoid frequent realloc
3111  Node_Stack nstack(unique() >> 1);
3112  final_graph_reshaping_walk(nstack, root(), frc);
3113
3114  // Check for unreachable (from below) code (i.e., infinite loops).
3115  for( uint i = 0; i < frc._tests.size(); i++ ) {
3116    MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3117    // Get number of CFG targets.
3118    // Note that PCTables include exception targets after calls.
3119    uint required_outcnt = n->required_outcnt();
3120    if (n->outcnt() != required_outcnt) {
3121      // Check for a few special cases.  Rethrow Nodes never take the
3122      // 'fall-thru' path, so expected kids is 1 less.
3123      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3124        if (n->in(0)->in(0)->is_Call()) {
3125          CallNode *call = n->in(0)->in(0)->as_Call();
3126          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3127            required_outcnt--;      // Rethrow always has 1 less kid
3128          } else if (call->req() > TypeFunc::Parms &&
3129                     call->is_CallDynamicJava()) {
3130            // Check for null receiver. In such case, the optimizer has
3131            // detected that the virtual call will always result in a null
3132            // pointer exception. The fall-through projection of this CatchNode
3133            // will not be populated.
3134            Node *arg0 = call->in(TypeFunc::Parms);
3135            if (arg0->is_Type() &&
3136                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3137              required_outcnt--;
3138            }
3139          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3140                     call->req() > TypeFunc::Parms+1 &&
3141                     call->is_CallStaticJava()) {
3142            // Check for negative array length. In such case, the optimizer has
3143            // detected that the allocation attempt will always result in an
3144            // exception. There is no fall-through projection of this CatchNode .
3145            Node *arg1 = call->in(TypeFunc::Parms+1);
3146            if (arg1->is_Type() &&
3147                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3148              required_outcnt--;
3149            }
3150          }
3151        }
3152      }
3153      // Recheck with a better notion of 'required_outcnt'
3154      if (n->outcnt() != required_outcnt) {
3155        record_method_not_compilable("malformed control flow");
3156        return true;            // Not all targets reachable!
3157      }
3158    }
3159    // Check that I actually visited all kids.  Unreached kids
3160    // must be infinite loops.
3161    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3162      if (!frc._visited.test(n->fast_out(j)->_idx)) {
3163        record_method_not_compilable("infinite loop");
3164        return true;            // Found unvisited kid; must be unreach
3165      }
3166  }
3167
3168  // If original bytecodes contained a mixture of floats and doubles
3169  // check if the optimizer has made it homogenous, item (3).
3170  if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3171      frc.get_float_count() > 32 &&
3172      frc.get_double_count() == 0 &&
3173      (10 * frc.get_call_count() < frc.get_float_count()) ) {
3174    set_24_bit_selection_and_mode( false,  true );
3175  }
3176
3177  set_java_calls(frc.get_java_call_count());
3178  set_inner_loops(frc.get_inner_loop_count());
3179
3180  // No infinite loops, no reason to bail out.
3181  return false;
3182}
3183
3184//-----------------------------too_many_traps----------------------------------
3185// Report if there are too many traps at the current method and bci.
3186// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3187bool Compile::too_many_traps(ciMethod* method,
3188                             int bci,
3189                             Deoptimization::DeoptReason reason) {
3190  ciMethodData* md = method->method_data();
3191  if (md->is_empty()) {
3192    // Assume the trap has not occurred, or that it occurred only
3193    // because of a transient condition during start-up in the interpreter.
3194    return false;
3195  }
3196  if (md->has_trap_at(bci, reason) != 0) {
3197    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3198    // Also, if there are multiple reasons, or if there is no per-BCI record,
3199    // assume the worst.
3200    if (log())
3201      log()->elem("observe trap='%s' count='%d'",
3202                  Deoptimization::trap_reason_name(reason),
3203                  md->trap_count(reason));
3204    return true;
3205  } else {
3206    // Ignore method/bci and see if there have been too many globally.
3207    return too_many_traps(reason, md);
3208  }
3209}
3210
3211// Less-accurate variant which does not require a method and bci.
3212bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3213                             ciMethodData* logmd) {
3214 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3215    // Too many traps globally.
3216    // Note that we use cumulative trap_count, not just md->trap_count.
3217    if (log()) {
3218      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3219      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3220                  Deoptimization::trap_reason_name(reason),
3221                  mcount, trap_count(reason));
3222    }
3223    return true;
3224  } else {
3225    // The coast is clear.
3226    return false;
3227  }
3228}
3229
3230//--------------------------too_many_recompiles--------------------------------
3231// Report if there are too many recompiles at the current method and bci.
3232// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3233// Is not eager to return true, since this will cause the compiler to use
3234// Action_none for a trap point, to avoid too many recompilations.
3235bool Compile::too_many_recompiles(ciMethod* method,
3236                                  int bci,
3237                                  Deoptimization::DeoptReason reason) {
3238  ciMethodData* md = method->method_data();
3239  if (md->is_empty()) {
3240    // Assume the trap has not occurred, or that it occurred only
3241    // because of a transient condition during start-up in the interpreter.
3242    return false;
3243  }
3244  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3245  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3246  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3247  Deoptimization::DeoptReason per_bc_reason
3248    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3249  if ((per_bc_reason == Deoptimization::Reason_none
3250       || md->has_trap_at(bci, reason) != 0)
3251      // The trap frequency measure we care about is the recompile count:
3252      && md->trap_recompiled_at(bci)
3253      && md->overflow_recompile_count() >= bc_cutoff) {
3254    // Do not emit a trap here if it has already caused recompilations.
3255    // Also, if there are multiple reasons, or if there is no per-BCI record,
3256    // assume the worst.
3257    if (log())
3258      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3259                  Deoptimization::trap_reason_name(reason),
3260                  md->trap_count(reason),
3261                  md->overflow_recompile_count());
3262    return true;
3263  } else if (trap_count(reason) != 0
3264             && decompile_count() >= m_cutoff) {
3265    // Too many recompiles globally, and we have seen this sort of trap.
3266    // Use cumulative decompile_count, not just md->decompile_count.
3267    if (log())
3268      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3269                  Deoptimization::trap_reason_name(reason),
3270                  md->trap_count(reason), trap_count(reason),
3271                  md->decompile_count(), decompile_count());
3272    return true;
3273  } else {
3274    // The coast is clear.
3275    return false;
3276  }
3277}
3278
3279
3280#ifndef PRODUCT
3281//------------------------------verify_graph_edges---------------------------
3282// Walk the Graph and verify that there is a one-to-one correspondence
3283// between Use-Def edges and Def-Use edges in the graph.
3284void Compile::verify_graph_edges(bool no_dead_code) {
3285  if (VerifyGraphEdges) {
3286    ResourceArea *area = Thread::current()->resource_area();
3287    Unique_Node_List visited(area);
3288    // Call recursive graph walk to check edges
3289    _root->verify_edges(visited);
3290    if (no_dead_code) {
3291      // Now make sure that no visited node is used by an unvisited node.
3292      bool dead_nodes = 0;
3293      Unique_Node_List checked(area);
3294      while (visited.size() > 0) {
3295        Node* n = visited.pop();
3296        checked.push(n);
3297        for (uint i = 0; i < n->outcnt(); i++) {
3298          Node* use = n->raw_out(i);
3299          if (checked.member(use))  continue;  // already checked
3300          if (visited.member(use))  continue;  // already in the graph
3301          if (use->is_Con())        continue;  // a dead ConNode is OK
3302          // At this point, we have found a dead node which is DU-reachable.
3303          if (dead_nodes++ == 0)
3304            tty->print_cr("*** Dead nodes reachable via DU edges:");
3305          use->dump(2);
3306          tty->print_cr("---");
3307          checked.push(use);  // No repeats; pretend it is now checked.
3308        }
3309      }
3310      assert(dead_nodes == 0, "using nodes must be reachable from root");
3311    }
3312  }
3313}
3314#endif
3315
3316// The Compile object keeps track of failure reasons separately from the ciEnv.
3317// This is required because there is not quite a 1-1 relation between the
3318// ciEnv and its compilation task and the Compile object.  Note that one
3319// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3320// to backtrack and retry without subsuming loads.  Other than this backtracking
3321// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3322// by the logic in C2Compiler.
3323void Compile::record_failure(const char* reason) {
3324  if (log() != NULL) {
3325    log()->elem("failure reason='%s' phase='compile'", reason);
3326  }
3327  if (_failure_reason == NULL) {
3328    // Record the first failure reason.
3329    _failure_reason = reason;
3330  }
3331
3332  EventCompilerFailure event;
3333  if (event.should_commit()) {
3334    event.set_compileID(Compile::compile_id());
3335    event.set_failure(reason);
3336    event.commit();
3337  }
3338
3339  if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3340    C->print_method(PHASE_FAILURE);
3341  }
3342  _root = NULL;  // flush the graph, too
3343}
3344
3345Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3346  : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3347    _phase_name(name), _dolog(dolog)
3348{
3349  if (dolog) {
3350    C = Compile::current();
3351    _log = C->log();
3352  } else {
3353    C = NULL;
3354    _log = NULL;
3355  }
3356  if (_log != NULL) {
3357    _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3358    _log->stamp();
3359    _log->end_head();
3360  }
3361}
3362
3363Compile::TracePhase::~TracePhase() {
3364
3365  C = Compile::current();
3366  if (_dolog) {
3367    _log = C->log();
3368  } else {
3369    _log = NULL;
3370  }
3371
3372#ifdef ASSERT
3373  if (PrintIdealNodeCount) {
3374    tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3375                  _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3376  }
3377
3378  if (VerifyIdealNodeCount) {
3379    Compile::current()->print_missing_nodes();
3380  }
3381#endif
3382
3383  if (_log != NULL) {
3384    _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3385  }
3386}
3387
3388//=============================================================================
3389// Two Constant's are equal when the type and the value are equal.
3390bool Compile::Constant::operator==(const Constant& other) {
3391  if (type()          != other.type()         )  return false;
3392  if (can_be_reused() != other.can_be_reused())  return false;
3393  // For floating point values we compare the bit pattern.
3394  switch (type()) {
3395  case T_FLOAT:   return (_v._value.i == other._v._value.i);
3396  case T_LONG:
3397  case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3398  case T_OBJECT:
3399  case T_ADDRESS: return (_v._value.l == other._v._value.l);
3400  case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3401  case T_METADATA: return (_v._metadata == other._v._metadata);
3402  default: ShouldNotReachHere();
3403  }
3404  return false;
3405}
3406
3407static int type_to_size_in_bytes(BasicType t) {
3408  switch (t) {
3409  case T_LONG:    return sizeof(jlong  );
3410  case T_FLOAT:   return sizeof(jfloat );
3411  case T_DOUBLE:  return sizeof(jdouble);
3412  case T_METADATA: return sizeof(Metadata*);
3413    // We use T_VOID as marker for jump-table entries (labels) which
3414    // need an internal word relocation.
3415  case T_VOID:
3416  case T_ADDRESS:
3417  case T_OBJECT:  return sizeof(jobject);
3418  }
3419
3420  ShouldNotReachHere();
3421  return -1;
3422}
3423
3424int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3425  // sort descending
3426  if (a->freq() > b->freq())  return -1;
3427  if (a->freq() < b->freq())  return  1;
3428  return 0;
3429}
3430
3431void Compile::ConstantTable::calculate_offsets_and_size() {
3432  // First, sort the array by frequencies.
3433  _constants.sort(qsort_comparator);
3434
3435#ifdef ASSERT
3436  // Make sure all jump-table entries were sorted to the end of the
3437  // array (they have a negative frequency).
3438  bool found_void = false;
3439  for (int i = 0; i < _constants.length(); i++) {
3440    Constant con = _constants.at(i);
3441    if (con.type() == T_VOID)
3442      found_void = true;  // jump-tables
3443    else
3444      assert(!found_void, "wrong sorting");
3445  }
3446#endif
3447
3448  int offset = 0;
3449  for (int i = 0; i < _constants.length(); i++) {
3450    Constant* con = _constants.adr_at(i);
3451
3452    // Align offset for type.
3453    int typesize = type_to_size_in_bytes(con->type());
3454    offset = align_size_up(offset, typesize);
3455    con->set_offset(offset);   // set constant's offset
3456
3457    if (con->type() == T_VOID) {
3458      MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3459      offset = offset + typesize * n->outcnt();  // expand jump-table
3460    } else {
3461      offset = offset + typesize;
3462    }
3463  }
3464
3465  // Align size up to the next section start (which is insts; see
3466  // CodeBuffer::align_at_start).
3467  assert(_size == -1, "already set?");
3468  _size = align_size_up(offset, CodeEntryAlignment);
3469}
3470
3471void Compile::ConstantTable::emit(CodeBuffer& cb) {
3472  MacroAssembler _masm(&cb);
3473  for (int i = 0; i < _constants.length(); i++) {
3474    Constant con = _constants.at(i);
3475    address constant_addr;
3476    switch (con.type()) {
3477    case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3478    case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3479    case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3480    case T_OBJECT: {
3481      jobject obj = con.get_jobject();
3482      int oop_index = _masm.oop_recorder()->find_index(obj);
3483      constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3484      break;
3485    }
3486    case T_ADDRESS: {
3487      address addr = (address) con.get_jobject();
3488      constant_addr = _masm.address_constant(addr);
3489      break;
3490    }
3491    // We use T_VOID as marker for jump-table entries (labels) which
3492    // need an internal word relocation.
3493    case T_VOID: {
3494      MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3495      // Fill the jump-table with a dummy word.  The real value is
3496      // filled in later in fill_jump_table.
3497      address dummy = (address) n;
3498      constant_addr = _masm.address_constant(dummy);
3499      // Expand jump-table
3500      for (uint i = 1; i < n->outcnt(); i++) {
3501        address temp_addr = _masm.address_constant(dummy + i);
3502        assert(temp_addr, "consts section too small");
3503      }
3504      break;
3505    }
3506    case T_METADATA: {
3507      Metadata* obj = con.get_metadata();
3508      int metadata_index = _masm.oop_recorder()->find_index(obj);
3509      constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3510      break;
3511    }
3512    default: ShouldNotReachHere();
3513    }
3514    assert(constant_addr, "consts section too small");
3515    assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3516  }
3517}
3518
3519int Compile::ConstantTable::find_offset(Constant& con) const {
3520  int idx = _constants.find(con);
3521  assert(idx != -1, "constant must be in constant table");
3522  int offset = _constants.at(idx).offset();
3523  assert(offset != -1, "constant table not emitted yet?");
3524  return offset;
3525}
3526
3527void Compile::ConstantTable::add(Constant& con) {
3528  if (con.can_be_reused()) {
3529    int idx = _constants.find(con);
3530    if (idx != -1 && _constants.at(idx).can_be_reused()) {
3531      _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3532      return;
3533    }
3534  }
3535  (void) _constants.append(con);
3536}
3537
3538Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3539  Block* b = Compile::current()->cfg()->get_block_for_node(n);
3540  Constant con(type, value, b->_freq);
3541  add(con);
3542  return con;
3543}
3544
3545Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3546  Constant con(metadata);
3547  add(con);
3548  return con;
3549}
3550
3551Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3552  jvalue value;
3553  BasicType type = oper->type()->basic_type();
3554  switch (type) {
3555  case T_LONG:    value.j = oper->constantL(); break;
3556  case T_FLOAT:   value.f = oper->constantF(); break;
3557  case T_DOUBLE:  value.d = oper->constantD(); break;
3558  case T_OBJECT:
3559  case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3560  case T_METADATA: return add((Metadata*)oper->constant()); break;
3561  default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3562  }
3563  return add(n, type, value);
3564}
3565
3566Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3567  jvalue value;
3568  // We can use the node pointer here to identify the right jump-table
3569  // as this method is called from Compile::Fill_buffer right before
3570  // the MachNodes are emitted and the jump-table is filled (means the
3571  // MachNode pointers do not change anymore).
3572  value.l = (jobject) n;
3573  Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3574  add(con);
3575  return con;
3576}
3577
3578void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3579  // If called from Compile::scratch_emit_size do nothing.
3580  if (Compile::current()->in_scratch_emit_size())  return;
3581
3582  assert(labels.is_nonempty(), "must be");
3583  assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3584
3585  // Since MachConstantNode::constant_offset() also contains
3586  // table_base_offset() we need to subtract the table_base_offset()
3587  // to get the plain offset into the constant table.
3588  int offset = n->constant_offset() - table_base_offset();
3589
3590  MacroAssembler _masm(&cb);
3591  address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3592
3593  for (uint i = 0; i < n->outcnt(); i++) {
3594    address* constant_addr = &jump_table_base[i];
3595    assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3596    *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3597    cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3598  }
3599}
3600
3601void Compile::dump_inlining() {
3602  if (PrintInlining || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
3603    // Print inlining message for candidates that we couldn't inline
3604    // for lack of space or non constant receiver
3605    for (int i = 0; i < _late_inlines.length(); i++) {
3606      CallGenerator* cg = _late_inlines.at(i);
3607      cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3608    }
3609    Unique_Node_List useful;
3610    useful.push(root());
3611    for (uint next = 0; next < useful.size(); ++next) {
3612      Node* n  = useful.at(next);
3613      if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3614        CallNode* call = n->as_Call();
3615        CallGenerator* cg = call->generator();
3616        cg->print_inlining_late("receiver not constant");
3617      }
3618      uint max = n->len();
3619      for ( uint i = 0; i < max; ++i ) {
3620        Node *m = n->in(i);
3621        if ( m == NULL ) continue;
3622        useful.push(m);
3623      }
3624    }
3625    for (int i = 0; i < _print_inlining_list->length(); i++) {
3626      tty->print(_print_inlining_list->at(i).ss()->as_string());
3627    }
3628  }
3629}
3630
3631int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3632  if (n1->Opcode() < n2->Opcode())      return -1;
3633  else if (n1->Opcode() > n2->Opcode()) return 1;
3634
3635  assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3636  for (uint i = 1; i < n1->req(); i++) {
3637    if (n1->in(i) < n2->in(i))      return -1;
3638    else if (n1->in(i) > n2->in(i)) return 1;
3639  }
3640
3641  return 0;
3642}
3643
3644int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3645  Node* n1 = *n1p;
3646  Node* n2 = *n2p;
3647
3648  return cmp_expensive_nodes(n1, n2);
3649}
3650
3651void Compile::sort_expensive_nodes() {
3652  if (!expensive_nodes_sorted()) {
3653    _expensive_nodes->sort(cmp_expensive_nodes);
3654  }
3655}
3656
3657bool Compile::expensive_nodes_sorted() const {
3658  for (int i = 1; i < _expensive_nodes->length(); i++) {
3659    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3660      return false;
3661    }
3662  }
3663  return true;
3664}
3665
3666bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3667  if (_expensive_nodes->length() == 0) {
3668    return false;
3669  }
3670
3671  assert(OptimizeExpensiveOps, "optimization off?");
3672
3673  // Take this opportunity to remove dead nodes from the list
3674  int j = 0;
3675  for (int i = 0; i < _expensive_nodes->length(); i++) {
3676    Node* n = _expensive_nodes->at(i);
3677    if (!n->is_unreachable(igvn)) {
3678      assert(n->is_expensive(), "should be expensive");
3679      _expensive_nodes->at_put(j, n);
3680      j++;
3681    }
3682  }
3683  _expensive_nodes->trunc_to(j);
3684
3685  // Then sort the list so that similar nodes are next to each other
3686  // and check for at least two nodes of identical kind with same data
3687  // inputs.
3688  sort_expensive_nodes();
3689
3690  for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3691    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3692      return true;
3693    }
3694  }
3695
3696  return false;
3697}
3698
3699void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3700  if (_expensive_nodes->length() == 0) {
3701    return;
3702  }
3703
3704  assert(OptimizeExpensiveOps, "optimization off?");
3705
3706  // Sort to bring similar nodes next to each other and clear the
3707  // control input of nodes for which there's only a single copy.
3708  sort_expensive_nodes();
3709
3710  int j = 0;
3711  int identical = 0;
3712  int i = 0;
3713  for (; i < _expensive_nodes->length()-1; i++) {
3714    assert(j <= i, "can't write beyond current index");
3715    if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3716      identical++;
3717      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3718      continue;
3719    }
3720    if (identical > 0) {
3721      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3722      identical = 0;
3723    } else {
3724      Node* n = _expensive_nodes->at(i);
3725      igvn.hash_delete(n);
3726      n->set_req(0, NULL);
3727      igvn.hash_insert(n);
3728    }
3729  }
3730  if (identical > 0) {
3731    _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3732  } else if (_expensive_nodes->length() >= 1) {
3733    Node* n = _expensive_nodes->at(i);
3734    igvn.hash_delete(n);
3735    n->set_req(0, NULL);
3736    igvn.hash_insert(n);
3737  }
3738  _expensive_nodes->trunc_to(j);
3739}
3740
3741void Compile::add_expensive_node(Node * n) {
3742  assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3743  assert(n->is_expensive(), "expensive nodes with non-null control here only");
3744  assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3745  if (OptimizeExpensiveOps) {
3746    _expensive_nodes->append(n);
3747  } else {
3748    // Clear control input and let IGVN optimize expensive nodes if
3749    // OptimizeExpensiveOps is off.
3750    n->set_req(0, NULL);
3751  }
3752}
3753
3754// Auxiliary method to support randomized stressing/fuzzing.
3755//
3756// This method can be called the arbitrary number of times, with current count
3757// as the argument. The logic allows selecting a single candidate from the
3758// running list of candidates as follows:
3759//    int count = 0;
3760//    Cand* selected = null;
3761//    while(cand = cand->next()) {
3762//      if (randomized_select(++count)) {
3763//        selected = cand;
3764//      }
3765//    }
3766//
3767// Including count equalizes the chances any candidate is "selected".
3768// This is useful when we don't have the complete list of candidates to choose
3769// from uniformly. In this case, we need to adjust the randomicity of the
3770// selection, or else we will end up biasing the selection towards the latter
3771// candidates.
3772//
3773// Quick back-envelope calculation shows that for the list of n candidates
3774// the equal probability for the candidate to persist as "best" can be
3775// achieved by replacing it with "next" k-th candidate with the probability
3776// of 1/k. It can be easily shown that by the end of the run, the
3777// probability for any candidate is converged to 1/n, thus giving the
3778// uniform distribution among all the candidates.
3779//
3780// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3781#define RANDOMIZED_DOMAIN_POW 29
3782#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3783#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3784bool Compile::randomized_select(int count) {
3785  assert(count > 0, "only positive");
3786  return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3787}
3788