compile.cpp revision 5945:d2907f74462e
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "code/exceptionHandlerTable.hpp"
30#include "code/nmethod.hpp"
31#include "compiler/compileLog.hpp"
32#include "compiler/disassembler.hpp"
33#include "compiler/oopMap.hpp"
34#include "opto/addnode.hpp"
35#include "opto/block.hpp"
36#include "opto/c2compiler.hpp"
37#include "opto/callGenerator.hpp"
38#include "opto/callnode.hpp"
39#include "opto/cfgnode.hpp"
40#include "opto/chaitin.hpp"
41#include "opto/compile.hpp"
42#include "opto/connode.hpp"
43#include "opto/divnode.hpp"
44#include "opto/escape.hpp"
45#include "opto/idealGraphPrinter.hpp"
46#include "opto/loopnode.hpp"
47#include "opto/machnode.hpp"
48#include "opto/macro.hpp"
49#include "opto/matcher.hpp"
50#include "opto/memnode.hpp"
51#include "opto/mulnode.hpp"
52#include "opto/node.hpp"
53#include "opto/opcodes.hpp"
54#include "opto/output.hpp"
55#include "opto/parse.hpp"
56#include "opto/phaseX.hpp"
57#include "opto/rootnode.hpp"
58#include "opto/runtime.hpp"
59#include "opto/stringopts.hpp"
60#include "opto/type.hpp"
61#include "opto/vectornode.hpp"
62#include "runtime/arguments.hpp"
63#include "runtime/signature.hpp"
64#include "runtime/stubRoutines.hpp"
65#include "runtime/timer.hpp"
66#include "utilities/copy.hpp"
67#ifdef TARGET_ARCH_MODEL_x86_32
68# include "adfiles/ad_x86_32.hpp"
69#endif
70#ifdef TARGET_ARCH_MODEL_x86_64
71# include "adfiles/ad_x86_64.hpp"
72#endif
73#ifdef TARGET_ARCH_MODEL_sparc
74# include "adfiles/ad_sparc.hpp"
75#endif
76#ifdef TARGET_ARCH_MODEL_zero
77# include "adfiles/ad_zero.hpp"
78#endif
79#ifdef TARGET_ARCH_MODEL_arm
80# include "adfiles/ad_arm.hpp"
81#endif
82#ifdef TARGET_ARCH_MODEL_ppc_32
83# include "adfiles/ad_ppc_32.hpp"
84#endif
85#ifdef TARGET_ARCH_MODEL_ppc_64
86# include "adfiles/ad_ppc_64.hpp"
87#endif
88
89
90// -------------------- Compile::mach_constant_base_node -----------------------
91// Constant table base node singleton.
92MachConstantBaseNode* Compile::mach_constant_base_node() {
93  if (_mach_constant_base_node == NULL) {
94    _mach_constant_base_node = new (C) MachConstantBaseNode();
95    _mach_constant_base_node->add_req(C->root());
96  }
97  return _mach_constant_base_node;
98}
99
100
101/// Support for intrinsics.
102
103// Return the index at which m must be inserted (or already exists).
104// The sort order is by the address of the ciMethod, with is_virtual as minor key.
105int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
106#ifdef ASSERT
107  for (int i = 1; i < _intrinsics->length(); i++) {
108    CallGenerator* cg1 = _intrinsics->at(i-1);
109    CallGenerator* cg2 = _intrinsics->at(i);
110    assert(cg1->method() != cg2->method()
111           ? cg1->method()     < cg2->method()
112           : cg1->is_virtual() < cg2->is_virtual(),
113           "compiler intrinsics list must stay sorted");
114  }
115#endif
116  // Binary search sorted list, in decreasing intervals [lo, hi].
117  int lo = 0, hi = _intrinsics->length()-1;
118  while (lo <= hi) {
119    int mid = (uint)(hi + lo) / 2;
120    ciMethod* mid_m = _intrinsics->at(mid)->method();
121    if (m < mid_m) {
122      hi = mid-1;
123    } else if (m > mid_m) {
124      lo = mid+1;
125    } else {
126      // look at minor sort key
127      bool mid_virt = _intrinsics->at(mid)->is_virtual();
128      if (is_virtual < mid_virt) {
129        hi = mid-1;
130      } else if (is_virtual > mid_virt) {
131        lo = mid+1;
132      } else {
133        return mid;  // exact match
134      }
135    }
136  }
137  return lo;  // inexact match
138}
139
140void Compile::register_intrinsic(CallGenerator* cg) {
141  if (_intrinsics == NULL) {
142    _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
143  }
144  // This code is stolen from ciObjectFactory::insert.
145  // Really, GrowableArray should have methods for
146  // insert_at, remove_at, and binary_search.
147  int len = _intrinsics->length();
148  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
149  if (index == len) {
150    _intrinsics->append(cg);
151  } else {
152#ifdef ASSERT
153    CallGenerator* oldcg = _intrinsics->at(index);
154    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
155#endif
156    _intrinsics->append(_intrinsics->at(len-1));
157    int pos;
158    for (pos = len-2; pos >= index; pos--) {
159      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
160    }
161    _intrinsics->at_put(index, cg);
162  }
163  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
164}
165
166CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
167  assert(m->is_loaded(), "don't try this on unloaded methods");
168  if (_intrinsics != NULL) {
169    int index = intrinsic_insertion_index(m, is_virtual);
170    if (index < _intrinsics->length()
171        && _intrinsics->at(index)->method() == m
172        && _intrinsics->at(index)->is_virtual() == is_virtual) {
173      return _intrinsics->at(index);
174    }
175  }
176  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
177  if (m->intrinsic_id() != vmIntrinsics::_none &&
178      m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
179    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
180    if (cg != NULL) {
181      // Save it for next time:
182      register_intrinsic(cg);
183      return cg;
184    } else {
185      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
186    }
187  }
188  return NULL;
189}
190
191// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
192// in library_call.cpp.
193
194
195#ifndef PRODUCT
196// statistics gathering...
197
198juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
199jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
200
201bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
202  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
203  int oflags = _intrinsic_hist_flags[id];
204  assert(flags != 0, "what happened?");
205  if (is_virtual) {
206    flags |= _intrinsic_virtual;
207  }
208  bool changed = (flags != oflags);
209  if ((flags & _intrinsic_worked) != 0) {
210    juint count = (_intrinsic_hist_count[id] += 1);
211    if (count == 1) {
212      changed = true;           // first time
213    }
214    // increment the overall count also:
215    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
216  }
217  if (changed) {
218    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
219      // Something changed about the intrinsic's virtuality.
220      if ((flags & _intrinsic_virtual) != 0) {
221        // This is the first use of this intrinsic as a virtual call.
222        if (oflags != 0) {
223          // We already saw it as a non-virtual, so note both cases.
224          flags |= _intrinsic_both;
225        }
226      } else if ((oflags & _intrinsic_both) == 0) {
227        // This is the first use of this intrinsic as a non-virtual
228        flags |= _intrinsic_both;
229      }
230    }
231    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
232  }
233  // update the overall flags also:
234  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
235  return changed;
236}
237
238static char* format_flags(int flags, char* buf) {
239  buf[0] = 0;
240  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
241  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
242  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
243  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
244  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
245  if (buf[0] == 0)  strcat(buf, ",");
246  assert(buf[0] == ',', "must be");
247  return &buf[1];
248}
249
250void Compile::print_intrinsic_statistics() {
251  char flagsbuf[100];
252  ttyLocker ttyl;
253  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
254  tty->print_cr("Compiler intrinsic usage:");
255  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
256  if (total == 0)  total = 1;  // avoid div0 in case of no successes
257  #define PRINT_STAT_LINE(name, c, f) \
258    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
259  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
260    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
261    int   flags = _intrinsic_hist_flags[id];
262    juint count = _intrinsic_hist_count[id];
263    if ((flags | count) != 0) {
264      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
265    }
266  }
267  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
268  if (xtty != NULL)  xtty->tail("statistics");
269}
270
271void Compile::print_statistics() {
272  { ttyLocker ttyl;
273    if (xtty != NULL)  xtty->head("statistics type='opto'");
274    Parse::print_statistics();
275    PhaseCCP::print_statistics();
276    PhaseRegAlloc::print_statistics();
277    Scheduling::print_statistics();
278    PhasePeephole::print_statistics();
279    PhaseIdealLoop::print_statistics();
280    if (xtty != NULL)  xtty->tail("statistics");
281  }
282  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
283    // put this under its own <statistics> element.
284    print_intrinsic_statistics();
285  }
286}
287#endif //PRODUCT
288
289// Support for bundling info
290Bundle* Compile::node_bundling(const Node *n) {
291  assert(valid_bundle_info(n), "oob");
292  return &_node_bundling_base[n->_idx];
293}
294
295bool Compile::valid_bundle_info(const Node *n) {
296  return (_node_bundling_limit > n->_idx);
297}
298
299
300void Compile::gvn_replace_by(Node* n, Node* nn) {
301  for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
302    Node* use = n->last_out(i);
303    bool is_in_table = initial_gvn()->hash_delete(use);
304    uint uses_found = 0;
305    for (uint j = 0; j < use->len(); j++) {
306      if (use->in(j) == n) {
307        if (j < use->req())
308          use->set_req(j, nn);
309        else
310          use->set_prec(j, nn);
311        uses_found++;
312      }
313    }
314    if (is_in_table) {
315      // reinsert into table
316      initial_gvn()->hash_find_insert(use);
317    }
318    record_for_igvn(use);
319    i -= uses_found;    // we deleted 1 or more copies of this edge
320  }
321}
322
323
324static inline bool not_a_node(const Node* n) {
325  if (n == NULL)                   return true;
326  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
327  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
328  return false;
329}
330
331// Identify all nodes that are reachable from below, useful.
332// Use breadth-first pass that records state in a Unique_Node_List,
333// recursive traversal is slower.
334void Compile::identify_useful_nodes(Unique_Node_List &useful) {
335  int estimated_worklist_size = unique();
336  useful.map( estimated_worklist_size, NULL );  // preallocate space
337
338  // Initialize worklist
339  if (root() != NULL)     { useful.push(root()); }
340  // If 'top' is cached, declare it useful to preserve cached node
341  if( cached_top_node() ) { useful.push(cached_top_node()); }
342
343  // Push all useful nodes onto the list, breadthfirst
344  for( uint next = 0; next < useful.size(); ++next ) {
345    assert( next < unique(), "Unique useful nodes < total nodes");
346    Node *n  = useful.at(next);
347    uint max = n->len();
348    for( uint i = 0; i < max; ++i ) {
349      Node *m = n->in(i);
350      if (not_a_node(m))  continue;
351      useful.push(m);
352    }
353  }
354}
355
356// Update dead_node_list with any missing dead nodes using useful
357// list. Consider all non-useful nodes to be useless i.e., dead nodes.
358void Compile::update_dead_node_list(Unique_Node_List &useful) {
359  uint max_idx = unique();
360  VectorSet& useful_node_set = useful.member_set();
361
362  for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
363    // If node with index node_idx is not in useful set,
364    // mark it as dead in dead node list.
365    if (! useful_node_set.test(node_idx) ) {
366      record_dead_node(node_idx);
367    }
368  }
369}
370
371void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
372  int shift = 0;
373  for (int i = 0; i < inlines->length(); i++) {
374    CallGenerator* cg = inlines->at(i);
375    CallNode* call = cg->call_node();
376    if (shift > 0) {
377      inlines->at_put(i-shift, cg);
378    }
379    if (!useful.member(call)) {
380      shift++;
381    }
382  }
383  inlines->trunc_to(inlines->length()-shift);
384}
385
386// Disconnect all useless nodes by disconnecting those at the boundary.
387void Compile::remove_useless_nodes(Unique_Node_List &useful) {
388  uint next = 0;
389  while (next < useful.size()) {
390    Node *n = useful.at(next++);
391    // Use raw traversal of out edges since this code removes out edges
392    int max = n->outcnt();
393    for (int j = 0; j < max; ++j) {
394      Node* child = n->raw_out(j);
395      if (! useful.member(child)) {
396        assert(!child->is_top() || child != top(),
397               "If top is cached in Compile object it is in useful list");
398        // Only need to remove this out-edge to the useless node
399        n->raw_del_out(j);
400        --j;
401        --max;
402      }
403    }
404    if (n->outcnt() == 1 && n->has_special_unique_user()) {
405      record_for_igvn(n->unique_out());
406    }
407  }
408  // Remove useless macro and predicate opaq nodes
409  for (int i = C->macro_count()-1; i >= 0; i--) {
410    Node* n = C->macro_node(i);
411    if (!useful.member(n)) {
412      remove_macro_node(n);
413    }
414  }
415  // Remove useless expensive node
416  for (int i = C->expensive_count()-1; i >= 0; i--) {
417    Node* n = C->expensive_node(i);
418    if (!useful.member(n)) {
419      remove_expensive_node(n);
420    }
421  }
422  // clean up the late inline lists
423  remove_useless_late_inlines(&_string_late_inlines, useful);
424  remove_useless_late_inlines(&_boxing_late_inlines, useful);
425  remove_useless_late_inlines(&_late_inlines, useful);
426  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
427}
428
429//------------------------------frame_size_in_words-----------------------------
430// frame_slots in units of words
431int Compile::frame_size_in_words() const {
432  // shift is 0 in LP32 and 1 in LP64
433  const int shift = (LogBytesPerWord - LogBytesPerInt);
434  int words = _frame_slots >> shift;
435  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
436  return words;
437}
438
439// ============================================================================
440//------------------------------CompileWrapper---------------------------------
441class CompileWrapper : public StackObj {
442  Compile *const _compile;
443 public:
444  CompileWrapper(Compile* compile);
445
446  ~CompileWrapper();
447};
448
449CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
450  // the Compile* pointer is stored in the current ciEnv:
451  ciEnv* env = compile->env();
452  assert(env == ciEnv::current(), "must already be a ciEnv active");
453  assert(env->compiler_data() == NULL, "compile already active?");
454  env->set_compiler_data(compile);
455  assert(compile == Compile::current(), "sanity");
456
457  compile->set_type_dict(NULL);
458  compile->set_type_hwm(NULL);
459  compile->set_type_last_size(0);
460  compile->set_last_tf(NULL, NULL);
461  compile->set_indexSet_arena(NULL);
462  compile->set_indexSet_free_block_list(NULL);
463  compile->init_type_arena();
464  Type::Initialize(compile);
465  _compile->set_scratch_buffer_blob(NULL);
466  _compile->begin_method();
467}
468CompileWrapper::~CompileWrapper() {
469  _compile->end_method();
470  if (_compile->scratch_buffer_blob() != NULL)
471    BufferBlob::free(_compile->scratch_buffer_blob());
472  _compile->env()->set_compiler_data(NULL);
473}
474
475
476//----------------------------print_compile_messages---------------------------
477void Compile::print_compile_messages() {
478#ifndef PRODUCT
479  // Check if recompiling
480  if (_subsume_loads == false && PrintOpto) {
481    // Recompiling without allowing machine instructions to subsume loads
482    tty->print_cr("*********************************************************");
483    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
484    tty->print_cr("*********************************************************");
485  }
486  if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
487    // Recompiling without escape analysis
488    tty->print_cr("*********************************************************");
489    tty->print_cr("** Bailout: Recompile without escape analysis          **");
490    tty->print_cr("*********************************************************");
491  }
492  if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
493    // Recompiling without boxing elimination
494    tty->print_cr("*********************************************************");
495    tty->print_cr("** Bailout: Recompile without boxing elimination       **");
496    tty->print_cr("*********************************************************");
497  }
498  if (env()->break_at_compile()) {
499    // Open the debugger when compiling this method.
500    tty->print("### Breaking when compiling: ");
501    method()->print_short_name();
502    tty->cr();
503    BREAKPOINT;
504  }
505
506  if( PrintOpto ) {
507    if (is_osr_compilation()) {
508      tty->print("[OSR]%3d", _compile_id);
509    } else {
510      tty->print("%3d", _compile_id);
511    }
512  }
513#endif
514}
515
516
517//-----------------------init_scratch_buffer_blob------------------------------
518// Construct a temporary BufferBlob and cache it for this compile.
519void Compile::init_scratch_buffer_blob(int const_size) {
520  // If there is already a scratch buffer blob allocated and the
521  // constant section is big enough, use it.  Otherwise free the
522  // current and allocate a new one.
523  BufferBlob* blob = scratch_buffer_blob();
524  if ((blob != NULL) && (const_size <= _scratch_const_size)) {
525    // Use the current blob.
526  } else {
527    if (blob != NULL) {
528      BufferBlob::free(blob);
529    }
530
531    ResourceMark rm;
532    _scratch_const_size = const_size;
533    int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
534    blob = BufferBlob::create("Compile::scratch_buffer", size);
535    // Record the buffer blob for next time.
536    set_scratch_buffer_blob(blob);
537    // Have we run out of code space?
538    if (scratch_buffer_blob() == NULL) {
539      // Let CompilerBroker disable further compilations.
540      record_failure("Not enough space for scratch buffer in CodeCache");
541      return;
542    }
543  }
544
545  // Initialize the relocation buffers
546  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
547  set_scratch_locs_memory(locs_buf);
548}
549
550
551//-----------------------scratch_emit_size-------------------------------------
552// Helper function that computes size by emitting code
553uint Compile::scratch_emit_size(const Node* n) {
554  // Start scratch_emit_size section.
555  set_in_scratch_emit_size(true);
556
557  // Emit into a trash buffer and count bytes emitted.
558  // This is a pretty expensive way to compute a size,
559  // but it works well enough if seldom used.
560  // All common fixed-size instructions are given a size
561  // method by the AD file.
562  // Note that the scratch buffer blob and locs memory are
563  // allocated at the beginning of the compile task, and
564  // may be shared by several calls to scratch_emit_size.
565  // The allocation of the scratch buffer blob is particularly
566  // expensive, since it has to grab the code cache lock.
567  BufferBlob* blob = this->scratch_buffer_blob();
568  assert(blob != NULL, "Initialize BufferBlob at start");
569  assert(blob->size() > MAX_inst_size, "sanity");
570  relocInfo* locs_buf = scratch_locs_memory();
571  address blob_begin = blob->content_begin();
572  address blob_end   = (address)locs_buf;
573  assert(blob->content_contains(blob_end), "sanity");
574  CodeBuffer buf(blob_begin, blob_end - blob_begin);
575  buf.initialize_consts_size(_scratch_const_size);
576  buf.initialize_stubs_size(MAX_stubs_size);
577  assert(locs_buf != NULL, "sanity");
578  int lsize = MAX_locs_size / 3;
579  buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
580  buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
581  buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
582
583  // Do the emission.
584
585  Label fakeL; // Fake label for branch instructions.
586  Label*   saveL = NULL;
587  uint save_bnum = 0;
588  bool is_branch = n->is_MachBranch();
589  if (is_branch) {
590    MacroAssembler masm(&buf);
591    masm.bind(fakeL);
592    n->as_MachBranch()->save_label(&saveL, &save_bnum);
593    n->as_MachBranch()->label_set(&fakeL, 0);
594  }
595  n->emit(buf, this->regalloc());
596  if (is_branch) // Restore label.
597    n->as_MachBranch()->label_set(saveL, save_bnum);
598
599  // End scratch_emit_size section.
600  set_in_scratch_emit_size(false);
601
602  return buf.insts_size();
603}
604
605
606// ============================================================================
607//------------------------------Compile standard-------------------------------
608debug_only( int Compile::_debug_idx = 100000; )
609
610// Compile a method.  entry_bci is -1 for normal compilations and indicates
611// the continuation bci for on stack replacement.
612
613
614Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
615                  bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
616                : Phase(Compiler),
617                  _env(ci_env),
618                  _log(ci_env->log()),
619                  _compile_id(ci_env->compile_id()),
620                  _save_argument_registers(false),
621                  _stub_name(NULL),
622                  _stub_function(NULL),
623                  _stub_entry_point(NULL),
624                  _method(target),
625                  _entry_bci(osr_bci),
626                  _initial_gvn(NULL),
627                  _for_igvn(NULL),
628                  _warm_calls(NULL),
629                  _subsume_loads(subsume_loads),
630                  _do_escape_analysis(do_escape_analysis),
631                  _eliminate_boxing(eliminate_boxing),
632                  _failure_reason(NULL),
633                  _code_buffer("Compile::Fill_buffer"),
634                  _orig_pc_slot(0),
635                  _orig_pc_slot_offset_in_bytes(0),
636                  _has_method_handle_invokes(false),
637                  _mach_constant_base_node(NULL),
638                  _node_bundling_limit(0),
639                  _node_bundling_base(NULL),
640                  _java_calls(0),
641                  _inner_loops(0),
642                  _scratch_const_size(-1),
643                  _in_scratch_emit_size(false),
644                  _dead_node_list(comp_arena()),
645                  _dead_node_count(0),
646#ifndef PRODUCT
647                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
648                  _printer(IdealGraphPrinter::printer()),
649#endif
650                  _congraph(NULL),
651                  _late_inlines(comp_arena(), 2, 0, NULL),
652                  _string_late_inlines(comp_arena(), 2, 0, NULL),
653                  _boxing_late_inlines(comp_arena(), 2, 0, NULL),
654                  _late_inlines_pos(0),
655                  _number_of_mh_late_inlines(0),
656                  _inlining_progress(false),
657                  _inlining_incrementally(false),
658                  _print_inlining_list(NULL),
659                  _print_inlining(0) {
660  C = this;
661
662  CompileWrapper cw(this);
663#ifndef PRODUCT
664  if (TimeCompiler2) {
665    tty->print(" ");
666    target->holder()->name()->print();
667    tty->print(".");
668    target->print_short_name();
669    tty->print("  ");
670  }
671  TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
672  TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
673  bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
674  if (!print_opto_assembly) {
675    bool print_assembly = (PrintAssembly || _method->should_print_assembly());
676    if (print_assembly && !Disassembler::can_decode()) {
677      tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
678      print_opto_assembly = true;
679    }
680  }
681  set_print_assembly(print_opto_assembly);
682  set_parsed_irreducible_loop(false);
683#endif
684
685  if (ProfileTraps) {
686    // Make sure the method being compiled gets its own MDO,
687    // so we can at least track the decompile_count().
688    method()->ensure_method_data();
689  }
690
691  Init(::AliasLevel);
692
693
694  print_compile_messages();
695
696  if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
697    _ilt = InlineTree::build_inline_tree_root();
698  else
699    _ilt = NULL;
700
701  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
702  assert(num_alias_types() >= AliasIdxRaw, "");
703
704#define MINIMUM_NODE_HASH  1023
705  // Node list that Iterative GVN will start with
706  Unique_Node_List for_igvn(comp_arena());
707  set_for_igvn(&for_igvn);
708
709  // GVN that will be run immediately on new nodes
710  uint estimated_size = method()->code_size()*4+64;
711  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
712  PhaseGVN gvn(node_arena(), estimated_size);
713  set_initial_gvn(&gvn);
714
715  if (PrintInlining  || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
716    _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
717  }
718  { // Scope for timing the parser
719    TracePhase t3("parse", &_t_parser, true);
720
721    // Put top into the hash table ASAP.
722    initial_gvn()->transform_no_reclaim(top());
723
724    // Set up tf(), start(), and find a CallGenerator.
725    CallGenerator* cg = NULL;
726    if (is_osr_compilation()) {
727      const TypeTuple *domain = StartOSRNode::osr_domain();
728      const TypeTuple *range = TypeTuple::make_range(method()->signature());
729      init_tf(TypeFunc::make(domain, range));
730      StartNode* s = new (this) StartOSRNode(root(), domain);
731      initial_gvn()->set_type_bottom(s);
732      init_start(s);
733      cg = CallGenerator::for_osr(method(), entry_bci());
734    } else {
735      // Normal case.
736      init_tf(TypeFunc::make(method()));
737      StartNode* s = new (this) StartNode(root(), tf()->domain());
738      initial_gvn()->set_type_bottom(s);
739      init_start(s);
740      if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
741        // With java.lang.ref.reference.get() we must go through the
742        // intrinsic when G1 is enabled - even when get() is the root
743        // method of the compile - so that, if necessary, the value in
744        // the referent field of the reference object gets recorded by
745        // the pre-barrier code.
746        // Specifically, if G1 is enabled, the value in the referent
747        // field is recorded by the G1 SATB pre barrier. This will
748        // result in the referent being marked live and the reference
749        // object removed from the list of discovered references during
750        // reference processing.
751        cg = find_intrinsic(method(), false);
752      }
753      if (cg == NULL) {
754        float past_uses = method()->interpreter_invocation_count();
755        float expected_uses = past_uses;
756        cg = CallGenerator::for_inline(method(), expected_uses);
757      }
758    }
759    if (failing())  return;
760    if (cg == NULL) {
761      record_method_not_compilable_all_tiers("cannot parse method");
762      return;
763    }
764    JVMState* jvms = build_start_state(start(), tf());
765    if ((jvms = cg->generate(jvms)) == NULL) {
766      record_method_not_compilable("method parse failed");
767      return;
768    }
769    GraphKit kit(jvms);
770
771    if (!kit.stopped()) {
772      // Accept return values, and transfer control we know not where.
773      // This is done by a special, unique ReturnNode bound to root.
774      return_values(kit.jvms());
775    }
776
777    if (kit.has_exceptions()) {
778      // Any exceptions that escape from this call must be rethrown
779      // to whatever caller is dynamically above us on the stack.
780      // This is done by a special, unique RethrowNode bound to root.
781      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
782    }
783
784    assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
785
786    if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
787      inline_string_calls(true);
788    }
789
790    if (failing())  return;
791
792    print_method("Before RemoveUseless", 3);
793
794    // Remove clutter produced by parsing.
795    if (!failing()) {
796      ResourceMark rm;
797      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
798    }
799  }
800
801  // Note:  Large methods are capped off in do_one_bytecode().
802  if (failing())  return;
803
804  // After parsing, node notes are no longer automagic.
805  // They must be propagated by register_new_node_with_optimizer(),
806  // clone(), or the like.
807  set_default_node_notes(NULL);
808
809  for (;;) {
810    int successes = Inline_Warm();
811    if (failing())  return;
812    if (successes == 0)  break;
813  }
814
815  // Drain the list.
816  Finish_Warm();
817#ifndef PRODUCT
818  if (_printer) {
819    _printer->print_inlining(this);
820  }
821#endif
822
823  if (failing())  return;
824  NOT_PRODUCT( verify_graph_edges(); )
825
826  // Now optimize
827  Optimize();
828  if (failing())  return;
829  NOT_PRODUCT( verify_graph_edges(); )
830
831#ifndef PRODUCT
832  if (PrintIdeal) {
833    ttyLocker ttyl;  // keep the following output all in one block
834    // This output goes directly to the tty, not the compiler log.
835    // To enable tools to match it up with the compilation activity,
836    // be sure to tag this tty output with the compile ID.
837    if (xtty != NULL) {
838      xtty->head("ideal compile_id='%d'%s", compile_id(),
839                 is_osr_compilation()    ? " compile_kind='osr'" :
840                 "");
841    }
842    root()->dump(9999);
843    if (xtty != NULL) {
844      xtty->tail("ideal");
845    }
846  }
847#endif
848
849  // Now that we know the size of all the monitors we can add a fixed slot
850  // for the original deopt pc.
851
852  _orig_pc_slot =  fixed_slots();
853  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
854  set_fixed_slots(next_slot);
855
856  // Now generate code
857  Code_Gen();
858  if (failing())  return;
859
860  // Check if we want to skip execution of all compiled code.
861  {
862#ifndef PRODUCT
863    if (OptoNoExecute) {
864      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
865      return;
866    }
867    TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
868#endif
869
870    if (is_osr_compilation()) {
871      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
872      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
873    } else {
874      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
875      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
876    }
877
878    env()->register_method(_method, _entry_bci,
879                           &_code_offsets,
880                           _orig_pc_slot_offset_in_bytes,
881                           code_buffer(),
882                           frame_size_in_words(), _oop_map_set,
883                           &_handler_table, &_inc_table,
884                           compiler,
885                           env()->comp_level(),
886                           has_unsafe_access(),
887                           SharedRuntime::is_wide_vector(max_vector_size())
888                           );
889
890    if (log() != NULL) // Print code cache state into compiler log
891      log()->code_cache_state();
892  }
893}
894
895//------------------------------Compile----------------------------------------
896// Compile a runtime stub
897Compile::Compile( ciEnv* ci_env,
898                  TypeFunc_generator generator,
899                  address stub_function,
900                  const char *stub_name,
901                  int is_fancy_jump,
902                  bool pass_tls,
903                  bool save_arg_registers,
904                  bool return_pc )
905  : Phase(Compiler),
906    _env(ci_env),
907    _log(ci_env->log()),
908    _compile_id(0),
909    _save_argument_registers(save_arg_registers),
910    _method(NULL),
911    _stub_name(stub_name),
912    _stub_function(stub_function),
913    _stub_entry_point(NULL),
914    _entry_bci(InvocationEntryBci),
915    _initial_gvn(NULL),
916    _for_igvn(NULL),
917    _warm_calls(NULL),
918    _orig_pc_slot(0),
919    _orig_pc_slot_offset_in_bytes(0),
920    _subsume_loads(true),
921    _do_escape_analysis(false),
922    _eliminate_boxing(false),
923    _failure_reason(NULL),
924    _code_buffer("Compile::Fill_buffer"),
925    _has_method_handle_invokes(false),
926    _mach_constant_base_node(NULL),
927    _node_bundling_limit(0),
928    _node_bundling_base(NULL),
929    _java_calls(0),
930    _inner_loops(0),
931#ifndef PRODUCT
932    _trace_opto_output(TraceOptoOutput),
933    _printer(NULL),
934#endif
935    _dead_node_list(comp_arena()),
936    _dead_node_count(0),
937    _congraph(NULL),
938    _number_of_mh_late_inlines(0),
939    _inlining_progress(false),
940    _inlining_incrementally(false),
941    _print_inlining_list(NULL),
942    _print_inlining(0) {
943  C = this;
944
945#ifndef PRODUCT
946  TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
947  TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
948  set_print_assembly(PrintFrameConverterAssembly);
949  set_parsed_irreducible_loop(false);
950#endif
951  CompileWrapper cw(this);
952  Init(/*AliasLevel=*/ 0);
953  init_tf((*generator)());
954
955  {
956    // The following is a dummy for the sake of GraphKit::gen_stub
957    Unique_Node_List for_igvn(comp_arena());
958    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
959    PhaseGVN gvn(Thread::current()->resource_area(),255);
960    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
961    gvn.transform_no_reclaim(top());
962
963    GraphKit kit;
964    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
965  }
966
967  NOT_PRODUCT( verify_graph_edges(); )
968  Code_Gen();
969  if (failing())  return;
970
971
972  // Entry point will be accessed using compile->stub_entry_point();
973  if (code_buffer() == NULL) {
974    Matcher::soft_match_failure();
975  } else {
976    if (PrintAssembly && (WizardMode || Verbose))
977      tty->print_cr("### Stub::%s", stub_name);
978
979    if (!failing()) {
980      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
981
982      // Make the NMethod
983      // For now we mark the frame as never safe for profile stackwalking
984      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
985                                                      code_buffer(),
986                                                      CodeOffsets::frame_never_safe,
987                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
988                                                      frame_size_in_words(),
989                                                      _oop_map_set,
990                                                      save_arg_registers);
991      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
992
993      _stub_entry_point = rs->entry_point();
994    }
995  }
996}
997
998//------------------------------Init-------------------------------------------
999// Prepare for a single compilation
1000void Compile::Init(int aliaslevel) {
1001  _unique  = 0;
1002  _regalloc = NULL;
1003
1004  _tf      = NULL;  // filled in later
1005  _top     = NULL;  // cached later
1006  _matcher = NULL;  // filled in later
1007  _cfg     = NULL;  // filled in later
1008
1009  set_24_bit_selection_and_mode(Use24BitFP, false);
1010
1011  _node_note_array = NULL;
1012  _default_node_notes = NULL;
1013
1014  _immutable_memory = NULL; // filled in at first inquiry
1015
1016  // Globally visible Nodes
1017  // First set TOP to NULL to give safe behavior during creation of RootNode
1018  set_cached_top_node(NULL);
1019  set_root(new (this) RootNode());
1020  // Now that you have a Root to point to, create the real TOP
1021  set_cached_top_node( new (this) ConNode(Type::TOP) );
1022  set_recent_alloc(NULL, NULL);
1023
1024  // Create Debug Information Recorder to record scopes, oopmaps, etc.
1025  env()->set_oop_recorder(new OopRecorder(env()->arena()));
1026  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1027  env()->set_dependencies(new Dependencies(env()));
1028
1029  _fixed_slots = 0;
1030  set_has_split_ifs(false);
1031  set_has_loops(has_method() && method()->has_loops()); // first approximation
1032  set_has_stringbuilder(false);
1033  set_has_boxed_value(false);
1034  _trap_can_recompile = false;  // no traps emitted yet
1035  _major_progress = true; // start out assuming good things will happen
1036  set_has_unsafe_access(false);
1037  set_max_vector_size(0);
1038  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1039  set_decompile_count(0);
1040
1041  set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1042  set_num_loop_opts(LoopOptsCount);
1043  set_do_inlining(Inline);
1044  set_max_inline_size(MaxInlineSize);
1045  set_freq_inline_size(FreqInlineSize);
1046  set_do_scheduling(OptoScheduling);
1047  set_do_count_invocations(false);
1048  set_do_method_data_update(false);
1049
1050  if (debug_info()->recording_non_safepoints()) {
1051    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1052                        (comp_arena(), 8, 0, NULL));
1053    set_default_node_notes(Node_Notes::make(this));
1054  }
1055
1056  // // -- Initialize types before each compile --
1057  // // Update cached type information
1058  // if( _method && _method->constants() )
1059  //   Type::update_loaded_types(_method, _method->constants());
1060
1061  // Init alias_type map.
1062  if (!_do_escape_analysis && aliaslevel == 3)
1063    aliaslevel = 2;  // No unique types without escape analysis
1064  _AliasLevel = aliaslevel;
1065  const int grow_ats = 16;
1066  _max_alias_types = grow_ats;
1067  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1068  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1069  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1070  {
1071    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1072  }
1073  // Initialize the first few types.
1074  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1075  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1076  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1077  _num_alias_types = AliasIdxRaw+1;
1078  // Zero out the alias type cache.
1079  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1080  // A NULL adr_type hits in the cache right away.  Preload the right answer.
1081  probe_alias_cache(NULL)->_index = AliasIdxTop;
1082
1083  _intrinsics = NULL;
1084  _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1085  _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1086  _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1087  register_library_intrinsics();
1088}
1089
1090//---------------------------init_start----------------------------------------
1091// Install the StartNode on this compile object.
1092void Compile::init_start(StartNode* s) {
1093  if (failing())
1094    return; // already failing
1095  assert(s == start(), "");
1096}
1097
1098StartNode* Compile::start() const {
1099  assert(!failing(), "");
1100  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1101    Node* start = root()->fast_out(i);
1102    if( start->is_Start() )
1103      return start->as_Start();
1104  }
1105  ShouldNotReachHere();
1106  return NULL;
1107}
1108
1109//-------------------------------immutable_memory-------------------------------------
1110// Access immutable memory
1111Node* Compile::immutable_memory() {
1112  if (_immutable_memory != NULL) {
1113    return _immutable_memory;
1114  }
1115  StartNode* s = start();
1116  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1117    Node *p = s->fast_out(i);
1118    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1119      _immutable_memory = p;
1120      return _immutable_memory;
1121    }
1122  }
1123  ShouldNotReachHere();
1124  return NULL;
1125}
1126
1127//----------------------set_cached_top_node------------------------------------
1128// Install the cached top node, and make sure Node::is_top works correctly.
1129void Compile::set_cached_top_node(Node* tn) {
1130  if (tn != NULL)  verify_top(tn);
1131  Node* old_top = _top;
1132  _top = tn;
1133  // Calling Node::setup_is_top allows the nodes the chance to adjust
1134  // their _out arrays.
1135  if (_top != NULL)     _top->setup_is_top();
1136  if (old_top != NULL)  old_top->setup_is_top();
1137  assert(_top == NULL || top()->is_top(), "");
1138}
1139
1140#ifdef ASSERT
1141uint Compile::count_live_nodes_by_graph_walk() {
1142  Unique_Node_List useful(comp_arena());
1143  // Get useful node list by walking the graph.
1144  identify_useful_nodes(useful);
1145  return useful.size();
1146}
1147
1148void Compile::print_missing_nodes() {
1149
1150  // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1151  if ((_log == NULL) && (! PrintIdealNodeCount)) {
1152    return;
1153  }
1154
1155  // This is an expensive function. It is executed only when the user
1156  // specifies VerifyIdealNodeCount option or otherwise knows the
1157  // additional work that needs to be done to identify reachable nodes
1158  // by walking the flow graph and find the missing ones using
1159  // _dead_node_list.
1160
1161  Unique_Node_List useful(comp_arena());
1162  // Get useful node list by walking the graph.
1163  identify_useful_nodes(useful);
1164
1165  uint l_nodes = C->live_nodes();
1166  uint l_nodes_by_walk = useful.size();
1167
1168  if (l_nodes != l_nodes_by_walk) {
1169    if (_log != NULL) {
1170      _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1171      _log->stamp();
1172      _log->end_head();
1173    }
1174    VectorSet& useful_member_set = useful.member_set();
1175    int last_idx = l_nodes_by_walk;
1176    for (int i = 0; i < last_idx; i++) {
1177      if (useful_member_set.test(i)) {
1178        if (_dead_node_list.test(i)) {
1179          if (_log != NULL) {
1180            _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1181          }
1182          if (PrintIdealNodeCount) {
1183            // Print the log message to tty
1184              tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1185              useful.at(i)->dump();
1186          }
1187        }
1188      }
1189      else if (! _dead_node_list.test(i)) {
1190        if (_log != NULL) {
1191          _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1192        }
1193        if (PrintIdealNodeCount) {
1194          // Print the log message to tty
1195          tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1196        }
1197      }
1198    }
1199    if (_log != NULL) {
1200      _log->tail("mismatched_nodes");
1201    }
1202  }
1203}
1204#endif
1205
1206#ifndef PRODUCT
1207void Compile::verify_top(Node* tn) const {
1208  if (tn != NULL) {
1209    assert(tn->is_Con(), "top node must be a constant");
1210    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1211    assert(tn->in(0) != NULL, "must have live top node");
1212  }
1213}
1214#endif
1215
1216
1217///-------------------Managing Per-Node Debug & Profile Info-------------------
1218
1219void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1220  guarantee(arr != NULL, "");
1221  int num_blocks = arr->length();
1222  if (grow_by < num_blocks)  grow_by = num_blocks;
1223  int num_notes = grow_by * _node_notes_block_size;
1224  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1225  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1226  while (num_notes > 0) {
1227    arr->append(notes);
1228    notes     += _node_notes_block_size;
1229    num_notes -= _node_notes_block_size;
1230  }
1231  assert(num_notes == 0, "exact multiple, please");
1232}
1233
1234bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1235  if (source == NULL || dest == NULL)  return false;
1236
1237  if (dest->is_Con())
1238    return false;               // Do not push debug info onto constants.
1239
1240#ifdef ASSERT
1241  // Leave a bread crumb trail pointing to the original node:
1242  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1243    dest->set_debug_orig(source);
1244  }
1245#endif
1246
1247  if (node_note_array() == NULL)
1248    return false;               // Not collecting any notes now.
1249
1250  // This is a copy onto a pre-existing node, which may already have notes.
1251  // If both nodes have notes, do not overwrite any pre-existing notes.
1252  Node_Notes* source_notes = node_notes_at(source->_idx);
1253  if (source_notes == NULL || source_notes->is_clear())  return false;
1254  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1255  if (dest_notes == NULL || dest_notes->is_clear()) {
1256    return set_node_notes_at(dest->_idx, source_notes);
1257  }
1258
1259  Node_Notes merged_notes = (*source_notes);
1260  // The order of operations here ensures that dest notes will win...
1261  merged_notes.update_from(dest_notes);
1262  return set_node_notes_at(dest->_idx, &merged_notes);
1263}
1264
1265
1266//--------------------------allow_range_check_smearing-------------------------
1267// Gating condition for coalescing similar range checks.
1268// Sometimes we try 'speculatively' replacing a series of a range checks by a
1269// single covering check that is at least as strong as any of them.
1270// If the optimization succeeds, the simplified (strengthened) range check
1271// will always succeed.  If it fails, we will deopt, and then give up
1272// on the optimization.
1273bool Compile::allow_range_check_smearing() const {
1274  // If this method has already thrown a range-check,
1275  // assume it was because we already tried range smearing
1276  // and it failed.
1277  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1278  return !already_trapped;
1279}
1280
1281
1282//------------------------------flatten_alias_type-----------------------------
1283const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1284  int offset = tj->offset();
1285  TypePtr::PTR ptr = tj->ptr();
1286
1287  // Known instance (scalarizable allocation) alias only with itself.
1288  bool is_known_inst = tj->isa_oopptr() != NULL &&
1289                       tj->is_oopptr()->is_known_instance();
1290
1291  // Process weird unsafe references.
1292  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1293    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1294    assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1295    tj = TypeOopPtr::BOTTOM;
1296    ptr = tj->ptr();
1297    offset = tj->offset();
1298  }
1299
1300  // Array pointers need some flattening
1301  const TypeAryPtr *ta = tj->isa_aryptr();
1302  if( ta && is_known_inst ) {
1303    if ( offset != Type::OffsetBot &&
1304         offset > arrayOopDesc::length_offset_in_bytes() ) {
1305      offset = Type::OffsetBot; // Flatten constant access into array body only
1306      tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1307    }
1308  } else if( ta && _AliasLevel >= 2 ) {
1309    // For arrays indexed by constant indices, we flatten the alias
1310    // space to include all of the array body.  Only the header, klass
1311    // and array length can be accessed un-aliased.
1312    if( offset != Type::OffsetBot ) {
1313      if( ta->const_oop() ) { // MethodData* or Method*
1314        offset = Type::OffsetBot;   // Flatten constant access into array body
1315        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1316      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1317        // range is OK as-is.
1318        tj = ta = TypeAryPtr::RANGE;
1319      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1320        tj = TypeInstPtr::KLASS; // all klass loads look alike
1321        ta = TypeAryPtr::RANGE; // generic ignored junk
1322        ptr = TypePtr::BotPTR;
1323      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1324        tj = TypeInstPtr::MARK;
1325        ta = TypeAryPtr::RANGE; // generic ignored junk
1326        ptr = TypePtr::BotPTR;
1327      } else {                  // Random constant offset into array body
1328        offset = Type::OffsetBot;   // Flatten constant access into array body
1329        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1330      }
1331    }
1332    // Arrays of fixed size alias with arrays of unknown size.
1333    if (ta->size() != TypeInt::POS) {
1334      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1335      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1336    }
1337    // Arrays of known objects become arrays of unknown objects.
1338    if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1339      const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1340      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1341    }
1342    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1343      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1344      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1345    }
1346    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1347    // cannot be distinguished by bytecode alone.
1348    if (ta->elem() == TypeInt::BOOL) {
1349      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1350      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1351      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1352    }
1353    // During the 2nd round of IterGVN, NotNull castings are removed.
1354    // Make sure the Bottom and NotNull variants alias the same.
1355    // Also, make sure exact and non-exact variants alias the same.
1356    if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1357      tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1358    }
1359  }
1360
1361  // Oop pointers need some flattening
1362  const TypeInstPtr *to = tj->isa_instptr();
1363  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1364    ciInstanceKlass *k = to->klass()->as_instance_klass();
1365    if( ptr == TypePtr::Constant ) {
1366      if (to->klass() != ciEnv::current()->Class_klass() ||
1367          offset < k->size_helper() * wordSize) {
1368        // No constant oop pointers (such as Strings); they alias with
1369        // unknown strings.
1370        assert(!is_known_inst, "not scalarizable allocation");
1371        tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1372      }
1373    } else if( is_known_inst ) {
1374      tj = to; // Keep NotNull and klass_is_exact for instance type
1375    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1376      // During the 2nd round of IterGVN, NotNull castings are removed.
1377      // Make sure the Bottom and NotNull variants alias the same.
1378      // Also, make sure exact and non-exact variants alias the same.
1379      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1380    }
1381    // Canonicalize the holder of this field
1382    if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1383      // First handle header references such as a LoadKlassNode, even if the
1384      // object's klass is unloaded at compile time (4965979).
1385      if (!is_known_inst) { // Do it only for non-instance types
1386        tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1387      }
1388    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1389      // Static fields are in the space above the normal instance
1390      // fields in the java.lang.Class instance.
1391      if (to->klass() != ciEnv::current()->Class_klass()) {
1392        to = NULL;
1393        tj = TypeOopPtr::BOTTOM;
1394        offset = tj->offset();
1395      }
1396    } else {
1397      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1398      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1399        if( is_known_inst ) {
1400          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1401        } else {
1402          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1403        }
1404      }
1405    }
1406  }
1407
1408  // Klass pointers to object array klasses need some flattening
1409  const TypeKlassPtr *tk = tj->isa_klassptr();
1410  if( tk ) {
1411    // If we are referencing a field within a Klass, we need
1412    // to assume the worst case of an Object.  Both exact and
1413    // inexact types must flatten to the same alias class so
1414    // use NotNull as the PTR.
1415    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1416
1417      tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1418                                   TypeKlassPtr::OBJECT->klass(),
1419                                   offset);
1420    }
1421
1422    ciKlass* klass = tk->klass();
1423    if( klass->is_obj_array_klass() ) {
1424      ciKlass* k = TypeAryPtr::OOPS->klass();
1425      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1426        k = TypeInstPtr::BOTTOM->klass();
1427      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1428    }
1429
1430    // Check for precise loads from the primary supertype array and force them
1431    // to the supertype cache alias index.  Check for generic array loads from
1432    // the primary supertype array and also force them to the supertype cache
1433    // alias index.  Since the same load can reach both, we need to merge
1434    // these 2 disparate memories into the same alias class.  Since the
1435    // primary supertype array is read-only, there's no chance of confusion
1436    // where we bypass an array load and an array store.
1437    int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1438    if (offset == Type::OffsetBot ||
1439        (offset >= primary_supers_offset &&
1440         offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1441        offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1442      offset = in_bytes(Klass::secondary_super_cache_offset());
1443      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1444    }
1445  }
1446
1447  // Flatten all Raw pointers together.
1448  if (tj->base() == Type::RawPtr)
1449    tj = TypeRawPtr::BOTTOM;
1450
1451  if (tj->base() == Type::AnyPtr)
1452    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1453
1454  // Flatten all to bottom for now
1455  switch( _AliasLevel ) {
1456  case 0:
1457    tj = TypePtr::BOTTOM;
1458    break;
1459  case 1:                       // Flatten to: oop, static, field or array
1460    switch (tj->base()) {
1461    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1462    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1463    case Type::AryPtr:   // do not distinguish arrays at all
1464    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1465    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1466    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1467    default: ShouldNotReachHere();
1468    }
1469    break;
1470  case 2:                       // No collapsing at level 2; keep all splits
1471  case 3:                       // No collapsing at level 3; keep all splits
1472    break;
1473  default:
1474    Unimplemented();
1475  }
1476
1477  offset = tj->offset();
1478  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1479
1480  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1481          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1482          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1483          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1484          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1485          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1486          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1487          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1488  assert( tj->ptr() != TypePtr::TopPTR &&
1489          tj->ptr() != TypePtr::AnyNull &&
1490          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1491//    assert( tj->ptr() != TypePtr::Constant ||
1492//            tj->base() == Type::RawPtr ||
1493//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1494
1495  return tj;
1496}
1497
1498void Compile::AliasType::Init(int i, const TypePtr* at) {
1499  _index = i;
1500  _adr_type = at;
1501  _field = NULL;
1502  _is_rewritable = true; // default
1503  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1504  if (atoop != NULL && atoop->is_known_instance()) {
1505    const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1506    _general_index = Compile::current()->get_alias_index(gt);
1507  } else {
1508    _general_index = 0;
1509  }
1510}
1511
1512//---------------------------------print_on------------------------------------
1513#ifndef PRODUCT
1514void Compile::AliasType::print_on(outputStream* st) {
1515  if (index() < 10)
1516        st->print("@ <%d> ", index());
1517  else  st->print("@ <%d>",  index());
1518  st->print(is_rewritable() ? "   " : " RO");
1519  int offset = adr_type()->offset();
1520  if (offset == Type::OffsetBot)
1521        st->print(" +any");
1522  else  st->print(" +%-3d", offset);
1523  st->print(" in ");
1524  adr_type()->dump_on(st);
1525  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1526  if (field() != NULL && tjp) {
1527    if (tjp->klass()  != field()->holder() ||
1528        tjp->offset() != field()->offset_in_bytes()) {
1529      st->print(" != ");
1530      field()->print();
1531      st->print(" ***");
1532    }
1533  }
1534}
1535
1536void print_alias_types() {
1537  Compile* C = Compile::current();
1538  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1539  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1540    C->alias_type(idx)->print_on(tty);
1541    tty->cr();
1542  }
1543}
1544#endif
1545
1546
1547//----------------------------probe_alias_cache--------------------------------
1548Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1549  intptr_t key = (intptr_t) adr_type;
1550  key ^= key >> logAliasCacheSize;
1551  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1552}
1553
1554
1555//-----------------------------grow_alias_types--------------------------------
1556void Compile::grow_alias_types() {
1557  const int old_ats  = _max_alias_types; // how many before?
1558  const int new_ats  = old_ats;          // how many more?
1559  const int grow_ats = old_ats+new_ats;  // how many now?
1560  _max_alias_types = grow_ats;
1561  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1562  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1563  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1564  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1565}
1566
1567
1568//--------------------------------find_alias_type------------------------------
1569Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1570  if (_AliasLevel == 0)
1571    return alias_type(AliasIdxBot);
1572
1573  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1574  if (ace->_adr_type == adr_type) {
1575    return alias_type(ace->_index);
1576  }
1577
1578  // Handle special cases.
1579  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1580  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1581
1582  // Do it the slow way.
1583  const TypePtr* flat = flatten_alias_type(adr_type);
1584
1585#ifdef ASSERT
1586  assert(flat == flatten_alias_type(flat), "idempotent");
1587  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1588  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1589    const TypeOopPtr* foop = flat->is_oopptr();
1590    // Scalarizable allocations have exact klass always.
1591    bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1592    const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1593    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1594  }
1595  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1596#endif
1597
1598  int idx = AliasIdxTop;
1599  for (int i = 0; i < num_alias_types(); i++) {
1600    if (alias_type(i)->adr_type() == flat) {
1601      idx = i;
1602      break;
1603    }
1604  }
1605
1606  if (idx == AliasIdxTop) {
1607    if (no_create)  return NULL;
1608    // Grow the array if necessary.
1609    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1610    // Add a new alias type.
1611    idx = _num_alias_types++;
1612    _alias_types[idx]->Init(idx, flat);
1613    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1614    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1615    if (flat->isa_instptr()) {
1616      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1617          && flat->is_instptr()->klass() == env()->Class_klass())
1618        alias_type(idx)->set_rewritable(false);
1619    }
1620    if (flat->isa_klassptr()) {
1621      if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1622        alias_type(idx)->set_rewritable(false);
1623      if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1624        alias_type(idx)->set_rewritable(false);
1625      if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1626        alias_type(idx)->set_rewritable(false);
1627      if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1628        alias_type(idx)->set_rewritable(false);
1629    }
1630    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1631    // but the base pointer type is not distinctive enough to identify
1632    // references into JavaThread.)
1633
1634    // Check for final fields.
1635    const TypeInstPtr* tinst = flat->isa_instptr();
1636    if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1637      ciField* field;
1638      if (tinst->const_oop() != NULL &&
1639          tinst->klass() == ciEnv::current()->Class_klass() &&
1640          tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1641        // static field
1642        ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1643        field = k->get_field_by_offset(tinst->offset(), true);
1644      } else {
1645        ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1646        field = k->get_field_by_offset(tinst->offset(), false);
1647      }
1648      assert(field == NULL ||
1649             original_field == NULL ||
1650             (field->holder() == original_field->holder() &&
1651              field->offset() == original_field->offset() &&
1652              field->is_static() == original_field->is_static()), "wrong field?");
1653      // Set field() and is_rewritable() attributes.
1654      if (field != NULL)  alias_type(idx)->set_field(field);
1655    }
1656  }
1657
1658  // Fill the cache for next time.
1659  ace->_adr_type = adr_type;
1660  ace->_index    = idx;
1661  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1662
1663  // Might as well try to fill the cache for the flattened version, too.
1664  AliasCacheEntry* face = probe_alias_cache(flat);
1665  if (face->_adr_type == NULL) {
1666    face->_adr_type = flat;
1667    face->_index    = idx;
1668    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1669  }
1670
1671  return alias_type(idx);
1672}
1673
1674
1675Compile::AliasType* Compile::alias_type(ciField* field) {
1676  const TypeOopPtr* t;
1677  if (field->is_static())
1678    t = TypeInstPtr::make(field->holder()->java_mirror());
1679  else
1680    t = TypeOopPtr::make_from_klass_raw(field->holder());
1681  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1682  assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1683  return atp;
1684}
1685
1686
1687//------------------------------have_alias_type--------------------------------
1688bool Compile::have_alias_type(const TypePtr* adr_type) {
1689  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1690  if (ace->_adr_type == adr_type) {
1691    return true;
1692  }
1693
1694  // Handle special cases.
1695  if (adr_type == NULL)             return true;
1696  if (adr_type == TypePtr::BOTTOM)  return true;
1697
1698  return find_alias_type(adr_type, true, NULL) != NULL;
1699}
1700
1701//-----------------------------must_alias--------------------------------------
1702// True if all values of the given address type are in the given alias category.
1703bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1704  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1705  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1706  if (alias_idx == AliasIdxTop)         return false; // the empty category
1707  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1708
1709  // the only remaining possible overlap is identity
1710  int adr_idx = get_alias_index(adr_type);
1711  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1712  assert(adr_idx == alias_idx ||
1713         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1714          && adr_type                       != TypeOopPtr::BOTTOM),
1715         "should not be testing for overlap with an unsafe pointer");
1716  return adr_idx == alias_idx;
1717}
1718
1719//------------------------------can_alias--------------------------------------
1720// True if any values of the given address type are in the given alias category.
1721bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1722  if (alias_idx == AliasIdxTop)         return false; // the empty category
1723  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1724  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1725  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1726
1727  // the only remaining possible overlap is identity
1728  int adr_idx = get_alias_index(adr_type);
1729  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1730  return adr_idx == alias_idx;
1731}
1732
1733
1734
1735//---------------------------pop_warm_call-------------------------------------
1736WarmCallInfo* Compile::pop_warm_call() {
1737  WarmCallInfo* wci = _warm_calls;
1738  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1739  return wci;
1740}
1741
1742//----------------------------Inline_Warm--------------------------------------
1743int Compile::Inline_Warm() {
1744  // If there is room, try to inline some more warm call sites.
1745  // %%% Do a graph index compaction pass when we think we're out of space?
1746  if (!InlineWarmCalls)  return 0;
1747
1748  int calls_made_hot = 0;
1749  int room_to_grow   = NodeCountInliningCutoff - unique();
1750  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1751  int amount_grown   = 0;
1752  WarmCallInfo* call;
1753  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1754    int est_size = (int)call->size();
1755    if (est_size > (room_to_grow - amount_grown)) {
1756      // This one won't fit anyway.  Get rid of it.
1757      call->make_cold();
1758      continue;
1759    }
1760    call->make_hot();
1761    calls_made_hot++;
1762    amount_grown   += est_size;
1763    amount_to_grow -= est_size;
1764  }
1765
1766  if (calls_made_hot > 0)  set_major_progress();
1767  return calls_made_hot;
1768}
1769
1770
1771//----------------------------Finish_Warm--------------------------------------
1772void Compile::Finish_Warm() {
1773  if (!InlineWarmCalls)  return;
1774  if (failing())  return;
1775  if (warm_calls() == NULL)  return;
1776
1777  // Clean up loose ends, if we are out of space for inlining.
1778  WarmCallInfo* call;
1779  while ((call = pop_warm_call()) != NULL) {
1780    call->make_cold();
1781  }
1782}
1783
1784//---------------------cleanup_loop_predicates-----------------------
1785// Remove the opaque nodes that protect the predicates so that all unused
1786// checks and uncommon_traps will be eliminated from the ideal graph
1787void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1788  if (predicate_count()==0) return;
1789  for (int i = predicate_count(); i > 0; i--) {
1790    Node * n = predicate_opaque1_node(i-1);
1791    assert(n->Opcode() == Op_Opaque1, "must be");
1792    igvn.replace_node(n, n->in(1));
1793  }
1794  assert(predicate_count()==0, "should be clean!");
1795}
1796
1797// StringOpts and late inlining of string methods
1798void Compile::inline_string_calls(bool parse_time) {
1799  {
1800    // remove useless nodes to make the usage analysis simpler
1801    ResourceMark rm;
1802    PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1803  }
1804
1805  {
1806    ResourceMark rm;
1807    print_method("Before StringOpts", 3);
1808    PhaseStringOpts pso(initial_gvn(), for_igvn());
1809    print_method("After StringOpts", 3);
1810  }
1811
1812  // now inline anything that we skipped the first time around
1813  if (!parse_time) {
1814    _late_inlines_pos = _late_inlines.length();
1815  }
1816
1817  while (_string_late_inlines.length() > 0) {
1818    CallGenerator* cg = _string_late_inlines.pop();
1819    cg->do_late_inline();
1820    if (failing())  return;
1821  }
1822  _string_late_inlines.trunc_to(0);
1823}
1824
1825// Late inlining of boxing methods
1826void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1827  if (_boxing_late_inlines.length() > 0) {
1828    assert(has_boxed_value(), "inconsistent");
1829
1830    PhaseGVN* gvn = initial_gvn();
1831    set_inlining_incrementally(true);
1832
1833    assert( igvn._worklist.size() == 0, "should be done with igvn" );
1834    for_igvn()->clear();
1835    gvn->replace_with(&igvn);
1836
1837    while (_boxing_late_inlines.length() > 0) {
1838      CallGenerator* cg = _boxing_late_inlines.pop();
1839      cg->do_late_inline();
1840      if (failing())  return;
1841    }
1842    _boxing_late_inlines.trunc_to(0);
1843
1844    {
1845      ResourceMark rm;
1846      PhaseRemoveUseless pru(gvn, for_igvn());
1847    }
1848
1849    igvn = PhaseIterGVN(gvn);
1850    igvn.optimize();
1851
1852    set_inlining_progress(false);
1853    set_inlining_incrementally(false);
1854  }
1855}
1856
1857void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1858  assert(IncrementalInline, "incremental inlining should be on");
1859  PhaseGVN* gvn = initial_gvn();
1860
1861  set_inlining_progress(false);
1862  for_igvn()->clear();
1863  gvn->replace_with(&igvn);
1864
1865  int i = 0;
1866
1867  for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1868    CallGenerator* cg = _late_inlines.at(i);
1869    _late_inlines_pos = i+1;
1870    cg->do_late_inline();
1871    if (failing())  return;
1872  }
1873  int j = 0;
1874  for (; i < _late_inlines.length(); i++, j++) {
1875    _late_inlines.at_put(j, _late_inlines.at(i));
1876  }
1877  _late_inlines.trunc_to(j);
1878
1879  {
1880    ResourceMark rm;
1881    PhaseRemoveUseless pru(gvn, for_igvn());
1882  }
1883
1884  igvn = PhaseIterGVN(gvn);
1885}
1886
1887// Perform incremental inlining until bound on number of live nodes is reached
1888void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1889  PhaseGVN* gvn = initial_gvn();
1890
1891  set_inlining_incrementally(true);
1892  set_inlining_progress(true);
1893  uint low_live_nodes = 0;
1894
1895  while(inlining_progress() && _late_inlines.length() > 0) {
1896
1897    if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1898      if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1899        // PhaseIdealLoop is expensive so we only try it once we are
1900        // out of loop and we only try it again if the previous helped
1901        // got the number of nodes down significantly
1902        PhaseIdealLoop ideal_loop( igvn, false, true );
1903        if (failing())  return;
1904        low_live_nodes = live_nodes();
1905        _major_progress = true;
1906      }
1907
1908      if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1909        break;
1910      }
1911    }
1912
1913    inline_incrementally_one(igvn);
1914
1915    if (failing())  return;
1916
1917    igvn.optimize();
1918
1919    if (failing())  return;
1920  }
1921
1922  assert( igvn._worklist.size() == 0, "should be done with igvn" );
1923
1924  if (_string_late_inlines.length() > 0) {
1925    assert(has_stringbuilder(), "inconsistent");
1926    for_igvn()->clear();
1927    initial_gvn()->replace_with(&igvn);
1928
1929    inline_string_calls(false);
1930
1931    if (failing())  return;
1932
1933    {
1934      ResourceMark rm;
1935      PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1936    }
1937
1938    igvn = PhaseIterGVN(gvn);
1939
1940    igvn.optimize();
1941  }
1942
1943  set_inlining_incrementally(false);
1944}
1945
1946
1947//------------------------------Optimize---------------------------------------
1948// Given a graph, optimize it.
1949void Compile::Optimize() {
1950  TracePhase t1("optimizer", &_t_optimizer, true);
1951
1952#ifndef PRODUCT
1953  if (env()->break_at_compile()) {
1954    BREAKPOINT;
1955  }
1956
1957#endif
1958
1959  ResourceMark rm;
1960  int          loop_opts_cnt;
1961
1962  NOT_PRODUCT( verify_graph_edges(); )
1963
1964  print_method("After Parsing");
1965
1966 {
1967  // Iterative Global Value Numbering, including ideal transforms
1968  // Initialize IterGVN with types and values from parse-time GVN
1969  PhaseIterGVN igvn(initial_gvn());
1970  {
1971    NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1972    igvn.optimize();
1973  }
1974
1975  print_method("Iter GVN 1", 2);
1976
1977  if (failing())  return;
1978
1979  {
1980    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
1981    inline_incrementally(igvn);
1982  }
1983
1984  print_method("Incremental Inline", 2);
1985
1986  if (failing())  return;
1987
1988  if (eliminate_boxing()) {
1989    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
1990    // Inline valueOf() methods now.
1991    inline_boxing_calls(igvn);
1992
1993    print_method("Incremental Boxing Inline", 2);
1994
1995    if (failing())  return;
1996  }
1997
1998  // No more new expensive nodes will be added to the list from here
1999  // so keep only the actual candidates for optimizations.
2000  cleanup_expensive_nodes(igvn);
2001
2002  // Perform escape analysis
2003  if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2004    if (has_loops()) {
2005      // Cleanup graph (remove dead nodes).
2006      TracePhase t2("idealLoop", &_t_idealLoop, true);
2007      PhaseIdealLoop ideal_loop( igvn, false, true );
2008      if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
2009      if (failing())  return;
2010    }
2011    ConnectionGraph::do_analysis(this, &igvn);
2012
2013    if (failing())  return;
2014
2015    // Optimize out fields loads from scalar replaceable allocations.
2016    igvn.optimize();
2017    print_method("Iter GVN after EA", 2);
2018
2019    if (failing())  return;
2020
2021    if (congraph() != NULL && macro_count() > 0) {
2022      NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2023      PhaseMacroExpand mexp(igvn);
2024      mexp.eliminate_macro_nodes();
2025      igvn.set_delay_transform(false);
2026
2027      igvn.optimize();
2028      print_method("Iter GVN after eliminating allocations and locks", 2);
2029
2030      if (failing())  return;
2031    }
2032  }
2033
2034  // Loop transforms on the ideal graph.  Range Check Elimination,
2035  // peeling, unrolling, etc.
2036
2037  // Set loop opts counter
2038  loop_opts_cnt = num_loop_opts();
2039  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2040    {
2041      TracePhase t2("idealLoop", &_t_idealLoop, true);
2042      PhaseIdealLoop ideal_loop( igvn, true );
2043      loop_opts_cnt--;
2044      if (major_progress()) print_method("PhaseIdealLoop 1", 2);
2045      if (failing())  return;
2046    }
2047    // Loop opts pass if partial peeling occurred in previous pass
2048    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2049      TracePhase t3("idealLoop", &_t_idealLoop, true);
2050      PhaseIdealLoop ideal_loop( igvn, false );
2051      loop_opts_cnt--;
2052      if (major_progress()) print_method("PhaseIdealLoop 2", 2);
2053      if (failing())  return;
2054    }
2055    // Loop opts pass for loop-unrolling before CCP
2056    if(major_progress() && (loop_opts_cnt > 0)) {
2057      TracePhase t4("idealLoop", &_t_idealLoop, true);
2058      PhaseIdealLoop ideal_loop( igvn, false );
2059      loop_opts_cnt--;
2060      if (major_progress()) print_method("PhaseIdealLoop 3", 2);
2061    }
2062    if (!failing()) {
2063      // Verify that last round of loop opts produced a valid graph
2064      NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2065      PhaseIdealLoop::verify(igvn);
2066    }
2067  }
2068  if (failing())  return;
2069
2070  // Conditional Constant Propagation;
2071  PhaseCCP ccp( &igvn );
2072  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2073  {
2074    TracePhase t2("ccp", &_t_ccp, true);
2075    ccp.do_transform();
2076  }
2077  print_method("PhaseCPP 1", 2);
2078
2079  assert( true, "Break here to ccp.dump_old2new_map()");
2080
2081  // Iterative Global Value Numbering, including ideal transforms
2082  {
2083    NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2084    igvn = ccp;
2085    igvn.optimize();
2086  }
2087
2088  print_method("Iter GVN 2", 2);
2089
2090  if (failing())  return;
2091
2092  // Loop transforms on the ideal graph.  Range Check Elimination,
2093  // peeling, unrolling, etc.
2094  if(loop_opts_cnt > 0) {
2095    debug_only( int cnt = 0; );
2096    while(major_progress() && (loop_opts_cnt > 0)) {
2097      TracePhase t2("idealLoop", &_t_idealLoop, true);
2098      assert( cnt++ < 40, "infinite cycle in loop optimization" );
2099      PhaseIdealLoop ideal_loop( igvn, true);
2100      loop_opts_cnt--;
2101      if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
2102      if (failing())  return;
2103    }
2104  }
2105
2106  {
2107    // Verify that all previous optimizations produced a valid graph
2108    // at least to this point, even if no loop optimizations were done.
2109    NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2110    PhaseIdealLoop::verify(igvn);
2111  }
2112
2113  {
2114    NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2115    PhaseMacroExpand  mex(igvn);
2116    if (mex.expand_macro_nodes()) {
2117      assert(failing(), "must bail out w/ explicit message");
2118      return;
2119    }
2120  }
2121
2122 } // (End scope of igvn; run destructor if necessary for asserts.)
2123
2124  dump_inlining();
2125  // A method with only infinite loops has no edges entering loops from root
2126  {
2127    NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2128    if (final_graph_reshaping()) {
2129      assert(failing(), "must bail out w/ explicit message");
2130      return;
2131    }
2132  }
2133
2134  print_method("Optimize finished", 2);
2135}
2136
2137
2138//------------------------------Code_Gen---------------------------------------
2139// Given a graph, generate code for it
2140void Compile::Code_Gen() {
2141  if (failing())  return;
2142
2143  // Perform instruction selection.  You might think we could reclaim Matcher
2144  // memory PDQ, but actually the Matcher is used in generating spill code.
2145  // Internals of the Matcher (including some VectorSets) must remain live
2146  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2147  // set a bit in reclaimed memory.
2148
2149  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2150  // nodes.  Mapping is only valid at the root of each matched subtree.
2151  NOT_PRODUCT( verify_graph_edges(); )
2152
2153  Node_List proj_list;
2154  Matcher m(proj_list);
2155  _matcher = &m;
2156  {
2157    TracePhase t2("matcher", &_t_matcher, true);
2158    m.match();
2159  }
2160  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2161  // nodes.  Mapping is only valid at the root of each matched subtree.
2162  NOT_PRODUCT( verify_graph_edges(); )
2163
2164  // If you have too many nodes, or if matching has failed, bail out
2165  check_node_count(0, "out of nodes matching instructions");
2166  if (failing())  return;
2167
2168  // Build a proper-looking CFG
2169  PhaseCFG cfg(node_arena(), root(), m);
2170  _cfg = &cfg;
2171  {
2172    NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2173    cfg.Dominators();
2174    if (failing())  return;
2175
2176    NOT_PRODUCT( verify_graph_edges(); )
2177
2178    cfg.Estimate_Block_Frequency();
2179    cfg.GlobalCodeMotion(m,unique(),proj_list);
2180    if (failing())  return;
2181
2182    print_method("Global code motion", 2);
2183
2184    NOT_PRODUCT( verify_graph_edges(); )
2185
2186    debug_only( cfg.verify(); )
2187  }
2188  NOT_PRODUCT( verify_graph_edges(); )
2189
2190  PhaseChaitin regalloc(unique(), cfg, m);
2191  _regalloc = &regalloc;
2192  {
2193    TracePhase t2("regalloc", &_t_registerAllocation, true);
2194    // Perform register allocation.  After Chaitin, use-def chains are
2195    // no longer accurate (at spill code) and so must be ignored.
2196    // Node->LRG->reg mappings are still accurate.
2197    _regalloc->Register_Allocate();
2198
2199    // Bail out if the allocator builds too many nodes
2200    if (failing()) {
2201      return;
2202    }
2203  }
2204
2205  // Prior to register allocation we kept empty basic blocks in case the
2206  // the allocator needed a place to spill.  After register allocation we
2207  // are not adding any new instructions.  If any basic block is empty, we
2208  // can now safely remove it.
2209  {
2210    NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2211    cfg.remove_empty();
2212    if (do_freq_based_layout()) {
2213      PhaseBlockLayout layout(cfg);
2214    } else {
2215      cfg.set_loop_alignment();
2216    }
2217    cfg.fixup_flow();
2218  }
2219
2220  // Apply peephole optimizations
2221  if( OptoPeephole ) {
2222    NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2223    PhasePeephole peep( _regalloc, cfg);
2224    peep.do_transform();
2225  }
2226
2227  // Convert Nodes to instruction bits in a buffer
2228  {
2229    // %%%% workspace merge brought two timers together for one job
2230    TracePhase t2a("output", &_t_output, true);
2231    NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2232    Output();
2233  }
2234
2235  print_method("Final Code");
2236
2237  // He's dead, Jim.
2238  _cfg     = (PhaseCFG*)0xdeadbeef;
2239  _regalloc = (PhaseChaitin*)0xdeadbeef;
2240}
2241
2242
2243//------------------------------dump_asm---------------------------------------
2244// Dump formatted assembly
2245#ifndef PRODUCT
2246void Compile::dump_asm(int *pcs, uint pc_limit) {
2247  bool cut_short = false;
2248  tty->print_cr("#");
2249  tty->print("#  ");  _tf->dump();  tty->cr();
2250  tty->print_cr("#");
2251
2252  // For all blocks
2253  int pc = 0x0;                 // Program counter
2254  char starts_bundle = ' ';
2255  _regalloc->dump_frame();
2256
2257  Node *n = NULL;
2258  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
2259    if (VMThread::should_terminate()) { cut_short = true; break; }
2260    Block *b = _cfg->_blocks[i];
2261    if (b->is_connector() && !Verbose) continue;
2262    n = b->_nodes[0];
2263    if (pcs && n->_idx < pc_limit)
2264      tty->print("%3.3x   ", pcs[n->_idx]);
2265    else
2266      tty->print("      ");
2267    b->dump_head( &_cfg->_bbs );
2268    if (b->is_connector()) {
2269      tty->print_cr("        # Empty connector block");
2270    } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2271      tty->print_cr("        # Block is sole successor of call");
2272    }
2273
2274    // For all instructions
2275    Node *delay = NULL;
2276    for( uint j = 0; j<b->_nodes.size(); j++ ) {
2277      if (VMThread::should_terminate()) { cut_short = true; break; }
2278      n = b->_nodes[j];
2279      if (valid_bundle_info(n)) {
2280        Bundle *bundle = node_bundling(n);
2281        if (bundle->used_in_unconditional_delay()) {
2282          delay = n;
2283          continue;
2284        }
2285        if (bundle->starts_bundle())
2286          starts_bundle = '+';
2287      }
2288
2289      if (WizardMode) n->dump();
2290
2291      if( !n->is_Region() &&    // Dont print in the Assembly
2292          !n->is_Phi() &&       // a few noisely useless nodes
2293          !n->is_Proj() &&
2294          !n->is_MachTemp() &&
2295          !n->is_SafePointScalarObject() &&
2296          !n->is_Catch() &&     // Would be nice to print exception table targets
2297          !n->is_MergeMem() &&  // Not very interesting
2298          !n->is_top() &&       // Debug info table constants
2299          !(n->is_Con() && !n->is_Mach())// Debug info table constants
2300          ) {
2301        if (pcs && n->_idx < pc_limit)
2302          tty->print("%3.3x", pcs[n->_idx]);
2303        else
2304          tty->print("   ");
2305        tty->print(" %c ", starts_bundle);
2306        starts_bundle = ' ';
2307        tty->print("\t");
2308        n->format(_regalloc, tty);
2309        tty->cr();
2310      }
2311
2312      // If we have an instruction with a delay slot, and have seen a delay,
2313      // then back up and print it
2314      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2315        assert(delay != NULL, "no unconditional delay instruction");
2316        if (WizardMode) delay->dump();
2317
2318        if (node_bundling(delay)->starts_bundle())
2319          starts_bundle = '+';
2320        if (pcs && n->_idx < pc_limit)
2321          tty->print("%3.3x", pcs[n->_idx]);
2322        else
2323          tty->print("   ");
2324        tty->print(" %c ", starts_bundle);
2325        starts_bundle = ' ';
2326        tty->print("\t");
2327        delay->format(_regalloc, tty);
2328        tty->print_cr("");
2329        delay = NULL;
2330      }
2331
2332      // Dump the exception table as well
2333      if( n->is_Catch() && (Verbose || WizardMode) ) {
2334        // Print the exception table for this offset
2335        _handler_table.print_subtable_for(pc);
2336      }
2337    }
2338
2339    if (pcs && n->_idx < pc_limit)
2340      tty->print_cr("%3.3x", pcs[n->_idx]);
2341    else
2342      tty->print_cr("");
2343
2344    assert(cut_short || delay == NULL, "no unconditional delay branch");
2345
2346  } // End of per-block dump
2347  tty->print_cr("");
2348
2349  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2350}
2351#endif
2352
2353//------------------------------Final_Reshape_Counts---------------------------
2354// This class defines counters to help identify when a method
2355// may/must be executed using hardware with only 24-bit precision.
2356struct Final_Reshape_Counts : public StackObj {
2357  int  _call_count;             // count non-inlined 'common' calls
2358  int  _float_count;            // count float ops requiring 24-bit precision
2359  int  _double_count;           // count double ops requiring more precision
2360  int  _java_call_count;        // count non-inlined 'java' calls
2361  int  _inner_loop_count;       // count loops which need alignment
2362  VectorSet _visited;           // Visitation flags
2363  Node_List _tests;             // Set of IfNodes & PCTableNodes
2364
2365  Final_Reshape_Counts() :
2366    _call_count(0), _float_count(0), _double_count(0),
2367    _java_call_count(0), _inner_loop_count(0),
2368    _visited( Thread::current()->resource_area() ) { }
2369
2370  void inc_call_count  () { _call_count  ++; }
2371  void inc_float_count () { _float_count ++; }
2372  void inc_double_count() { _double_count++; }
2373  void inc_java_call_count() { _java_call_count++; }
2374  void inc_inner_loop_count() { _inner_loop_count++; }
2375
2376  int  get_call_count  () const { return _call_count  ; }
2377  int  get_float_count () const { return _float_count ; }
2378  int  get_double_count() const { return _double_count; }
2379  int  get_java_call_count() const { return _java_call_count; }
2380  int  get_inner_loop_count() const { return _inner_loop_count; }
2381};
2382
2383#ifdef ASSERT
2384static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2385  ciInstanceKlass *k = tp->klass()->as_instance_klass();
2386  // Make sure the offset goes inside the instance layout.
2387  return k->contains_field_offset(tp->offset());
2388  // Note that OffsetBot and OffsetTop are very negative.
2389}
2390#endif
2391
2392// Eliminate trivially redundant StoreCMs and accumulate their
2393// precedence edges.
2394void Compile::eliminate_redundant_card_marks(Node* n) {
2395  assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2396  if (n->in(MemNode::Address)->outcnt() > 1) {
2397    // There are multiple users of the same address so it might be
2398    // possible to eliminate some of the StoreCMs
2399    Node* mem = n->in(MemNode::Memory);
2400    Node* adr = n->in(MemNode::Address);
2401    Node* val = n->in(MemNode::ValueIn);
2402    Node* prev = n;
2403    bool done = false;
2404    // Walk the chain of StoreCMs eliminating ones that match.  As
2405    // long as it's a chain of single users then the optimization is
2406    // safe.  Eliminating partially redundant StoreCMs would require
2407    // cloning copies down the other paths.
2408    while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2409      if (adr == mem->in(MemNode::Address) &&
2410          val == mem->in(MemNode::ValueIn)) {
2411        // redundant StoreCM
2412        if (mem->req() > MemNode::OopStore) {
2413          // Hasn't been processed by this code yet.
2414          n->add_prec(mem->in(MemNode::OopStore));
2415        } else {
2416          // Already converted to precedence edge
2417          for (uint i = mem->req(); i < mem->len(); i++) {
2418            // Accumulate any precedence edges
2419            if (mem->in(i) != NULL) {
2420              n->add_prec(mem->in(i));
2421            }
2422          }
2423          // Everything above this point has been processed.
2424          done = true;
2425        }
2426        // Eliminate the previous StoreCM
2427        prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2428        assert(mem->outcnt() == 0, "should be dead");
2429        mem->disconnect_inputs(NULL, this);
2430      } else {
2431        prev = mem;
2432      }
2433      mem = prev->in(MemNode::Memory);
2434    }
2435  }
2436}
2437
2438//------------------------------final_graph_reshaping_impl----------------------
2439// Implement items 1-5 from final_graph_reshaping below.
2440void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2441
2442  if ( n->outcnt() == 0 ) return; // dead node
2443  uint nop = n->Opcode();
2444
2445  // Check for 2-input instruction with "last use" on right input.
2446  // Swap to left input.  Implements item (2).
2447  if( n->req() == 3 &&          // two-input instruction
2448      n->in(1)->outcnt() > 1 && // left use is NOT a last use
2449      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2450      n->in(2)->outcnt() == 1 &&// right use IS a last use
2451      !n->in(2)->is_Con() ) {   // right use is not a constant
2452    // Check for commutative opcode
2453    switch( nop ) {
2454    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2455    case Op_MaxI:  case Op_MinI:
2456    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2457    case Op_AndL:  case Op_XorL:  case Op_OrL:
2458    case Op_AndI:  case Op_XorI:  case Op_OrI: {
2459      // Move "last use" input to left by swapping inputs
2460      n->swap_edges(1, 2);
2461      break;
2462    }
2463    default:
2464      break;
2465    }
2466  }
2467
2468#ifdef ASSERT
2469  if( n->is_Mem() ) {
2470    int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2471    assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2472            // oop will be recorded in oop map if load crosses safepoint
2473            n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2474                             LoadNode::is_immutable_value(n->in(MemNode::Address))),
2475            "raw memory operations should have control edge");
2476  }
2477#endif
2478  // Count FPU ops and common calls, implements item (3)
2479  switch( nop ) {
2480  // Count all float operations that may use FPU
2481  case Op_AddF:
2482  case Op_SubF:
2483  case Op_MulF:
2484  case Op_DivF:
2485  case Op_NegF:
2486  case Op_ModF:
2487  case Op_ConvI2F:
2488  case Op_ConF:
2489  case Op_CmpF:
2490  case Op_CmpF3:
2491  // case Op_ConvL2F: // longs are split into 32-bit halves
2492    frc.inc_float_count();
2493    break;
2494
2495  case Op_ConvF2D:
2496  case Op_ConvD2F:
2497    frc.inc_float_count();
2498    frc.inc_double_count();
2499    break;
2500
2501  // Count all double operations that may use FPU
2502  case Op_AddD:
2503  case Op_SubD:
2504  case Op_MulD:
2505  case Op_DivD:
2506  case Op_NegD:
2507  case Op_ModD:
2508  case Op_ConvI2D:
2509  case Op_ConvD2I:
2510  // case Op_ConvL2D: // handled by leaf call
2511  // case Op_ConvD2L: // handled by leaf call
2512  case Op_ConD:
2513  case Op_CmpD:
2514  case Op_CmpD3:
2515    frc.inc_double_count();
2516    break;
2517  case Op_Opaque1:              // Remove Opaque Nodes before matching
2518  case Op_Opaque2:              // Remove Opaque Nodes before matching
2519    n->subsume_by(n->in(1), this);
2520    break;
2521  case Op_CallStaticJava:
2522  case Op_CallJava:
2523  case Op_CallDynamicJava:
2524    frc.inc_java_call_count(); // Count java call site;
2525  case Op_CallRuntime:
2526  case Op_CallLeaf:
2527  case Op_CallLeafNoFP: {
2528    assert( n->is_Call(), "" );
2529    CallNode *call = n->as_Call();
2530    // Count call sites where the FP mode bit would have to be flipped.
2531    // Do not count uncommon runtime calls:
2532    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2533    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2534    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2535      frc.inc_call_count();   // Count the call site
2536    } else {                  // See if uncommon argument is shared
2537      Node *n = call->in(TypeFunc::Parms);
2538      int nop = n->Opcode();
2539      // Clone shared simple arguments to uncommon calls, item (1).
2540      if( n->outcnt() > 1 &&
2541          !n->is_Proj() &&
2542          nop != Op_CreateEx &&
2543          nop != Op_CheckCastPP &&
2544          nop != Op_DecodeN &&
2545          nop != Op_DecodeNKlass &&
2546          !n->is_Mem() ) {
2547        Node *x = n->clone();
2548        call->set_req( TypeFunc::Parms, x );
2549      }
2550    }
2551    break;
2552  }
2553
2554  case Op_StoreD:
2555  case Op_LoadD:
2556  case Op_LoadD_unaligned:
2557    frc.inc_double_count();
2558    goto handle_mem;
2559  case Op_StoreF:
2560  case Op_LoadF:
2561    frc.inc_float_count();
2562    goto handle_mem;
2563
2564  case Op_StoreCM:
2565    {
2566      // Convert OopStore dependence into precedence edge
2567      Node* prec = n->in(MemNode::OopStore);
2568      n->del_req(MemNode::OopStore);
2569      n->add_prec(prec);
2570      eliminate_redundant_card_marks(n);
2571    }
2572
2573    // fall through
2574
2575  case Op_StoreB:
2576  case Op_StoreC:
2577  case Op_StorePConditional:
2578  case Op_StoreI:
2579  case Op_StoreL:
2580  case Op_StoreIConditional:
2581  case Op_StoreLConditional:
2582  case Op_CompareAndSwapI:
2583  case Op_CompareAndSwapL:
2584  case Op_CompareAndSwapP:
2585  case Op_CompareAndSwapN:
2586  case Op_GetAndAddI:
2587  case Op_GetAndAddL:
2588  case Op_GetAndSetI:
2589  case Op_GetAndSetL:
2590  case Op_GetAndSetP:
2591  case Op_GetAndSetN:
2592  case Op_StoreP:
2593  case Op_StoreN:
2594  case Op_StoreNKlass:
2595  case Op_LoadB:
2596  case Op_LoadUB:
2597  case Op_LoadUS:
2598  case Op_LoadI:
2599  case Op_LoadKlass:
2600  case Op_LoadNKlass:
2601  case Op_LoadL:
2602  case Op_LoadL_unaligned:
2603  case Op_LoadPLocked:
2604  case Op_LoadP:
2605  case Op_LoadN:
2606  case Op_LoadRange:
2607  case Op_LoadS: {
2608  handle_mem:
2609#ifdef ASSERT
2610    if( VerifyOptoOopOffsets ) {
2611      assert( n->is_Mem(), "" );
2612      MemNode *mem  = (MemNode*)n;
2613      // Check to see if address types have grounded out somehow.
2614      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2615      assert( !tp || oop_offset_is_sane(tp), "" );
2616    }
2617#endif
2618    break;
2619  }
2620
2621  case Op_AddP: {               // Assert sane base pointers
2622    Node *addp = n->in(AddPNode::Address);
2623    assert( !addp->is_AddP() ||
2624            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2625            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2626            "Base pointers must match" );
2627#ifdef _LP64
2628    if ((UseCompressedOops || UseCompressedKlassPointers) &&
2629        addp->Opcode() == Op_ConP &&
2630        addp == n->in(AddPNode::Base) &&
2631        n->in(AddPNode::Offset)->is_Con()) {
2632      // Use addressing with narrow klass to load with offset on x86.
2633      // On sparc loading 32-bits constant and decoding it have less
2634      // instructions (4) then load 64-bits constant (7).
2635      // Do this transformation here since IGVN will convert ConN back to ConP.
2636      const Type* t = addp->bottom_type();
2637      if (t->isa_oopptr() || t->isa_klassptr()) {
2638        Node* nn = NULL;
2639
2640        int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2641
2642        // Look for existing ConN node of the same exact type.
2643        Node* r  = root();
2644        uint cnt = r->outcnt();
2645        for (uint i = 0; i < cnt; i++) {
2646          Node* m = r->raw_out(i);
2647          if (m!= NULL && m->Opcode() == op &&
2648              m->bottom_type()->make_ptr() == t) {
2649            nn = m;
2650            break;
2651          }
2652        }
2653        if (nn != NULL) {
2654          // Decode a narrow oop to match address
2655          // [R12 + narrow_oop_reg<<3 + offset]
2656          if (t->isa_oopptr()) {
2657            nn = new (this) DecodeNNode(nn, t);
2658          } else {
2659            nn = new (this) DecodeNKlassNode(nn, t);
2660          }
2661          n->set_req(AddPNode::Base, nn);
2662          n->set_req(AddPNode::Address, nn);
2663          if (addp->outcnt() == 0) {
2664            addp->disconnect_inputs(NULL, this);
2665          }
2666        }
2667      }
2668    }
2669#endif
2670    break;
2671  }
2672
2673#ifdef _LP64
2674  case Op_CastPP:
2675    if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2676      Node* in1 = n->in(1);
2677      const Type* t = n->bottom_type();
2678      Node* new_in1 = in1->clone();
2679      new_in1->as_DecodeN()->set_type(t);
2680
2681      if (!Matcher::narrow_oop_use_complex_address()) {
2682        //
2683        // x86, ARM and friends can handle 2 adds in addressing mode
2684        // and Matcher can fold a DecodeN node into address by using
2685        // a narrow oop directly and do implicit NULL check in address:
2686        //
2687        // [R12 + narrow_oop_reg<<3 + offset]
2688        // NullCheck narrow_oop_reg
2689        //
2690        // On other platforms (Sparc) we have to keep new DecodeN node and
2691        // use it to do implicit NULL check in address:
2692        //
2693        // decode_not_null narrow_oop_reg, base_reg
2694        // [base_reg + offset]
2695        // NullCheck base_reg
2696        //
2697        // Pin the new DecodeN node to non-null path on these platform (Sparc)
2698        // to keep the information to which NULL check the new DecodeN node
2699        // corresponds to use it as value in implicit_null_check().
2700        //
2701        new_in1->set_req(0, n->in(0));
2702      }
2703
2704      n->subsume_by(new_in1, this);
2705      if (in1->outcnt() == 0) {
2706        in1->disconnect_inputs(NULL, this);
2707      }
2708    }
2709    break;
2710
2711  case Op_CmpP:
2712    // Do this transformation here to preserve CmpPNode::sub() and
2713    // other TypePtr related Ideal optimizations (for example, ptr nullness).
2714    if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2715      Node* in1 = n->in(1);
2716      Node* in2 = n->in(2);
2717      if (!in1->is_DecodeNarrowPtr()) {
2718        in2 = in1;
2719        in1 = n->in(2);
2720      }
2721      assert(in1->is_DecodeNarrowPtr(), "sanity");
2722
2723      Node* new_in2 = NULL;
2724      if (in2->is_DecodeNarrowPtr()) {
2725        assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2726        new_in2 = in2->in(1);
2727      } else if (in2->Opcode() == Op_ConP) {
2728        const Type* t = in2->bottom_type();
2729        if (t == TypePtr::NULL_PTR) {
2730          assert(in1->is_DecodeN(), "compare klass to null?");
2731          // Don't convert CmpP null check into CmpN if compressed
2732          // oops implicit null check is not generated.
2733          // This will allow to generate normal oop implicit null check.
2734          if (Matcher::gen_narrow_oop_implicit_null_checks())
2735            new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2736          //
2737          // This transformation together with CastPP transformation above
2738          // will generated code for implicit NULL checks for compressed oops.
2739          //
2740          // The original code after Optimize()
2741          //
2742          //    LoadN memory, narrow_oop_reg
2743          //    decode narrow_oop_reg, base_reg
2744          //    CmpP base_reg, NULL
2745          //    CastPP base_reg // NotNull
2746          //    Load [base_reg + offset], val_reg
2747          //
2748          // after these transformations will be
2749          //
2750          //    LoadN memory, narrow_oop_reg
2751          //    CmpN narrow_oop_reg, NULL
2752          //    decode_not_null narrow_oop_reg, base_reg
2753          //    Load [base_reg + offset], val_reg
2754          //
2755          // and the uncommon path (== NULL) will use narrow_oop_reg directly
2756          // since narrow oops can be used in debug info now (see the code in
2757          // final_graph_reshaping_walk()).
2758          //
2759          // At the end the code will be matched to
2760          // on x86:
2761          //
2762          //    Load_narrow_oop memory, narrow_oop_reg
2763          //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2764          //    NullCheck narrow_oop_reg
2765          //
2766          // and on sparc:
2767          //
2768          //    Load_narrow_oop memory, narrow_oop_reg
2769          //    decode_not_null narrow_oop_reg, base_reg
2770          //    Load [base_reg + offset], val_reg
2771          //    NullCheck base_reg
2772          //
2773        } else if (t->isa_oopptr()) {
2774          new_in2 = ConNode::make(this, t->make_narrowoop());
2775        } else if (t->isa_klassptr()) {
2776          new_in2 = ConNode::make(this, t->make_narrowklass());
2777        }
2778      }
2779      if (new_in2 != NULL) {
2780        Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2781        n->subsume_by(cmpN, this);
2782        if (in1->outcnt() == 0) {
2783          in1->disconnect_inputs(NULL, this);
2784        }
2785        if (in2->outcnt() == 0) {
2786          in2->disconnect_inputs(NULL, this);
2787        }
2788      }
2789    }
2790    break;
2791
2792  case Op_DecodeN:
2793  case Op_DecodeNKlass:
2794    assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2795    // DecodeN could be pinned when it can't be fold into
2796    // an address expression, see the code for Op_CastPP above.
2797    assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2798    break;
2799
2800  case Op_EncodeP:
2801  case Op_EncodePKlass: {
2802    Node* in1 = n->in(1);
2803    if (in1->is_DecodeNarrowPtr()) {
2804      n->subsume_by(in1->in(1), this);
2805    } else if (in1->Opcode() == Op_ConP) {
2806      const Type* t = in1->bottom_type();
2807      if (t == TypePtr::NULL_PTR) {
2808        assert(t->isa_oopptr(), "null klass?");
2809        n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2810      } else if (t->isa_oopptr()) {
2811        n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2812      } else if (t->isa_klassptr()) {
2813        n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2814      }
2815    }
2816    if (in1->outcnt() == 0) {
2817      in1->disconnect_inputs(NULL, this);
2818    }
2819    break;
2820  }
2821
2822  case Op_Proj: {
2823    if (OptimizeStringConcat) {
2824      ProjNode* p = n->as_Proj();
2825      if (p->_is_io_use) {
2826        // Separate projections were used for the exception path which
2827        // are normally removed by a late inline.  If it wasn't inlined
2828        // then they will hang around and should just be replaced with
2829        // the original one.
2830        Node* proj = NULL;
2831        // Replace with just one
2832        for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2833          Node *use = i.get();
2834          if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2835            proj = use;
2836            break;
2837          }
2838        }
2839        assert(proj != NULL, "must be found");
2840        p->subsume_by(proj, this);
2841      }
2842    }
2843    break;
2844  }
2845
2846  case Op_Phi:
2847    if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2848      // The EncodeP optimization may create Phi with the same edges
2849      // for all paths. It is not handled well by Register Allocator.
2850      Node* unique_in = n->in(1);
2851      assert(unique_in != NULL, "");
2852      uint cnt = n->req();
2853      for (uint i = 2; i < cnt; i++) {
2854        Node* m = n->in(i);
2855        assert(m != NULL, "");
2856        if (unique_in != m)
2857          unique_in = NULL;
2858      }
2859      if (unique_in != NULL) {
2860        n->subsume_by(unique_in, this);
2861      }
2862    }
2863    break;
2864
2865#endif
2866
2867  case Op_ModI:
2868    if (UseDivMod) {
2869      // Check if a%b and a/b both exist
2870      Node* d = n->find_similar(Op_DivI);
2871      if (d) {
2872        // Replace them with a fused divmod if supported
2873        if (Matcher::has_match_rule(Op_DivModI)) {
2874          DivModINode* divmod = DivModINode::make(this, n);
2875          d->subsume_by(divmod->div_proj(), this);
2876          n->subsume_by(divmod->mod_proj(), this);
2877        } else {
2878          // replace a%b with a-((a/b)*b)
2879          Node* mult = new (this) MulINode(d, d->in(2));
2880          Node* sub  = new (this) SubINode(d->in(1), mult);
2881          n->subsume_by(sub, this);
2882        }
2883      }
2884    }
2885    break;
2886
2887  case Op_ModL:
2888    if (UseDivMod) {
2889      // Check if a%b and a/b both exist
2890      Node* d = n->find_similar(Op_DivL);
2891      if (d) {
2892        // Replace them with a fused divmod if supported
2893        if (Matcher::has_match_rule(Op_DivModL)) {
2894          DivModLNode* divmod = DivModLNode::make(this, n);
2895          d->subsume_by(divmod->div_proj(), this);
2896          n->subsume_by(divmod->mod_proj(), this);
2897        } else {
2898          // replace a%b with a-((a/b)*b)
2899          Node* mult = new (this) MulLNode(d, d->in(2));
2900          Node* sub  = new (this) SubLNode(d->in(1), mult);
2901          n->subsume_by(sub, this);
2902        }
2903      }
2904    }
2905    break;
2906
2907  case Op_LoadVector:
2908  case Op_StoreVector:
2909    break;
2910
2911  case Op_PackB:
2912  case Op_PackS:
2913  case Op_PackI:
2914  case Op_PackF:
2915  case Op_PackL:
2916  case Op_PackD:
2917    if (n->req()-1 > 2) {
2918      // Replace many operand PackNodes with a binary tree for matching
2919      PackNode* p = (PackNode*) n;
2920      Node* btp = p->binary_tree_pack(this, 1, n->req());
2921      n->subsume_by(btp, this);
2922    }
2923    break;
2924  case Op_Loop:
2925  case Op_CountedLoop:
2926    if (n->as_Loop()->is_inner_loop()) {
2927      frc.inc_inner_loop_count();
2928    }
2929    break;
2930  case Op_LShiftI:
2931  case Op_RShiftI:
2932  case Op_URShiftI:
2933  case Op_LShiftL:
2934  case Op_RShiftL:
2935  case Op_URShiftL:
2936    if (Matcher::need_masked_shift_count) {
2937      // The cpu's shift instructions don't restrict the count to the
2938      // lower 5/6 bits. We need to do the masking ourselves.
2939      Node* in2 = n->in(2);
2940      juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2941      const TypeInt* t = in2->find_int_type();
2942      if (t != NULL && t->is_con()) {
2943        juint shift = t->get_con();
2944        if (shift > mask) { // Unsigned cmp
2945          n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2946        }
2947      } else {
2948        if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2949          Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2950          n->set_req(2, shift);
2951        }
2952      }
2953      if (in2->outcnt() == 0) { // Remove dead node
2954        in2->disconnect_inputs(NULL, this);
2955      }
2956    }
2957    break;
2958  case Op_MemBarStoreStore:
2959  case Op_MemBarRelease:
2960    // Break the link with AllocateNode: it is no longer useful and
2961    // confuses register allocation.
2962    if (n->req() > MemBarNode::Precedent) {
2963      n->set_req(MemBarNode::Precedent, top());
2964    }
2965    break;
2966  default:
2967    assert( !n->is_Call(), "" );
2968    assert( !n->is_Mem(), "" );
2969    break;
2970  }
2971
2972  // Collect CFG split points
2973  if (n->is_MultiBranch())
2974    frc._tests.push(n);
2975}
2976
2977//------------------------------final_graph_reshaping_walk---------------------
2978// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2979// requires that the walk visits a node's inputs before visiting the node.
2980void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2981  ResourceArea *area = Thread::current()->resource_area();
2982  Unique_Node_List sfpt(area);
2983
2984  frc._visited.set(root->_idx); // first, mark node as visited
2985  uint cnt = root->req();
2986  Node *n = root;
2987  uint  i = 0;
2988  while (true) {
2989    if (i < cnt) {
2990      // Place all non-visited non-null inputs onto stack
2991      Node* m = n->in(i);
2992      ++i;
2993      if (m != NULL && !frc._visited.test_set(m->_idx)) {
2994        if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2995          sfpt.push(m);
2996        cnt = m->req();
2997        nstack.push(n, i); // put on stack parent and next input's index
2998        n = m;
2999        i = 0;
3000      }
3001    } else {
3002      // Now do post-visit work
3003      final_graph_reshaping_impl( n, frc );
3004      if (nstack.is_empty())
3005        break;             // finished
3006      n = nstack.node();   // Get node from stack
3007      cnt = n->req();
3008      i = nstack.index();
3009      nstack.pop();        // Shift to the next node on stack
3010    }
3011  }
3012
3013  // Skip next transformation if compressed oops are not used.
3014  if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3015      (!UseCompressedOops && !UseCompressedKlassPointers))
3016    return;
3017
3018  // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3019  // It could be done for an uncommon traps or any safepoints/calls
3020  // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3021  while (sfpt.size() > 0) {
3022    n = sfpt.pop();
3023    JVMState *jvms = n->as_SafePoint()->jvms();
3024    assert(jvms != NULL, "sanity");
3025    int start = jvms->debug_start();
3026    int end   = n->req();
3027    bool is_uncommon = (n->is_CallStaticJava() &&
3028                        n->as_CallStaticJava()->uncommon_trap_request() != 0);
3029    for (int j = start; j < end; j++) {
3030      Node* in = n->in(j);
3031      if (in->is_DecodeNarrowPtr()) {
3032        bool safe_to_skip = true;
3033        if (!is_uncommon ) {
3034          // Is it safe to skip?
3035          for (uint i = 0; i < in->outcnt(); i++) {
3036            Node* u = in->raw_out(i);
3037            if (!u->is_SafePoint() ||
3038                 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3039              safe_to_skip = false;
3040            }
3041          }
3042        }
3043        if (safe_to_skip) {
3044          n->set_req(j, in->in(1));
3045        }
3046        if (in->outcnt() == 0) {
3047          in->disconnect_inputs(NULL, this);
3048        }
3049      }
3050    }
3051  }
3052}
3053
3054//------------------------------final_graph_reshaping--------------------------
3055// Final Graph Reshaping.
3056//
3057// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3058//     and not commoned up and forced early.  Must come after regular
3059//     optimizations to avoid GVN undoing the cloning.  Clone constant
3060//     inputs to Loop Phis; these will be split by the allocator anyways.
3061//     Remove Opaque nodes.
3062// (2) Move last-uses by commutative operations to the left input to encourage
3063//     Intel update-in-place two-address operations and better register usage
3064//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3065//     calls canonicalizing them back.
3066// (3) Count the number of double-precision FP ops, single-precision FP ops
3067//     and call sites.  On Intel, we can get correct rounding either by
3068//     forcing singles to memory (requires extra stores and loads after each
3069//     FP bytecode) or we can set a rounding mode bit (requires setting and
3070//     clearing the mode bit around call sites).  The mode bit is only used
3071//     if the relative frequency of single FP ops to calls is low enough.
3072//     This is a key transform for SPEC mpeg_audio.
3073// (4) Detect infinite loops; blobs of code reachable from above but not
3074//     below.  Several of the Code_Gen algorithms fail on such code shapes,
3075//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3076//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3077//     Detection is by looking for IfNodes where only 1 projection is
3078//     reachable from below or CatchNodes missing some targets.
3079// (5) Assert for insane oop offsets in debug mode.
3080
3081bool Compile::final_graph_reshaping() {
3082  // an infinite loop may have been eliminated by the optimizer,
3083  // in which case the graph will be empty.
3084  if (root()->req() == 1) {
3085    record_method_not_compilable("trivial infinite loop");
3086    return true;
3087  }
3088
3089  // Expensive nodes have their control input set to prevent the GVN
3090  // from freely commoning them. There's no GVN beyond this point so
3091  // no need to keep the control input. We want the expensive nodes to
3092  // be freely moved to the least frequent code path by gcm.
3093  assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3094  for (int i = 0; i < expensive_count(); i++) {
3095    _expensive_nodes->at(i)->set_req(0, NULL);
3096  }
3097
3098  Final_Reshape_Counts frc;
3099
3100  // Visit everybody reachable!
3101  // Allocate stack of size C->unique()/2 to avoid frequent realloc
3102  Node_Stack nstack(unique() >> 1);
3103  final_graph_reshaping_walk(nstack, root(), frc);
3104
3105  // Check for unreachable (from below) code (i.e., infinite loops).
3106  for( uint i = 0; i < frc._tests.size(); i++ ) {
3107    MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3108    // Get number of CFG targets.
3109    // Note that PCTables include exception targets after calls.
3110    uint required_outcnt = n->required_outcnt();
3111    if (n->outcnt() != required_outcnt) {
3112      // Check for a few special cases.  Rethrow Nodes never take the
3113      // 'fall-thru' path, so expected kids is 1 less.
3114      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3115        if (n->in(0)->in(0)->is_Call()) {
3116          CallNode *call = n->in(0)->in(0)->as_Call();
3117          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3118            required_outcnt--;      // Rethrow always has 1 less kid
3119          } else if (call->req() > TypeFunc::Parms &&
3120                     call->is_CallDynamicJava()) {
3121            // Check for null receiver. In such case, the optimizer has
3122            // detected that the virtual call will always result in a null
3123            // pointer exception. The fall-through projection of this CatchNode
3124            // will not be populated.
3125            Node *arg0 = call->in(TypeFunc::Parms);
3126            if (arg0->is_Type() &&
3127                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3128              required_outcnt--;
3129            }
3130          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3131                     call->req() > TypeFunc::Parms+1 &&
3132                     call->is_CallStaticJava()) {
3133            // Check for negative array length. In such case, the optimizer has
3134            // detected that the allocation attempt will always result in an
3135            // exception. There is no fall-through projection of this CatchNode .
3136            Node *arg1 = call->in(TypeFunc::Parms+1);
3137            if (arg1->is_Type() &&
3138                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3139              required_outcnt--;
3140            }
3141          }
3142        }
3143      }
3144      // Recheck with a better notion of 'required_outcnt'
3145      if (n->outcnt() != required_outcnt) {
3146        record_method_not_compilable("malformed control flow");
3147        return true;            // Not all targets reachable!
3148      }
3149    }
3150    // Check that I actually visited all kids.  Unreached kids
3151    // must be infinite loops.
3152    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3153      if (!frc._visited.test(n->fast_out(j)->_idx)) {
3154        record_method_not_compilable("infinite loop");
3155        return true;            // Found unvisited kid; must be unreach
3156      }
3157  }
3158
3159  // If original bytecodes contained a mixture of floats and doubles
3160  // check if the optimizer has made it homogenous, item (3).
3161  if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3162      frc.get_float_count() > 32 &&
3163      frc.get_double_count() == 0 &&
3164      (10 * frc.get_call_count() < frc.get_float_count()) ) {
3165    set_24_bit_selection_and_mode( false,  true );
3166  }
3167
3168  set_java_calls(frc.get_java_call_count());
3169  set_inner_loops(frc.get_inner_loop_count());
3170
3171  // No infinite loops, no reason to bail out.
3172  return false;
3173}
3174
3175//-----------------------------too_many_traps----------------------------------
3176// Report if there are too many traps at the current method and bci.
3177// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3178bool Compile::too_many_traps(ciMethod* method,
3179                             int bci,
3180                             Deoptimization::DeoptReason reason) {
3181  ciMethodData* md = method->method_data();
3182  if (md->is_empty()) {
3183    // Assume the trap has not occurred, or that it occurred only
3184    // because of a transient condition during start-up in the interpreter.
3185    return false;
3186  }
3187  if (md->has_trap_at(bci, reason) != 0) {
3188    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3189    // Also, if there are multiple reasons, or if there is no per-BCI record,
3190    // assume the worst.
3191    if (log())
3192      log()->elem("observe trap='%s' count='%d'",
3193                  Deoptimization::trap_reason_name(reason),
3194                  md->trap_count(reason));
3195    return true;
3196  } else {
3197    // Ignore method/bci and see if there have been too many globally.
3198    return too_many_traps(reason, md);
3199  }
3200}
3201
3202// Less-accurate variant which does not require a method and bci.
3203bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3204                             ciMethodData* logmd) {
3205 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3206    // Too many traps globally.
3207    // Note that we use cumulative trap_count, not just md->trap_count.
3208    if (log()) {
3209      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3210      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3211                  Deoptimization::trap_reason_name(reason),
3212                  mcount, trap_count(reason));
3213    }
3214    return true;
3215  } else {
3216    // The coast is clear.
3217    return false;
3218  }
3219}
3220
3221//--------------------------too_many_recompiles--------------------------------
3222// Report if there are too many recompiles at the current method and bci.
3223// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3224// Is not eager to return true, since this will cause the compiler to use
3225// Action_none for a trap point, to avoid too many recompilations.
3226bool Compile::too_many_recompiles(ciMethod* method,
3227                                  int bci,
3228                                  Deoptimization::DeoptReason reason) {
3229  ciMethodData* md = method->method_data();
3230  if (md->is_empty()) {
3231    // Assume the trap has not occurred, or that it occurred only
3232    // because of a transient condition during start-up in the interpreter.
3233    return false;
3234  }
3235  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3236  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3237  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3238  Deoptimization::DeoptReason per_bc_reason
3239    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3240  if ((per_bc_reason == Deoptimization::Reason_none
3241       || md->has_trap_at(bci, reason) != 0)
3242      // The trap frequency measure we care about is the recompile count:
3243      && md->trap_recompiled_at(bci)
3244      && md->overflow_recompile_count() >= bc_cutoff) {
3245    // Do not emit a trap here if it has already caused recompilations.
3246    // Also, if there are multiple reasons, or if there is no per-BCI record,
3247    // assume the worst.
3248    if (log())
3249      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3250                  Deoptimization::trap_reason_name(reason),
3251                  md->trap_count(reason),
3252                  md->overflow_recompile_count());
3253    return true;
3254  } else if (trap_count(reason) != 0
3255             && decompile_count() >= m_cutoff) {
3256    // Too many recompiles globally, and we have seen this sort of trap.
3257    // Use cumulative decompile_count, not just md->decompile_count.
3258    if (log())
3259      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3260                  Deoptimization::trap_reason_name(reason),
3261                  md->trap_count(reason), trap_count(reason),
3262                  md->decompile_count(), decompile_count());
3263    return true;
3264  } else {
3265    // The coast is clear.
3266    return false;
3267  }
3268}
3269
3270
3271#ifndef PRODUCT
3272//------------------------------verify_graph_edges---------------------------
3273// Walk the Graph and verify that there is a one-to-one correspondence
3274// between Use-Def edges and Def-Use edges in the graph.
3275void Compile::verify_graph_edges(bool no_dead_code) {
3276  if (VerifyGraphEdges) {
3277    ResourceArea *area = Thread::current()->resource_area();
3278    Unique_Node_List visited(area);
3279    // Call recursive graph walk to check edges
3280    _root->verify_edges(visited);
3281    if (no_dead_code) {
3282      // Now make sure that no visited node is used by an unvisited node.
3283      bool dead_nodes = 0;
3284      Unique_Node_List checked(area);
3285      while (visited.size() > 0) {
3286        Node* n = visited.pop();
3287        checked.push(n);
3288        for (uint i = 0; i < n->outcnt(); i++) {
3289          Node* use = n->raw_out(i);
3290          if (checked.member(use))  continue;  // already checked
3291          if (visited.member(use))  continue;  // already in the graph
3292          if (use->is_Con())        continue;  // a dead ConNode is OK
3293          // At this point, we have found a dead node which is DU-reachable.
3294          if (dead_nodes++ == 0)
3295            tty->print_cr("*** Dead nodes reachable via DU edges:");
3296          use->dump(2);
3297          tty->print_cr("---");
3298          checked.push(use);  // No repeats; pretend it is now checked.
3299        }
3300      }
3301      assert(dead_nodes == 0, "using nodes must be reachable from root");
3302    }
3303  }
3304}
3305#endif
3306
3307// The Compile object keeps track of failure reasons separately from the ciEnv.
3308// This is required because there is not quite a 1-1 relation between the
3309// ciEnv and its compilation task and the Compile object.  Note that one
3310// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3311// to backtrack and retry without subsuming loads.  Other than this backtracking
3312// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3313// by the logic in C2Compiler.
3314void Compile::record_failure(const char* reason) {
3315  if (log() != NULL) {
3316    log()->elem("failure reason='%s' phase='compile'", reason);
3317  }
3318  if (_failure_reason == NULL) {
3319    // Record the first failure reason.
3320    _failure_reason = reason;
3321  }
3322  if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3323    C->print_method(_failure_reason);
3324  }
3325  _root = NULL;  // flush the graph, too
3326}
3327
3328Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3329  : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3330    _phase_name(name), _dolog(dolog)
3331{
3332  if (dolog) {
3333    C = Compile::current();
3334    _log = C->log();
3335  } else {
3336    C = NULL;
3337    _log = NULL;
3338  }
3339  if (_log != NULL) {
3340    _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3341    _log->stamp();
3342    _log->end_head();
3343  }
3344}
3345
3346Compile::TracePhase::~TracePhase() {
3347
3348  C = Compile::current();
3349  if (_dolog) {
3350    _log = C->log();
3351  } else {
3352    _log = NULL;
3353  }
3354
3355#ifdef ASSERT
3356  if (PrintIdealNodeCount) {
3357    tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3358                  _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3359  }
3360
3361  if (VerifyIdealNodeCount) {
3362    Compile::current()->print_missing_nodes();
3363  }
3364#endif
3365
3366  if (_log != NULL) {
3367    _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3368  }
3369}
3370
3371//=============================================================================
3372// Two Constant's are equal when the type and the value are equal.
3373bool Compile::Constant::operator==(const Constant& other) {
3374  if (type()          != other.type()         )  return false;
3375  if (can_be_reused() != other.can_be_reused())  return false;
3376  // For floating point values we compare the bit pattern.
3377  switch (type()) {
3378  case T_FLOAT:   return (_v._value.i == other._v._value.i);
3379  case T_LONG:
3380  case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3381  case T_OBJECT:
3382  case T_ADDRESS: return (_v._value.l == other._v._value.l);
3383  case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3384  case T_METADATA: return (_v._metadata == other._v._metadata);
3385  default: ShouldNotReachHere();
3386  }
3387  return false;
3388}
3389
3390static int type_to_size_in_bytes(BasicType t) {
3391  switch (t) {
3392  case T_LONG:    return sizeof(jlong  );
3393  case T_FLOAT:   return sizeof(jfloat );
3394  case T_DOUBLE:  return sizeof(jdouble);
3395  case T_METADATA: return sizeof(Metadata*);
3396    // We use T_VOID as marker for jump-table entries (labels) which
3397    // need an internal word relocation.
3398  case T_VOID:
3399  case T_ADDRESS:
3400  case T_OBJECT:  return sizeof(jobject);
3401  }
3402
3403  ShouldNotReachHere();
3404  return -1;
3405}
3406
3407int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3408  // sort descending
3409  if (a->freq() > b->freq())  return -1;
3410  if (a->freq() < b->freq())  return  1;
3411  return 0;
3412}
3413
3414void Compile::ConstantTable::calculate_offsets_and_size() {
3415  // First, sort the array by frequencies.
3416  _constants.sort(qsort_comparator);
3417
3418#ifdef ASSERT
3419  // Make sure all jump-table entries were sorted to the end of the
3420  // array (they have a negative frequency).
3421  bool found_void = false;
3422  for (int i = 0; i < _constants.length(); i++) {
3423    Constant con = _constants.at(i);
3424    if (con.type() == T_VOID)
3425      found_void = true;  // jump-tables
3426    else
3427      assert(!found_void, "wrong sorting");
3428  }
3429#endif
3430
3431  int offset = 0;
3432  for (int i = 0; i < _constants.length(); i++) {
3433    Constant* con = _constants.adr_at(i);
3434
3435    // Align offset for type.
3436    int typesize = type_to_size_in_bytes(con->type());
3437    offset = align_size_up(offset, typesize);
3438    con->set_offset(offset);   // set constant's offset
3439
3440    if (con->type() == T_VOID) {
3441      MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3442      offset = offset + typesize * n->outcnt();  // expand jump-table
3443    } else {
3444      offset = offset + typesize;
3445    }
3446  }
3447
3448  // Align size up to the next section start (which is insts; see
3449  // CodeBuffer::align_at_start).
3450  assert(_size == -1, "already set?");
3451  _size = align_size_up(offset, CodeEntryAlignment);
3452}
3453
3454void Compile::ConstantTable::emit(CodeBuffer& cb) {
3455  MacroAssembler _masm(&cb);
3456  for (int i = 0; i < _constants.length(); i++) {
3457    Constant con = _constants.at(i);
3458    address constant_addr;
3459    switch (con.type()) {
3460    case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3461    case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3462    case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3463    case T_OBJECT: {
3464      jobject obj = con.get_jobject();
3465      int oop_index = _masm.oop_recorder()->find_index(obj);
3466      constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3467      break;
3468    }
3469    case T_ADDRESS: {
3470      address addr = (address) con.get_jobject();
3471      constant_addr = _masm.address_constant(addr);
3472      break;
3473    }
3474    // We use T_VOID as marker for jump-table entries (labels) which
3475    // need an internal word relocation.
3476    case T_VOID: {
3477      MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3478      // Fill the jump-table with a dummy word.  The real value is
3479      // filled in later in fill_jump_table.
3480      address dummy = (address) n;
3481      constant_addr = _masm.address_constant(dummy);
3482      // Expand jump-table
3483      for (uint i = 1; i < n->outcnt(); i++) {
3484        address temp_addr = _masm.address_constant(dummy + i);
3485        assert(temp_addr, "consts section too small");
3486      }
3487      break;
3488    }
3489    case T_METADATA: {
3490      Metadata* obj = con.get_metadata();
3491      int metadata_index = _masm.oop_recorder()->find_index(obj);
3492      constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3493      break;
3494    }
3495    default: ShouldNotReachHere();
3496    }
3497    assert(constant_addr, "consts section too small");
3498    assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3499  }
3500}
3501
3502int Compile::ConstantTable::find_offset(Constant& con) const {
3503  int idx = _constants.find(con);
3504  assert(idx != -1, "constant must be in constant table");
3505  int offset = _constants.at(idx).offset();
3506  assert(offset != -1, "constant table not emitted yet?");
3507  return offset;
3508}
3509
3510void Compile::ConstantTable::add(Constant& con) {
3511  if (con.can_be_reused()) {
3512    int idx = _constants.find(con);
3513    if (idx != -1 && _constants.at(idx).can_be_reused()) {
3514      _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3515      return;
3516    }
3517  }
3518  (void) _constants.append(con);
3519}
3520
3521Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3522  Block* b = Compile::current()->cfg()->_bbs[n->_idx];
3523  Constant con(type, value, b->_freq);
3524  add(con);
3525  return con;
3526}
3527
3528Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3529  Constant con(metadata);
3530  add(con);
3531  return con;
3532}
3533
3534Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3535  jvalue value;
3536  BasicType type = oper->type()->basic_type();
3537  switch (type) {
3538  case T_LONG:    value.j = oper->constantL(); break;
3539  case T_FLOAT:   value.f = oper->constantF(); break;
3540  case T_DOUBLE:  value.d = oper->constantD(); break;
3541  case T_OBJECT:
3542  case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3543  case T_METADATA: return add((Metadata*)oper->constant()); break;
3544  default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3545  }
3546  return add(n, type, value);
3547}
3548
3549Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3550  jvalue value;
3551  // We can use the node pointer here to identify the right jump-table
3552  // as this method is called from Compile::Fill_buffer right before
3553  // the MachNodes are emitted and the jump-table is filled (means the
3554  // MachNode pointers do not change anymore).
3555  value.l = (jobject) n;
3556  Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3557  add(con);
3558  return con;
3559}
3560
3561void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3562  // If called from Compile::scratch_emit_size do nothing.
3563  if (Compile::current()->in_scratch_emit_size())  return;
3564
3565  assert(labels.is_nonempty(), "must be");
3566  assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3567
3568  // Since MachConstantNode::constant_offset() also contains
3569  // table_base_offset() we need to subtract the table_base_offset()
3570  // to get the plain offset into the constant table.
3571  int offset = n->constant_offset() - table_base_offset();
3572
3573  MacroAssembler _masm(&cb);
3574  address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3575
3576  for (uint i = 0; i < n->outcnt(); i++) {
3577    address* constant_addr = &jump_table_base[i];
3578    assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3579    *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3580    cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3581  }
3582}
3583
3584void Compile::dump_inlining() {
3585  if (PrintInlining || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
3586    // Print inlining message for candidates that we couldn't inline
3587    // for lack of space or non constant receiver
3588    for (int i = 0; i < _late_inlines.length(); i++) {
3589      CallGenerator* cg = _late_inlines.at(i);
3590      cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3591    }
3592    Unique_Node_List useful;
3593    useful.push(root());
3594    for (uint next = 0; next < useful.size(); ++next) {
3595      Node* n  = useful.at(next);
3596      if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3597        CallNode* call = n->as_Call();
3598        CallGenerator* cg = call->generator();
3599        cg->print_inlining_late("receiver not constant");
3600      }
3601      uint max = n->len();
3602      for ( uint i = 0; i < max; ++i ) {
3603        Node *m = n->in(i);
3604        if ( m == NULL ) continue;
3605        useful.push(m);
3606      }
3607    }
3608    for (int i = 0; i < _print_inlining_list->length(); i++) {
3609      tty->print(_print_inlining_list->at(i).ss()->as_string());
3610    }
3611  }
3612}
3613
3614int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3615  if (n1->Opcode() < n2->Opcode())      return -1;
3616  else if (n1->Opcode() > n2->Opcode()) return 1;
3617
3618  assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3619  for (uint i = 1; i < n1->req(); i++) {
3620    if (n1->in(i) < n2->in(i))      return -1;
3621    else if (n1->in(i) > n2->in(i)) return 1;
3622  }
3623
3624  return 0;
3625}
3626
3627int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3628  Node* n1 = *n1p;
3629  Node* n2 = *n2p;
3630
3631  return cmp_expensive_nodes(n1, n2);
3632}
3633
3634void Compile::sort_expensive_nodes() {
3635  if (!expensive_nodes_sorted()) {
3636    _expensive_nodes->sort(cmp_expensive_nodes);
3637  }
3638}
3639
3640bool Compile::expensive_nodes_sorted() const {
3641  for (int i = 1; i < _expensive_nodes->length(); i++) {
3642    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3643      return false;
3644    }
3645  }
3646  return true;
3647}
3648
3649bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3650  if (_expensive_nodes->length() == 0) {
3651    return false;
3652  }
3653
3654  assert(OptimizeExpensiveOps, "optimization off?");
3655
3656  // Take this opportunity to remove dead nodes from the list
3657  int j = 0;
3658  for (int i = 0; i < _expensive_nodes->length(); i++) {
3659    Node* n = _expensive_nodes->at(i);
3660    if (!n->is_unreachable(igvn)) {
3661      assert(n->is_expensive(), "should be expensive");
3662      _expensive_nodes->at_put(j, n);
3663      j++;
3664    }
3665  }
3666  _expensive_nodes->trunc_to(j);
3667
3668  // Then sort the list so that similar nodes are next to each other
3669  // and check for at least two nodes of identical kind with same data
3670  // inputs.
3671  sort_expensive_nodes();
3672
3673  for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3674    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3675      return true;
3676    }
3677  }
3678
3679  return false;
3680}
3681
3682void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3683  if (_expensive_nodes->length() == 0) {
3684    return;
3685  }
3686
3687  assert(OptimizeExpensiveOps, "optimization off?");
3688
3689  // Sort to bring similar nodes next to each other and clear the
3690  // control input of nodes for which there's only a single copy.
3691  sort_expensive_nodes();
3692
3693  int j = 0;
3694  int identical = 0;
3695  int i = 0;
3696  for (; i < _expensive_nodes->length()-1; i++) {
3697    assert(j <= i, "can't write beyond current index");
3698    if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3699      identical++;
3700      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3701      continue;
3702    }
3703    if (identical > 0) {
3704      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3705      identical = 0;
3706    } else {
3707      Node* n = _expensive_nodes->at(i);
3708      igvn.hash_delete(n);
3709      n->set_req(0, NULL);
3710      igvn.hash_insert(n);
3711    }
3712  }
3713  if (identical > 0) {
3714    _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3715  } else if (_expensive_nodes->length() >= 1) {
3716    Node* n = _expensive_nodes->at(i);
3717    igvn.hash_delete(n);
3718    n->set_req(0, NULL);
3719    igvn.hash_insert(n);
3720  }
3721  _expensive_nodes->trunc_to(j);
3722}
3723
3724void Compile::add_expensive_node(Node * n) {
3725  assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3726  assert(n->is_expensive(), "expensive nodes with non-null control here only");
3727  assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3728  if (OptimizeExpensiveOps) {
3729    _expensive_nodes->append(n);
3730  } else {
3731    // Clear control input and let IGVN optimize expensive nodes if
3732    // OptimizeExpensiveOps is off.
3733    n->set_req(0, NULL);
3734  }
3735}
3736
3737// Auxiliary method to support randomized stressing/fuzzing.
3738//
3739// This method can be called the arbitrary number of times, with current count
3740// as the argument. The logic allows selecting a single candidate from the
3741// running list of candidates as follows:
3742//    int count = 0;
3743//    Cand* selected = null;
3744//    while(cand = cand->next()) {
3745//      if (randomized_select(++count)) {
3746//        selected = cand;
3747//      }
3748//    }
3749//
3750// Including count equalizes the chances any candidate is "selected".
3751// This is useful when we don't have the complete list of candidates to choose
3752// from uniformly. In this case, we need to adjust the randomicity of the
3753// selection, or else we will end up biasing the selection towards the latter
3754// candidates.
3755//
3756// Quick back-envelope calculation shows that for the list of n candidates
3757// the equal probability for the candidate to persist as "best" can be
3758// achieved by replacing it with "next" k-th candidate with the probability
3759// of 1/k. It can be easily shown that by the end of the run, the
3760// probability for any candidate is converged to 1/n, thus giving the
3761// uniform distribution among all the candidates.
3762//
3763// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3764#define RANDOMIZED_DOMAIN_POW 29
3765#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3766#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3767bool Compile::randomized_select(int count) {
3768  assert(count > 0, "only positive");
3769  return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3770}
3771