compile.cpp revision 4802:f2110083203d
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "code/exceptionHandlerTable.hpp"
30#include "code/nmethod.hpp"
31#include "compiler/compileLog.hpp"
32#include "compiler/disassembler.hpp"
33#include "compiler/oopMap.hpp"
34#include "opto/addnode.hpp"
35#include "opto/block.hpp"
36#include "opto/c2compiler.hpp"
37#include "opto/callGenerator.hpp"
38#include "opto/callnode.hpp"
39#include "opto/cfgnode.hpp"
40#include "opto/chaitin.hpp"
41#include "opto/compile.hpp"
42#include "opto/connode.hpp"
43#include "opto/divnode.hpp"
44#include "opto/escape.hpp"
45#include "opto/idealGraphPrinter.hpp"
46#include "opto/loopnode.hpp"
47#include "opto/machnode.hpp"
48#include "opto/macro.hpp"
49#include "opto/matcher.hpp"
50#include "opto/memnode.hpp"
51#include "opto/mulnode.hpp"
52#include "opto/node.hpp"
53#include "opto/opcodes.hpp"
54#include "opto/output.hpp"
55#include "opto/parse.hpp"
56#include "opto/phaseX.hpp"
57#include "opto/rootnode.hpp"
58#include "opto/runtime.hpp"
59#include "opto/stringopts.hpp"
60#include "opto/type.hpp"
61#include "opto/vectornode.hpp"
62#include "runtime/arguments.hpp"
63#include "runtime/signature.hpp"
64#include "runtime/stubRoutines.hpp"
65#include "runtime/timer.hpp"
66#include "trace/tracing.hpp"
67#include "utilities/copy.hpp"
68#ifdef TARGET_ARCH_MODEL_x86_32
69# include "adfiles/ad_x86_32.hpp"
70#endif
71#ifdef TARGET_ARCH_MODEL_x86_64
72# include "adfiles/ad_x86_64.hpp"
73#endif
74#ifdef TARGET_ARCH_MODEL_sparc
75# include "adfiles/ad_sparc.hpp"
76#endif
77#ifdef TARGET_ARCH_MODEL_zero
78# include "adfiles/ad_zero.hpp"
79#endif
80#ifdef TARGET_ARCH_MODEL_arm
81# include "adfiles/ad_arm.hpp"
82#endif
83#ifdef TARGET_ARCH_MODEL_ppc
84# include "adfiles/ad_ppc.hpp"
85#endif
86
87
88// -------------------- Compile::mach_constant_base_node -----------------------
89// Constant table base node singleton.
90MachConstantBaseNode* Compile::mach_constant_base_node() {
91  if (_mach_constant_base_node == NULL) {
92    _mach_constant_base_node = new (C) MachConstantBaseNode();
93    _mach_constant_base_node->add_req(C->root());
94  }
95  return _mach_constant_base_node;
96}
97
98
99/// Support for intrinsics.
100
101// Return the index at which m must be inserted (or already exists).
102// The sort order is by the address of the ciMethod, with is_virtual as minor key.
103int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
104#ifdef ASSERT
105  for (int i = 1; i < _intrinsics->length(); i++) {
106    CallGenerator* cg1 = _intrinsics->at(i-1);
107    CallGenerator* cg2 = _intrinsics->at(i);
108    assert(cg1->method() != cg2->method()
109           ? cg1->method()     < cg2->method()
110           : cg1->is_virtual() < cg2->is_virtual(),
111           "compiler intrinsics list must stay sorted");
112  }
113#endif
114  // Binary search sorted list, in decreasing intervals [lo, hi].
115  int lo = 0, hi = _intrinsics->length()-1;
116  while (lo <= hi) {
117    int mid = (uint)(hi + lo) / 2;
118    ciMethod* mid_m = _intrinsics->at(mid)->method();
119    if (m < mid_m) {
120      hi = mid-1;
121    } else if (m > mid_m) {
122      lo = mid+1;
123    } else {
124      // look at minor sort key
125      bool mid_virt = _intrinsics->at(mid)->is_virtual();
126      if (is_virtual < mid_virt) {
127        hi = mid-1;
128      } else if (is_virtual > mid_virt) {
129        lo = mid+1;
130      } else {
131        return mid;  // exact match
132      }
133    }
134  }
135  return lo;  // inexact match
136}
137
138void Compile::register_intrinsic(CallGenerator* cg) {
139  if (_intrinsics == NULL) {
140    _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
141  }
142  // This code is stolen from ciObjectFactory::insert.
143  // Really, GrowableArray should have methods for
144  // insert_at, remove_at, and binary_search.
145  int len = _intrinsics->length();
146  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
147  if (index == len) {
148    _intrinsics->append(cg);
149  } else {
150#ifdef ASSERT
151    CallGenerator* oldcg = _intrinsics->at(index);
152    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
153#endif
154    _intrinsics->append(_intrinsics->at(len-1));
155    int pos;
156    for (pos = len-2; pos >= index; pos--) {
157      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
158    }
159    _intrinsics->at_put(index, cg);
160  }
161  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
162}
163
164CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
165  assert(m->is_loaded(), "don't try this on unloaded methods");
166  if (_intrinsics != NULL) {
167    int index = intrinsic_insertion_index(m, is_virtual);
168    if (index < _intrinsics->length()
169        && _intrinsics->at(index)->method() == m
170        && _intrinsics->at(index)->is_virtual() == is_virtual) {
171      return _intrinsics->at(index);
172    }
173  }
174  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
175  if (m->intrinsic_id() != vmIntrinsics::_none &&
176      m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
177    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
178    if (cg != NULL) {
179      // Save it for next time:
180      register_intrinsic(cg);
181      return cg;
182    } else {
183      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
184    }
185  }
186  return NULL;
187}
188
189// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
190// in library_call.cpp.
191
192
193#ifndef PRODUCT
194// statistics gathering...
195
196juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
197jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
198
199bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
200  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
201  int oflags = _intrinsic_hist_flags[id];
202  assert(flags != 0, "what happened?");
203  if (is_virtual) {
204    flags |= _intrinsic_virtual;
205  }
206  bool changed = (flags != oflags);
207  if ((flags & _intrinsic_worked) != 0) {
208    juint count = (_intrinsic_hist_count[id] += 1);
209    if (count == 1) {
210      changed = true;           // first time
211    }
212    // increment the overall count also:
213    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
214  }
215  if (changed) {
216    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
217      // Something changed about the intrinsic's virtuality.
218      if ((flags & _intrinsic_virtual) != 0) {
219        // This is the first use of this intrinsic as a virtual call.
220        if (oflags != 0) {
221          // We already saw it as a non-virtual, so note both cases.
222          flags |= _intrinsic_both;
223        }
224      } else if ((oflags & _intrinsic_both) == 0) {
225        // This is the first use of this intrinsic as a non-virtual
226        flags |= _intrinsic_both;
227      }
228    }
229    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
230  }
231  // update the overall flags also:
232  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
233  return changed;
234}
235
236static char* format_flags(int flags, char* buf) {
237  buf[0] = 0;
238  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
239  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
240  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
241  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
242  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
243  if (buf[0] == 0)  strcat(buf, ",");
244  assert(buf[0] == ',', "must be");
245  return &buf[1];
246}
247
248void Compile::print_intrinsic_statistics() {
249  char flagsbuf[100];
250  ttyLocker ttyl;
251  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
252  tty->print_cr("Compiler intrinsic usage:");
253  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
254  if (total == 0)  total = 1;  // avoid div0 in case of no successes
255  #define PRINT_STAT_LINE(name, c, f) \
256    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
257  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
258    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
259    int   flags = _intrinsic_hist_flags[id];
260    juint count = _intrinsic_hist_count[id];
261    if ((flags | count) != 0) {
262      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
263    }
264  }
265  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
266  if (xtty != NULL)  xtty->tail("statistics");
267}
268
269void Compile::print_statistics() {
270  { ttyLocker ttyl;
271    if (xtty != NULL)  xtty->head("statistics type='opto'");
272    Parse::print_statistics();
273    PhaseCCP::print_statistics();
274    PhaseRegAlloc::print_statistics();
275    Scheduling::print_statistics();
276    PhasePeephole::print_statistics();
277    PhaseIdealLoop::print_statistics();
278    if (xtty != NULL)  xtty->tail("statistics");
279  }
280  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
281    // put this under its own <statistics> element.
282    print_intrinsic_statistics();
283  }
284}
285#endif //PRODUCT
286
287// Support for bundling info
288Bundle* Compile::node_bundling(const Node *n) {
289  assert(valid_bundle_info(n), "oob");
290  return &_node_bundling_base[n->_idx];
291}
292
293bool Compile::valid_bundle_info(const Node *n) {
294  return (_node_bundling_limit > n->_idx);
295}
296
297
298void Compile::gvn_replace_by(Node* n, Node* nn) {
299  for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
300    Node* use = n->last_out(i);
301    bool is_in_table = initial_gvn()->hash_delete(use);
302    uint uses_found = 0;
303    for (uint j = 0; j < use->len(); j++) {
304      if (use->in(j) == n) {
305        if (j < use->req())
306          use->set_req(j, nn);
307        else
308          use->set_prec(j, nn);
309        uses_found++;
310      }
311    }
312    if (is_in_table) {
313      // reinsert into table
314      initial_gvn()->hash_find_insert(use);
315    }
316    record_for_igvn(use);
317    i -= uses_found;    // we deleted 1 or more copies of this edge
318  }
319}
320
321
322static inline bool not_a_node(const Node* n) {
323  if (n == NULL)                   return true;
324  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
325  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
326  return false;
327}
328
329// Identify all nodes that are reachable from below, useful.
330// Use breadth-first pass that records state in a Unique_Node_List,
331// recursive traversal is slower.
332void Compile::identify_useful_nodes(Unique_Node_List &useful) {
333  int estimated_worklist_size = unique();
334  useful.map( estimated_worklist_size, NULL );  // preallocate space
335
336  // Initialize worklist
337  if (root() != NULL)     { useful.push(root()); }
338  // If 'top' is cached, declare it useful to preserve cached node
339  if( cached_top_node() ) { useful.push(cached_top_node()); }
340
341  // Push all useful nodes onto the list, breadthfirst
342  for( uint next = 0; next < useful.size(); ++next ) {
343    assert( next < unique(), "Unique useful nodes < total nodes");
344    Node *n  = useful.at(next);
345    uint max = n->len();
346    for( uint i = 0; i < max; ++i ) {
347      Node *m = n->in(i);
348      if (not_a_node(m))  continue;
349      useful.push(m);
350    }
351  }
352}
353
354// Update dead_node_list with any missing dead nodes using useful
355// list. Consider all non-useful nodes to be useless i.e., dead nodes.
356void Compile::update_dead_node_list(Unique_Node_List &useful) {
357  uint max_idx = unique();
358  VectorSet& useful_node_set = useful.member_set();
359
360  for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
361    // If node with index node_idx is not in useful set,
362    // mark it as dead in dead node list.
363    if (! useful_node_set.test(node_idx) ) {
364      record_dead_node(node_idx);
365    }
366  }
367}
368
369void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
370  int shift = 0;
371  for (int i = 0; i < inlines->length(); i++) {
372    CallGenerator* cg = inlines->at(i);
373    CallNode* call = cg->call_node();
374    if (shift > 0) {
375      inlines->at_put(i-shift, cg);
376    }
377    if (!useful.member(call)) {
378      shift++;
379    }
380  }
381  inlines->trunc_to(inlines->length()-shift);
382}
383
384// Disconnect all useless nodes by disconnecting those at the boundary.
385void Compile::remove_useless_nodes(Unique_Node_List &useful) {
386  uint next = 0;
387  while (next < useful.size()) {
388    Node *n = useful.at(next++);
389    // Use raw traversal of out edges since this code removes out edges
390    int max = n->outcnt();
391    for (int j = 0; j < max; ++j) {
392      Node* child = n->raw_out(j);
393      if (! useful.member(child)) {
394        assert(!child->is_top() || child != top(),
395               "If top is cached in Compile object it is in useful list");
396        // Only need to remove this out-edge to the useless node
397        n->raw_del_out(j);
398        --j;
399        --max;
400      }
401    }
402    if (n->outcnt() == 1 && n->has_special_unique_user()) {
403      record_for_igvn(n->unique_out());
404    }
405  }
406  // Remove useless macro and predicate opaq nodes
407  for (int i = C->macro_count()-1; i >= 0; i--) {
408    Node* n = C->macro_node(i);
409    if (!useful.member(n)) {
410      remove_macro_node(n);
411    }
412  }
413  // Remove useless expensive node
414  for (int i = C->expensive_count()-1; i >= 0; i--) {
415    Node* n = C->expensive_node(i);
416    if (!useful.member(n)) {
417      remove_expensive_node(n);
418    }
419  }
420  // clean up the late inline lists
421  remove_useless_late_inlines(&_string_late_inlines, useful);
422  remove_useless_late_inlines(&_boxing_late_inlines, useful);
423  remove_useless_late_inlines(&_late_inlines, useful);
424  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
425}
426
427//------------------------------frame_size_in_words-----------------------------
428// frame_slots in units of words
429int Compile::frame_size_in_words() const {
430  // shift is 0 in LP32 and 1 in LP64
431  const int shift = (LogBytesPerWord - LogBytesPerInt);
432  int words = _frame_slots >> shift;
433  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
434  return words;
435}
436
437// ============================================================================
438//------------------------------CompileWrapper---------------------------------
439class CompileWrapper : public StackObj {
440  Compile *const _compile;
441 public:
442  CompileWrapper(Compile* compile);
443
444  ~CompileWrapper();
445};
446
447CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
448  // the Compile* pointer is stored in the current ciEnv:
449  ciEnv* env = compile->env();
450  assert(env == ciEnv::current(), "must already be a ciEnv active");
451  assert(env->compiler_data() == NULL, "compile already active?");
452  env->set_compiler_data(compile);
453  assert(compile == Compile::current(), "sanity");
454
455  compile->set_type_dict(NULL);
456  compile->set_type_hwm(NULL);
457  compile->set_type_last_size(0);
458  compile->set_last_tf(NULL, NULL);
459  compile->set_indexSet_arena(NULL);
460  compile->set_indexSet_free_block_list(NULL);
461  compile->init_type_arena();
462  Type::Initialize(compile);
463  _compile->set_scratch_buffer_blob(NULL);
464  _compile->begin_method();
465}
466CompileWrapper::~CompileWrapper() {
467  _compile->end_method();
468  if (_compile->scratch_buffer_blob() != NULL)
469    BufferBlob::free(_compile->scratch_buffer_blob());
470  _compile->env()->set_compiler_data(NULL);
471}
472
473
474//----------------------------print_compile_messages---------------------------
475void Compile::print_compile_messages() {
476#ifndef PRODUCT
477  // Check if recompiling
478  if (_subsume_loads == false && PrintOpto) {
479    // Recompiling without allowing machine instructions to subsume loads
480    tty->print_cr("*********************************************************");
481    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
482    tty->print_cr("*********************************************************");
483  }
484  if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
485    // Recompiling without escape analysis
486    tty->print_cr("*********************************************************");
487    tty->print_cr("** Bailout: Recompile without escape analysis          **");
488    tty->print_cr("*********************************************************");
489  }
490  if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
491    // Recompiling without boxing elimination
492    tty->print_cr("*********************************************************");
493    tty->print_cr("** Bailout: Recompile without boxing elimination       **");
494    tty->print_cr("*********************************************************");
495  }
496  if (env()->break_at_compile()) {
497    // Open the debugger when compiling this method.
498    tty->print("### Breaking when compiling: ");
499    method()->print_short_name();
500    tty->cr();
501    BREAKPOINT;
502  }
503
504  if( PrintOpto ) {
505    if (is_osr_compilation()) {
506      tty->print("[OSR]%3d", _compile_id);
507    } else {
508      tty->print("%3d", _compile_id);
509    }
510  }
511#endif
512}
513
514
515//-----------------------init_scratch_buffer_blob------------------------------
516// Construct a temporary BufferBlob and cache it for this compile.
517void Compile::init_scratch_buffer_blob(int const_size) {
518  // If there is already a scratch buffer blob allocated and the
519  // constant section is big enough, use it.  Otherwise free the
520  // current and allocate a new one.
521  BufferBlob* blob = scratch_buffer_blob();
522  if ((blob != NULL) && (const_size <= _scratch_const_size)) {
523    // Use the current blob.
524  } else {
525    if (blob != NULL) {
526      BufferBlob::free(blob);
527    }
528
529    ResourceMark rm;
530    _scratch_const_size = const_size;
531    int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
532    blob = BufferBlob::create("Compile::scratch_buffer", size);
533    // Record the buffer blob for next time.
534    set_scratch_buffer_blob(blob);
535    // Have we run out of code space?
536    if (scratch_buffer_blob() == NULL) {
537      // Let CompilerBroker disable further compilations.
538      record_failure("Not enough space for scratch buffer in CodeCache");
539      return;
540    }
541  }
542
543  // Initialize the relocation buffers
544  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
545  set_scratch_locs_memory(locs_buf);
546}
547
548
549//-----------------------scratch_emit_size-------------------------------------
550// Helper function that computes size by emitting code
551uint Compile::scratch_emit_size(const Node* n) {
552  // Start scratch_emit_size section.
553  set_in_scratch_emit_size(true);
554
555  // Emit into a trash buffer and count bytes emitted.
556  // This is a pretty expensive way to compute a size,
557  // but it works well enough if seldom used.
558  // All common fixed-size instructions are given a size
559  // method by the AD file.
560  // Note that the scratch buffer blob and locs memory are
561  // allocated at the beginning of the compile task, and
562  // may be shared by several calls to scratch_emit_size.
563  // The allocation of the scratch buffer blob is particularly
564  // expensive, since it has to grab the code cache lock.
565  BufferBlob* blob = this->scratch_buffer_blob();
566  assert(blob != NULL, "Initialize BufferBlob at start");
567  assert(blob->size() > MAX_inst_size, "sanity");
568  relocInfo* locs_buf = scratch_locs_memory();
569  address blob_begin = blob->content_begin();
570  address blob_end   = (address)locs_buf;
571  assert(blob->content_contains(blob_end), "sanity");
572  CodeBuffer buf(blob_begin, blob_end - blob_begin);
573  buf.initialize_consts_size(_scratch_const_size);
574  buf.initialize_stubs_size(MAX_stubs_size);
575  assert(locs_buf != NULL, "sanity");
576  int lsize = MAX_locs_size / 3;
577  buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
578  buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
579  buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
580
581  // Do the emission.
582
583  Label fakeL; // Fake label for branch instructions.
584  Label*   saveL = NULL;
585  uint save_bnum = 0;
586  bool is_branch = n->is_MachBranch();
587  if (is_branch) {
588    MacroAssembler masm(&buf);
589    masm.bind(fakeL);
590    n->as_MachBranch()->save_label(&saveL, &save_bnum);
591    n->as_MachBranch()->label_set(&fakeL, 0);
592  }
593  n->emit(buf, this->regalloc());
594  if (is_branch) // Restore label.
595    n->as_MachBranch()->label_set(saveL, save_bnum);
596
597  // End scratch_emit_size section.
598  set_in_scratch_emit_size(false);
599
600  return buf.insts_size();
601}
602
603
604// ============================================================================
605//------------------------------Compile standard-------------------------------
606debug_only( int Compile::_debug_idx = 100000; )
607
608// Compile a method.  entry_bci is -1 for normal compilations and indicates
609// the continuation bci for on stack replacement.
610
611
612Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
613                  bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
614                : Phase(Compiler),
615                  _env(ci_env),
616                  _log(ci_env->log()),
617                  _compile_id(ci_env->compile_id()),
618                  _save_argument_registers(false),
619                  _stub_name(NULL),
620                  _stub_function(NULL),
621                  _stub_entry_point(NULL),
622                  _method(target),
623                  _entry_bci(osr_bci),
624                  _initial_gvn(NULL),
625                  _for_igvn(NULL),
626                  _warm_calls(NULL),
627                  _subsume_loads(subsume_loads),
628                  _do_escape_analysis(do_escape_analysis),
629                  _eliminate_boxing(eliminate_boxing),
630                  _failure_reason(NULL),
631                  _code_buffer("Compile::Fill_buffer"),
632                  _orig_pc_slot(0),
633                  _orig_pc_slot_offset_in_bytes(0),
634                  _has_method_handle_invokes(false),
635                  _mach_constant_base_node(NULL),
636                  _node_bundling_limit(0),
637                  _node_bundling_base(NULL),
638                  _java_calls(0),
639                  _inner_loops(0),
640                  _scratch_const_size(-1),
641                  _in_scratch_emit_size(false),
642                  _dead_node_list(comp_arena()),
643                  _dead_node_count(0),
644#ifndef PRODUCT
645                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
646                  _printer(IdealGraphPrinter::printer()),
647#endif
648                  _congraph(NULL),
649                  _late_inlines(comp_arena(), 2, 0, NULL),
650                  _string_late_inlines(comp_arena(), 2, 0, NULL),
651                  _boxing_late_inlines(comp_arena(), 2, 0, NULL),
652                  _late_inlines_pos(0),
653                  _number_of_mh_late_inlines(0),
654                  _inlining_progress(false),
655                  _inlining_incrementally(false),
656                  _print_inlining_list(NULL),
657                  _print_inlining(0) {
658  C = this;
659
660  CompileWrapper cw(this);
661#ifndef PRODUCT
662  if (TimeCompiler2) {
663    tty->print(" ");
664    target->holder()->name()->print();
665    tty->print(".");
666    target->print_short_name();
667    tty->print("  ");
668  }
669  TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
670  TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
671  bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
672  if (!print_opto_assembly) {
673    bool print_assembly = (PrintAssembly || _method->should_print_assembly());
674    if (print_assembly && !Disassembler::can_decode()) {
675      tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
676      print_opto_assembly = true;
677    }
678  }
679  set_print_assembly(print_opto_assembly);
680  set_parsed_irreducible_loop(false);
681#endif
682
683  if (ProfileTraps) {
684    // Make sure the method being compiled gets its own MDO,
685    // so we can at least track the decompile_count().
686    method()->ensure_method_data();
687  }
688
689  Init(::AliasLevel);
690
691
692  print_compile_messages();
693
694  if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
695    _ilt = InlineTree::build_inline_tree_root();
696  else
697    _ilt = NULL;
698
699  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
700  assert(num_alias_types() >= AliasIdxRaw, "");
701
702#define MINIMUM_NODE_HASH  1023
703  // Node list that Iterative GVN will start with
704  Unique_Node_List for_igvn(comp_arena());
705  set_for_igvn(&for_igvn);
706
707  // GVN that will be run immediately on new nodes
708  uint estimated_size = method()->code_size()*4+64;
709  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
710  PhaseGVN gvn(node_arena(), estimated_size);
711  set_initial_gvn(&gvn);
712
713  if (PrintInlining  || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
714    _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
715  }
716  { // Scope for timing the parser
717    TracePhase t3("parse", &_t_parser, true);
718
719    // Put top into the hash table ASAP.
720    initial_gvn()->transform_no_reclaim(top());
721
722    // Set up tf(), start(), and find a CallGenerator.
723    CallGenerator* cg = NULL;
724    if (is_osr_compilation()) {
725      const TypeTuple *domain = StartOSRNode::osr_domain();
726      const TypeTuple *range = TypeTuple::make_range(method()->signature());
727      init_tf(TypeFunc::make(domain, range));
728      StartNode* s = new (this) StartOSRNode(root(), domain);
729      initial_gvn()->set_type_bottom(s);
730      init_start(s);
731      cg = CallGenerator::for_osr(method(), entry_bci());
732    } else {
733      // Normal case.
734      init_tf(TypeFunc::make(method()));
735      StartNode* s = new (this) StartNode(root(), tf()->domain());
736      initial_gvn()->set_type_bottom(s);
737      init_start(s);
738      if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
739        // With java.lang.ref.reference.get() we must go through the
740        // intrinsic when G1 is enabled - even when get() is the root
741        // method of the compile - so that, if necessary, the value in
742        // the referent field of the reference object gets recorded by
743        // the pre-barrier code.
744        // Specifically, if G1 is enabled, the value in the referent
745        // field is recorded by the G1 SATB pre barrier. This will
746        // result in the referent being marked live and the reference
747        // object removed from the list of discovered references during
748        // reference processing.
749        cg = find_intrinsic(method(), false);
750      }
751      if (cg == NULL) {
752        float past_uses = method()->interpreter_invocation_count();
753        float expected_uses = past_uses;
754        cg = CallGenerator::for_inline(method(), expected_uses);
755      }
756    }
757    if (failing())  return;
758    if (cg == NULL) {
759      record_method_not_compilable_all_tiers("cannot parse method");
760      return;
761    }
762    JVMState* jvms = build_start_state(start(), tf());
763    if ((jvms = cg->generate(jvms)) == NULL) {
764      record_method_not_compilable("method parse failed");
765      return;
766    }
767    GraphKit kit(jvms);
768
769    if (!kit.stopped()) {
770      // Accept return values, and transfer control we know not where.
771      // This is done by a special, unique ReturnNode bound to root.
772      return_values(kit.jvms());
773    }
774
775    if (kit.has_exceptions()) {
776      // Any exceptions that escape from this call must be rethrown
777      // to whatever caller is dynamically above us on the stack.
778      // This is done by a special, unique RethrowNode bound to root.
779      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
780    }
781
782    assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
783
784    if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
785      inline_string_calls(true);
786    }
787
788    if (failing())  return;
789
790    print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
791
792    // Remove clutter produced by parsing.
793    if (!failing()) {
794      ResourceMark rm;
795      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
796    }
797  }
798
799  // Note:  Large methods are capped off in do_one_bytecode().
800  if (failing())  return;
801
802  // After parsing, node notes are no longer automagic.
803  // They must be propagated by register_new_node_with_optimizer(),
804  // clone(), or the like.
805  set_default_node_notes(NULL);
806
807  for (;;) {
808    int successes = Inline_Warm();
809    if (failing())  return;
810    if (successes == 0)  break;
811  }
812
813  // Drain the list.
814  Finish_Warm();
815#ifndef PRODUCT
816  if (_printer) {
817    _printer->print_inlining(this);
818  }
819#endif
820
821  if (failing())  return;
822  NOT_PRODUCT( verify_graph_edges(); )
823
824  // Now optimize
825  Optimize();
826  if (failing())  return;
827  NOT_PRODUCT( verify_graph_edges(); )
828
829#ifndef PRODUCT
830  if (PrintIdeal) {
831    ttyLocker ttyl;  // keep the following output all in one block
832    // This output goes directly to the tty, not the compiler log.
833    // To enable tools to match it up with the compilation activity,
834    // be sure to tag this tty output with the compile ID.
835    if (xtty != NULL) {
836      xtty->head("ideal compile_id='%d'%s", compile_id(),
837                 is_osr_compilation()    ? " compile_kind='osr'" :
838                 "");
839    }
840    root()->dump(9999);
841    if (xtty != NULL) {
842      xtty->tail("ideal");
843    }
844  }
845#endif
846
847  // Now that we know the size of all the monitors we can add a fixed slot
848  // for the original deopt pc.
849
850  _orig_pc_slot =  fixed_slots();
851  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
852  set_fixed_slots(next_slot);
853
854  // Now generate code
855  Code_Gen();
856  if (failing())  return;
857
858  // Check if we want to skip execution of all compiled code.
859  {
860#ifndef PRODUCT
861    if (OptoNoExecute) {
862      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
863      return;
864    }
865    TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
866#endif
867
868    if (is_osr_compilation()) {
869      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
870      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
871    } else {
872      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
873      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
874    }
875
876    env()->register_method(_method, _entry_bci,
877                           &_code_offsets,
878                           _orig_pc_slot_offset_in_bytes,
879                           code_buffer(),
880                           frame_size_in_words(), _oop_map_set,
881                           &_handler_table, &_inc_table,
882                           compiler,
883                           env()->comp_level(),
884                           has_unsafe_access(),
885                           SharedRuntime::is_wide_vector(max_vector_size())
886                           );
887
888    if (log() != NULL) // Print code cache state into compiler log
889      log()->code_cache_state();
890  }
891}
892
893//------------------------------Compile----------------------------------------
894// Compile a runtime stub
895Compile::Compile( ciEnv* ci_env,
896                  TypeFunc_generator generator,
897                  address stub_function,
898                  const char *stub_name,
899                  int is_fancy_jump,
900                  bool pass_tls,
901                  bool save_arg_registers,
902                  bool return_pc )
903  : Phase(Compiler),
904    _env(ci_env),
905    _log(ci_env->log()),
906    _compile_id(0),
907    _save_argument_registers(save_arg_registers),
908    _method(NULL),
909    _stub_name(stub_name),
910    _stub_function(stub_function),
911    _stub_entry_point(NULL),
912    _entry_bci(InvocationEntryBci),
913    _initial_gvn(NULL),
914    _for_igvn(NULL),
915    _warm_calls(NULL),
916    _orig_pc_slot(0),
917    _orig_pc_slot_offset_in_bytes(0),
918    _subsume_loads(true),
919    _do_escape_analysis(false),
920    _eliminate_boxing(false),
921    _failure_reason(NULL),
922    _code_buffer("Compile::Fill_buffer"),
923    _has_method_handle_invokes(false),
924    _mach_constant_base_node(NULL),
925    _node_bundling_limit(0),
926    _node_bundling_base(NULL),
927    _java_calls(0),
928    _inner_loops(0),
929#ifndef PRODUCT
930    _trace_opto_output(TraceOptoOutput),
931    _printer(NULL),
932#endif
933    _dead_node_list(comp_arena()),
934    _dead_node_count(0),
935    _congraph(NULL),
936    _number_of_mh_late_inlines(0),
937    _inlining_progress(false),
938    _inlining_incrementally(false),
939    _print_inlining_list(NULL),
940    _print_inlining(0) {
941  C = this;
942
943#ifndef PRODUCT
944  TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
945  TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
946  set_print_assembly(PrintFrameConverterAssembly);
947  set_parsed_irreducible_loop(false);
948#endif
949  CompileWrapper cw(this);
950  Init(/*AliasLevel=*/ 0);
951  init_tf((*generator)());
952
953  {
954    // The following is a dummy for the sake of GraphKit::gen_stub
955    Unique_Node_List for_igvn(comp_arena());
956    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
957    PhaseGVN gvn(Thread::current()->resource_area(),255);
958    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
959    gvn.transform_no_reclaim(top());
960
961    GraphKit kit;
962    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
963  }
964
965  NOT_PRODUCT( verify_graph_edges(); )
966  Code_Gen();
967  if (failing())  return;
968
969
970  // Entry point will be accessed using compile->stub_entry_point();
971  if (code_buffer() == NULL) {
972    Matcher::soft_match_failure();
973  } else {
974    if (PrintAssembly && (WizardMode || Verbose))
975      tty->print_cr("### Stub::%s", stub_name);
976
977    if (!failing()) {
978      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
979
980      // Make the NMethod
981      // For now we mark the frame as never safe for profile stackwalking
982      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
983                                                      code_buffer(),
984                                                      CodeOffsets::frame_never_safe,
985                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
986                                                      frame_size_in_words(),
987                                                      _oop_map_set,
988                                                      save_arg_registers);
989      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
990
991      _stub_entry_point = rs->entry_point();
992    }
993  }
994}
995
996//------------------------------Init-------------------------------------------
997// Prepare for a single compilation
998void Compile::Init(int aliaslevel) {
999  _unique  = 0;
1000  _regalloc = NULL;
1001
1002  _tf      = NULL;  // filled in later
1003  _top     = NULL;  // cached later
1004  _matcher = NULL;  // filled in later
1005  _cfg     = NULL;  // filled in later
1006
1007  set_24_bit_selection_and_mode(Use24BitFP, false);
1008
1009  _node_note_array = NULL;
1010  _default_node_notes = NULL;
1011
1012  _immutable_memory = NULL; // filled in at first inquiry
1013
1014  // Globally visible Nodes
1015  // First set TOP to NULL to give safe behavior during creation of RootNode
1016  set_cached_top_node(NULL);
1017  set_root(new (this) RootNode());
1018  // Now that you have a Root to point to, create the real TOP
1019  set_cached_top_node( new (this) ConNode(Type::TOP) );
1020  set_recent_alloc(NULL, NULL);
1021
1022  // Create Debug Information Recorder to record scopes, oopmaps, etc.
1023  env()->set_oop_recorder(new OopRecorder(env()->arena()));
1024  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1025  env()->set_dependencies(new Dependencies(env()));
1026
1027  _fixed_slots = 0;
1028  set_has_split_ifs(false);
1029  set_has_loops(has_method() && method()->has_loops()); // first approximation
1030  set_has_stringbuilder(false);
1031  set_has_boxed_value(false);
1032  _trap_can_recompile = false;  // no traps emitted yet
1033  _major_progress = true; // start out assuming good things will happen
1034  set_has_unsafe_access(false);
1035  set_max_vector_size(0);
1036  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1037  set_decompile_count(0);
1038
1039  set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1040  set_num_loop_opts(LoopOptsCount);
1041  set_do_inlining(Inline);
1042  set_max_inline_size(MaxInlineSize);
1043  set_freq_inline_size(FreqInlineSize);
1044  set_do_scheduling(OptoScheduling);
1045  set_do_count_invocations(false);
1046  set_do_method_data_update(false);
1047
1048  if (debug_info()->recording_non_safepoints()) {
1049    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1050                        (comp_arena(), 8, 0, NULL));
1051    set_default_node_notes(Node_Notes::make(this));
1052  }
1053
1054  // // -- Initialize types before each compile --
1055  // // Update cached type information
1056  // if( _method && _method->constants() )
1057  //   Type::update_loaded_types(_method, _method->constants());
1058
1059  // Init alias_type map.
1060  if (!_do_escape_analysis && aliaslevel == 3)
1061    aliaslevel = 2;  // No unique types without escape analysis
1062  _AliasLevel = aliaslevel;
1063  const int grow_ats = 16;
1064  _max_alias_types = grow_ats;
1065  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1066  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1067  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1068  {
1069    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1070  }
1071  // Initialize the first few types.
1072  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1073  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1074  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1075  _num_alias_types = AliasIdxRaw+1;
1076  // Zero out the alias type cache.
1077  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1078  // A NULL adr_type hits in the cache right away.  Preload the right answer.
1079  probe_alias_cache(NULL)->_index = AliasIdxTop;
1080
1081  _intrinsics = NULL;
1082  _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1083  _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1084  _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1085  register_library_intrinsics();
1086}
1087
1088//---------------------------init_start----------------------------------------
1089// Install the StartNode on this compile object.
1090void Compile::init_start(StartNode* s) {
1091  if (failing())
1092    return; // already failing
1093  assert(s == start(), "");
1094}
1095
1096StartNode* Compile::start() const {
1097  assert(!failing(), "");
1098  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1099    Node* start = root()->fast_out(i);
1100    if( start->is_Start() )
1101      return start->as_Start();
1102  }
1103  ShouldNotReachHere();
1104  return NULL;
1105}
1106
1107//-------------------------------immutable_memory-------------------------------------
1108// Access immutable memory
1109Node* Compile::immutable_memory() {
1110  if (_immutable_memory != NULL) {
1111    return _immutable_memory;
1112  }
1113  StartNode* s = start();
1114  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1115    Node *p = s->fast_out(i);
1116    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1117      _immutable_memory = p;
1118      return _immutable_memory;
1119    }
1120  }
1121  ShouldNotReachHere();
1122  return NULL;
1123}
1124
1125//----------------------set_cached_top_node------------------------------------
1126// Install the cached top node, and make sure Node::is_top works correctly.
1127void Compile::set_cached_top_node(Node* tn) {
1128  if (tn != NULL)  verify_top(tn);
1129  Node* old_top = _top;
1130  _top = tn;
1131  // Calling Node::setup_is_top allows the nodes the chance to adjust
1132  // their _out arrays.
1133  if (_top != NULL)     _top->setup_is_top();
1134  if (old_top != NULL)  old_top->setup_is_top();
1135  assert(_top == NULL || top()->is_top(), "");
1136}
1137
1138#ifdef ASSERT
1139uint Compile::count_live_nodes_by_graph_walk() {
1140  Unique_Node_List useful(comp_arena());
1141  // Get useful node list by walking the graph.
1142  identify_useful_nodes(useful);
1143  return useful.size();
1144}
1145
1146void Compile::print_missing_nodes() {
1147
1148  // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1149  if ((_log == NULL) && (! PrintIdealNodeCount)) {
1150    return;
1151  }
1152
1153  // This is an expensive function. It is executed only when the user
1154  // specifies VerifyIdealNodeCount option or otherwise knows the
1155  // additional work that needs to be done to identify reachable nodes
1156  // by walking the flow graph and find the missing ones using
1157  // _dead_node_list.
1158
1159  Unique_Node_List useful(comp_arena());
1160  // Get useful node list by walking the graph.
1161  identify_useful_nodes(useful);
1162
1163  uint l_nodes = C->live_nodes();
1164  uint l_nodes_by_walk = useful.size();
1165
1166  if (l_nodes != l_nodes_by_walk) {
1167    if (_log != NULL) {
1168      _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1169      _log->stamp();
1170      _log->end_head();
1171    }
1172    VectorSet& useful_member_set = useful.member_set();
1173    int last_idx = l_nodes_by_walk;
1174    for (int i = 0; i < last_idx; i++) {
1175      if (useful_member_set.test(i)) {
1176        if (_dead_node_list.test(i)) {
1177          if (_log != NULL) {
1178            _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1179          }
1180          if (PrintIdealNodeCount) {
1181            // Print the log message to tty
1182              tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1183              useful.at(i)->dump();
1184          }
1185        }
1186      }
1187      else if (! _dead_node_list.test(i)) {
1188        if (_log != NULL) {
1189          _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1190        }
1191        if (PrintIdealNodeCount) {
1192          // Print the log message to tty
1193          tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1194        }
1195      }
1196    }
1197    if (_log != NULL) {
1198      _log->tail("mismatched_nodes");
1199    }
1200  }
1201}
1202#endif
1203
1204#ifndef PRODUCT
1205void Compile::verify_top(Node* tn) const {
1206  if (tn != NULL) {
1207    assert(tn->is_Con(), "top node must be a constant");
1208    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1209    assert(tn->in(0) != NULL, "must have live top node");
1210  }
1211}
1212#endif
1213
1214
1215///-------------------Managing Per-Node Debug & Profile Info-------------------
1216
1217void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1218  guarantee(arr != NULL, "");
1219  int num_blocks = arr->length();
1220  if (grow_by < num_blocks)  grow_by = num_blocks;
1221  int num_notes = grow_by * _node_notes_block_size;
1222  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1223  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1224  while (num_notes > 0) {
1225    arr->append(notes);
1226    notes     += _node_notes_block_size;
1227    num_notes -= _node_notes_block_size;
1228  }
1229  assert(num_notes == 0, "exact multiple, please");
1230}
1231
1232bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1233  if (source == NULL || dest == NULL)  return false;
1234
1235  if (dest->is_Con())
1236    return false;               // Do not push debug info onto constants.
1237
1238#ifdef ASSERT
1239  // Leave a bread crumb trail pointing to the original node:
1240  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1241    dest->set_debug_orig(source);
1242  }
1243#endif
1244
1245  if (node_note_array() == NULL)
1246    return false;               // Not collecting any notes now.
1247
1248  // This is a copy onto a pre-existing node, which may already have notes.
1249  // If both nodes have notes, do not overwrite any pre-existing notes.
1250  Node_Notes* source_notes = node_notes_at(source->_idx);
1251  if (source_notes == NULL || source_notes->is_clear())  return false;
1252  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1253  if (dest_notes == NULL || dest_notes->is_clear()) {
1254    return set_node_notes_at(dest->_idx, source_notes);
1255  }
1256
1257  Node_Notes merged_notes = (*source_notes);
1258  // The order of operations here ensures that dest notes will win...
1259  merged_notes.update_from(dest_notes);
1260  return set_node_notes_at(dest->_idx, &merged_notes);
1261}
1262
1263
1264//--------------------------allow_range_check_smearing-------------------------
1265// Gating condition for coalescing similar range checks.
1266// Sometimes we try 'speculatively' replacing a series of a range checks by a
1267// single covering check that is at least as strong as any of them.
1268// If the optimization succeeds, the simplified (strengthened) range check
1269// will always succeed.  If it fails, we will deopt, and then give up
1270// on the optimization.
1271bool Compile::allow_range_check_smearing() const {
1272  // If this method has already thrown a range-check,
1273  // assume it was because we already tried range smearing
1274  // and it failed.
1275  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1276  return !already_trapped;
1277}
1278
1279
1280//------------------------------flatten_alias_type-----------------------------
1281const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1282  int offset = tj->offset();
1283  TypePtr::PTR ptr = tj->ptr();
1284
1285  // Known instance (scalarizable allocation) alias only with itself.
1286  bool is_known_inst = tj->isa_oopptr() != NULL &&
1287                       tj->is_oopptr()->is_known_instance();
1288
1289  // Process weird unsafe references.
1290  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1291    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1292    assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1293    tj = TypeOopPtr::BOTTOM;
1294    ptr = tj->ptr();
1295    offset = tj->offset();
1296  }
1297
1298  // Array pointers need some flattening
1299  const TypeAryPtr *ta = tj->isa_aryptr();
1300  if( ta && is_known_inst ) {
1301    if ( offset != Type::OffsetBot &&
1302         offset > arrayOopDesc::length_offset_in_bytes() ) {
1303      offset = Type::OffsetBot; // Flatten constant access into array body only
1304      tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1305    }
1306  } else if( ta && _AliasLevel >= 2 ) {
1307    // For arrays indexed by constant indices, we flatten the alias
1308    // space to include all of the array body.  Only the header, klass
1309    // and array length can be accessed un-aliased.
1310    if( offset != Type::OffsetBot ) {
1311      if( ta->const_oop() ) { // MethodData* or Method*
1312        offset = Type::OffsetBot;   // Flatten constant access into array body
1313        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1314      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1315        // range is OK as-is.
1316        tj = ta = TypeAryPtr::RANGE;
1317      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1318        tj = TypeInstPtr::KLASS; // all klass loads look alike
1319        ta = TypeAryPtr::RANGE; // generic ignored junk
1320        ptr = TypePtr::BotPTR;
1321      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1322        tj = TypeInstPtr::MARK;
1323        ta = TypeAryPtr::RANGE; // generic ignored junk
1324        ptr = TypePtr::BotPTR;
1325      } else {                  // Random constant offset into array body
1326        offset = Type::OffsetBot;   // Flatten constant access into array body
1327        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1328      }
1329    }
1330    // Arrays of fixed size alias with arrays of unknown size.
1331    if (ta->size() != TypeInt::POS) {
1332      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1333      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1334    }
1335    // Arrays of known objects become arrays of unknown objects.
1336    if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1337      const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1338      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1339    }
1340    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1341      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1342      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1343    }
1344    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1345    // cannot be distinguished by bytecode alone.
1346    if (ta->elem() == TypeInt::BOOL) {
1347      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1348      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1349      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1350    }
1351    // During the 2nd round of IterGVN, NotNull castings are removed.
1352    // Make sure the Bottom and NotNull variants alias the same.
1353    // Also, make sure exact and non-exact variants alias the same.
1354    if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1355      tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1356    }
1357  }
1358
1359  // Oop pointers need some flattening
1360  const TypeInstPtr *to = tj->isa_instptr();
1361  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1362    ciInstanceKlass *k = to->klass()->as_instance_klass();
1363    if( ptr == TypePtr::Constant ) {
1364      if (to->klass() != ciEnv::current()->Class_klass() ||
1365          offset < k->size_helper() * wordSize) {
1366        // No constant oop pointers (such as Strings); they alias with
1367        // unknown strings.
1368        assert(!is_known_inst, "not scalarizable allocation");
1369        tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1370      }
1371    } else if( is_known_inst ) {
1372      tj = to; // Keep NotNull and klass_is_exact for instance type
1373    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1374      // During the 2nd round of IterGVN, NotNull castings are removed.
1375      // Make sure the Bottom and NotNull variants alias the same.
1376      // Also, make sure exact and non-exact variants alias the same.
1377      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1378    }
1379    // Canonicalize the holder of this field
1380    if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1381      // First handle header references such as a LoadKlassNode, even if the
1382      // object's klass is unloaded at compile time (4965979).
1383      if (!is_known_inst) { // Do it only for non-instance types
1384        tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1385      }
1386    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1387      // Static fields are in the space above the normal instance
1388      // fields in the java.lang.Class instance.
1389      if (to->klass() != ciEnv::current()->Class_klass()) {
1390        to = NULL;
1391        tj = TypeOopPtr::BOTTOM;
1392        offset = tj->offset();
1393      }
1394    } else {
1395      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1396      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1397        if( is_known_inst ) {
1398          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1399        } else {
1400          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1401        }
1402      }
1403    }
1404  }
1405
1406  // Klass pointers to object array klasses need some flattening
1407  const TypeKlassPtr *tk = tj->isa_klassptr();
1408  if( tk ) {
1409    // If we are referencing a field within a Klass, we need
1410    // to assume the worst case of an Object.  Both exact and
1411    // inexact types must flatten to the same alias class so
1412    // use NotNull as the PTR.
1413    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1414
1415      tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1416                                   TypeKlassPtr::OBJECT->klass(),
1417                                   offset);
1418    }
1419
1420    ciKlass* klass = tk->klass();
1421    if( klass->is_obj_array_klass() ) {
1422      ciKlass* k = TypeAryPtr::OOPS->klass();
1423      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1424        k = TypeInstPtr::BOTTOM->klass();
1425      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1426    }
1427
1428    // Check for precise loads from the primary supertype array and force them
1429    // to the supertype cache alias index.  Check for generic array loads from
1430    // the primary supertype array and also force them to the supertype cache
1431    // alias index.  Since the same load can reach both, we need to merge
1432    // these 2 disparate memories into the same alias class.  Since the
1433    // primary supertype array is read-only, there's no chance of confusion
1434    // where we bypass an array load and an array store.
1435    int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1436    if (offset == Type::OffsetBot ||
1437        (offset >= primary_supers_offset &&
1438         offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1439        offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1440      offset = in_bytes(Klass::secondary_super_cache_offset());
1441      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1442    }
1443  }
1444
1445  // Flatten all Raw pointers together.
1446  if (tj->base() == Type::RawPtr)
1447    tj = TypeRawPtr::BOTTOM;
1448
1449  if (tj->base() == Type::AnyPtr)
1450    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1451
1452  // Flatten all to bottom for now
1453  switch( _AliasLevel ) {
1454  case 0:
1455    tj = TypePtr::BOTTOM;
1456    break;
1457  case 1:                       // Flatten to: oop, static, field or array
1458    switch (tj->base()) {
1459    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1460    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1461    case Type::AryPtr:   // do not distinguish arrays at all
1462    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1463    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1464    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1465    default: ShouldNotReachHere();
1466    }
1467    break;
1468  case 2:                       // No collapsing at level 2; keep all splits
1469  case 3:                       // No collapsing at level 3; keep all splits
1470    break;
1471  default:
1472    Unimplemented();
1473  }
1474
1475  offset = tj->offset();
1476  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1477
1478  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1479          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1480          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1481          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1482          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1483          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1484          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1485          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1486  assert( tj->ptr() != TypePtr::TopPTR &&
1487          tj->ptr() != TypePtr::AnyNull &&
1488          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1489//    assert( tj->ptr() != TypePtr::Constant ||
1490//            tj->base() == Type::RawPtr ||
1491//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1492
1493  return tj;
1494}
1495
1496void Compile::AliasType::Init(int i, const TypePtr* at) {
1497  _index = i;
1498  _adr_type = at;
1499  _field = NULL;
1500  _is_rewritable = true; // default
1501  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1502  if (atoop != NULL && atoop->is_known_instance()) {
1503    const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1504    _general_index = Compile::current()->get_alias_index(gt);
1505  } else {
1506    _general_index = 0;
1507  }
1508}
1509
1510//---------------------------------print_on------------------------------------
1511#ifndef PRODUCT
1512void Compile::AliasType::print_on(outputStream* st) {
1513  if (index() < 10)
1514        st->print("@ <%d> ", index());
1515  else  st->print("@ <%d>",  index());
1516  st->print(is_rewritable() ? "   " : " RO");
1517  int offset = adr_type()->offset();
1518  if (offset == Type::OffsetBot)
1519        st->print(" +any");
1520  else  st->print(" +%-3d", offset);
1521  st->print(" in ");
1522  adr_type()->dump_on(st);
1523  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1524  if (field() != NULL && tjp) {
1525    if (tjp->klass()  != field()->holder() ||
1526        tjp->offset() != field()->offset_in_bytes()) {
1527      st->print(" != ");
1528      field()->print();
1529      st->print(" ***");
1530    }
1531  }
1532}
1533
1534void print_alias_types() {
1535  Compile* C = Compile::current();
1536  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1537  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1538    C->alias_type(idx)->print_on(tty);
1539    tty->cr();
1540  }
1541}
1542#endif
1543
1544
1545//----------------------------probe_alias_cache--------------------------------
1546Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1547  intptr_t key = (intptr_t) adr_type;
1548  key ^= key >> logAliasCacheSize;
1549  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1550}
1551
1552
1553//-----------------------------grow_alias_types--------------------------------
1554void Compile::grow_alias_types() {
1555  const int old_ats  = _max_alias_types; // how many before?
1556  const int new_ats  = old_ats;          // how many more?
1557  const int grow_ats = old_ats+new_ats;  // how many now?
1558  _max_alias_types = grow_ats;
1559  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1560  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1561  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1562  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1563}
1564
1565
1566//--------------------------------find_alias_type------------------------------
1567Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1568  if (_AliasLevel == 0)
1569    return alias_type(AliasIdxBot);
1570
1571  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1572  if (ace->_adr_type == adr_type) {
1573    return alias_type(ace->_index);
1574  }
1575
1576  // Handle special cases.
1577  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1578  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1579
1580  // Do it the slow way.
1581  const TypePtr* flat = flatten_alias_type(adr_type);
1582
1583#ifdef ASSERT
1584  assert(flat == flatten_alias_type(flat), "idempotent");
1585  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1586  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1587    const TypeOopPtr* foop = flat->is_oopptr();
1588    // Scalarizable allocations have exact klass always.
1589    bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1590    const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1591    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1592  }
1593  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1594#endif
1595
1596  int idx = AliasIdxTop;
1597  for (int i = 0; i < num_alias_types(); i++) {
1598    if (alias_type(i)->adr_type() == flat) {
1599      idx = i;
1600      break;
1601    }
1602  }
1603
1604  if (idx == AliasIdxTop) {
1605    if (no_create)  return NULL;
1606    // Grow the array if necessary.
1607    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1608    // Add a new alias type.
1609    idx = _num_alias_types++;
1610    _alias_types[idx]->Init(idx, flat);
1611    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1612    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1613    if (flat->isa_instptr()) {
1614      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1615          && flat->is_instptr()->klass() == env()->Class_klass())
1616        alias_type(idx)->set_rewritable(false);
1617    }
1618    if (flat->isa_klassptr()) {
1619      if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1620        alias_type(idx)->set_rewritable(false);
1621      if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1622        alias_type(idx)->set_rewritable(false);
1623      if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1624        alias_type(idx)->set_rewritable(false);
1625      if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1626        alias_type(idx)->set_rewritable(false);
1627    }
1628    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1629    // but the base pointer type is not distinctive enough to identify
1630    // references into JavaThread.)
1631
1632    // Check for final fields.
1633    const TypeInstPtr* tinst = flat->isa_instptr();
1634    if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1635      ciField* field;
1636      if (tinst->const_oop() != NULL &&
1637          tinst->klass() == ciEnv::current()->Class_klass() &&
1638          tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1639        // static field
1640        ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1641        field = k->get_field_by_offset(tinst->offset(), true);
1642      } else {
1643        ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1644        field = k->get_field_by_offset(tinst->offset(), false);
1645      }
1646      assert(field == NULL ||
1647             original_field == NULL ||
1648             (field->holder() == original_field->holder() &&
1649              field->offset() == original_field->offset() &&
1650              field->is_static() == original_field->is_static()), "wrong field?");
1651      // Set field() and is_rewritable() attributes.
1652      if (field != NULL)  alias_type(idx)->set_field(field);
1653    }
1654  }
1655
1656  // Fill the cache for next time.
1657  ace->_adr_type = adr_type;
1658  ace->_index    = idx;
1659  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1660
1661  // Might as well try to fill the cache for the flattened version, too.
1662  AliasCacheEntry* face = probe_alias_cache(flat);
1663  if (face->_adr_type == NULL) {
1664    face->_adr_type = flat;
1665    face->_index    = idx;
1666    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1667  }
1668
1669  return alias_type(idx);
1670}
1671
1672
1673Compile::AliasType* Compile::alias_type(ciField* field) {
1674  const TypeOopPtr* t;
1675  if (field->is_static())
1676    t = TypeInstPtr::make(field->holder()->java_mirror());
1677  else
1678    t = TypeOopPtr::make_from_klass_raw(field->holder());
1679  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1680  assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1681  return atp;
1682}
1683
1684
1685//------------------------------have_alias_type--------------------------------
1686bool Compile::have_alias_type(const TypePtr* adr_type) {
1687  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1688  if (ace->_adr_type == adr_type) {
1689    return true;
1690  }
1691
1692  // Handle special cases.
1693  if (adr_type == NULL)             return true;
1694  if (adr_type == TypePtr::BOTTOM)  return true;
1695
1696  return find_alias_type(adr_type, true, NULL) != NULL;
1697}
1698
1699//-----------------------------must_alias--------------------------------------
1700// True if all values of the given address type are in the given alias category.
1701bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1702  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1703  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1704  if (alias_idx == AliasIdxTop)         return false; // the empty category
1705  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1706
1707  // the only remaining possible overlap is identity
1708  int adr_idx = get_alias_index(adr_type);
1709  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1710  assert(adr_idx == alias_idx ||
1711         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1712          && adr_type                       != TypeOopPtr::BOTTOM),
1713         "should not be testing for overlap with an unsafe pointer");
1714  return adr_idx == alias_idx;
1715}
1716
1717//------------------------------can_alias--------------------------------------
1718// True if any values of the given address type are in the given alias category.
1719bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1720  if (alias_idx == AliasIdxTop)         return false; // the empty category
1721  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1722  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1723  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1724
1725  // the only remaining possible overlap is identity
1726  int adr_idx = get_alias_index(adr_type);
1727  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1728  return adr_idx == alias_idx;
1729}
1730
1731
1732
1733//---------------------------pop_warm_call-------------------------------------
1734WarmCallInfo* Compile::pop_warm_call() {
1735  WarmCallInfo* wci = _warm_calls;
1736  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1737  return wci;
1738}
1739
1740//----------------------------Inline_Warm--------------------------------------
1741int Compile::Inline_Warm() {
1742  // If there is room, try to inline some more warm call sites.
1743  // %%% Do a graph index compaction pass when we think we're out of space?
1744  if (!InlineWarmCalls)  return 0;
1745
1746  int calls_made_hot = 0;
1747  int room_to_grow   = NodeCountInliningCutoff - unique();
1748  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1749  int amount_grown   = 0;
1750  WarmCallInfo* call;
1751  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1752    int est_size = (int)call->size();
1753    if (est_size > (room_to_grow - amount_grown)) {
1754      // This one won't fit anyway.  Get rid of it.
1755      call->make_cold();
1756      continue;
1757    }
1758    call->make_hot();
1759    calls_made_hot++;
1760    amount_grown   += est_size;
1761    amount_to_grow -= est_size;
1762  }
1763
1764  if (calls_made_hot > 0)  set_major_progress();
1765  return calls_made_hot;
1766}
1767
1768
1769//----------------------------Finish_Warm--------------------------------------
1770void Compile::Finish_Warm() {
1771  if (!InlineWarmCalls)  return;
1772  if (failing())  return;
1773  if (warm_calls() == NULL)  return;
1774
1775  // Clean up loose ends, if we are out of space for inlining.
1776  WarmCallInfo* call;
1777  while ((call = pop_warm_call()) != NULL) {
1778    call->make_cold();
1779  }
1780}
1781
1782//---------------------cleanup_loop_predicates-----------------------
1783// Remove the opaque nodes that protect the predicates so that all unused
1784// checks and uncommon_traps will be eliminated from the ideal graph
1785void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1786  if (predicate_count()==0) return;
1787  for (int i = predicate_count(); i > 0; i--) {
1788    Node * n = predicate_opaque1_node(i-1);
1789    assert(n->Opcode() == Op_Opaque1, "must be");
1790    igvn.replace_node(n, n->in(1));
1791  }
1792  assert(predicate_count()==0, "should be clean!");
1793}
1794
1795// StringOpts and late inlining of string methods
1796void Compile::inline_string_calls(bool parse_time) {
1797  {
1798    // remove useless nodes to make the usage analysis simpler
1799    ResourceMark rm;
1800    PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1801  }
1802
1803  {
1804    ResourceMark rm;
1805    print_method(PHASE_BEFORE_STRINGOPTS, 3);
1806    PhaseStringOpts pso(initial_gvn(), for_igvn());
1807    print_method(PHASE_AFTER_STRINGOPTS, 3);
1808  }
1809
1810  // now inline anything that we skipped the first time around
1811  if (!parse_time) {
1812    _late_inlines_pos = _late_inlines.length();
1813  }
1814
1815  while (_string_late_inlines.length() > 0) {
1816    CallGenerator* cg = _string_late_inlines.pop();
1817    cg->do_late_inline();
1818    if (failing())  return;
1819  }
1820  _string_late_inlines.trunc_to(0);
1821}
1822
1823// Late inlining of boxing methods
1824void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1825  if (_boxing_late_inlines.length() > 0) {
1826    assert(has_boxed_value(), "inconsistent");
1827
1828    PhaseGVN* gvn = initial_gvn();
1829    set_inlining_incrementally(true);
1830
1831    assert( igvn._worklist.size() == 0, "should be done with igvn" );
1832    for_igvn()->clear();
1833    gvn->replace_with(&igvn);
1834
1835    while (_boxing_late_inlines.length() > 0) {
1836      CallGenerator* cg = _boxing_late_inlines.pop();
1837      cg->do_late_inline();
1838      if (failing())  return;
1839    }
1840    _boxing_late_inlines.trunc_to(0);
1841
1842    {
1843      ResourceMark rm;
1844      PhaseRemoveUseless pru(gvn, for_igvn());
1845    }
1846
1847    igvn = PhaseIterGVN(gvn);
1848    igvn.optimize();
1849
1850    set_inlining_progress(false);
1851    set_inlining_incrementally(false);
1852  }
1853}
1854
1855void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1856  assert(IncrementalInline, "incremental inlining should be on");
1857  PhaseGVN* gvn = initial_gvn();
1858
1859  set_inlining_progress(false);
1860  for_igvn()->clear();
1861  gvn->replace_with(&igvn);
1862
1863  int i = 0;
1864
1865  for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1866    CallGenerator* cg = _late_inlines.at(i);
1867    _late_inlines_pos = i+1;
1868    cg->do_late_inline();
1869    if (failing())  return;
1870  }
1871  int j = 0;
1872  for (; i < _late_inlines.length(); i++, j++) {
1873    _late_inlines.at_put(j, _late_inlines.at(i));
1874  }
1875  _late_inlines.trunc_to(j);
1876
1877  {
1878    ResourceMark rm;
1879    PhaseRemoveUseless pru(gvn, for_igvn());
1880  }
1881
1882  igvn = PhaseIterGVN(gvn);
1883}
1884
1885// Perform incremental inlining until bound on number of live nodes is reached
1886void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1887  PhaseGVN* gvn = initial_gvn();
1888
1889  set_inlining_incrementally(true);
1890  set_inlining_progress(true);
1891  uint low_live_nodes = 0;
1892
1893  while(inlining_progress() && _late_inlines.length() > 0) {
1894
1895    if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1896      if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1897        // PhaseIdealLoop is expensive so we only try it once we are
1898        // out of loop and we only try it again if the previous helped
1899        // got the number of nodes down significantly
1900        PhaseIdealLoop ideal_loop( igvn, false, true );
1901        if (failing())  return;
1902        low_live_nodes = live_nodes();
1903        _major_progress = true;
1904      }
1905
1906      if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1907        break;
1908      }
1909    }
1910
1911    inline_incrementally_one(igvn);
1912
1913    if (failing())  return;
1914
1915    igvn.optimize();
1916
1917    if (failing())  return;
1918  }
1919
1920  assert( igvn._worklist.size() == 0, "should be done with igvn" );
1921
1922  if (_string_late_inlines.length() > 0) {
1923    assert(has_stringbuilder(), "inconsistent");
1924    for_igvn()->clear();
1925    initial_gvn()->replace_with(&igvn);
1926
1927    inline_string_calls(false);
1928
1929    if (failing())  return;
1930
1931    {
1932      ResourceMark rm;
1933      PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1934    }
1935
1936    igvn = PhaseIterGVN(gvn);
1937
1938    igvn.optimize();
1939  }
1940
1941  set_inlining_incrementally(false);
1942}
1943
1944
1945//------------------------------Optimize---------------------------------------
1946// Given a graph, optimize it.
1947void Compile::Optimize() {
1948  TracePhase t1("optimizer", &_t_optimizer, true);
1949
1950#ifndef PRODUCT
1951  if (env()->break_at_compile()) {
1952    BREAKPOINT;
1953  }
1954
1955#endif
1956
1957  ResourceMark rm;
1958  int          loop_opts_cnt;
1959
1960  NOT_PRODUCT( verify_graph_edges(); )
1961
1962  print_method(PHASE_AFTER_PARSING);
1963
1964 {
1965  // Iterative Global Value Numbering, including ideal transforms
1966  // Initialize IterGVN with types and values from parse-time GVN
1967  PhaseIterGVN igvn(initial_gvn());
1968  {
1969    NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1970    igvn.optimize();
1971  }
1972
1973  print_method(PHASE_ITER_GVN1, 2);
1974
1975  if (failing())  return;
1976
1977  {
1978    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
1979    inline_incrementally(igvn);
1980  }
1981
1982  print_method(PHASE_INCREMENTAL_INLINE, 2);
1983
1984  if (failing())  return;
1985
1986  if (eliminate_boxing()) {
1987    NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
1988    // Inline valueOf() methods now.
1989    inline_boxing_calls(igvn);
1990
1991    print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
1992
1993    if (failing())  return;
1994  }
1995
1996  // No more new expensive nodes will be added to the list from here
1997  // so keep only the actual candidates for optimizations.
1998  cleanup_expensive_nodes(igvn);
1999
2000  // Perform escape analysis
2001  if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2002    if (has_loops()) {
2003      // Cleanup graph (remove dead nodes).
2004      TracePhase t2("idealLoop", &_t_idealLoop, true);
2005      PhaseIdealLoop ideal_loop( igvn, false, true );
2006      if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2007      if (failing())  return;
2008    }
2009    ConnectionGraph::do_analysis(this, &igvn);
2010
2011    if (failing())  return;
2012
2013    // Optimize out fields loads from scalar replaceable allocations.
2014    igvn.optimize();
2015    print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2016
2017    if (failing())  return;
2018
2019    if (congraph() != NULL && macro_count() > 0) {
2020      NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2021      PhaseMacroExpand mexp(igvn);
2022      mexp.eliminate_macro_nodes();
2023      igvn.set_delay_transform(false);
2024
2025      igvn.optimize();
2026      print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2027
2028      if (failing())  return;
2029    }
2030  }
2031
2032  // Loop transforms on the ideal graph.  Range Check Elimination,
2033  // peeling, unrolling, etc.
2034
2035  // Set loop opts counter
2036  loop_opts_cnt = num_loop_opts();
2037  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2038    {
2039      TracePhase t2("idealLoop", &_t_idealLoop, true);
2040      PhaseIdealLoop ideal_loop( igvn, true );
2041      loop_opts_cnt--;
2042      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2043      if (failing())  return;
2044    }
2045    // Loop opts pass if partial peeling occurred in previous pass
2046    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2047      TracePhase t3("idealLoop", &_t_idealLoop, true);
2048      PhaseIdealLoop ideal_loop( igvn, false );
2049      loop_opts_cnt--;
2050      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2051      if (failing())  return;
2052    }
2053    // Loop opts pass for loop-unrolling before CCP
2054    if(major_progress() && (loop_opts_cnt > 0)) {
2055      TracePhase t4("idealLoop", &_t_idealLoop, true);
2056      PhaseIdealLoop ideal_loop( igvn, false );
2057      loop_opts_cnt--;
2058      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2059    }
2060    if (!failing()) {
2061      // Verify that last round of loop opts produced a valid graph
2062      NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2063      PhaseIdealLoop::verify(igvn);
2064    }
2065  }
2066  if (failing())  return;
2067
2068  // Conditional Constant Propagation;
2069  PhaseCCP ccp( &igvn );
2070  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2071  {
2072    TracePhase t2("ccp", &_t_ccp, true);
2073    ccp.do_transform();
2074  }
2075  print_method(PHASE_CPP1, 2);
2076
2077  assert( true, "Break here to ccp.dump_old2new_map()");
2078
2079  // Iterative Global Value Numbering, including ideal transforms
2080  {
2081    NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2082    igvn = ccp;
2083    igvn.optimize();
2084  }
2085
2086  print_method(PHASE_ITER_GVN2, 2);
2087
2088  if (failing())  return;
2089
2090  // Loop transforms on the ideal graph.  Range Check Elimination,
2091  // peeling, unrolling, etc.
2092  if(loop_opts_cnt > 0) {
2093    debug_only( int cnt = 0; );
2094    while(major_progress() && (loop_opts_cnt > 0)) {
2095      TracePhase t2("idealLoop", &_t_idealLoop, true);
2096      assert( cnt++ < 40, "infinite cycle in loop optimization" );
2097      PhaseIdealLoop ideal_loop( igvn, true);
2098      loop_opts_cnt--;
2099      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2100      if (failing())  return;
2101    }
2102  }
2103
2104  {
2105    // Verify that all previous optimizations produced a valid graph
2106    // at least to this point, even if no loop optimizations were done.
2107    NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2108    PhaseIdealLoop::verify(igvn);
2109  }
2110
2111  {
2112    NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2113    PhaseMacroExpand  mex(igvn);
2114    if (mex.expand_macro_nodes()) {
2115      assert(failing(), "must bail out w/ explicit message");
2116      return;
2117    }
2118  }
2119
2120 } // (End scope of igvn; run destructor if necessary for asserts.)
2121
2122  dump_inlining();
2123  // A method with only infinite loops has no edges entering loops from root
2124  {
2125    NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2126    if (final_graph_reshaping()) {
2127      assert(failing(), "must bail out w/ explicit message");
2128      return;
2129    }
2130  }
2131
2132  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2133}
2134
2135
2136//------------------------------Code_Gen---------------------------------------
2137// Given a graph, generate code for it
2138void Compile::Code_Gen() {
2139  if (failing())  return;
2140
2141  // Perform instruction selection.  You might think we could reclaim Matcher
2142  // memory PDQ, but actually the Matcher is used in generating spill code.
2143  // Internals of the Matcher (including some VectorSets) must remain live
2144  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2145  // set a bit in reclaimed memory.
2146
2147  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2148  // nodes.  Mapping is only valid at the root of each matched subtree.
2149  NOT_PRODUCT( verify_graph_edges(); )
2150
2151  Node_List proj_list;
2152  Matcher m(proj_list);
2153  _matcher = &m;
2154  {
2155    TracePhase t2("matcher", &_t_matcher, true);
2156    m.match();
2157  }
2158  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2159  // nodes.  Mapping is only valid at the root of each matched subtree.
2160  NOT_PRODUCT( verify_graph_edges(); )
2161
2162  // If you have too many nodes, or if matching has failed, bail out
2163  check_node_count(0, "out of nodes matching instructions");
2164  if (failing())  return;
2165
2166  // Build a proper-looking CFG
2167  PhaseCFG cfg(node_arena(), root(), m);
2168  _cfg = &cfg;
2169  {
2170    NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2171    cfg.Dominators();
2172    if (failing())  return;
2173
2174    NOT_PRODUCT( verify_graph_edges(); )
2175
2176    cfg.Estimate_Block_Frequency();
2177    cfg.GlobalCodeMotion(m,unique(),proj_list);
2178    if (failing())  return;
2179
2180    print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2181
2182    NOT_PRODUCT( verify_graph_edges(); )
2183
2184    debug_only( cfg.verify(); )
2185  }
2186  NOT_PRODUCT( verify_graph_edges(); )
2187
2188  PhaseChaitin regalloc(unique(), cfg, m);
2189  _regalloc = &regalloc;
2190  {
2191    TracePhase t2("regalloc", &_t_registerAllocation, true);
2192    // Perform register allocation.  After Chaitin, use-def chains are
2193    // no longer accurate (at spill code) and so must be ignored.
2194    // Node->LRG->reg mappings are still accurate.
2195    _regalloc->Register_Allocate();
2196
2197    // Bail out if the allocator builds too many nodes
2198    if (failing()) {
2199      return;
2200    }
2201  }
2202
2203  // Prior to register allocation we kept empty basic blocks in case the
2204  // the allocator needed a place to spill.  After register allocation we
2205  // are not adding any new instructions.  If any basic block is empty, we
2206  // can now safely remove it.
2207  {
2208    NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2209    cfg.remove_empty();
2210    if (do_freq_based_layout()) {
2211      PhaseBlockLayout layout(cfg);
2212    } else {
2213      cfg.set_loop_alignment();
2214    }
2215    cfg.fixup_flow();
2216  }
2217
2218  // Apply peephole optimizations
2219  if( OptoPeephole ) {
2220    NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2221    PhasePeephole peep( _regalloc, cfg);
2222    peep.do_transform();
2223  }
2224
2225  // Convert Nodes to instruction bits in a buffer
2226  {
2227    // %%%% workspace merge brought two timers together for one job
2228    TracePhase t2a("output", &_t_output, true);
2229    NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2230    Output();
2231  }
2232
2233  print_method(PHASE_FINAL_CODE);
2234
2235  // He's dead, Jim.
2236  _cfg     = (PhaseCFG*)0xdeadbeef;
2237  _regalloc = (PhaseChaitin*)0xdeadbeef;
2238}
2239
2240
2241//------------------------------dump_asm---------------------------------------
2242// Dump formatted assembly
2243#ifndef PRODUCT
2244void Compile::dump_asm(int *pcs, uint pc_limit) {
2245  bool cut_short = false;
2246  tty->print_cr("#");
2247  tty->print("#  ");  _tf->dump();  tty->cr();
2248  tty->print_cr("#");
2249
2250  // For all blocks
2251  int pc = 0x0;                 // Program counter
2252  char starts_bundle = ' ';
2253  _regalloc->dump_frame();
2254
2255  Node *n = NULL;
2256  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
2257    if (VMThread::should_terminate()) { cut_short = true; break; }
2258    Block *b = _cfg->_blocks[i];
2259    if (b->is_connector() && !Verbose) continue;
2260    n = b->_nodes[0];
2261    if (pcs && n->_idx < pc_limit)
2262      tty->print("%3.3x   ", pcs[n->_idx]);
2263    else
2264      tty->print("      ");
2265    b->dump_head( &_cfg->_bbs );
2266    if (b->is_connector()) {
2267      tty->print_cr("        # Empty connector block");
2268    } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2269      tty->print_cr("        # Block is sole successor of call");
2270    }
2271
2272    // For all instructions
2273    Node *delay = NULL;
2274    for( uint j = 0; j<b->_nodes.size(); j++ ) {
2275      if (VMThread::should_terminate()) { cut_short = true; break; }
2276      n = b->_nodes[j];
2277      if (valid_bundle_info(n)) {
2278        Bundle *bundle = node_bundling(n);
2279        if (bundle->used_in_unconditional_delay()) {
2280          delay = n;
2281          continue;
2282        }
2283        if (bundle->starts_bundle())
2284          starts_bundle = '+';
2285      }
2286
2287      if (WizardMode) n->dump();
2288
2289      if( !n->is_Region() &&    // Dont print in the Assembly
2290          !n->is_Phi() &&       // a few noisely useless nodes
2291          !n->is_Proj() &&
2292          !n->is_MachTemp() &&
2293          !n->is_SafePointScalarObject() &&
2294          !n->is_Catch() &&     // Would be nice to print exception table targets
2295          !n->is_MergeMem() &&  // Not very interesting
2296          !n->is_top() &&       // Debug info table constants
2297          !(n->is_Con() && !n->is_Mach())// Debug info table constants
2298          ) {
2299        if (pcs && n->_idx < pc_limit)
2300          tty->print("%3.3x", pcs[n->_idx]);
2301        else
2302          tty->print("   ");
2303        tty->print(" %c ", starts_bundle);
2304        starts_bundle = ' ';
2305        tty->print("\t");
2306        n->format(_regalloc, tty);
2307        tty->cr();
2308      }
2309
2310      // If we have an instruction with a delay slot, and have seen a delay,
2311      // then back up and print it
2312      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2313        assert(delay != NULL, "no unconditional delay instruction");
2314        if (WizardMode) delay->dump();
2315
2316        if (node_bundling(delay)->starts_bundle())
2317          starts_bundle = '+';
2318        if (pcs && n->_idx < pc_limit)
2319          tty->print("%3.3x", pcs[n->_idx]);
2320        else
2321          tty->print("   ");
2322        tty->print(" %c ", starts_bundle);
2323        starts_bundle = ' ';
2324        tty->print("\t");
2325        delay->format(_regalloc, tty);
2326        tty->print_cr("");
2327        delay = NULL;
2328      }
2329
2330      // Dump the exception table as well
2331      if( n->is_Catch() && (Verbose || WizardMode) ) {
2332        // Print the exception table for this offset
2333        _handler_table.print_subtable_for(pc);
2334      }
2335    }
2336
2337    if (pcs && n->_idx < pc_limit)
2338      tty->print_cr("%3.3x", pcs[n->_idx]);
2339    else
2340      tty->print_cr("");
2341
2342    assert(cut_short || delay == NULL, "no unconditional delay branch");
2343
2344  } // End of per-block dump
2345  tty->print_cr("");
2346
2347  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2348}
2349#endif
2350
2351//------------------------------Final_Reshape_Counts---------------------------
2352// This class defines counters to help identify when a method
2353// may/must be executed using hardware with only 24-bit precision.
2354struct Final_Reshape_Counts : public StackObj {
2355  int  _call_count;             // count non-inlined 'common' calls
2356  int  _float_count;            // count float ops requiring 24-bit precision
2357  int  _double_count;           // count double ops requiring more precision
2358  int  _java_call_count;        // count non-inlined 'java' calls
2359  int  _inner_loop_count;       // count loops which need alignment
2360  VectorSet _visited;           // Visitation flags
2361  Node_List _tests;             // Set of IfNodes & PCTableNodes
2362
2363  Final_Reshape_Counts() :
2364    _call_count(0), _float_count(0), _double_count(0),
2365    _java_call_count(0), _inner_loop_count(0),
2366    _visited( Thread::current()->resource_area() ) { }
2367
2368  void inc_call_count  () { _call_count  ++; }
2369  void inc_float_count () { _float_count ++; }
2370  void inc_double_count() { _double_count++; }
2371  void inc_java_call_count() { _java_call_count++; }
2372  void inc_inner_loop_count() { _inner_loop_count++; }
2373
2374  int  get_call_count  () const { return _call_count  ; }
2375  int  get_float_count () const { return _float_count ; }
2376  int  get_double_count() const { return _double_count; }
2377  int  get_java_call_count() const { return _java_call_count; }
2378  int  get_inner_loop_count() const { return _inner_loop_count; }
2379};
2380
2381#ifdef ASSERT
2382static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2383  ciInstanceKlass *k = tp->klass()->as_instance_klass();
2384  // Make sure the offset goes inside the instance layout.
2385  return k->contains_field_offset(tp->offset());
2386  // Note that OffsetBot and OffsetTop are very negative.
2387}
2388#endif
2389
2390// Eliminate trivially redundant StoreCMs and accumulate their
2391// precedence edges.
2392void Compile::eliminate_redundant_card_marks(Node* n) {
2393  assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2394  if (n->in(MemNode::Address)->outcnt() > 1) {
2395    // There are multiple users of the same address so it might be
2396    // possible to eliminate some of the StoreCMs
2397    Node* mem = n->in(MemNode::Memory);
2398    Node* adr = n->in(MemNode::Address);
2399    Node* val = n->in(MemNode::ValueIn);
2400    Node* prev = n;
2401    bool done = false;
2402    // Walk the chain of StoreCMs eliminating ones that match.  As
2403    // long as it's a chain of single users then the optimization is
2404    // safe.  Eliminating partially redundant StoreCMs would require
2405    // cloning copies down the other paths.
2406    while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2407      if (adr == mem->in(MemNode::Address) &&
2408          val == mem->in(MemNode::ValueIn)) {
2409        // redundant StoreCM
2410        if (mem->req() > MemNode::OopStore) {
2411          // Hasn't been processed by this code yet.
2412          n->add_prec(mem->in(MemNode::OopStore));
2413        } else {
2414          // Already converted to precedence edge
2415          for (uint i = mem->req(); i < mem->len(); i++) {
2416            // Accumulate any precedence edges
2417            if (mem->in(i) != NULL) {
2418              n->add_prec(mem->in(i));
2419            }
2420          }
2421          // Everything above this point has been processed.
2422          done = true;
2423        }
2424        // Eliminate the previous StoreCM
2425        prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2426        assert(mem->outcnt() == 0, "should be dead");
2427        mem->disconnect_inputs(NULL, this);
2428      } else {
2429        prev = mem;
2430      }
2431      mem = prev->in(MemNode::Memory);
2432    }
2433  }
2434}
2435
2436//------------------------------final_graph_reshaping_impl----------------------
2437// Implement items 1-5 from final_graph_reshaping below.
2438void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2439
2440  if ( n->outcnt() == 0 ) return; // dead node
2441  uint nop = n->Opcode();
2442
2443  // Check for 2-input instruction with "last use" on right input.
2444  // Swap to left input.  Implements item (2).
2445  if( n->req() == 3 &&          // two-input instruction
2446      n->in(1)->outcnt() > 1 && // left use is NOT a last use
2447      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2448      n->in(2)->outcnt() == 1 &&// right use IS a last use
2449      !n->in(2)->is_Con() ) {   // right use is not a constant
2450    // Check for commutative opcode
2451    switch( nop ) {
2452    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2453    case Op_MaxI:  case Op_MinI:
2454    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2455    case Op_AndL:  case Op_XorL:  case Op_OrL:
2456    case Op_AndI:  case Op_XorI:  case Op_OrI: {
2457      // Move "last use" input to left by swapping inputs
2458      n->swap_edges(1, 2);
2459      break;
2460    }
2461    default:
2462      break;
2463    }
2464  }
2465
2466#ifdef ASSERT
2467  if( n->is_Mem() ) {
2468    int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2469    assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2470            // oop will be recorded in oop map if load crosses safepoint
2471            n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2472                             LoadNode::is_immutable_value(n->in(MemNode::Address))),
2473            "raw memory operations should have control edge");
2474  }
2475#endif
2476  // Count FPU ops and common calls, implements item (3)
2477  switch( nop ) {
2478  // Count all float operations that may use FPU
2479  case Op_AddF:
2480  case Op_SubF:
2481  case Op_MulF:
2482  case Op_DivF:
2483  case Op_NegF:
2484  case Op_ModF:
2485  case Op_ConvI2F:
2486  case Op_ConF:
2487  case Op_CmpF:
2488  case Op_CmpF3:
2489  // case Op_ConvL2F: // longs are split into 32-bit halves
2490    frc.inc_float_count();
2491    break;
2492
2493  case Op_ConvF2D:
2494  case Op_ConvD2F:
2495    frc.inc_float_count();
2496    frc.inc_double_count();
2497    break;
2498
2499  // Count all double operations that may use FPU
2500  case Op_AddD:
2501  case Op_SubD:
2502  case Op_MulD:
2503  case Op_DivD:
2504  case Op_NegD:
2505  case Op_ModD:
2506  case Op_ConvI2D:
2507  case Op_ConvD2I:
2508  // case Op_ConvL2D: // handled by leaf call
2509  // case Op_ConvD2L: // handled by leaf call
2510  case Op_ConD:
2511  case Op_CmpD:
2512  case Op_CmpD3:
2513    frc.inc_double_count();
2514    break;
2515  case Op_Opaque1:              // Remove Opaque Nodes before matching
2516  case Op_Opaque2:              // Remove Opaque Nodes before matching
2517    n->subsume_by(n->in(1), this);
2518    break;
2519  case Op_CallStaticJava:
2520  case Op_CallJava:
2521  case Op_CallDynamicJava:
2522    frc.inc_java_call_count(); // Count java call site;
2523  case Op_CallRuntime:
2524  case Op_CallLeaf:
2525  case Op_CallLeafNoFP: {
2526    assert( n->is_Call(), "" );
2527    CallNode *call = n->as_Call();
2528    // Count call sites where the FP mode bit would have to be flipped.
2529    // Do not count uncommon runtime calls:
2530    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2531    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2532    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2533      frc.inc_call_count();   // Count the call site
2534    } else {                  // See if uncommon argument is shared
2535      Node *n = call->in(TypeFunc::Parms);
2536      int nop = n->Opcode();
2537      // Clone shared simple arguments to uncommon calls, item (1).
2538      if( n->outcnt() > 1 &&
2539          !n->is_Proj() &&
2540          nop != Op_CreateEx &&
2541          nop != Op_CheckCastPP &&
2542          nop != Op_DecodeN &&
2543          nop != Op_DecodeNKlass &&
2544          !n->is_Mem() ) {
2545        Node *x = n->clone();
2546        call->set_req( TypeFunc::Parms, x );
2547      }
2548    }
2549    break;
2550  }
2551
2552  case Op_StoreD:
2553  case Op_LoadD:
2554  case Op_LoadD_unaligned:
2555    frc.inc_double_count();
2556    goto handle_mem;
2557  case Op_StoreF:
2558  case Op_LoadF:
2559    frc.inc_float_count();
2560    goto handle_mem;
2561
2562  case Op_StoreCM:
2563    {
2564      // Convert OopStore dependence into precedence edge
2565      Node* prec = n->in(MemNode::OopStore);
2566      n->del_req(MemNode::OopStore);
2567      n->add_prec(prec);
2568      eliminate_redundant_card_marks(n);
2569    }
2570
2571    // fall through
2572
2573  case Op_StoreB:
2574  case Op_StoreC:
2575  case Op_StorePConditional:
2576  case Op_StoreI:
2577  case Op_StoreL:
2578  case Op_StoreIConditional:
2579  case Op_StoreLConditional:
2580  case Op_CompareAndSwapI:
2581  case Op_CompareAndSwapL:
2582  case Op_CompareAndSwapP:
2583  case Op_CompareAndSwapN:
2584  case Op_GetAndAddI:
2585  case Op_GetAndAddL:
2586  case Op_GetAndSetI:
2587  case Op_GetAndSetL:
2588  case Op_GetAndSetP:
2589  case Op_GetAndSetN:
2590  case Op_StoreP:
2591  case Op_StoreN:
2592  case Op_StoreNKlass:
2593  case Op_LoadB:
2594  case Op_LoadUB:
2595  case Op_LoadUS:
2596  case Op_LoadI:
2597  case Op_LoadKlass:
2598  case Op_LoadNKlass:
2599  case Op_LoadL:
2600  case Op_LoadL_unaligned:
2601  case Op_LoadPLocked:
2602  case Op_LoadP:
2603  case Op_LoadN:
2604  case Op_LoadRange:
2605  case Op_LoadS: {
2606  handle_mem:
2607#ifdef ASSERT
2608    if( VerifyOptoOopOffsets ) {
2609      assert( n->is_Mem(), "" );
2610      MemNode *mem  = (MemNode*)n;
2611      // Check to see if address types have grounded out somehow.
2612      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2613      assert( !tp || oop_offset_is_sane(tp), "" );
2614    }
2615#endif
2616    break;
2617  }
2618
2619  case Op_AddP: {               // Assert sane base pointers
2620    Node *addp = n->in(AddPNode::Address);
2621    assert( !addp->is_AddP() ||
2622            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2623            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2624            "Base pointers must match" );
2625#ifdef _LP64
2626    if ((UseCompressedOops || UseCompressedKlassPointers) &&
2627        addp->Opcode() == Op_ConP &&
2628        addp == n->in(AddPNode::Base) &&
2629        n->in(AddPNode::Offset)->is_Con()) {
2630      // Use addressing with narrow klass to load with offset on x86.
2631      // On sparc loading 32-bits constant and decoding it have less
2632      // instructions (4) then load 64-bits constant (7).
2633      // Do this transformation here since IGVN will convert ConN back to ConP.
2634      const Type* t = addp->bottom_type();
2635      if (t->isa_oopptr() || t->isa_klassptr()) {
2636        Node* nn = NULL;
2637
2638        int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2639
2640        // Look for existing ConN node of the same exact type.
2641        Node* r  = root();
2642        uint cnt = r->outcnt();
2643        for (uint i = 0; i < cnt; i++) {
2644          Node* m = r->raw_out(i);
2645          if (m!= NULL && m->Opcode() == op &&
2646              m->bottom_type()->make_ptr() == t) {
2647            nn = m;
2648            break;
2649          }
2650        }
2651        if (nn != NULL) {
2652          // Decode a narrow oop to match address
2653          // [R12 + narrow_oop_reg<<3 + offset]
2654          if (t->isa_oopptr()) {
2655            nn = new (this) DecodeNNode(nn, t);
2656          } else {
2657            nn = new (this) DecodeNKlassNode(nn, t);
2658          }
2659          n->set_req(AddPNode::Base, nn);
2660          n->set_req(AddPNode::Address, nn);
2661          if (addp->outcnt() == 0) {
2662            addp->disconnect_inputs(NULL, this);
2663          }
2664        }
2665      }
2666    }
2667#endif
2668    break;
2669  }
2670
2671#ifdef _LP64
2672  case Op_CastPP:
2673    if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2674      Node* in1 = n->in(1);
2675      const Type* t = n->bottom_type();
2676      Node* new_in1 = in1->clone();
2677      new_in1->as_DecodeN()->set_type(t);
2678
2679      if (!Matcher::narrow_oop_use_complex_address()) {
2680        //
2681        // x86, ARM and friends can handle 2 adds in addressing mode
2682        // and Matcher can fold a DecodeN node into address by using
2683        // a narrow oop directly and do implicit NULL check in address:
2684        //
2685        // [R12 + narrow_oop_reg<<3 + offset]
2686        // NullCheck narrow_oop_reg
2687        //
2688        // On other platforms (Sparc) we have to keep new DecodeN node and
2689        // use it to do implicit NULL check in address:
2690        //
2691        // decode_not_null narrow_oop_reg, base_reg
2692        // [base_reg + offset]
2693        // NullCheck base_reg
2694        //
2695        // Pin the new DecodeN node to non-null path on these platform (Sparc)
2696        // to keep the information to which NULL check the new DecodeN node
2697        // corresponds to use it as value in implicit_null_check().
2698        //
2699        new_in1->set_req(0, n->in(0));
2700      }
2701
2702      n->subsume_by(new_in1, this);
2703      if (in1->outcnt() == 0) {
2704        in1->disconnect_inputs(NULL, this);
2705      }
2706    }
2707    break;
2708
2709  case Op_CmpP:
2710    // Do this transformation here to preserve CmpPNode::sub() and
2711    // other TypePtr related Ideal optimizations (for example, ptr nullness).
2712    if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2713      Node* in1 = n->in(1);
2714      Node* in2 = n->in(2);
2715      if (!in1->is_DecodeNarrowPtr()) {
2716        in2 = in1;
2717        in1 = n->in(2);
2718      }
2719      assert(in1->is_DecodeNarrowPtr(), "sanity");
2720
2721      Node* new_in2 = NULL;
2722      if (in2->is_DecodeNarrowPtr()) {
2723        assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2724        new_in2 = in2->in(1);
2725      } else if (in2->Opcode() == Op_ConP) {
2726        const Type* t = in2->bottom_type();
2727        if (t == TypePtr::NULL_PTR) {
2728          assert(in1->is_DecodeN(), "compare klass to null?");
2729          // Don't convert CmpP null check into CmpN if compressed
2730          // oops implicit null check is not generated.
2731          // This will allow to generate normal oop implicit null check.
2732          if (Matcher::gen_narrow_oop_implicit_null_checks())
2733            new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2734          //
2735          // This transformation together with CastPP transformation above
2736          // will generated code for implicit NULL checks for compressed oops.
2737          //
2738          // The original code after Optimize()
2739          //
2740          //    LoadN memory, narrow_oop_reg
2741          //    decode narrow_oop_reg, base_reg
2742          //    CmpP base_reg, NULL
2743          //    CastPP base_reg // NotNull
2744          //    Load [base_reg + offset], val_reg
2745          //
2746          // after these transformations will be
2747          //
2748          //    LoadN memory, narrow_oop_reg
2749          //    CmpN narrow_oop_reg, NULL
2750          //    decode_not_null narrow_oop_reg, base_reg
2751          //    Load [base_reg + offset], val_reg
2752          //
2753          // and the uncommon path (== NULL) will use narrow_oop_reg directly
2754          // since narrow oops can be used in debug info now (see the code in
2755          // final_graph_reshaping_walk()).
2756          //
2757          // At the end the code will be matched to
2758          // on x86:
2759          //
2760          //    Load_narrow_oop memory, narrow_oop_reg
2761          //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2762          //    NullCheck narrow_oop_reg
2763          //
2764          // and on sparc:
2765          //
2766          //    Load_narrow_oop memory, narrow_oop_reg
2767          //    decode_not_null narrow_oop_reg, base_reg
2768          //    Load [base_reg + offset], val_reg
2769          //    NullCheck base_reg
2770          //
2771        } else if (t->isa_oopptr()) {
2772          new_in2 = ConNode::make(this, t->make_narrowoop());
2773        } else if (t->isa_klassptr()) {
2774          new_in2 = ConNode::make(this, t->make_narrowklass());
2775        }
2776      }
2777      if (new_in2 != NULL) {
2778        Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2779        n->subsume_by(cmpN, this);
2780        if (in1->outcnt() == 0) {
2781          in1->disconnect_inputs(NULL, this);
2782        }
2783        if (in2->outcnt() == 0) {
2784          in2->disconnect_inputs(NULL, this);
2785        }
2786      }
2787    }
2788    break;
2789
2790  case Op_DecodeN:
2791  case Op_DecodeNKlass:
2792    assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2793    // DecodeN could be pinned when it can't be fold into
2794    // an address expression, see the code for Op_CastPP above.
2795    assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2796    break;
2797
2798  case Op_EncodeP:
2799  case Op_EncodePKlass: {
2800    Node* in1 = n->in(1);
2801    if (in1->is_DecodeNarrowPtr()) {
2802      n->subsume_by(in1->in(1), this);
2803    } else if (in1->Opcode() == Op_ConP) {
2804      const Type* t = in1->bottom_type();
2805      if (t == TypePtr::NULL_PTR) {
2806        assert(t->isa_oopptr(), "null klass?");
2807        n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2808      } else if (t->isa_oopptr()) {
2809        n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2810      } else if (t->isa_klassptr()) {
2811        n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2812      }
2813    }
2814    if (in1->outcnt() == 0) {
2815      in1->disconnect_inputs(NULL, this);
2816    }
2817    break;
2818  }
2819
2820  case Op_Proj: {
2821    if (OptimizeStringConcat) {
2822      ProjNode* p = n->as_Proj();
2823      if (p->_is_io_use) {
2824        // Separate projections were used for the exception path which
2825        // are normally removed by a late inline.  If it wasn't inlined
2826        // then they will hang around and should just be replaced with
2827        // the original one.
2828        Node* proj = NULL;
2829        // Replace with just one
2830        for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2831          Node *use = i.get();
2832          if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2833            proj = use;
2834            break;
2835          }
2836        }
2837        assert(proj != NULL, "must be found");
2838        p->subsume_by(proj, this);
2839      }
2840    }
2841    break;
2842  }
2843
2844  case Op_Phi:
2845    if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2846      // The EncodeP optimization may create Phi with the same edges
2847      // for all paths. It is not handled well by Register Allocator.
2848      Node* unique_in = n->in(1);
2849      assert(unique_in != NULL, "");
2850      uint cnt = n->req();
2851      for (uint i = 2; i < cnt; i++) {
2852        Node* m = n->in(i);
2853        assert(m != NULL, "");
2854        if (unique_in != m)
2855          unique_in = NULL;
2856      }
2857      if (unique_in != NULL) {
2858        n->subsume_by(unique_in, this);
2859      }
2860    }
2861    break;
2862
2863#endif
2864
2865  case Op_ModI:
2866    if (UseDivMod) {
2867      // Check if a%b and a/b both exist
2868      Node* d = n->find_similar(Op_DivI);
2869      if (d) {
2870        // Replace them with a fused divmod if supported
2871        if (Matcher::has_match_rule(Op_DivModI)) {
2872          DivModINode* divmod = DivModINode::make(this, n);
2873          d->subsume_by(divmod->div_proj(), this);
2874          n->subsume_by(divmod->mod_proj(), this);
2875        } else {
2876          // replace a%b with a-((a/b)*b)
2877          Node* mult = new (this) MulINode(d, d->in(2));
2878          Node* sub  = new (this) SubINode(d->in(1), mult);
2879          n->subsume_by(sub, this);
2880        }
2881      }
2882    }
2883    break;
2884
2885  case Op_ModL:
2886    if (UseDivMod) {
2887      // Check if a%b and a/b both exist
2888      Node* d = n->find_similar(Op_DivL);
2889      if (d) {
2890        // Replace them with a fused divmod if supported
2891        if (Matcher::has_match_rule(Op_DivModL)) {
2892          DivModLNode* divmod = DivModLNode::make(this, n);
2893          d->subsume_by(divmod->div_proj(), this);
2894          n->subsume_by(divmod->mod_proj(), this);
2895        } else {
2896          // replace a%b with a-((a/b)*b)
2897          Node* mult = new (this) MulLNode(d, d->in(2));
2898          Node* sub  = new (this) SubLNode(d->in(1), mult);
2899          n->subsume_by(sub, this);
2900        }
2901      }
2902    }
2903    break;
2904
2905  case Op_LoadVector:
2906  case Op_StoreVector:
2907    break;
2908
2909  case Op_PackB:
2910  case Op_PackS:
2911  case Op_PackI:
2912  case Op_PackF:
2913  case Op_PackL:
2914  case Op_PackD:
2915    if (n->req()-1 > 2) {
2916      // Replace many operand PackNodes with a binary tree for matching
2917      PackNode* p = (PackNode*) n;
2918      Node* btp = p->binary_tree_pack(this, 1, n->req());
2919      n->subsume_by(btp, this);
2920    }
2921    break;
2922  case Op_Loop:
2923  case Op_CountedLoop:
2924    if (n->as_Loop()->is_inner_loop()) {
2925      frc.inc_inner_loop_count();
2926    }
2927    break;
2928  case Op_LShiftI:
2929  case Op_RShiftI:
2930  case Op_URShiftI:
2931  case Op_LShiftL:
2932  case Op_RShiftL:
2933  case Op_URShiftL:
2934    if (Matcher::need_masked_shift_count) {
2935      // The cpu's shift instructions don't restrict the count to the
2936      // lower 5/6 bits. We need to do the masking ourselves.
2937      Node* in2 = n->in(2);
2938      juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2939      const TypeInt* t = in2->find_int_type();
2940      if (t != NULL && t->is_con()) {
2941        juint shift = t->get_con();
2942        if (shift > mask) { // Unsigned cmp
2943          n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2944        }
2945      } else {
2946        if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2947          Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2948          n->set_req(2, shift);
2949        }
2950      }
2951      if (in2->outcnt() == 0) { // Remove dead node
2952        in2->disconnect_inputs(NULL, this);
2953      }
2954    }
2955    break;
2956  case Op_MemBarStoreStore:
2957  case Op_MemBarRelease:
2958    // Break the link with AllocateNode: it is no longer useful and
2959    // confuses register allocation.
2960    if (n->req() > MemBarNode::Precedent) {
2961      n->set_req(MemBarNode::Precedent, top());
2962    }
2963    break;
2964  default:
2965    assert( !n->is_Call(), "" );
2966    assert( !n->is_Mem(), "" );
2967    break;
2968  }
2969
2970  // Collect CFG split points
2971  if (n->is_MultiBranch())
2972    frc._tests.push(n);
2973}
2974
2975//------------------------------final_graph_reshaping_walk---------------------
2976// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2977// requires that the walk visits a node's inputs before visiting the node.
2978void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2979  ResourceArea *area = Thread::current()->resource_area();
2980  Unique_Node_List sfpt(area);
2981
2982  frc._visited.set(root->_idx); // first, mark node as visited
2983  uint cnt = root->req();
2984  Node *n = root;
2985  uint  i = 0;
2986  while (true) {
2987    if (i < cnt) {
2988      // Place all non-visited non-null inputs onto stack
2989      Node* m = n->in(i);
2990      ++i;
2991      if (m != NULL && !frc._visited.test_set(m->_idx)) {
2992        if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2993          sfpt.push(m);
2994        cnt = m->req();
2995        nstack.push(n, i); // put on stack parent and next input's index
2996        n = m;
2997        i = 0;
2998      }
2999    } else {
3000      // Now do post-visit work
3001      final_graph_reshaping_impl( n, frc );
3002      if (nstack.is_empty())
3003        break;             // finished
3004      n = nstack.node();   // Get node from stack
3005      cnt = n->req();
3006      i = nstack.index();
3007      nstack.pop();        // Shift to the next node on stack
3008    }
3009  }
3010
3011  // Skip next transformation if compressed oops are not used.
3012  if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3013      (!UseCompressedOops && !UseCompressedKlassPointers))
3014    return;
3015
3016  // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3017  // It could be done for an uncommon traps or any safepoints/calls
3018  // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3019  while (sfpt.size() > 0) {
3020    n = sfpt.pop();
3021    JVMState *jvms = n->as_SafePoint()->jvms();
3022    assert(jvms != NULL, "sanity");
3023    int start = jvms->debug_start();
3024    int end   = n->req();
3025    bool is_uncommon = (n->is_CallStaticJava() &&
3026                        n->as_CallStaticJava()->uncommon_trap_request() != 0);
3027    for (int j = start; j < end; j++) {
3028      Node* in = n->in(j);
3029      if (in->is_DecodeNarrowPtr()) {
3030        bool safe_to_skip = true;
3031        if (!is_uncommon ) {
3032          // Is it safe to skip?
3033          for (uint i = 0; i < in->outcnt(); i++) {
3034            Node* u = in->raw_out(i);
3035            if (!u->is_SafePoint() ||
3036                 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3037              safe_to_skip = false;
3038            }
3039          }
3040        }
3041        if (safe_to_skip) {
3042          n->set_req(j, in->in(1));
3043        }
3044        if (in->outcnt() == 0) {
3045          in->disconnect_inputs(NULL, this);
3046        }
3047      }
3048    }
3049  }
3050}
3051
3052//------------------------------final_graph_reshaping--------------------------
3053// Final Graph Reshaping.
3054//
3055// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3056//     and not commoned up and forced early.  Must come after regular
3057//     optimizations to avoid GVN undoing the cloning.  Clone constant
3058//     inputs to Loop Phis; these will be split by the allocator anyways.
3059//     Remove Opaque nodes.
3060// (2) Move last-uses by commutative operations to the left input to encourage
3061//     Intel update-in-place two-address operations and better register usage
3062//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3063//     calls canonicalizing them back.
3064// (3) Count the number of double-precision FP ops, single-precision FP ops
3065//     and call sites.  On Intel, we can get correct rounding either by
3066//     forcing singles to memory (requires extra stores and loads after each
3067//     FP bytecode) or we can set a rounding mode bit (requires setting and
3068//     clearing the mode bit around call sites).  The mode bit is only used
3069//     if the relative frequency of single FP ops to calls is low enough.
3070//     This is a key transform for SPEC mpeg_audio.
3071// (4) Detect infinite loops; blobs of code reachable from above but not
3072//     below.  Several of the Code_Gen algorithms fail on such code shapes,
3073//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3074//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3075//     Detection is by looking for IfNodes where only 1 projection is
3076//     reachable from below or CatchNodes missing some targets.
3077// (5) Assert for insane oop offsets in debug mode.
3078
3079bool Compile::final_graph_reshaping() {
3080  // an infinite loop may have been eliminated by the optimizer,
3081  // in which case the graph will be empty.
3082  if (root()->req() == 1) {
3083    record_method_not_compilable("trivial infinite loop");
3084    return true;
3085  }
3086
3087  // Expensive nodes have their control input set to prevent the GVN
3088  // from freely commoning them. There's no GVN beyond this point so
3089  // no need to keep the control input. We want the expensive nodes to
3090  // be freely moved to the least frequent code path by gcm.
3091  assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3092  for (int i = 0; i < expensive_count(); i++) {
3093    _expensive_nodes->at(i)->set_req(0, NULL);
3094  }
3095
3096  Final_Reshape_Counts frc;
3097
3098  // Visit everybody reachable!
3099  // Allocate stack of size C->unique()/2 to avoid frequent realloc
3100  Node_Stack nstack(unique() >> 1);
3101  final_graph_reshaping_walk(nstack, root(), frc);
3102
3103  // Check for unreachable (from below) code (i.e., infinite loops).
3104  for( uint i = 0; i < frc._tests.size(); i++ ) {
3105    MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3106    // Get number of CFG targets.
3107    // Note that PCTables include exception targets after calls.
3108    uint required_outcnt = n->required_outcnt();
3109    if (n->outcnt() != required_outcnt) {
3110      // Check for a few special cases.  Rethrow Nodes never take the
3111      // 'fall-thru' path, so expected kids is 1 less.
3112      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3113        if (n->in(0)->in(0)->is_Call()) {
3114          CallNode *call = n->in(0)->in(0)->as_Call();
3115          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3116            required_outcnt--;      // Rethrow always has 1 less kid
3117          } else if (call->req() > TypeFunc::Parms &&
3118                     call->is_CallDynamicJava()) {
3119            // Check for null receiver. In such case, the optimizer has
3120            // detected that the virtual call will always result in a null
3121            // pointer exception. The fall-through projection of this CatchNode
3122            // will not be populated.
3123            Node *arg0 = call->in(TypeFunc::Parms);
3124            if (arg0->is_Type() &&
3125                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3126              required_outcnt--;
3127            }
3128          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3129                     call->req() > TypeFunc::Parms+1 &&
3130                     call->is_CallStaticJava()) {
3131            // Check for negative array length. In such case, the optimizer has
3132            // detected that the allocation attempt will always result in an
3133            // exception. There is no fall-through projection of this CatchNode .
3134            Node *arg1 = call->in(TypeFunc::Parms+1);
3135            if (arg1->is_Type() &&
3136                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3137              required_outcnt--;
3138            }
3139          }
3140        }
3141      }
3142      // Recheck with a better notion of 'required_outcnt'
3143      if (n->outcnt() != required_outcnt) {
3144        record_method_not_compilable("malformed control flow");
3145        return true;            // Not all targets reachable!
3146      }
3147    }
3148    // Check that I actually visited all kids.  Unreached kids
3149    // must be infinite loops.
3150    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3151      if (!frc._visited.test(n->fast_out(j)->_idx)) {
3152        record_method_not_compilable("infinite loop");
3153        return true;            // Found unvisited kid; must be unreach
3154      }
3155  }
3156
3157  // If original bytecodes contained a mixture of floats and doubles
3158  // check if the optimizer has made it homogenous, item (3).
3159  if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3160      frc.get_float_count() > 32 &&
3161      frc.get_double_count() == 0 &&
3162      (10 * frc.get_call_count() < frc.get_float_count()) ) {
3163    set_24_bit_selection_and_mode( false,  true );
3164  }
3165
3166  set_java_calls(frc.get_java_call_count());
3167  set_inner_loops(frc.get_inner_loop_count());
3168
3169  // No infinite loops, no reason to bail out.
3170  return false;
3171}
3172
3173//-----------------------------too_many_traps----------------------------------
3174// Report if there are too many traps at the current method and bci.
3175// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3176bool Compile::too_many_traps(ciMethod* method,
3177                             int bci,
3178                             Deoptimization::DeoptReason reason) {
3179  ciMethodData* md = method->method_data();
3180  if (md->is_empty()) {
3181    // Assume the trap has not occurred, or that it occurred only
3182    // because of a transient condition during start-up in the interpreter.
3183    return false;
3184  }
3185  if (md->has_trap_at(bci, reason) != 0) {
3186    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3187    // Also, if there are multiple reasons, or if there is no per-BCI record,
3188    // assume the worst.
3189    if (log())
3190      log()->elem("observe trap='%s' count='%d'",
3191                  Deoptimization::trap_reason_name(reason),
3192                  md->trap_count(reason));
3193    return true;
3194  } else {
3195    // Ignore method/bci and see if there have been too many globally.
3196    return too_many_traps(reason, md);
3197  }
3198}
3199
3200// Less-accurate variant which does not require a method and bci.
3201bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3202                             ciMethodData* logmd) {
3203 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3204    // Too many traps globally.
3205    // Note that we use cumulative trap_count, not just md->trap_count.
3206    if (log()) {
3207      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3208      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3209                  Deoptimization::trap_reason_name(reason),
3210                  mcount, trap_count(reason));
3211    }
3212    return true;
3213  } else {
3214    // The coast is clear.
3215    return false;
3216  }
3217}
3218
3219//--------------------------too_many_recompiles--------------------------------
3220// Report if there are too many recompiles at the current method and bci.
3221// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3222// Is not eager to return true, since this will cause the compiler to use
3223// Action_none for a trap point, to avoid too many recompilations.
3224bool Compile::too_many_recompiles(ciMethod* method,
3225                                  int bci,
3226                                  Deoptimization::DeoptReason reason) {
3227  ciMethodData* md = method->method_data();
3228  if (md->is_empty()) {
3229    // Assume the trap has not occurred, or that it occurred only
3230    // because of a transient condition during start-up in the interpreter.
3231    return false;
3232  }
3233  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3234  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3235  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3236  Deoptimization::DeoptReason per_bc_reason
3237    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3238  if ((per_bc_reason == Deoptimization::Reason_none
3239       || md->has_trap_at(bci, reason) != 0)
3240      // The trap frequency measure we care about is the recompile count:
3241      && md->trap_recompiled_at(bci)
3242      && md->overflow_recompile_count() >= bc_cutoff) {
3243    // Do not emit a trap here if it has already caused recompilations.
3244    // Also, if there are multiple reasons, or if there is no per-BCI record,
3245    // assume the worst.
3246    if (log())
3247      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3248                  Deoptimization::trap_reason_name(reason),
3249                  md->trap_count(reason),
3250                  md->overflow_recompile_count());
3251    return true;
3252  } else if (trap_count(reason) != 0
3253             && decompile_count() >= m_cutoff) {
3254    // Too many recompiles globally, and we have seen this sort of trap.
3255    // Use cumulative decompile_count, not just md->decompile_count.
3256    if (log())
3257      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3258                  Deoptimization::trap_reason_name(reason),
3259                  md->trap_count(reason), trap_count(reason),
3260                  md->decompile_count(), decompile_count());
3261    return true;
3262  } else {
3263    // The coast is clear.
3264    return false;
3265  }
3266}
3267
3268
3269#ifndef PRODUCT
3270//------------------------------verify_graph_edges---------------------------
3271// Walk the Graph and verify that there is a one-to-one correspondence
3272// between Use-Def edges and Def-Use edges in the graph.
3273void Compile::verify_graph_edges(bool no_dead_code) {
3274  if (VerifyGraphEdges) {
3275    ResourceArea *area = Thread::current()->resource_area();
3276    Unique_Node_List visited(area);
3277    // Call recursive graph walk to check edges
3278    _root->verify_edges(visited);
3279    if (no_dead_code) {
3280      // Now make sure that no visited node is used by an unvisited node.
3281      bool dead_nodes = 0;
3282      Unique_Node_List checked(area);
3283      while (visited.size() > 0) {
3284        Node* n = visited.pop();
3285        checked.push(n);
3286        for (uint i = 0; i < n->outcnt(); i++) {
3287          Node* use = n->raw_out(i);
3288          if (checked.member(use))  continue;  // already checked
3289          if (visited.member(use))  continue;  // already in the graph
3290          if (use->is_Con())        continue;  // a dead ConNode is OK
3291          // At this point, we have found a dead node which is DU-reachable.
3292          if (dead_nodes++ == 0)
3293            tty->print_cr("*** Dead nodes reachable via DU edges:");
3294          use->dump(2);
3295          tty->print_cr("---");
3296          checked.push(use);  // No repeats; pretend it is now checked.
3297        }
3298      }
3299      assert(dead_nodes == 0, "using nodes must be reachable from root");
3300    }
3301  }
3302}
3303#endif
3304
3305// The Compile object keeps track of failure reasons separately from the ciEnv.
3306// This is required because there is not quite a 1-1 relation between the
3307// ciEnv and its compilation task and the Compile object.  Note that one
3308// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3309// to backtrack and retry without subsuming loads.  Other than this backtracking
3310// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3311// by the logic in C2Compiler.
3312void Compile::record_failure(const char* reason) {
3313  if (log() != NULL) {
3314    log()->elem("failure reason='%s' phase='compile'", reason);
3315  }
3316  if (_failure_reason == NULL) {
3317    // Record the first failure reason.
3318    _failure_reason = reason;
3319  }
3320
3321  EventCompilerFailure event;
3322  if (event.should_commit()) {
3323    event.set_compileID(Compile::compile_id());
3324    event.set_failure(reason);
3325    event.commit();
3326  }
3327
3328  if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3329    C->print_method(PHASE_FAILURE);
3330  }
3331  _root = NULL;  // flush the graph, too
3332}
3333
3334Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3335  : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3336    _phase_name(name), _dolog(dolog)
3337{
3338  if (dolog) {
3339    C = Compile::current();
3340    _log = C->log();
3341  } else {
3342    C = NULL;
3343    _log = NULL;
3344  }
3345  if (_log != NULL) {
3346    _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3347    _log->stamp();
3348    _log->end_head();
3349  }
3350}
3351
3352Compile::TracePhase::~TracePhase() {
3353
3354  C = Compile::current();
3355  if (_dolog) {
3356    _log = C->log();
3357  } else {
3358    _log = NULL;
3359  }
3360
3361#ifdef ASSERT
3362  if (PrintIdealNodeCount) {
3363    tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3364                  _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3365  }
3366
3367  if (VerifyIdealNodeCount) {
3368    Compile::current()->print_missing_nodes();
3369  }
3370#endif
3371
3372  if (_log != NULL) {
3373    _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3374  }
3375}
3376
3377//=============================================================================
3378// Two Constant's are equal when the type and the value are equal.
3379bool Compile::Constant::operator==(const Constant& other) {
3380  if (type()          != other.type()         )  return false;
3381  if (can_be_reused() != other.can_be_reused())  return false;
3382  // For floating point values we compare the bit pattern.
3383  switch (type()) {
3384  case T_FLOAT:   return (_v._value.i == other._v._value.i);
3385  case T_LONG:
3386  case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3387  case T_OBJECT:
3388  case T_ADDRESS: return (_v._value.l == other._v._value.l);
3389  case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3390  case T_METADATA: return (_v._metadata == other._v._metadata);
3391  default: ShouldNotReachHere();
3392  }
3393  return false;
3394}
3395
3396static int type_to_size_in_bytes(BasicType t) {
3397  switch (t) {
3398  case T_LONG:    return sizeof(jlong  );
3399  case T_FLOAT:   return sizeof(jfloat );
3400  case T_DOUBLE:  return sizeof(jdouble);
3401  case T_METADATA: return sizeof(Metadata*);
3402    // We use T_VOID as marker for jump-table entries (labels) which
3403    // need an internal word relocation.
3404  case T_VOID:
3405  case T_ADDRESS:
3406  case T_OBJECT:  return sizeof(jobject);
3407  }
3408
3409  ShouldNotReachHere();
3410  return -1;
3411}
3412
3413int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3414  // sort descending
3415  if (a->freq() > b->freq())  return -1;
3416  if (a->freq() < b->freq())  return  1;
3417  return 0;
3418}
3419
3420void Compile::ConstantTable::calculate_offsets_and_size() {
3421  // First, sort the array by frequencies.
3422  _constants.sort(qsort_comparator);
3423
3424#ifdef ASSERT
3425  // Make sure all jump-table entries were sorted to the end of the
3426  // array (they have a negative frequency).
3427  bool found_void = false;
3428  for (int i = 0; i < _constants.length(); i++) {
3429    Constant con = _constants.at(i);
3430    if (con.type() == T_VOID)
3431      found_void = true;  // jump-tables
3432    else
3433      assert(!found_void, "wrong sorting");
3434  }
3435#endif
3436
3437  int offset = 0;
3438  for (int i = 0; i < _constants.length(); i++) {
3439    Constant* con = _constants.adr_at(i);
3440
3441    // Align offset for type.
3442    int typesize = type_to_size_in_bytes(con->type());
3443    offset = align_size_up(offset, typesize);
3444    con->set_offset(offset);   // set constant's offset
3445
3446    if (con->type() == T_VOID) {
3447      MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3448      offset = offset + typesize * n->outcnt();  // expand jump-table
3449    } else {
3450      offset = offset + typesize;
3451    }
3452  }
3453
3454  // Align size up to the next section start (which is insts; see
3455  // CodeBuffer::align_at_start).
3456  assert(_size == -1, "already set?");
3457  _size = align_size_up(offset, CodeEntryAlignment);
3458}
3459
3460void Compile::ConstantTable::emit(CodeBuffer& cb) {
3461  MacroAssembler _masm(&cb);
3462  for (int i = 0; i < _constants.length(); i++) {
3463    Constant con = _constants.at(i);
3464    address constant_addr;
3465    switch (con.type()) {
3466    case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3467    case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3468    case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3469    case T_OBJECT: {
3470      jobject obj = con.get_jobject();
3471      int oop_index = _masm.oop_recorder()->find_index(obj);
3472      constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3473      break;
3474    }
3475    case T_ADDRESS: {
3476      address addr = (address) con.get_jobject();
3477      constant_addr = _masm.address_constant(addr);
3478      break;
3479    }
3480    // We use T_VOID as marker for jump-table entries (labels) which
3481    // need an internal word relocation.
3482    case T_VOID: {
3483      MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3484      // Fill the jump-table with a dummy word.  The real value is
3485      // filled in later in fill_jump_table.
3486      address dummy = (address) n;
3487      constant_addr = _masm.address_constant(dummy);
3488      // Expand jump-table
3489      for (uint i = 1; i < n->outcnt(); i++) {
3490        address temp_addr = _masm.address_constant(dummy + i);
3491        assert(temp_addr, "consts section too small");
3492      }
3493      break;
3494    }
3495    case T_METADATA: {
3496      Metadata* obj = con.get_metadata();
3497      int metadata_index = _masm.oop_recorder()->find_index(obj);
3498      constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3499      break;
3500    }
3501    default: ShouldNotReachHere();
3502    }
3503    assert(constant_addr, "consts section too small");
3504    assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3505  }
3506}
3507
3508int Compile::ConstantTable::find_offset(Constant& con) const {
3509  int idx = _constants.find(con);
3510  assert(idx != -1, "constant must be in constant table");
3511  int offset = _constants.at(idx).offset();
3512  assert(offset != -1, "constant table not emitted yet?");
3513  return offset;
3514}
3515
3516void Compile::ConstantTable::add(Constant& con) {
3517  if (con.can_be_reused()) {
3518    int idx = _constants.find(con);
3519    if (idx != -1 && _constants.at(idx).can_be_reused()) {
3520      _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3521      return;
3522    }
3523  }
3524  (void) _constants.append(con);
3525}
3526
3527Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3528  Block* b = Compile::current()->cfg()->_bbs[n->_idx];
3529  Constant con(type, value, b->_freq);
3530  add(con);
3531  return con;
3532}
3533
3534Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3535  Constant con(metadata);
3536  add(con);
3537  return con;
3538}
3539
3540Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3541  jvalue value;
3542  BasicType type = oper->type()->basic_type();
3543  switch (type) {
3544  case T_LONG:    value.j = oper->constantL(); break;
3545  case T_FLOAT:   value.f = oper->constantF(); break;
3546  case T_DOUBLE:  value.d = oper->constantD(); break;
3547  case T_OBJECT:
3548  case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3549  case T_METADATA: return add((Metadata*)oper->constant()); break;
3550  default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3551  }
3552  return add(n, type, value);
3553}
3554
3555Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3556  jvalue value;
3557  // We can use the node pointer here to identify the right jump-table
3558  // as this method is called from Compile::Fill_buffer right before
3559  // the MachNodes are emitted and the jump-table is filled (means the
3560  // MachNode pointers do not change anymore).
3561  value.l = (jobject) n;
3562  Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3563  add(con);
3564  return con;
3565}
3566
3567void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3568  // If called from Compile::scratch_emit_size do nothing.
3569  if (Compile::current()->in_scratch_emit_size())  return;
3570
3571  assert(labels.is_nonempty(), "must be");
3572  assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3573
3574  // Since MachConstantNode::constant_offset() also contains
3575  // table_base_offset() we need to subtract the table_base_offset()
3576  // to get the plain offset into the constant table.
3577  int offset = n->constant_offset() - table_base_offset();
3578
3579  MacroAssembler _masm(&cb);
3580  address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3581
3582  for (uint i = 0; i < n->outcnt(); i++) {
3583    address* constant_addr = &jump_table_base[i];
3584    assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3585    *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3586    cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3587  }
3588}
3589
3590void Compile::dump_inlining() {
3591  if (PrintInlining || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
3592    // Print inlining message for candidates that we couldn't inline
3593    // for lack of space or non constant receiver
3594    for (int i = 0; i < _late_inlines.length(); i++) {
3595      CallGenerator* cg = _late_inlines.at(i);
3596      cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3597    }
3598    Unique_Node_List useful;
3599    useful.push(root());
3600    for (uint next = 0; next < useful.size(); ++next) {
3601      Node* n  = useful.at(next);
3602      if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3603        CallNode* call = n->as_Call();
3604        CallGenerator* cg = call->generator();
3605        cg->print_inlining_late("receiver not constant");
3606      }
3607      uint max = n->len();
3608      for ( uint i = 0; i < max; ++i ) {
3609        Node *m = n->in(i);
3610        if ( m == NULL ) continue;
3611        useful.push(m);
3612      }
3613    }
3614    for (int i = 0; i < _print_inlining_list->length(); i++) {
3615      tty->print(_print_inlining_list->at(i).ss()->as_string());
3616    }
3617  }
3618}
3619
3620int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3621  if (n1->Opcode() < n2->Opcode())      return -1;
3622  else if (n1->Opcode() > n2->Opcode()) return 1;
3623
3624  assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3625  for (uint i = 1; i < n1->req(); i++) {
3626    if (n1->in(i) < n2->in(i))      return -1;
3627    else if (n1->in(i) > n2->in(i)) return 1;
3628  }
3629
3630  return 0;
3631}
3632
3633int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3634  Node* n1 = *n1p;
3635  Node* n2 = *n2p;
3636
3637  return cmp_expensive_nodes(n1, n2);
3638}
3639
3640void Compile::sort_expensive_nodes() {
3641  if (!expensive_nodes_sorted()) {
3642    _expensive_nodes->sort(cmp_expensive_nodes);
3643  }
3644}
3645
3646bool Compile::expensive_nodes_sorted() const {
3647  for (int i = 1; i < _expensive_nodes->length(); i++) {
3648    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3649      return false;
3650    }
3651  }
3652  return true;
3653}
3654
3655bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3656  if (_expensive_nodes->length() == 0) {
3657    return false;
3658  }
3659
3660  assert(OptimizeExpensiveOps, "optimization off?");
3661
3662  // Take this opportunity to remove dead nodes from the list
3663  int j = 0;
3664  for (int i = 0; i < _expensive_nodes->length(); i++) {
3665    Node* n = _expensive_nodes->at(i);
3666    if (!n->is_unreachable(igvn)) {
3667      assert(n->is_expensive(), "should be expensive");
3668      _expensive_nodes->at_put(j, n);
3669      j++;
3670    }
3671  }
3672  _expensive_nodes->trunc_to(j);
3673
3674  // Then sort the list so that similar nodes are next to each other
3675  // and check for at least two nodes of identical kind with same data
3676  // inputs.
3677  sort_expensive_nodes();
3678
3679  for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3680    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3681      return true;
3682    }
3683  }
3684
3685  return false;
3686}
3687
3688void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3689  if (_expensive_nodes->length() == 0) {
3690    return;
3691  }
3692
3693  assert(OptimizeExpensiveOps, "optimization off?");
3694
3695  // Sort to bring similar nodes next to each other and clear the
3696  // control input of nodes for which there's only a single copy.
3697  sort_expensive_nodes();
3698
3699  int j = 0;
3700  int identical = 0;
3701  int i = 0;
3702  for (; i < _expensive_nodes->length()-1; i++) {
3703    assert(j <= i, "can't write beyond current index");
3704    if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3705      identical++;
3706      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3707      continue;
3708    }
3709    if (identical > 0) {
3710      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3711      identical = 0;
3712    } else {
3713      Node* n = _expensive_nodes->at(i);
3714      igvn.hash_delete(n);
3715      n->set_req(0, NULL);
3716      igvn.hash_insert(n);
3717    }
3718  }
3719  if (identical > 0) {
3720    _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3721  } else if (_expensive_nodes->length() >= 1) {
3722    Node* n = _expensive_nodes->at(i);
3723    igvn.hash_delete(n);
3724    n->set_req(0, NULL);
3725    igvn.hash_insert(n);
3726  }
3727  _expensive_nodes->trunc_to(j);
3728}
3729
3730void Compile::add_expensive_node(Node * n) {
3731  assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3732  assert(n->is_expensive(), "expensive nodes with non-null control here only");
3733  assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3734  if (OptimizeExpensiveOps) {
3735    _expensive_nodes->append(n);
3736  } else {
3737    // Clear control input and let IGVN optimize expensive nodes if
3738    // OptimizeExpensiveOps is off.
3739    n->set_req(0, NULL);
3740  }
3741}
3742
3743// Auxiliary method to support randomized stressing/fuzzing.
3744//
3745// This method can be called the arbitrary number of times, with current count
3746// as the argument. The logic allows selecting a single candidate from the
3747// running list of candidates as follows:
3748//    int count = 0;
3749//    Cand* selected = null;
3750//    while(cand = cand->next()) {
3751//      if (randomized_select(++count)) {
3752//        selected = cand;
3753//      }
3754//    }
3755//
3756// Including count equalizes the chances any candidate is "selected".
3757// This is useful when we don't have the complete list of candidates to choose
3758// from uniformly. In this case, we need to adjust the randomicity of the
3759// selection, or else we will end up biasing the selection towards the latter
3760// candidates.
3761//
3762// Quick back-envelope calculation shows that for the list of n candidates
3763// the equal probability for the candidate to persist as "best" can be
3764// achieved by replacing it with "next" k-th candidate with the probability
3765// of 1/k. It can be easily shown that by the end of the run, the
3766// probability for any candidate is converged to 1/n, thus giving the
3767// uniform distribution among all the candidates.
3768//
3769// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3770#define RANDOMIZED_DOMAIN_POW 29
3771#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3772#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3773bool Compile::randomized_select(int count) {
3774  assert(count > 0, "only positive");
3775  return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3776}
3777