compile.cpp revision 3883:cd3d6a6b95d9
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "code/exceptionHandlerTable.hpp"
30#include "code/nmethod.hpp"
31#include "compiler/compileLog.hpp"
32#include "compiler/disassembler.hpp"
33#include "compiler/oopMap.hpp"
34#include "opto/addnode.hpp"
35#include "opto/block.hpp"
36#include "opto/c2compiler.hpp"
37#include "opto/callGenerator.hpp"
38#include "opto/callnode.hpp"
39#include "opto/cfgnode.hpp"
40#include "opto/chaitin.hpp"
41#include "opto/compile.hpp"
42#include "opto/connode.hpp"
43#include "opto/divnode.hpp"
44#include "opto/escape.hpp"
45#include "opto/idealGraphPrinter.hpp"
46#include "opto/loopnode.hpp"
47#include "opto/machnode.hpp"
48#include "opto/macro.hpp"
49#include "opto/matcher.hpp"
50#include "opto/memnode.hpp"
51#include "opto/mulnode.hpp"
52#include "opto/node.hpp"
53#include "opto/opcodes.hpp"
54#include "opto/output.hpp"
55#include "opto/parse.hpp"
56#include "opto/phaseX.hpp"
57#include "opto/rootnode.hpp"
58#include "opto/runtime.hpp"
59#include "opto/stringopts.hpp"
60#include "opto/type.hpp"
61#include "opto/vectornode.hpp"
62#include "runtime/arguments.hpp"
63#include "runtime/signature.hpp"
64#include "runtime/stubRoutines.hpp"
65#include "runtime/timer.hpp"
66#include "utilities/copy.hpp"
67#ifdef TARGET_ARCH_MODEL_x86_32
68# include "adfiles/ad_x86_32.hpp"
69#endif
70#ifdef TARGET_ARCH_MODEL_x86_64
71# include "adfiles/ad_x86_64.hpp"
72#endif
73#ifdef TARGET_ARCH_MODEL_sparc
74# include "adfiles/ad_sparc.hpp"
75#endif
76#ifdef TARGET_ARCH_MODEL_zero
77# include "adfiles/ad_zero.hpp"
78#endif
79#ifdef TARGET_ARCH_MODEL_arm
80# include "adfiles/ad_arm.hpp"
81#endif
82#ifdef TARGET_ARCH_MODEL_ppc
83# include "adfiles/ad_ppc.hpp"
84#endif
85
86
87// -------------------- Compile::mach_constant_base_node -----------------------
88// Constant table base node singleton.
89MachConstantBaseNode* Compile::mach_constant_base_node() {
90  if (_mach_constant_base_node == NULL) {
91    _mach_constant_base_node = new (C) MachConstantBaseNode();
92    _mach_constant_base_node->add_req(C->root());
93  }
94  return _mach_constant_base_node;
95}
96
97
98/// Support for intrinsics.
99
100// Return the index at which m must be inserted (or already exists).
101// The sort order is by the address of the ciMethod, with is_virtual as minor key.
102int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
103#ifdef ASSERT
104  for (int i = 1; i < _intrinsics->length(); i++) {
105    CallGenerator* cg1 = _intrinsics->at(i-1);
106    CallGenerator* cg2 = _intrinsics->at(i);
107    assert(cg1->method() != cg2->method()
108           ? cg1->method()     < cg2->method()
109           : cg1->is_virtual() < cg2->is_virtual(),
110           "compiler intrinsics list must stay sorted");
111  }
112#endif
113  // Binary search sorted list, in decreasing intervals [lo, hi].
114  int lo = 0, hi = _intrinsics->length()-1;
115  while (lo <= hi) {
116    int mid = (uint)(hi + lo) / 2;
117    ciMethod* mid_m = _intrinsics->at(mid)->method();
118    if (m < mid_m) {
119      hi = mid-1;
120    } else if (m > mid_m) {
121      lo = mid+1;
122    } else {
123      // look at minor sort key
124      bool mid_virt = _intrinsics->at(mid)->is_virtual();
125      if (is_virtual < mid_virt) {
126        hi = mid-1;
127      } else if (is_virtual > mid_virt) {
128        lo = mid+1;
129      } else {
130        return mid;  // exact match
131      }
132    }
133  }
134  return lo;  // inexact match
135}
136
137void Compile::register_intrinsic(CallGenerator* cg) {
138  if (_intrinsics == NULL) {
139    _intrinsics = new GrowableArray<CallGenerator*>(60);
140  }
141  // This code is stolen from ciObjectFactory::insert.
142  // Really, GrowableArray should have methods for
143  // insert_at, remove_at, and binary_search.
144  int len = _intrinsics->length();
145  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
146  if (index == len) {
147    _intrinsics->append(cg);
148  } else {
149#ifdef ASSERT
150    CallGenerator* oldcg = _intrinsics->at(index);
151    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
152#endif
153    _intrinsics->append(_intrinsics->at(len-1));
154    int pos;
155    for (pos = len-2; pos >= index; pos--) {
156      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
157    }
158    _intrinsics->at_put(index, cg);
159  }
160  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
161}
162
163CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
164  assert(m->is_loaded(), "don't try this on unloaded methods");
165  if (_intrinsics != NULL) {
166    int index = intrinsic_insertion_index(m, is_virtual);
167    if (index < _intrinsics->length()
168        && _intrinsics->at(index)->method() == m
169        && _intrinsics->at(index)->is_virtual() == is_virtual) {
170      return _intrinsics->at(index);
171    }
172  }
173  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
174  if (m->intrinsic_id() != vmIntrinsics::_none &&
175      m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
176    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
177    if (cg != NULL) {
178      // Save it for next time:
179      register_intrinsic(cg);
180      return cg;
181    } else {
182      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
183    }
184  }
185  return NULL;
186}
187
188// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
189// in library_call.cpp.
190
191
192#ifndef PRODUCT
193// statistics gathering...
194
195juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
196jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
197
198bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
199  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
200  int oflags = _intrinsic_hist_flags[id];
201  assert(flags != 0, "what happened?");
202  if (is_virtual) {
203    flags |= _intrinsic_virtual;
204  }
205  bool changed = (flags != oflags);
206  if ((flags & _intrinsic_worked) != 0) {
207    juint count = (_intrinsic_hist_count[id] += 1);
208    if (count == 1) {
209      changed = true;           // first time
210    }
211    // increment the overall count also:
212    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
213  }
214  if (changed) {
215    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
216      // Something changed about the intrinsic's virtuality.
217      if ((flags & _intrinsic_virtual) != 0) {
218        // This is the first use of this intrinsic as a virtual call.
219        if (oflags != 0) {
220          // We already saw it as a non-virtual, so note both cases.
221          flags |= _intrinsic_both;
222        }
223      } else if ((oflags & _intrinsic_both) == 0) {
224        // This is the first use of this intrinsic as a non-virtual
225        flags |= _intrinsic_both;
226      }
227    }
228    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
229  }
230  // update the overall flags also:
231  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
232  return changed;
233}
234
235static char* format_flags(int flags, char* buf) {
236  buf[0] = 0;
237  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
238  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
239  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
240  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
241  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
242  if (buf[0] == 0)  strcat(buf, ",");
243  assert(buf[0] == ',', "must be");
244  return &buf[1];
245}
246
247void Compile::print_intrinsic_statistics() {
248  char flagsbuf[100];
249  ttyLocker ttyl;
250  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
251  tty->print_cr("Compiler intrinsic usage:");
252  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
253  if (total == 0)  total = 1;  // avoid div0 in case of no successes
254  #define PRINT_STAT_LINE(name, c, f) \
255    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
256  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
257    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
258    int   flags = _intrinsic_hist_flags[id];
259    juint count = _intrinsic_hist_count[id];
260    if ((flags | count) != 0) {
261      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
262    }
263  }
264  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
265  if (xtty != NULL)  xtty->tail("statistics");
266}
267
268void Compile::print_statistics() {
269  { ttyLocker ttyl;
270    if (xtty != NULL)  xtty->head("statistics type='opto'");
271    Parse::print_statistics();
272    PhaseCCP::print_statistics();
273    PhaseRegAlloc::print_statistics();
274    Scheduling::print_statistics();
275    PhasePeephole::print_statistics();
276    PhaseIdealLoop::print_statistics();
277    if (xtty != NULL)  xtty->tail("statistics");
278  }
279  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
280    // put this under its own <statistics> element.
281    print_intrinsic_statistics();
282  }
283}
284#endif //PRODUCT
285
286// Support for bundling info
287Bundle* Compile::node_bundling(const Node *n) {
288  assert(valid_bundle_info(n), "oob");
289  return &_node_bundling_base[n->_idx];
290}
291
292bool Compile::valid_bundle_info(const Node *n) {
293  return (_node_bundling_limit > n->_idx);
294}
295
296
297void Compile::gvn_replace_by(Node* n, Node* nn) {
298  for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
299    Node* use = n->last_out(i);
300    bool is_in_table = initial_gvn()->hash_delete(use);
301    uint uses_found = 0;
302    for (uint j = 0; j < use->len(); j++) {
303      if (use->in(j) == n) {
304        if (j < use->req())
305          use->set_req(j, nn);
306        else
307          use->set_prec(j, nn);
308        uses_found++;
309      }
310    }
311    if (is_in_table) {
312      // reinsert into table
313      initial_gvn()->hash_find_insert(use);
314    }
315    record_for_igvn(use);
316    i -= uses_found;    // we deleted 1 or more copies of this edge
317  }
318}
319
320
321static inline bool not_a_node(const Node* n) {
322  if (n == NULL)                   return true;
323  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
324  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
325  return false;
326}
327
328// Identify all nodes that are reachable from below, useful.
329// Use breadth-first pass that records state in a Unique_Node_List,
330// recursive traversal is slower.
331void Compile::identify_useful_nodes(Unique_Node_List &useful) {
332  int estimated_worklist_size = unique();
333  useful.map( estimated_worklist_size, NULL );  // preallocate space
334
335  // Initialize worklist
336  if (root() != NULL)     { useful.push(root()); }
337  // If 'top' is cached, declare it useful to preserve cached node
338  if( cached_top_node() ) { useful.push(cached_top_node()); }
339
340  // Push all useful nodes onto the list, breadthfirst
341  for( uint next = 0; next < useful.size(); ++next ) {
342    assert( next < unique(), "Unique useful nodes < total nodes");
343    Node *n  = useful.at(next);
344    uint max = n->len();
345    for( uint i = 0; i < max; ++i ) {
346      Node *m = n->in(i);
347      if (not_a_node(m))  continue;
348      useful.push(m);
349    }
350  }
351}
352
353// Update dead_node_list with any missing dead nodes using useful
354// list. Consider all non-useful nodes to be useless i.e., dead nodes.
355void Compile::update_dead_node_list(Unique_Node_List &useful) {
356  uint max_idx = unique();
357  VectorSet& useful_node_set = useful.member_set();
358
359  for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
360    // If node with index node_idx is not in useful set,
361    // mark it as dead in dead node list.
362    if (! useful_node_set.test(node_idx) ) {
363      record_dead_node(node_idx);
364    }
365  }
366}
367
368// Disconnect all useless nodes by disconnecting those at the boundary.
369void Compile::remove_useless_nodes(Unique_Node_List &useful) {
370  uint next = 0;
371  while (next < useful.size()) {
372    Node *n = useful.at(next++);
373    // Use raw traversal of out edges since this code removes out edges
374    int max = n->outcnt();
375    for (int j = 0; j < max; ++j) {
376      Node* child = n->raw_out(j);
377      if (! useful.member(child)) {
378        assert(!child->is_top() || child != top(),
379               "If top is cached in Compile object it is in useful list");
380        // Only need to remove this out-edge to the useless node
381        n->raw_del_out(j);
382        --j;
383        --max;
384      }
385    }
386    if (n->outcnt() == 1 && n->has_special_unique_user()) {
387      record_for_igvn(n->unique_out());
388    }
389  }
390  // Remove useless macro and predicate opaq nodes
391  for (int i = C->macro_count()-1; i >= 0; i--) {
392    Node* n = C->macro_node(i);
393    if (!useful.member(n)) {
394      remove_macro_node(n);
395    }
396  }
397  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
398}
399
400//------------------------------frame_size_in_words-----------------------------
401// frame_slots in units of words
402int Compile::frame_size_in_words() const {
403  // shift is 0 in LP32 and 1 in LP64
404  const int shift = (LogBytesPerWord - LogBytesPerInt);
405  int words = _frame_slots >> shift;
406  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
407  return words;
408}
409
410// ============================================================================
411//------------------------------CompileWrapper---------------------------------
412class CompileWrapper : public StackObj {
413  Compile *const _compile;
414 public:
415  CompileWrapper(Compile* compile);
416
417  ~CompileWrapper();
418};
419
420CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
421  // the Compile* pointer is stored in the current ciEnv:
422  ciEnv* env = compile->env();
423  assert(env == ciEnv::current(), "must already be a ciEnv active");
424  assert(env->compiler_data() == NULL, "compile already active?");
425  env->set_compiler_data(compile);
426  assert(compile == Compile::current(), "sanity");
427
428  compile->set_type_dict(NULL);
429  compile->set_type_hwm(NULL);
430  compile->set_type_last_size(0);
431  compile->set_last_tf(NULL, NULL);
432  compile->set_indexSet_arena(NULL);
433  compile->set_indexSet_free_block_list(NULL);
434  compile->init_type_arena();
435  Type::Initialize(compile);
436  _compile->set_scratch_buffer_blob(NULL);
437  _compile->begin_method();
438}
439CompileWrapper::~CompileWrapper() {
440  _compile->end_method();
441  if (_compile->scratch_buffer_blob() != NULL)
442    BufferBlob::free(_compile->scratch_buffer_blob());
443  _compile->env()->set_compiler_data(NULL);
444}
445
446
447//----------------------------print_compile_messages---------------------------
448void Compile::print_compile_messages() {
449#ifndef PRODUCT
450  // Check if recompiling
451  if (_subsume_loads == false && PrintOpto) {
452    // Recompiling without allowing machine instructions to subsume loads
453    tty->print_cr("*********************************************************");
454    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
455    tty->print_cr("*********************************************************");
456  }
457  if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
458    // Recompiling without escape analysis
459    tty->print_cr("*********************************************************");
460    tty->print_cr("** Bailout: Recompile without escape analysis          **");
461    tty->print_cr("*********************************************************");
462  }
463  if (env()->break_at_compile()) {
464    // Open the debugger when compiling this method.
465    tty->print("### Breaking when compiling: ");
466    method()->print_short_name();
467    tty->cr();
468    BREAKPOINT;
469  }
470
471  if( PrintOpto ) {
472    if (is_osr_compilation()) {
473      tty->print("[OSR]%3d", _compile_id);
474    } else {
475      tty->print("%3d", _compile_id);
476    }
477  }
478#endif
479}
480
481
482//-----------------------init_scratch_buffer_blob------------------------------
483// Construct a temporary BufferBlob and cache it for this compile.
484void Compile::init_scratch_buffer_blob(int const_size) {
485  // If there is already a scratch buffer blob allocated and the
486  // constant section is big enough, use it.  Otherwise free the
487  // current and allocate a new one.
488  BufferBlob* blob = scratch_buffer_blob();
489  if ((blob != NULL) && (const_size <= _scratch_const_size)) {
490    // Use the current blob.
491  } else {
492    if (blob != NULL) {
493      BufferBlob::free(blob);
494    }
495
496    ResourceMark rm;
497    _scratch_const_size = const_size;
498    int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
499    blob = BufferBlob::create("Compile::scratch_buffer", size);
500    // Record the buffer blob for next time.
501    set_scratch_buffer_blob(blob);
502    // Have we run out of code space?
503    if (scratch_buffer_blob() == NULL) {
504      // Let CompilerBroker disable further compilations.
505      record_failure("Not enough space for scratch buffer in CodeCache");
506      return;
507    }
508  }
509
510  // Initialize the relocation buffers
511  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
512  set_scratch_locs_memory(locs_buf);
513}
514
515
516//-----------------------scratch_emit_size-------------------------------------
517// Helper function that computes size by emitting code
518uint Compile::scratch_emit_size(const Node* n) {
519  // Start scratch_emit_size section.
520  set_in_scratch_emit_size(true);
521
522  // Emit into a trash buffer and count bytes emitted.
523  // This is a pretty expensive way to compute a size,
524  // but it works well enough if seldom used.
525  // All common fixed-size instructions are given a size
526  // method by the AD file.
527  // Note that the scratch buffer blob and locs memory are
528  // allocated at the beginning of the compile task, and
529  // may be shared by several calls to scratch_emit_size.
530  // The allocation of the scratch buffer blob is particularly
531  // expensive, since it has to grab the code cache lock.
532  BufferBlob* blob = this->scratch_buffer_blob();
533  assert(blob != NULL, "Initialize BufferBlob at start");
534  assert(blob->size() > MAX_inst_size, "sanity");
535  relocInfo* locs_buf = scratch_locs_memory();
536  address blob_begin = blob->content_begin();
537  address blob_end   = (address)locs_buf;
538  assert(blob->content_contains(blob_end), "sanity");
539  CodeBuffer buf(blob_begin, blob_end - blob_begin);
540  buf.initialize_consts_size(_scratch_const_size);
541  buf.initialize_stubs_size(MAX_stubs_size);
542  assert(locs_buf != NULL, "sanity");
543  int lsize = MAX_locs_size / 3;
544  buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
545  buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
546  buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
547
548  // Do the emission.
549
550  Label fakeL; // Fake label for branch instructions.
551  Label*   saveL = NULL;
552  uint save_bnum = 0;
553  bool is_branch = n->is_MachBranch();
554  if (is_branch) {
555    MacroAssembler masm(&buf);
556    masm.bind(fakeL);
557    n->as_MachBranch()->save_label(&saveL, &save_bnum);
558    n->as_MachBranch()->label_set(&fakeL, 0);
559  }
560  n->emit(buf, this->regalloc());
561  if (is_branch) // Restore label.
562    n->as_MachBranch()->label_set(saveL, save_bnum);
563
564  // End scratch_emit_size section.
565  set_in_scratch_emit_size(false);
566
567  return buf.insts_size();
568}
569
570
571// ============================================================================
572//------------------------------Compile standard-------------------------------
573debug_only( int Compile::_debug_idx = 100000; )
574
575// Compile a method.  entry_bci is -1 for normal compilations and indicates
576// the continuation bci for on stack replacement.
577
578
579Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
580                : Phase(Compiler),
581                  _env(ci_env),
582                  _log(ci_env->log()),
583                  _compile_id(ci_env->compile_id()),
584                  _save_argument_registers(false),
585                  _stub_name(NULL),
586                  _stub_function(NULL),
587                  _stub_entry_point(NULL),
588                  _method(target),
589                  _entry_bci(osr_bci),
590                  _initial_gvn(NULL),
591                  _for_igvn(NULL),
592                  _warm_calls(NULL),
593                  _subsume_loads(subsume_loads),
594                  _do_escape_analysis(do_escape_analysis),
595                  _failure_reason(NULL),
596                  _code_buffer("Compile::Fill_buffer"),
597                  _orig_pc_slot(0),
598                  _orig_pc_slot_offset_in_bytes(0),
599                  _has_method_handle_invokes(false),
600                  _mach_constant_base_node(NULL),
601                  _node_bundling_limit(0),
602                  _node_bundling_base(NULL),
603                  _java_calls(0),
604                  _inner_loops(0),
605                  _scratch_const_size(-1),
606                  _in_scratch_emit_size(false),
607                  _dead_node_list(comp_arena()),
608                  _dead_node_count(0),
609#ifndef PRODUCT
610                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
611                  _printer(IdealGraphPrinter::printer()),
612#endif
613                  _congraph(NULL) {
614  C = this;
615
616  CompileWrapper cw(this);
617#ifndef PRODUCT
618  if (TimeCompiler2) {
619    tty->print(" ");
620    target->holder()->name()->print();
621    tty->print(".");
622    target->print_short_name();
623    tty->print("  ");
624  }
625  TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
626  TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
627  bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
628  if (!print_opto_assembly) {
629    bool print_assembly = (PrintAssembly || _method->should_print_assembly());
630    if (print_assembly && !Disassembler::can_decode()) {
631      tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
632      print_opto_assembly = true;
633    }
634  }
635  set_print_assembly(print_opto_assembly);
636  set_parsed_irreducible_loop(false);
637#endif
638
639  if (ProfileTraps) {
640    // Make sure the method being compiled gets its own MDO,
641    // so we can at least track the decompile_count().
642    method()->ensure_method_data();
643  }
644
645  Init(::AliasLevel);
646
647
648  print_compile_messages();
649
650  if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
651    _ilt = InlineTree::build_inline_tree_root();
652  else
653    _ilt = NULL;
654
655  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
656  assert(num_alias_types() >= AliasIdxRaw, "");
657
658#define MINIMUM_NODE_HASH  1023
659  // Node list that Iterative GVN will start with
660  Unique_Node_List for_igvn(comp_arena());
661  set_for_igvn(&for_igvn);
662
663  // GVN that will be run immediately on new nodes
664  uint estimated_size = method()->code_size()*4+64;
665  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
666  PhaseGVN gvn(node_arena(), estimated_size);
667  set_initial_gvn(&gvn);
668
669  { // Scope for timing the parser
670    TracePhase t3("parse", &_t_parser, true);
671
672    // Put top into the hash table ASAP.
673    initial_gvn()->transform_no_reclaim(top());
674
675    // Set up tf(), start(), and find a CallGenerator.
676    CallGenerator* cg = NULL;
677    if (is_osr_compilation()) {
678      const TypeTuple *domain = StartOSRNode::osr_domain();
679      const TypeTuple *range = TypeTuple::make_range(method()->signature());
680      init_tf(TypeFunc::make(domain, range));
681      StartNode* s = new (this) StartOSRNode(root(), domain);
682      initial_gvn()->set_type_bottom(s);
683      init_start(s);
684      cg = CallGenerator::for_osr(method(), entry_bci());
685    } else {
686      // Normal case.
687      init_tf(TypeFunc::make(method()));
688      StartNode* s = new (this) StartNode(root(), tf()->domain());
689      initial_gvn()->set_type_bottom(s);
690      init_start(s);
691      if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
692        // With java.lang.ref.reference.get() we must go through the
693        // intrinsic when G1 is enabled - even when get() is the root
694        // method of the compile - so that, if necessary, the value in
695        // the referent field of the reference object gets recorded by
696        // the pre-barrier code.
697        // Specifically, if G1 is enabled, the value in the referent
698        // field is recorded by the G1 SATB pre barrier. This will
699        // result in the referent being marked live and the reference
700        // object removed from the list of discovered references during
701        // reference processing.
702        cg = find_intrinsic(method(), false);
703      }
704      if (cg == NULL) {
705        float past_uses = method()->interpreter_invocation_count();
706        float expected_uses = past_uses;
707        cg = CallGenerator::for_inline(method(), expected_uses);
708      }
709    }
710    if (failing())  return;
711    if (cg == NULL) {
712      record_method_not_compilable_all_tiers("cannot parse method");
713      return;
714    }
715    JVMState* jvms = build_start_state(start(), tf());
716    if ((jvms = cg->generate(jvms)) == NULL) {
717      record_method_not_compilable("method parse failed");
718      return;
719    }
720    GraphKit kit(jvms);
721
722    if (!kit.stopped()) {
723      // Accept return values, and transfer control we know not where.
724      // This is done by a special, unique ReturnNode bound to root.
725      return_values(kit.jvms());
726    }
727
728    if (kit.has_exceptions()) {
729      // Any exceptions that escape from this call must be rethrown
730      // to whatever caller is dynamically above us on the stack.
731      // This is done by a special, unique RethrowNode bound to root.
732      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
733    }
734
735    if (!failing() && has_stringbuilder()) {
736      {
737        // remove useless nodes to make the usage analysis simpler
738        ResourceMark rm;
739        PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
740      }
741
742      {
743        ResourceMark rm;
744        print_method("Before StringOpts", 3);
745        PhaseStringOpts pso(initial_gvn(), &for_igvn);
746        print_method("After StringOpts", 3);
747      }
748
749      // now inline anything that we skipped the first time around
750      while (_late_inlines.length() > 0) {
751        CallGenerator* cg = _late_inlines.pop();
752        cg->do_late_inline();
753        if (failing())  return;
754      }
755    }
756    assert(_late_inlines.length() == 0, "should have been processed");
757
758    print_method("Before RemoveUseless", 3);
759
760    // Remove clutter produced by parsing.
761    if (!failing()) {
762      ResourceMark rm;
763      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
764    }
765  }
766
767  // Note:  Large methods are capped off in do_one_bytecode().
768  if (failing())  return;
769
770  // After parsing, node notes are no longer automagic.
771  // They must be propagated by register_new_node_with_optimizer(),
772  // clone(), or the like.
773  set_default_node_notes(NULL);
774
775  for (;;) {
776    int successes = Inline_Warm();
777    if (failing())  return;
778    if (successes == 0)  break;
779  }
780
781  // Drain the list.
782  Finish_Warm();
783#ifndef PRODUCT
784  if (_printer) {
785    _printer->print_inlining(this);
786  }
787#endif
788
789  if (failing())  return;
790  NOT_PRODUCT( verify_graph_edges(); )
791
792  // Now optimize
793  Optimize();
794  if (failing())  return;
795  NOT_PRODUCT( verify_graph_edges(); )
796
797#ifndef PRODUCT
798  if (PrintIdeal) {
799    ttyLocker ttyl;  // keep the following output all in one block
800    // This output goes directly to the tty, not the compiler log.
801    // To enable tools to match it up with the compilation activity,
802    // be sure to tag this tty output with the compile ID.
803    if (xtty != NULL) {
804      xtty->head("ideal compile_id='%d'%s", compile_id(),
805                 is_osr_compilation()    ? " compile_kind='osr'" :
806                 "");
807    }
808    root()->dump(9999);
809    if (xtty != NULL) {
810      xtty->tail("ideal");
811    }
812  }
813#endif
814
815  // Now that we know the size of all the monitors we can add a fixed slot
816  // for the original deopt pc.
817
818  _orig_pc_slot =  fixed_slots();
819  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
820  set_fixed_slots(next_slot);
821
822  // Now generate code
823  Code_Gen();
824  if (failing())  return;
825
826  // Check if we want to skip execution of all compiled code.
827  {
828#ifndef PRODUCT
829    if (OptoNoExecute) {
830      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
831      return;
832    }
833    TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
834#endif
835
836    if (is_osr_compilation()) {
837      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
838      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
839    } else {
840      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
841      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
842    }
843
844    env()->register_method(_method, _entry_bci,
845                           &_code_offsets,
846                           _orig_pc_slot_offset_in_bytes,
847                           code_buffer(),
848                           frame_size_in_words(), _oop_map_set,
849                           &_handler_table, &_inc_table,
850                           compiler,
851                           env()->comp_level(),
852                           has_unsafe_access(),
853                           SharedRuntime::is_wide_vector(max_vector_size())
854                           );
855
856    if (log() != NULL) // Print code cache state into compiler log
857      log()->code_cache_state();
858  }
859}
860
861//------------------------------Compile----------------------------------------
862// Compile a runtime stub
863Compile::Compile( ciEnv* ci_env,
864                  TypeFunc_generator generator,
865                  address stub_function,
866                  const char *stub_name,
867                  int is_fancy_jump,
868                  bool pass_tls,
869                  bool save_arg_registers,
870                  bool return_pc )
871  : Phase(Compiler),
872    _env(ci_env),
873    _log(ci_env->log()),
874    _compile_id(-1),
875    _save_argument_registers(save_arg_registers),
876    _method(NULL),
877    _stub_name(stub_name),
878    _stub_function(stub_function),
879    _stub_entry_point(NULL),
880    _entry_bci(InvocationEntryBci),
881    _initial_gvn(NULL),
882    _for_igvn(NULL),
883    _warm_calls(NULL),
884    _orig_pc_slot(0),
885    _orig_pc_slot_offset_in_bytes(0),
886    _subsume_loads(true),
887    _do_escape_analysis(false),
888    _failure_reason(NULL),
889    _code_buffer("Compile::Fill_buffer"),
890    _has_method_handle_invokes(false),
891    _mach_constant_base_node(NULL),
892    _node_bundling_limit(0),
893    _node_bundling_base(NULL),
894    _java_calls(0),
895    _inner_loops(0),
896#ifndef PRODUCT
897    _trace_opto_output(TraceOptoOutput),
898    _printer(NULL),
899#endif
900    _dead_node_list(comp_arena()),
901    _dead_node_count(0),
902    _congraph(NULL) {
903  C = this;
904
905#ifndef PRODUCT
906  TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
907  TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
908  set_print_assembly(PrintFrameConverterAssembly);
909  set_parsed_irreducible_loop(false);
910#endif
911  CompileWrapper cw(this);
912  Init(/*AliasLevel=*/ 0);
913  init_tf((*generator)());
914
915  {
916    // The following is a dummy for the sake of GraphKit::gen_stub
917    Unique_Node_List for_igvn(comp_arena());
918    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
919    PhaseGVN gvn(Thread::current()->resource_area(),255);
920    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
921    gvn.transform_no_reclaim(top());
922
923    GraphKit kit;
924    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
925  }
926
927  NOT_PRODUCT( verify_graph_edges(); )
928  Code_Gen();
929  if (failing())  return;
930
931
932  // Entry point will be accessed using compile->stub_entry_point();
933  if (code_buffer() == NULL) {
934    Matcher::soft_match_failure();
935  } else {
936    if (PrintAssembly && (WizardMode || Verbose))
937      tty->print_cr("### Stub::%s", stub_name);
938
939    if (!failing()) {
940      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
941
942      // Make the NMethod
943      // For now we mark the frame as never safe for profile stackwalking
944      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
945                                                      code_buffer(),
946                                                      CodeOffsets::frame_never_safe,
947                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
948                                                      frame_size_in_words(),
949                                                      _oop_map_set,
950                                                      save_arg_registers);
951      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
952
953      _stub_entry_point = rs->entry_point();
954    }
955  }
956}
957
958//------------------------------Init-------------------------------------------
959// Prepare for a single compilation
960void Compile::Init(int aliaslevel) {
961  _unique  = 0;
962  _regalloc = NULL;
963
964  _tf      = NULL;  // filled in later
965  _top     = NULL;  // cached later
966  _matcher = NULL;  // filled in later
967  _cfg     = NULL;  // filled in later
968
969  set_24_bit_selection_and_mode(Use24BitFP, false);
970
971  _node_note_array = NULL;
972  _default_node_notes = NULL;
973
974  _immutable_memory = NULL; // filled in at first inquiry
975
976  // Globally visible Nodes
977  // First set TOP to NULL to give safe behavior during creation of RootNode
978  set_cached_top_node(NULL);
979  set_root(new (this) RootNode());
980  // Now that you have a Root to point to, create the real TOP
981  set_cached_top_node( new (this) ConNode(Type::TOP) );
982  set_recent_alloc(NULL, NULL);
983
984  // Create Debug Information Recorder to record scopes, oopmaps, etc.
985  env()->set_oop_recorder(new OopRecorder(env()->arena()));
986  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
987  env()->set_dependencies(new Dependencies(env()));
988
989  _fixed_slots = 0;
990  set_has_split_ifs(false);
991  set_has_loops(has_method() && method()->has_loops()); // first approximation
992  set_has_stringbuilder(false);
993  _trap_can_recompile = false;  // no traps emitted yet
994  _major_progress = true; // start out assuming good things will happen
995  set_has_unsafe_access(false);
996  set_max_vector_size(0);
997  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
998  set_decompile_count(0);
999
1000  set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1001  set_num_loop_opts(LoopOptsCount);
1002  set_do_inlining(Inline);
1003  set_max_inline_size(MaxInlineSize);
1004  set_freq_inline_size(FreqInlineSize);
1005  set_do_scheduling(OptoScheduling);
1006  set_do_count_invocations(false);
1007  set_do_method_data_update(false);
1008
1009  if (debug_info()->recording_non_safepoints()) {
1010    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1011                        (comp_arena(), 8, 0, NULL));
1012    set_default_node_notes(Node_Notes::make(this));
1013  }
1014
1015  // // -- Initialize types before each compile --
1016  // // Update cached type information
1017  // if( _method && _method->constants() )
1018  //   Type::update_loaded_types(_method, _method->constants());
1019
1020  // Init alias_type map.
1021  if (!_do_escape_analysis && aliaslevel == 3)
1022    aliaslevel = 2;  // No unique types without escape analysis
1023  _AliasLevel = aliaslevel;
1024  const int grow_ats = 16;
1025  _max_alias_types = grow_ats;
1026  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1027  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1028  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1029  {
1030    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1031  }
1032  // Initialize the first few types.
1033  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1034  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1035  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1036  _num_alias_types = AliasIdxRaw+1;
1037  // Zero out the alias type cache.
1038  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1039  // A NULL adr_type hits in the cache right away.  Preload the right answer.
1040  probe_alias_cache(NULL)->_index = AliasIdxTop;
1041
1042  _intrinsics = NULL;
1043  _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1044  _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1045  register_library_intrinsics();
1046}
1047
1048//---------------------------init_start----------------------------------------
1049// Install the StartNode on this compile object.
1050void Compile::init_start(StartNode* s) {
1051  if (failing())
1052    return; // already failing
1053  assert(s == start(), "");
1054}
1055
1056StartNode* Compile::start() const {
1057  assert(!failing(), "");
1058  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1059    Node* start = root()->fast_out(i);
1060    if( start->is_Start() )
1061      return start->as_Start();
1062  }
1063  ShouldNotReachHere();
1064  return NULL;
1065}
1066
1067//-------------------------------immutable_memory-------------------------------------
1068// Access immutable memory
1069Node* Compile::immutable_memory() {
1070  if (_immutable_memory != NULL) {
1071    return _immutable_memory;
1072  }
1073  StartNode* s = start();
1074  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1075    Node *p = s->fast_out(i);
1076    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1077      _immutable_memory = p;
1078      return _immutable_memory;
1079    }
1080  }
1081  ShouldNotReachHere();
1082  return NULL;
1083}
1084
1085//----------------------set_cached_top_node------------------------------------
1086// Install the cached top node, and make sure Node::is_top works correctly.
1087void Compile::set_cached_top_node(Node* tn) {
1088  if (tn != NULL)  verify_top(tn);
1089  Node* old_top = _top;
1090  _top = tn;
1091  // Calling Node::setup_is_top allows the nodes the chance to adjust
1092  // their _out arrays.
1093  if (_top != NULL)     _top->setup_is_top();
1094  if (old_top != NULL)  old_top->setup_is_top();
1095  assert(_top == NULL || top()->is_top(), "");
1096}
1097
1098#ifdef ASSERT
1099uint Compile::count_live_nodes_by_graph_walk() {
1100  Unique_Node_List useful(comp_arena());
1101  // Get useful node list by walking the graph.
1102  identify_useful_nodes(useful);
1103  return useful.size();
1104}
1105
1106void Compile::print_missing_nodes() {
1107
1108  // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1109  if ((_log == NULL) && (! PrintIdealNodeCount)) {
1110    return;
1111  }
1112
1113  // This is an expensive function. It is executed only when the user
1114  // specifies VerifyIdealNodeCount option or otherwise knows the
1115  // additional work that needs to be done to identify reachable nodes
1116  // by walking the flow graph and find the missing ones using
1117  // _dead_node_list.
1118
1119  Unique_Node_List useful(comp_arena());
1120  // Get useful node list by walking the graph.
1121  identify_useful_nodes(useful);
1122
1123  uint l_nodes = C->live_nodes();
1124  uint l_nodes_by_walk = useful.size();
1125
1126  if (l_nodes != l_nodes_by_walk) {
1127    if (_log != NULL) {
1128      _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1129      _log->stamp();
1130      _log->end_head();
1131    }
1132    VectorSet& useful_member_set = useful.member_set();
1133    int last_idx = l_nodes_by_walk;
1134    for (int i = 0; i < last_idx; i++) {
1135      if (useful_member_set.test(i)) {
1136        if (_dead_node_list.test(i)) {
1137          if (_log != NULL) {
1138            _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1139          }
1140          if (PrintIdealNodeCount) {
1141            // Print the log message to tty
1142              tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1143              useful.at(i)->dump();
1144          }
1145        }
1146      }
1147      else if (! _dead_node_list.test(i)) {
1148        if (_log != NULL) {
1149          _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1150        }
1151        if (PrintIdealNodeCount) {
1152          // Print the log message to tty
1153          tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1154        }
1155      }
1156    }
1157    if (_log != NULL) {
1158      _log->tail("mismatched_nodes");
1159    }
1160  }
1161}
1162#endif
1163
1164#ifndef PRODUCT
1165void Compile::verify_top(Node* tn) const {
1166  if (tn != NULL) {
1167    assert(tn->is_Con(), "top node must be a constant");
1168    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1169    assert(tn->in(0) != NULL, "must have live top node");
1170  }
1171}
1172#endif
1173
1174
1175///-------------------Managing Per-Node Debug & Profile Info-------------------
1176
1177void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1178  guarantee(arr != NULL, "");
1179  int num_blocks = arr->length();
1180  if (grow_by < num_blocks)  grow_by = num_blocks;
1181  int num_notes = grow_by * _node_notes_block_size;
1182  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1183  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1184  while (num_notes > 0) {
1185    arr->append(notes);
1186    notes     += _node_notes_block_size;
1187    num_notes -= _node_notes_block_size;
1188  }
1189  assert(num_notes == 0, "exact multiple, please");
1190}
1191
1192bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1193  if (source == NULL || dest == NULL)  return false;
1194
1195  if (dest->is_Con())
1196    return false;               // Do not push debug info onto constants.
1197
1198#ifdef ASSERT
1199  // Leave a bread crumb trail pointing to the original node:
1200  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1201    dest->set_debug_orig(source);
1202  }
1203#endif
1204
1205  if (node_note_array() == NULL)
1206    return false;               // Not collecting any notes now.
1207
1208  // This is a copy onto a pre-existing node, which may already have notes.
1209  // If both nodes have notes, do not overwrite any pre-existing notes.
1210  Node_Notes* source_notes = node_notes_at(source->_idx);
1211  if (source_notes == NULL || source_notes->is_clear())  return false;
1212  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1213  if (dest_notes == NULL || dest_notes->is_clear()) {
1214    return set_node_notes_at(dest->_idx, source_notes);
1215  }
1216
1217  Node_Notes merged_notes = (*source_notes);
1218  // The order of operations here ensures that dest notes will win...
1219  merged_notes.update_from(dest_notes);
1220  return set_node_notes_at(dest->_idx, &merged_notes);
1221}
1222
1223
1224//--------------------------allow_range_check_smearing-------------------------
1225// Gating condition for coalescing similar range checks.
1226// Sometimes we try 'speculatively' replacing a series of a range checks by a
1227// single covering check that is at least as strong as any of them.
1228// If the optimization succeeds, the simplified (strengthened) range check
1229// will always succeed.  If it fails, we will deopt, and then give up
1230// on the optimization.
1231bool Compile::allow_range_check_smearing() const {
1232  // If this method has already thrown a range-check,
1233  // assume it was because we already tried range smearing
1234  // and it failed.
1235  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1236  return !already_trapped;
1237}
1238
1239
1240//------------------------------flatten_alias_type-----------------------------
1241const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1242  int offset = tj->offset();
1243  TypePtr::PTR ptr = tj->ptr();
1244
1245  // Known instance (scalarizable allocation) alias only with itself.
1246  bool is_known_inst = tj->isa_oopptr() != NULL &&
1247                       tj->is_oopptr()->is_known_instance();
1248
1249  // Process weird unsafe references.
1250  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1251    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1252    assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1253    tj = TypeOopPtr::BOTTOM;
1254    ptr = tj->ptr();
1255    offset = tj->offset();
1256  }
1257
1258  // Array pointers need some flattening
1259  const TypeAryPtr *ta = tj->isa_aryptr();
1260  if( ta && is_known_inst ) {
1261    if ( offset != Type::OffsetBot &&
1262         offset > arrayOopDesc::length_offset_in_bytes() ) {
1263      offset = Type::OffsetBot; // Flatten constant access into array body only
1264      tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1265    }
1266  } else if( ta && _AliasLevel >= 2 ) {
1267    // For arrays indexed by constant indices, we flatten the alias
1268    // space to include all of the array body.  Only the header, klass
1269    // and array length can be accessed un-aliased.
1270    if( offset != Type::OffsetBot ) {
1271      if( ta->const_oop() ) { // MethodData* or Method*
1272        offset = Type::OffsetBot;   // Flatten constant access into array body
1273        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1274      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1275        // range is OK as-is.
1276        tj = ta = TypeAryPtr::RANGE;
1277      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1278        tj = TypeInstPtr::KLASS; // all klass loads look alike
1279        ta = TypeAryPtr::RANGE; // generic ignored junk
1280        ptr = TypePtr::BotPTR;
1281      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1282        tj = TypeInstPtr::MARK;
1283        ta = TypeAryPtr::RANGE; // generic ignored junk
1284        ptr = TypePtr::BotPTR;
1285      } else {                  // Random constant offset into array body
1286        offset = Type::OffsetBot;   // Flatten constant access into array body
1287        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1288      }
1289    }
1290    // Arrays of fixed size alias with arrays of unknown size.
1291    if (ta->size() != TypeInt::POS) {
1292      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1293      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1294    }
1295    // Arrays of known objects become arrays of unknown objects.
1296    if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1297      const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1298      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1299    }
1300    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1301      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1302      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1303    }
1304    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1305    // cannot be distinguished by bytecode alone.
1306    if (ta->elem() == TypeInt::BOOL) {
1307      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1308      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1309      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1310    }
1311    // During the 2nd round of IterGVN, NotNull castings are removed.
1312    // Make sure the Bottom and NotNull variants alias the same.
1313    // Also, make sure exact and non-exact variants alias the same.
1314    if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1315      tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1316    }
1317  }
1318
1319  // Oop pointers need some flattening
1320  const TypeInstPtr *to = tj->isa_instptr();
1321  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1322    ciInstanceKlass *k = to->klass()->as_instance_klass();
1323    if( ptr == TypePtr::Constant ) {
1324      if (to->klass() != ciEnv::current()->Class_klass() ||
1325          offset < k->size_helper() * wordSize) {
1326        // No constant oop pointers (such as Strings); they alias with
1327        // unknown strings.
1328        assert(!is_known_inst, "not scalarizable allocation");
1329        tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1330      }
1331    } else if( is_known_inst ) {
1332      tj = to; // Keep NotNull and klass_is_exact for instance type
1333    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1334      // During the 2nd round of IterGVN, NotNull castings are removed.
1335      // Make sure the Bottom and NotNull variants alias the same.
1336      // Also, make sure exact and non-exact variants alias the same.
1337      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1338    }
1339    // Canonicalize the holder of this field
1340    if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1341      // First handle header references such as a LoadKlassNode, even if the
1342      // object's klass is unloaded at compile time (4965979).
1343      if (!is_known_inst) { // Do it only for non-instance types
1344        tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1345      }
1346    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1347      // Static fields are in the space above the normal instance
1348      // fields in the java.lang.Class instance.
1349      if (to->klass() != ciEnv::current()->Class_klass()) {
1350        to = NULL;
1351        tj = TypeOopPtr::BOTTOM;
1352        offset = tj->offset();
1353      }
1354    } else {
1355      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1356      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1357        if( is_known_inst ) {
1358          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1359        } else {
1360          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1361        }
1362      }
1363    }
1364  }
1365
1366  // Klass pointers to object array klasses need some flattening
1367  const TypeKlassPtr *tk = tj->isa_klassptr();
1368  if( tk ) {
1369    // If we are referencing a field within a Klass, we need
1370    // to assume the worst case of an Object.  Both exact and
1371    // inexact types must flatten to the same alias class so
1372    // use NotNull as the PTR.
1373    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1374
1375      tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1376                                   TypeKlassPtr::OBJECT->klass(),
1377                                   offset);
1378    }
1379
1380    ciKlass* klass = tk->klass();
1381    if( klass->is_obj_array_klass() ) {
1382      ciKlass* k = TypeAryPtr::OOPS->klass();
1383      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1384        k = TypeInstPtr::BOTTOM->klass();
1385      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1386    }
1387
1388    // Check for precise loads from the primary supertype array and force them
1389    // to the supertype cache alias index.  Check for generic array loads from
1390    // the primary supertype array and also force them to the supertype cache
1391    // alias index.  Since the same load can reach both, we need to merge
1392    // these 2 disparate memories into the same alias class.  Since the
1393    // primary supertype array is read-only, there's no chance of confusion
1394    // where we bypass an array load and an array store.
1395    int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1396    if (offset == Type::OffsetBot ||
1397        (offset >= primary_supers_offset &&
1398         offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1399        offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1400      offset = in_bytes(Klass::secondary_super_cache_offset());
1401      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1402    }
1403  }
1404
1405  // Flatten all Raw pointers together.
1406  if (tj->base() == Type::RawPtr)
1407    tj = TypeRawPtr::BOTTOM;
1408
1409  if (tj->base() == Type::AnyPtr)
1410    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1411
1412  // Flatten all to bottom for now
1413  switch( _AliasLevel ) {
1414  case 0:
1415    tj = TypePtr::BOTTOM;
1416    break;
1417  case 1:                       // Flatten to: oop, static, field or array
1418    switch (tj->base()) {
1419    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1420    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1421    case Type::AryPtr:   // do not distinguish arrays at all
1422    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1423    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1424    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1425    default: ShouldNotReachHere();
1426    }
1427    break;
1428  case 2:                       // No collapsing at level 2; keep all splits
1429  case 3:                       // No collapsing at level 3; keep all splits
1430    break;
1431  default:
1432    Unimplemented();
1433  }
1434
1435  offset = tj->offset();
1436  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1437
1438  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1439          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1440          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1441          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1442          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1443          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1444          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1445          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1446  assert( tj->ptr() != TypePtr::TopPTR &&
1447          tj->ptr() != TypePtr::AnyNull &&
1448          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1449//    assert( tj->ptr() != TypePtr::Constant ||
1450//            tj->base() == Type::RawPtr ||
1451//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1452
1453  return tj;
1454}
1455
1456void Compile::AliasType::Init(int i, const TypePtr* at) {
1457  _index = i;
1458  _adr_type = at;
1459  _field = NULL;
1460  _is_rewritable = true; // default
1461  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1462  if (atoop != NULL && atoop->is_known_instance()) {
1463    const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1464    _general_index = Compile::current()->get_alias_index(gt);
1465  } else {
1466    _general_index = 0;
1467  }
1468}
1469
1470//---------------------------------print_on------------------------------------
1471#ifndef PRODUCT
1472void Compile::AliasType::print_on(outputStream* st) {
1473  if (index() < 10)
1474        st->print("@ <%d> ", index());
1475  else  st->print("@ <%d>",  index());
1476  st->print(is_rewritable() ? "   " : " RO");
1477  int offset = adr_type()->offset();
1478  if (offset == Type::OffsetBot)
1479        st->print(" +any");
1480  else  st->print(" +%-3d", offset);
1481  st->print(" in ");
1482  adr_type()->dump_on(st);
1483  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1484  if (field() != NULL && tjp) {
1485    if (tjp->klass()  != field()->holder() ||
1486        tjp->offset() != field()->offset_in_bytes()) {
1487      st->print(" != ");
1488      field()->print();
1489      st->print(" ***");
1490    }
1491  }
1492}
1493
1494void print_alias_types() {
1495  Compile* C = Compile::current();
1496  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1497  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1498    C->alias_type(idx)->print_on(tty);
1499    tty->cr();
1500  }
1501}
1502#endif
1503
1504
1505//----------------------------probe_alias_cache--------------------------------
1506Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1507  intptr_t key = (intptr_t) adr_type;
1508  key ^= key >> logAliasCacheSize;
1509  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1510}
1511
1512
1513//-----------------------------grow_alias_types--------------------------------
1514void Compile::grow_alias_types() {
1515  const int old_ats  = _max_alias_types; // how many before?
1516  const int new_ats  = old_ats;          // how many more?
1517  const int grow_ats = old_ats+new_ats;  // how many now?
1518  _max_alias_types = grow_ats;
1519  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1520  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1521  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1522  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1523}
1524
1525
1526//--------------------------------find_alias_type------------------------------
1527Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1528  if (_AliasLevel == 0)
1529    return alias_type(AliasIdxBot);
1530
1531  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1532  if (ace->_adr_type == adr_type) {
1533    return alias_type(ace->_index);
1534  }
1535
1536  // Handle special cases.
1537  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1538  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1539
1540  // Do it the slow way.
1541  const TypePtr* flat = flatten_alias_type(adr_type);
1542
1543#ifdef ASSERT
1544  assert(flat == flatten_alias_type(flat), "idempotent");
1545  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1546  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1547    const TypeOopPtr* foop = flat->is_oopptr();
1548    // Scalarizable allocations have exact klass always.
1549    bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1550    const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1551    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1552  }
1553  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1554#endif
1555
1556  int idx = AliasIdxTop;
1557  for (int i = 0; i < num_alias_types(); i++) {
1558    if (alias_type(i)->adr_type() == flat) {
1559      idx = i;
1560      break;
1561    }
1562  }
1563
1564  if (idx == AliasIdxTop) {
1565    if (no_create)  return NULL;
1566    // Grow the array if necessary.
1567    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1568    // Add a new alias type.
1569    idx = _num_alias_types++;
1570    _alias_types[idx]->Init(idx, flat);
1571    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1572    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1573    if (flat->isa_instptr()) {
1574      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1575          && flat->is_instptr()->klass() == env()->Class_klass())
1576        alias_type(idx)->set_rewritable(false);
1577    }
1578    if (flat->isa_klassptr()) {
1579      if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1580        alias_type(idx)->set_rewritable(false);
1581      if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1582        alias_type(idx)->set_rewritable(false);
1583      if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1584        alias_type(idx)->set_rewritable(false);
1585      if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1586        alias_type(idx)->set_rewritable(false);
1587    }
1588    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1589    // but the base pointer type is not distinctive enough to identify
1590    // references into JavaThread.)
1591
1592    // Check for final fields.
1593    const TypeInstPtr* tinst = flat->isa_instptr();
1594    if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1595      ciField* field;
1596      if (tinst->const_oop() != NULL &&
1597          tinst->klass() == ciEnv::current()->Class_klass() &&
1598          tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1599        // static field
1600        ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1601        field = k->get_field_by_offset(tinst->offset(), true);
1602      } else {
1603        ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1604        field = k->get_field_by_offset(tinst->offset(), false);
1605      }
1606      assert(field == NULL ||
1607             original_field == NULL ||
1608             (field->holder() == original_field->holder() &&
1609              field->offset() == original_field->offset() &&
1610              field->is_static() == original_field->is_static()), "wrong field?");
1611      // Set field() and is_rewritable() attributes.
1612      if (field != NULL)  alias_type(idx)->set_field(field);
1613    }
1614  }
1615
1616  // Fill the cache for next time.
1617  ace->_adr_type = adr_type;
1618  ace->_index    = idx;
1619  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1620
1621  // Might as well try to fill the cache for the flattened version, too.
1622  AliasCacheEntry* face = probe_alias_cache(flat);
1623  if (face->_adr_type == NULL) {
1624    face->_adr_type = flat;
1625    face->_index    = idx;
1626    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1627  }
1628
1629  return alias_type(idx);
1630}
1631
1632
1633Compile::AliasType* Compile::alias_type(ciField* field) {
1634  const TypeOopPtr* t;
1635  if (field->is_static())
1636    t = TypeInstPtr::make(field->holder()->java_mirror());
1637  else
1638    t = TypeOopPtr::make_from_klass_raw(field->holder());
1639  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1640  assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1641  return atp;
1642}
1643
1644
1645//------------------------------have_alias_type--------------------------------
1646bool Compile::have_alias_type(const TypePtr* adr_type) {
1647  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1648  if (ace->_adr_type == adr_type) {
1649    return true;
1650  }
1651
1652  // Handle special cases.
1653  if (adr_type == NULL)             return true;
1654  if (adr_type == TypePtr::BOTTOM)  return true;
1655
1656  return find_alias_type(adr_type, true, NULL) != NULL;
1657}
1658
1659//-----------------------------must_alias--------------------------------------
1660// True if all values of the given address type are in the given alias category.
1661bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1662  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1663  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1664  if (alias_idx == AliasIdxTop)         return false; // the empty category
1665  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1666
1667  // the only remaining possible overlap is identity
1668  int adr_idx = get_alias_index(adr_type);
1669  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1670  assert(adr_idx == alias_idx ||
1671         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1672          && adr_type                       != TypeOopPtr::BOTTOM),
1673         "should not be testing for overlap with an unsafe pointer");
1674  return adr_idx == alias_idx;
1675}
1676
1677//------------------------------can_alias--------------------------------------
1678// True if any values of the given address type are in the given alias category.
1679bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1680  if (alias_idx == AliasIdxTop)         return false; // the empty category
1681  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1682  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1683  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1684
1685  // the only remaining possible overlap is identity
1686  int adr_idx = get_alias_index(adr_type);
1687  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1688  return adr_idx == alias_idx;
1689}
1690
1691
1692
1693//---------------------------pop_warm_call-------------------------------------
1694WarmCallInfo* Compile::pop_warm_call() {
1695  WarmCallInfo* wci = _warm_calls;
1696  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1697  return wci;
1698}
1699
1700//----------------------------Inline_Warm--------------------------------------
1701int Compile::Inline_Warm() {
1702  // If there is room, try to inline some more warm call sites.
1703  // %%% Do a graph index compaction pass when we think we're out of space?
1704  if (!InlineWarmCalls)  return 0;
1705
1706  int calls_made_hot = 0;
1707  int room_to_grow   = NodeCountInliningCutoff - unique();
1708  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1709  int amount_grown   = 0;
1710  WarmCallInfo* call;
1711  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1712    int est_size = (int)call->size();
1713    if (est_size > (room_to_grow - amount_grown)) {
1714      // This one won't fit anyway.  Get rid of it.
1715      call->make_cold();
1716      continue;
1717    }
1718    call->make_hot();
1719    calls_made_hot++;
1720    amount_grown   += est_size;
1721    amount_to_grow -= est_size;
1722  }
1723
1724  if (calls_made_hot > 0)  set_major_progress();
1725  return calls_made_hot;
1726}
1727
1728
1729//----------------------------Finish_Warm--------------------------------------
1730void Compile::Finish_Warm() {
1731  if (!InlineWarmCalls)  return;
1732  if (failing())  return;
1733  if (warm_calls() == NULL)  return;
1734
1735  // Clean up loose ends, if we are out of space for inlining.
1736  WarmCallInfo* call;
1737  while ((call = pop_warm_call()) != NULL) {
1738    call->make_cold();
1739  }
1740}
1741
1742//---------------------cleanup_loop_predicates-----------------------
1743// Remove the opaque nodes that protect the predicates so that all unused
1744// checks and uncommon_traps will be eliminated from the ideal graph
1745void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1746  if (predicate_count()==0) return;
1747  for (int i = predicate_count(); i > 0; i--) {
1748    Node * n = predicate_opaque1_node(i-1);
1749    assert(n->Opcode() == Op_Opaque1, "must be");
1750    igvn.replace_node(n, n->in(1));
1751  }
1752  assert(predicate_count()==0, "should be clean!");
1753}
1754
1755//------------------------------Optimize---------------------------------------
1756// Given a graph, optimize it.
1757void Compile::Optimize() {
1758  TracePhase t1("optimizer", &_t_optimizer, true);
1759
1760#ifndef PRODUCT
1761  if (env()->break_at_compile()) {
1762    BREAKPOINT;
1763  }
1764
1765#endif
1766
1767  ResourceMark rm;
1768  int          loop_opts_cnt;
1769
1770  NOT_PRODUCT( verify_graph_edges(); )
1771
1772  print_method("After Parsing");
1773
1774 {
1775  // Iterative Global Value Numbering, including ideal transforms
1776  // Initialize IterGVN with types and values from parse-time GVN
1777  PhaseIterGVN igvn(initial_gvn());
1778  {
1779    NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1780    igvn.optimize();
1781  }
1782
1783  print_method("Iter GVN 1", 2);
1784
1785  if (failing())  return;
1786
1787  // Perform escape analysis
1788  if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
1789    if (has_loops()) {
1790      // Cleanup graph (remove dead nodes).
1791      TracePhase t2("idealLoop", &_t_idealLoop, true);
1792      PhaseIdealLoop ideal_loop( igvn, false, true );
1793      if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
1794      if (failing())  return;
1795    }
1796    ConnectionGraph::do_analysis(this, &igvn);
1797
1798    if (failing())  return;
1799
1800    // Optimize out fields loads from scalar replaceable allocations.
1801    igvn.optimize();
1802    print_method("Iter GVN after EA", 2);
1803
1804    if (failing())  return;
1805
1806    if (congraph() != NULL && macro_count() > 0) {
1807      NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
1808      PhaseMacroExpand mexp(igvn);
1809      mexp.eliminate_macro_nodes();
1810      igvn.set_delay_transform(false);
1811
1812      igvn.optimize();
1813      print_method("Iter GVN after eliminating allocations and locks", 2);
1814
1815      if (failing())  return;
1816    }
1817  }
1818
1819  // Loop transforms on the ideal graph.  Range Check Elimination,
1820  // peeling, unrolling, etc.
1821
1822  // Set loop opts counter
1823  loop_opts_cnt = num_loop_opts();
1824  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1825    {
1826      TracePhase t2("idealLoop", &_t_idealLoop, true);
1827      PhaseIdealLoop ideal_loop( igvn, true );
1828      loop_opts_cnt--;
1829      if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1830      if (failing())  return;
1831    }
1832    // Loop opts pass if partial peeling occurred in previous pass
1833    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1834      TracePhase t3("idealLoop", &_t_idealLoop, true);
1835      PhaseIdealLoop ideal_loop( igvn, false );
1836      loop_opts_cnt--;
1837      if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1838      if (failing())  return;
1839    }
1840    // Loop opts pass for loop-unrolling before CCP
1841    if(major_progress() && (loop_opts_cnt > 0)) {
1842      TracePhase t4("idealLoop", &_t_idealLoop, true);
1843      PhaseIdealLoop ideal_loop( igvn, false );
1844      loop_opts_cnt--;
1845      if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1846    }
1847    if (!failing()) {
1848      // Verify that last round of loop opts produced a valid graph
1849      NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1850      PhaseIdealLoop::verify(igvn);
1851    }
1852  }
1853  if (failing())  return;
1854
1855  // Conditional Constant Propagation;
1856  PhaseCCP ccp( &igvn );
1857  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1858  {
1859    TracePhase t2("ccp", &_t_ccp, true);
1860    ccp.do_transform();
1861  }
1862  print_method("PhaseCPP 1", 2);
1863
1864  assert( true, "Break here to ccp.dump_old2new_map()");
1865
1866  // Iterative Global Value Numbering, including ideal transforms
1867  {
1868    NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1869    igvn = ccp;
1870    igvn.optimize();
1871  }
1872
1873  print_method("Iter GVN 2", 2);
1874
1875  if (failing())  return;
1876
1877  // Loop transforms on the ideal graph.  Range Check Elimination,
1878  // peeling, unrolling, etc.
1879  if(loop_opts_cnt > 0) {
1880    debug_only( int cnt = 0; );
1881    while(major_progress() && (loop_opts_cnt > 0)) {
1882      TracePhase t2("idealLoop", &_t_idealLoop, true);
1883      assert( cnt++ < 40, "infinite cycle in loop optimization" );
1884      PhaseIdealLoop ideal_loop( igvn, true);
1885      loop_opts_cnt--;
1886      if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1887      if (failing())  return;
1888    }
1889  }
1890
1891  {
1892    // Verify that all previous optimizations produced a valid graph
1893    // at least to this point, even if no loop optimizations were done.
1894    NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1895    PhaseIdealLoop::verify(igvn);
1896  }
1897
1898  {
1899    NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1900    PhaseMacroExpand  mex(igvn);
1901    if (mex.expand_macro_nodes()) {
1902      assert(failing(), "must bail out w/ explicit message");
1903      return;
1904    }
1905  }
1906
1907 } // (End scope of igvn; run destructor if necessary for asserts.)
1908
1909  // A method with only infinite loops has no edges entering loops from root
1910  {
1911    NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1912    if (final_graph_reshaping()) {
1913      assert(failing(), "must bail out w/ explicit message");
1914      return;
1915    }
1916  }
1917
1918  print_method("Optimize finished", 2);
1919}
1920
1921
1922//------------------------------Code_Gen---------------------------------------
1923// Given a graph, generate code for it
1924void Compile::Code_Gen() {
1925  if (failing())  return;
1926
1927  // Perform instruction selection.  You might think we could reclaim Matcher
1928  // memory PDQ, but actually the Matcher is used in generating spill code.
1929  // Internals of the Matcher (including some VectorSets) must remain live
1930  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1931  // set a bit in reclaimed memory.
1932
1933  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1934  // nodes.  Mapping is only valid at the root of each matched subtree.
1935  NOT_PRODUCT( verify_graph_edges(); )
1936
1937  Node_List proj_list;
1938  Matcher m(proj_list);
1939  _matcher = &m;
1940  {
1941    TracePhase t2("matcher", &_t_matcher, true);
1942    m.match();
1943  }
1944  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1945  // nodes.  Mapping is only valid at the root of each matched subtree.
1946  NOT_PRODUCT( verify_graph_edges(); )
1947
1948  // If you have too many nodes, or if matching has failed, bail out
1949  check_node_count(0, "out of nodes matching instructions");
1950  if (failing())  return;
1951
1952  // Build a proper-looking CFG
1953  PhaseCFG cfg(node_arena(), root(), m);
1954  _cfg = &cfg;
1955  {
1956    NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1957    cfg.Dominators();
1958    if (failing())  return;
1959
1960    NOT_PRODUCT( verify_graph_edges(); )
1961
1962    cfg.Estimate_Block_Frequency();
1963    cfg.GlobalCodeMotion(m,unique(),proj_list);
1964    if (failing())  return;
1965
1966    print_method("Global code motion", 2);
1967
1968    NOT_PRODUCT( verify_graph_edges(); )
1969
1970    debug_only( cfg.verify(); )
1971  }
1972  NOT_PRODUCT( verify_graph_edges(); )
1973
1974  PhaseChaitin regalloc(unique(),cfg,m);
1975  _regalloc = &regalloc;
1976  {
1977    TracePhase t2("regalloc", &_t_registerAllocation, true);
1978    // Perform any platform dependent preallocation actions.  This is used,
1979    // for example, to avoid taking an implicit null pointer exception
1980    // using the frame pointer on win95.
1981    _regalloc->pd_preallocate_hook();
1982
1983    // Perform register allocation.  After Chaitin, use-def chains are
1984    // no longer accurate (at spill code) and so must be ignored.
1985    // Node->LRG->reg mappings are still accurate.
1986    _regalloc->Register_Allocate();
1987
1988    // Bail out if the allocator builds too many nodes
1989    if (failing())  return;
1990  }
1991
1992  // Prior to register allocation we kept empty basic blocks in case the
1993  // the allocator needed a place to spill.  After register allocation we
1994  // are not adding any new instructions.  If any basic block is empty, we
1995  // can now safely remove it.
1996  {
1997    NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1998    cfg.remove_empty();
1999    if (do_freq_based_layout()) {
2000      PhaseBlockLayout layout(cfg);
2001    } else {
2002      cfg.set_loop_alignment();
2003    }
2004    cfg.fixup_flow();
2005  }
2006
2007  // Perform any platform dependent postallocation verifications.
2008  debug_only( _regalloc->pd_postallocate_verify_hook(); )
2009
2010  // Apply peephole optimizations
2011  if( OptoPeephole ) {
2012    NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2013    PhasePeephole peep( _regalloc, cfg);
2014    peep.do_transform();
2015  }
2016
2017  // Convert Nodes to instruction bits in a buffer
2018  {
2019    // %%%% workspace merge brought two timers together for one job
2020    TracePhase t2a("output", &_t_output, true);
2021    NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2022    Output();
2023  }
2024
2025  print_method("Final Code");
2026
2027  // He's dead, Jim.
2028  _cfg     = (PhaseCFG*)0xdeadbeef;
2029  _regalloc = (PhaseChaitin*)0xdeadbeef;
2030}
2031
2032
2033//------------------------------dump_asm---------------------------------------
2034// Dump formatted assembly
2035#ifndef PRODUCT
2036void Compile::dump_asm(int *pcs, uint pc_limit) {
2037  bool cut_short = false;
2038  tty->print_cr("#");
2039  tty->print("#  ");  _tf->dump();  tty->cr();
2040  tty->print_cr("#");
2041
2042  // For all blocks
2043  int pc = 0x0;                 // Program counter
2044  char starts_bundle = ' ';
2045  _regalloc->dump_frame();
2046
2047  Node *n = NULL;
2048  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
2049    if (VMThread::should_terminate()) { cut_short = true; break; }
2050    Block *b = _cfg->_blocks[i];
2051    if (b->is_connector() && !Verbose) continue;
2052    n = b->_nodes[0];
2053    if (pcs && n->_idx < pc_limit)
2054      tty->print("%3.3x   ", pcs[n->_idx]);
2055    else
2056      tty->print("      ");
2057    b->dump_head( &_cfg->_bbs );
2058    if (b->is_connector()) {
2059      tty->print_cr("        # Empty connector block");
2060    } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2061      tty->print_cr("        # Block is sole successor of call");
2062    }
2063
2064    // For all instructions
2065    Node *delay = NULL;
2066    for( uint j = 0; j<b->_nodes.size(); j++ ) {
2067      if (VMThread::should_terminate()) { cut_short = true; break; }
2068      n = b->_nodes[j];
2069      if (valid_bundle_info(n)) {
2070        Bundle *bundle = node_bundling(n);
2071        if (bundle->used_in_unconditional_delay()) {
2072          delay = n;
2073          continue;
2074        }
2075        if (bundle->starts_bundle())
2076          starts_bundle = '+';
2077      }
2078
2079      if (WizardMode) n->dump();
2080
2081      if( !n->is_Region() &&    // Dont print in the Assembly
2082          !n->is_Phi() &&       // a few noisely useless nodes
2083          !n->is_Proj() &&
2084          !n->is_MachTemp() &&
2085          !n->is_SafePointScalarObject() &&
2086          !n->is_Catch() &&     // Would be nice to print exception table targets
2087          !n->is_MergeMem() &&  // Not very interesting
2088          !n->is_top() &&       // Debug info table constants
2089          !(n->is_Con() && !n->is_Mach())// Debug info table constants
2090          ) {
2091        if (pcs && n->_idx < pc_limit)
2092          tty->print("%3.3x", pcs[n->_idx]);
2093        else
2094          tty->print("   ");
2095        tty->print(" %c ", starts_bundle);
2096        starts_bundle = ' ';
2097        tty->print("\t");
2098        n->format(_regalloc, tty);
2099        tty->cr();
2100      }
2101
2102      // If we have an instruction with a delay slot, and have seen a delay,
2103      // then back up and print it
2104      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2105        assert(delay != NULL, "no unconditional delay instruction");
2106        if (WizardMode) delay->dump();
2107
2108        if (node_bundling(delay)->starts_bundle())
2109          starts_bundle = '+';
2110        if (pcs && n->_idx < pc_limit)
2111          tty->print("%3.3x", pcs[n->_idx]);
2112        else
2113          tty->print("   ");
2114        tty->print(" %c ", starts_bundle);
2115        starts_bundle = ' ';
2116        tty->print("\t");
2117        delay->format(_regalloc, tty);
2118        tty->print_cr("");
2119        delay = NULL;
2120      }
2121
2122      // Dump the exception table as well
2123      if( n->is_Catch() && (Verbose || WizardMode) ) {
2124        // Print the exception table for this offset
2125        _handler_table.print_subtable_for(pc);
2126      }
2127    }
2128
2129    if (pcs && n->_idx < pc_limit)
2130      tty->print_cr("%3.3x", pcs[n->_idx]);
2131    else
2132      tty->print_cr("");
2133
2134    assert(cut_short || delay == NULL, "no unconditional delay branch");
2135
2136  } // End of per-block dump
2137  tty->print_cr("");
2138
2139  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2140}
2141#endif
2142
2143//------------------------------Final_Reshape_Counts---------------------------
2144// This class defines counters to help identify when a method
2145// may/must be executed using hardware with only 24-bit precision.
2146struct Final_Reshape_Counts : public StackObj {
2147  int  _call_count;             // count non-inlined 'common' calls
2148  int  _float_count;            // count float ops requiring 24-bit precision
2149  int  _double_count;           // count double ops requiring more precision
2150  int  _java_call_count;        // count non-inlined 'java' calls
2151  int  _inner_loop_count;       // count loops which need alignment
2152  VectorSet _visited;           // Visitation flags
2153  Node_List _tests;             // Set of IfNodes & PCTableNodes
2154
2155  Final_Reshape_Counts() :
2156    _call_count(0), _float_count(0), _double_count(0),
2157    _java_call_count(0), _inner_loop_count(0),
2158    _visited( Thread::current()->resource_area() ) { }
2159
2160  void inc_call_count  () { _call_count  ++; }
2161  void inc_float_count () { _float_count ++; }
2162  void inc_double_count() { _double_count++; }
2163  void inc_java_call_count() { _java_call_count++; }
2164  void inc_inner_loop_count() { _inner_loop_count++; }
2165
2166  int  get_call_count  () const { return _call_count  ; }
2167  int  get_float_count () const { return _float_count ; }
2168  int  get_double_count() const { return _double_count; }
2169  int  get_java_call_count() const { return _java_call_count; }
2170  int  get_inner_loop_count() const { return _inner_loop_count; }
2171};
2172
2173static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2174  ciInstanceKlass *k = tp->klass()->as_instance_klass();
2175  // Make sure the offset goes inside the instance layout.
2176  return k->contains_field_offset(tp->offset());
2177  // Note that OffsetBot and OffsetTop are very negative.
2178}
2179
2180// Eliminate trivially redundant StoreCMs and accumulate their
2181// precedence edges.
2182void Compile::eliminate_redundant_card_marks(Node* n) {
2183  assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2184  if (n->in(MemNode::Address)->outcnt() > 1) {
2185    // There are multiple users of the same address so it might be
2186    // possible to eliminate some of the StoreCMs
2187    Node* mem = n->in(MemNode::Memory);
2188    Node* adr = n->in(MemNode::Address);
2189    Node* val = n->in(MemNode::ValueIn);
2190    Node* prev = n;
2191    bool done = false;
2192    // Walk the chain of StoreCMs eliminating ones that match.  As
2193    // long as it's a chain of single users then the optimization is
2194    // safe.  Eliminating partially redundant StoreCMs would require
2195    // cloning copies down the other paths.
2196    while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2197      if (adr == mem->in(MemNode::Address) &&
2198          val == mem->in(MemNode::ValueIn)) {
2199        // redundant StoreCM
2200        if (mem->req() > MemNode::OopStore) {
2201          // Hasn't been processed by this code yet.
2202          n->add_prec(mem->in(MemNode::OopStore));
2203        } else {
2204          // Already converted to precedence edge
2205          for (uint i = mem->req(); i < mem->len(); i++) {
2206            // Accumulate any precedence edges
2207            if (mem->in(i) != NULL) {
2208              n->add_prec(mem->in(i));
2209            }
2210          }
2211          // Everything above this point has been processed.
2212          done = true;
2213        }
2214        // Eliminate the previous StoreCM
2215        prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2216        assert(mem->outcnt() == 0, "should be dead");
2217        mem->disconnect_inputs(NULL, this);
2218      } else {
2219        prev = mem;
2220      }
2221      mem = prev->in(MemNode::Memory);
2222    }
2223  }
2224}
2225
2226//------------------------------final_graph_reshaping_impl----------------------
2227// Implement items 1-5 from final_graph_reshaping below.
2228void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2229
2230  if ( n->outcnt() == 0 ) return; // dead node
2231  uint nop = n->Opcode();
2232
2233  // Check for 2-input instruction with "last use" on right input.
2234  // Swap to left input.  Implements item (2).
2235  if( n->req() == 3 &&          // two-input instruction
2236      n->in(1)->outcnt() > 1 && // left use is NOT a last use
2237      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2238      n->in(2)->outcnt() == 1 &&// right use IS a last use
2239      !n->in(2)->is_Con() ) {   // right use is not a constant
2240    // Check for commutative opcode
2241    switch( nop ) {
2242    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2243    case Op_MaxI:  case Op_MinI:
2244    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2245    case Op_AndL:  case Op_XorL:  case Op_OrL:
2246    case Op_AndI:  case Op_XorI:  case Op_OrI: {
2247      // Move "last use" input to left by swapping inputs
2248      n->swap_edges(1, 2);
2249      break;
2250    }
2251    default:
2252      break;
2253    }
2254  }
2255
2256#ifdef ASSERT
2257  if( n->is_Mem() ) {
2258    int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2259    assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2260            // oop will be recorded in oop map if load crosses safepoint
2261            n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2262                             LoadNode::is_immutable_value(n->in(MemNode::Address))),
2263            "raw memory operations should have control edge");
2264  }
2265#endif
2266  // Count FPU ops and common calls, implements item (3)
2267  switch( nop ) {
2268  // Count all float operations that may use FPU
2269  case Op_AddF:
2270  case Op_SubF:
2271  case Op_MulF:
2272  case Op_DivF:
2273  case Op_NegF:
2274  case Op_ModF:
2275  case Op_ConvI2F:
2276  case Op_ConF:
2277  case Op_CmpF:
2278  case Op_CmpF3:
2279  // case Op_ConvL2F: // longs are split into 32-bit halves
2280    frc.inc_float_count();
2281    break;
2282
2283  case Op_ConvF2D:
2284  case Op_ConvD2F:
2285    frc.inc_float_count();
2286    frc.inc_double_count();
2287    break;
2288
2289  // Count all double operations that may use FPU
2290  case Op_AddD:
2291  case Op_SubD:
2292  case Op_MulD:
2293  case Op_DivD:
2294  case Op_NegD:
2295  case Op_ModD:
2296  case Op_ConvI2D:
2297  case Op_ConvD2I:
2298  // case Op_ConvL2D: // handled by leaf call
2299  // case Op_ConvD2L: // handled by leaf call
2300  case Op_ConD:
2301  case Op_CmpD:
2302  case Op_CmpD3:
2303    frc.inc_double_count();
2304    break;
2305  case Op_Opaque1:              // Remove Opaque Nodes before matching
2306  case Op_Opaque2:              // Remove Opaque Nodes before matching
2307    n->subsume_by(n->in(1), this);
2308    break;
2309  case Op_CallStaticJava:
2310  case Op_CallJava:
2311  case Op_CallDynamicJava:
2312    frc.inc_java_call_count(); // Count java call site;
2313  case Op_CallRuntime:
2314  case Op_CallLeaf:
2315  case Op_CallLeafNoFP: {
2316    assert( n->is_Call(), "" );
2317    CallNode *call = n->as_Call();
2318    // Count call sites where the FP mode bit would have to be flipped.
2319    // Do not count uncommon runtime calls:
2320    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2321    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2322    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2323      frc.inc_call_count();   // Count the call site
2324    } else {                  // See if uncommon argument is shared
2325      Node *n = call->in(TypeFunc::Parms);
2326      int nop = n->Opcode();
2327      // Clone shared simple arguments to uncommon calls, item (1).
2328      if( n->outcnt() > 1 &&
2329          !n->is_Proj() &&
2330          nop != Op_CreateEx &&
2331          nop != Op_CheckCastPP &&
2332          nop != Op_DecodeN &&
2333          nop != Op_DecodeNKlass &&
2334          !n->is_Mem() ) {
2335        Node *x = n->clone();
2336        call->set_req( TypeFunc::Parms, x );
2337      }
2338    }
2339    break;
2340  }
2341
2342  case Op_StoreD:
2343  case Op_LoadD:
2344  case Op_LoadD_unaligned:
2345    frc.inc_double_count();
2346    goto handle_mem;
2347  case Op_StoreF:
2348  case Op_LoadF:
2349    frc.inc_float_count();
2350    goto handle_mem;
2351
2352  case Op_StoreCM:
2353    {
2354      // Convert OopStore dependence into precedence edge
2355      Node* prec = n->in(MemNode::OopStore);
2356      n->del_req(MemNode::OopStore);
2357      n->add_prec(prec);
2358      eliminate_redundant_card_marks(n);
2359    }
2360
2361    // fall through
2362
2363  case Op_StoreB:
2364  case Op_StoreC:
2365  case Op_StorePConditional:
2366  case Op_StoreI:
2367  case Op_StoreL:
2368  case Op_StoreIConditional:
2369  case Op_StoreLConditional:
2370  case Op_CompareAndSwapI:
2371  case Op_CompareAndSwapL:
2372  case Op_CompareAndSwapP:
2373  case Op_CompareAndSwapN:
2374  case Op_GetAndAddI:
2375  case Op_GetAndAddL:
2376  case Op_GetAndSetI:
2377  case Op_GetAndSetL:
2378  case Op_GetAndSetP:
2379  case Op_GetAndSetN:
2380  case Op_StoreP:
2381  case Op_StoreN:
2382  case Op_StoreNKlass:
2383  case Op_LoadB:
2384  case Op_LoadUB:
2385  case Op_LoadUS:
2386  case Op_LoadI:
2387  case Op_LoadKlass:
2388  case Op_LoadNKlass:
2389  case Op_LoadL:
2390  case Op_LoadL_unaligned:
2391  case Op_LoadPLocked:
2392  case Op_LoadP:
2393  case Op_LoadN:
2394  case Op_LoadRange:
2395  case Op_LoadS: {
2396  handle_mem:
2397#ifdef ASSERT
2398    if( VerifyOptoOopOffsets ) {
2399      assert( n->is_Mem(), "" );
2400      MemNode *mem  = (MemNode*)n;
2401      // Check to see if address types have grounded out somehow.
2402      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2403      assert( !tp || oop_offset_is_sane(tp), "" );
2404    }
2405#endif
2406    break;
2407  }
2408
2409  case Op_AddP: {               // Assert sane base pointers
2410    Node *addp = n->in(AddPNode::Address);
2411    assert( !addp->is_AddP() ||
2412            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2413            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2414            "Base pointers must match" );
2415#ifdef _LP64
2416    if ((UseCompressedOops || UseCompressedKlassPointers) &&
2417        addp->Opcode() == Op_ConP &&
2418        addp == n->in(AddPNode::Base) &&
2419        n->in(AddPNode::Offset)->is_Con()) {
2420      // Use addressing with narrow klass to load with offset on x86.
2421      // On sparc loading 32-bits constant and decoding it have less
2422      // instructions (4) then load 64-bits constant (7).
2423      // Do this transformation here since IGVN will convert ConN back to ConP.
2424      const Type* t = addp->bottom_type();
2425      if (t->isa_oopptr() || t->isa_klassptr()) {
2426        Node* nn = NULL;
2427
2428        int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2429
2430        // Look for existing ConN node of the same exact type.
2431        Node* r  = root();
2432        uint cnt = r->outcnt();
2433        for (uint i = 0; i < cnt; i++) {
2434          Node* m = r->raw_out(i);
2435          if (m!= NULL && m->Opcode() == op &&
2436              m->bottom_type()->make_ptr() == t) {
2437            nn = m;
2438            break;
2439          }
2440        }
2441        if (nn != NULL) {
2442          // Decode a narrow oop to match address
2443          // [R12 + narrow_oop_reg<<3 + offset]
2444          if (t->isa_oopptr()) {
2445            nn = new (this) DecodeNNode(nn, t);
2446          } else {
2447            nn = new (this) DecodeNKlassNode(nn, t);
2448          }
2449          n->set_req(AddPNode::Base, nn);
2450          n->set_req(AddPNode::Address, nn);
2451          if (addp->outcnt() == 0) {
2452            addp->disconnect_inputs(NULL, this);
2453          }
2454        }
2455      }
2456    }
2457#endif
2458    break;
2459  }
2460
2461#ifdef _LP64
2462  case Op_CastPP:
2463    if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2464      Node* in1 = n->in(1);
2465      const Type* t = n->bottom_type();
2466      Node* new_in1 = in1->clone();
2467      new_in1->as_DecodeN()->set_type(t);
2468
2469      if (!Matcher::narrow_oop_use_complex_address()) {
2470        //
2471        // x86, ARM and friends can handle 2 adds in addressing mode
2472        // and Matcher can fold a DecodeN node into address by using
2473        // a narrow oop directly and do implicit NULL check in address:
2474        //
2475        // [R12 + narrow_oop_reg<<3 + offset]
2476        // NullCheck narrow_oop_reg
2477        //
2478        // On other platforms (Sparc) we have to keep new DecodeN node and
2479        // use it to do implicit NULL check in address:
2480        //
2481        // decode_not_null narrow_oop_reg, base_reg
2482        // [base_reg + offset]
2483        // NullCheck base_reg
2484        //
2485        // Pin the new DecodeN node to non-null path on these platform (Sparc)
2486        // to keep the information to which NULL check the new DecodeN node
2487        // corresponds to use it as value in implicit_null_check().
2488        //
2489        new_in1->set_req(0, n->in(0));
2490      }
2491
2492      n->subsume_by(new_in1, this);
2493      if (in1->outcnt() == 0) {
2494        in1->disconnect_inputs(NULL, this);
2495      }
2496    }
2497    break;
2498
2499  case Op_CmpP:
2500    // Do this transformation here to preserve CmpPNode::sub() and
2501    // other TypePtr related Ideal optimizations (for example, ptr nullness).
2502    if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2503      Node* in1 = n->in(1);
2504      Node* in2 = n->in(2);
2505      if (!in1->is_DecodeNarrowPtr()) {
2506        in2 = in1;
2507        in1 = n->in(2);
2508      }
2509      assert(in1->is_DecodeNarrowPtr(), "sanity");
2510
2511      Node* new_in2 = NULL;
2512      if (in2->is_DecodeNarrowPtr()) {
2513        assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2514        new_in2 = in2->in(1);
2515      } else if (in2->Opcode() == Op_ConP) {
2516        const Type* t = in2->bottom_type();
2517        if (t == TypePtr::NULL_PTR) {
2518          assert(in1->is_DecodeN(), "compare klass to null?");
2519          // Don't convert CmpP null check into CmpN if compressed
2520          // oops implicit null check is not generated.
2521          // This will allow to generate normal oop implicit null check.
2522          if (Matcher::gen_narrow_oop_implicit_null_checks())
2523            new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2524          //
2525          // This transformation together with CastPP transformation above
2526          // will generated code for implicit NULL checks for compressed oops.
2527          //
2528          // The original code after Optimize()
2529          //
2530          //    LoadN memory, narrow_oop_reg
2531          //    decode narrow_oop_reg, base_reg
2532          //    CmpP base_reg, NULL
2533          //    CastPP base_reg // NotNull
2534          //    Load [base_reg + offset], val_reg
2535          //
2536          // after these transformations will be
2537          //
2538          //    LoadN memory, narrow_oop_reg
2539          //    CmpN narrow_oop_reg, NULL
2540          //    decode_not_null narrow_oop_reg, base_reg
2541          //    Load [base_reg + offset], val_reg
2542          //
2543          // and the uncommon path (== NULL) will use narrow_oop_reg directly
2544          // since narrow oops can be used in debug info now (see the code in
2545          // final_graph_reshaping_walk()).
2546          //
2547          // At the end the code will be matched to
2548          // on x86:
2549          //
2550          //    Load_narrow_oop memory, narrow_oop_reg
2551          //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2552          //    NullCheck narrow_oop_reg
2553          //
2554          // and on sparc:
2555          //
2556          //    Load_narrow_oop memory, narrow_oop_reg
2557          //    decode_not_null narrow_oop_reg, base_reg
2558          //    Load [base_reg + offset], val_reg
2559          //    NullCheck base_reg
2560          //
2561        } else if (t->isa_oopptr()) {
2562          new_in2 = ConNode::make(this, t->make_narrowoop());
2563        } else if (t->isa_klassptr()) {
2564          new_in2 = ConNode::make(this, t->make_narrowklass());
2565        }
2566      }
2567      if (new_in2 != NULL) {
2568        Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2569        n->subsume_by(cmpN, this);
2570        if (in1->outcnt() == 0) {
2571          in1->disconnect_inputs(NULL, this);
2572        }
2573        if (in2->outcnt() == 0) {
2574          in2->disconnect_inputs(NULL, this);
2575        }
2576      }
2577    }
2578    break;
2579
2580  case Op_DecodeN:
2581  case Op_DecodeNKlass:
2582    assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2583    // DecodeN could be pinned when it can't be fold into
2584    // an address expression, see the code for Op_CastPP above.
2585    assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2586    break;
2587
2588  case Op_EncodeP:
2589  case Op_EncodePKlass: {
2590    Node* in1 = n->in(1);
2591    if (in1->is_DecodeNarrowPtr()) {
2592      n->subsume_by(in1->in(1), this);
2593    } else if (in1->Opcode() == Op_ConP) {
2594      const Type* t = in1->bottom_type();
2595      if (t == TypePtr::NULL_PTR) {
2596        assert(t->isa_oopptr(), "null klass?");
2597        n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2598      } else if (t->isa_oopptr()) {
2599        n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2600      } else if (t->isa_klassptr()) {
2601        n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2602      }
2603    }
2604    if (in1->outcnt() == 0) {
2605      in1->disconnect_inputs(NULL, this);
2606    }
2607    break;
2608  }
2609
2610  case Op_Proj: {
2611    if (OptimizeStringConcat) {
2612      ProjNode* p = n->as_Proj();
2613      if (p->_is_io_use) {
2614        // Separate projections were used for the exception path which
2615        // are normally removed by a late inline.  If it wasn't inlined
2616        // then they will hang around and should just be replaced with
2617        // the original one.
2618        Node* proj = NULL;
2619        // Replace with just one
2620        for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2621          Node *use = i.get();
2622          if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2623            proj = use;
2624            break;
2625          }
2626        }
2627        assert(proj != NULL, "must be found");
2628        p->subsume_by(proj, this);
2629      }
2630    }
2631    break;
2632  }
2633
2634  case Op_Phi:
2635    if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2636      // The EncodeP optimization may create Phi with the same edges
2637      // for all paths. It is not handled well by Register Allocator.
2638      Node* unique_in = n->in(1);
2639      assert(unique_in != NULL, "");
2640      uint cnt = n->req();
2641      for (uint i = 2; i < cnt; i++) {
2642        Node* m = n->in(i);
2643        assert(m != NULL, "");
2644        if (unique_in != m)
2645          unique_in = NULL;
2646      }
2647      if (unique_in != NULL) {
2648        n->subsume_by(unique_in, this);
2649      }
2650    }
2651    break;
2652
2653#endif
2654
2655  case Op_ModI:
2656    if (UseDivMod) {
2657      // Check if a%b and a/b both exist
2658      Node* d = n->find_similar(Op_DivI);
2659      if (d) {
2660        // Replace them with a fused divmod if supported
2661        if (Matcher::has_match_rule(Op_DivModI)) {
2662          DivModINode* divmod = DivModINode::make(this, n);
2663          d->subsume_by(divmod->div_proj(), this);
2664          n->subsume_by(divmod->mod_proj(), this);
2665        } else {
2666          // replace a%b with a-((a/b)*b)
2667          Node* mult = new (this) MulINode(d, d->in(2));
2668          Node* sub  = new (this) SubINode(d->in(1), mult);
2669          n->subsume_by(sub, this);
2670        }
2671      }
2672    }
2673    break;
2674
2675  case Op_ModL:
2676    if (UseDivMod) {
2677      // Check if a%b and a/b both exist
2678      Node* d = n->find_similar(Op_DivL);
2679      if (d) {
2680        // Replace them with a fused divmod if supported
2681        if (Matcher::has_match_rule(Op_DivModL)) {
2682          DivModLNode* divmod = DivModLNode::make(this, n);
2683          d->subsume_by(divmod->div_proj(), this);
2684          n->subsume_by(divmod->mod_proj(), this);
2685        } else {
2686          // replace a%b with a-((a/b)*b)
2687          Node* mult = new (this) MulLNode(d, d->in(2));
2688          Node* sub  = new (this) SubLNode(d->in(1), mult);
2689          n->subsume_by(sub, this);
2690        }
2691      }
2692    }
2693    break;
2694
2695  case Op_LoadVector:
2696  case Op_StoreVector:
2697    break;
2698
2699  case Op_PackB:
2700  case Op_PackS:
2701  case Op_PackI:
2702  case Op_PackF:
2703  case Op_PackL:
2704  case Op_PackD:
2705    if (n->req()-1 > 2) {
2706      // Replace many operand PackNodes with a binary tree for matching
2707      PackNode* p = (PackNode*) n;
2708      Node* btp = p->binary_tree_pack(this, 1, n->req());
2709      n->subsume_by(btp, this);
2710    }
2711    break;
2712  case Op_Loop:
2713  case Op_CountedLoop:
2714    if (n->as_Loop()->is_inner_loop()) {
2715      frc.inc_inner_loop_count();
2716    }
2717    break;
2718  case Op_LShiftI:
2719  case Op_RShiftI:
2720  case Op_URShiftI:
2721  case Op_LShiftL:
2722  case Op_RShiftL:
2723  case Op_URShiftL:
2724    if (Matcher::need_masked_shift_count) {
2725      // The cpu's shift instructions don't restrict the count to the
2726      // lower 5/6 bits. We need to do the masking ourselves.
2727      Node* in2 = n->in(2);
2728      juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2729      const TypeInt* t = in2->find_int_type();
2730      if (t != NULL && t->is_con()) {
2731        juint shift = t->get_con();
2732        if (shift > mask) { // Unsigned cmp
2733          n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2734        }
2735      } else {
2736        if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2737          Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2738          n->set_req(2, shift);
2739        }
2740      }
2741      if (in2->outcnt() == 0) { // Remove dead node
2742        in2->disconnect_inputs(NULL, this);
2743      }
2744    }
2745    break;
2746  default:
2747    assert( !n->is_Call(), "" );
2748    assert( !n->is_Mem(), "" );
2749    break;
2750  }
2751
2752  // Collect CFG split points
2753  if (n->is_MultiBranch())
2754    frc._tests.push(n);
2755}
2756
2757//------------------------------final_graph_reshaping_walk---------------------
2758// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2759// requires that the walk visits a node's inputs before visiting the node.
2760void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2761  ResourceArea *area = Thread::current()->resource_area();
2762  Unique_Node_List sfpt(area);
2763
2764  frc._visited.set(root->_idx); // first, mark node as visited
2765  uint cnt = root->req();
2766  Node *n = root;
2767  uint  i = 0;
2768  while (true) {
2769    if (i < cnt) {
2770      // Place all non-visited non-null inputs onto stack
2771      Node* m = n->in(i);
2772      ++i;
2773      if (m != NULL && !frc._visited.test_set(m->_idx)) {
2774        if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2775          sfpt.push(m);
2776        cnt = m->req();
2777        nstack.push(n, i); // put on stack parent and next input's index
2778        n = m;
2779        i = 0;
2780      }
2781    } else {
2782      // Now do post-visit work
2783      final_graph_reshaping_impl( n, frc );
2784      if (nstack.is_empty())
2785        break;             // finished
2786      n = nstack.node();   // Get node from stack
2787      cnt = n->req();
2788      i = nstack.index();
2789      nstack.pop();        // Shift to the next node on stack
2790    }
2791  }
2792
2793  // Skip next transformation if compressed oops are not used.
2794  if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
2795      (!UseCompressedOops && !UseCompressedKlassPointers))
2796    return;
2797
2798  // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
2799  // It could be done for an uncommon traps or any safepoints/calls
2800  // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
2801  while (sfpt.size() > 0) {
2802    n = sfpt.pop();
2803    JVMState *jvms = n->as_SafePoint()->jvms();
2804    assert(jvms != NULL, "sanity");
2805    int start = jvms->debug_start();
2806    int end   = n->req();
2807    bool is_uncommon = (n->is_CallStaticJava() &&
2808                        n->as_CallStaticJava()->uncommon_trap_request() != 0);
2809    for (int j = start; j < end; j++) {
2810      Node* in = n->in(j);
2811      if (in->is_DecodeNarrowPtr()) {
2812        bool safe_to_skip = true;
2813        if (!is_uncommon ) {
2814          // Is it safe to skip?
2815          for (uint i = 0; i < in->outcnt(); i++) {
2816            Node* u = in->raw_out(i);
2817            if (!u->is_SafePoint() ||
2818                 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2819              safe_to_skip = false;
2820            }
2821          }
2822        }
2823        if (safe_to_skip) {
2824          n->set_req(j, in->in(1));
2825        }
2826        if (in->outcnt() == 0) {
2827          in->disconnect_inputs(NULL, this);
2828        }
2829      }
2830    }
2831  }
2832}
2833
2834//------------------------------final_graph_reshaping--------------------------
2835// Final Graph Reshaping.
2836//
2837// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2838//     and not commoned up and forced early.  Must come after regular
2839//     optimizations to avoid GVN undoing the cloning.  Clone constant
2840//     inputs to Loop Phis; these will be split by the allocator anyways.
2841//     Remove Opaque nodes.
2842// (2) Move last-uses by commutative operations to the left input to encourage
2843//     Intel update-in-place two-address operations and better register usage
2844//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2845//     calls canonicalizing them back.
2846// (3) Count the number of double-precision FP ops, single-precision FP ops
2847//     and call sites.  On Intel, we can get correct rounding either by
2848//     forcing singles to memory (requires extra stores and loads after each
2849//     FP bytecode) or we can set a rounding mode bit (requires setting and
2850//     clearing the mode bit around call sites).  The mode bit is only used
2851//     if the relative frequency of single FP ops to calls is low enough.
2852//     This is a key transform for SPEC mpeg_audio.
2853// (4) Detect infinite loops; blobs of code reachable from above but not
2854//     below.  Several of the Code_Gen algorithms fail on such code shapes,
2855//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2856//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2857//     Detection is by looking for IfNodes where only 1 projection is
2858//     reachable from below or CatchNodes missing some targets.
2859// (5) Assert for insane oop offsets in debug mode.
2860
2861bool Compile::final_graph_reshaping() {
2862  // an infinite loop may have been eliminated by the optimizer,
2863  // in which case the graph will be empty.
2864  if (root()->req() == 1) {
2865    record_method_not_compilable("trivial infinite loop");
2866    return true;
2867  }
2868
2869  Final_Reshape_Counts frc;
2870
2871  // Visit everybody reachable!
2872  // Allocate stack of size C->unique()/2 to avoid frequent realloc
2873  Node_Stack nstack(unique() >> 1);
2874  final_graph_reshaping_walk(nstack, root(), frc);
2875
2876  // Check for unreachable (from below) code (i.e., infinite loops).
2877  for( uint i = 0; i < frc._tests.size(); i++ ) {
2878    MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2879    // Get number of CFG targets.
2880    // Note that PCTables include exception targets after calls.
2881    uint required_outcnt = n->required_outcnt();
2882    if (n->outcnt() != required_outcnt) {
2883      // Check for a few special cases.  Rethrow Nodes never take the
2884      // 'fall-thru' path, so expected kids is 1 less.
2885      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2886        if (n->in(0)->in(0)->is_Call()) {
2887          CallNode *call = n->in(0)->in(0)->as_Call();
2888          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2889            required_outcnt--;      // Rethrow always has 1 less kid
2890          } else if (call->req() > TypeFunc::Parms &&
2891                     call->is_CallDynamicJava()) {
2892            // Check for null receiver. In such case, the optimizer has
2893            // detected that the virtual call will always result in a null
2894            // pointer exception. The fall-through projection of this CatchNode
2895            // will not be populated.
2896            Node *arg0 = call->in(TypeFunc::Parms);
2897            if (arg0->is_Type() &&
2898                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2899              required_outcnt--;
2900            }
2901          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2902                     call->req() > TypeFunc::Parms+1 &&
2903                     call->is_CallStaticJava()) {
2904            // Check for negative array length. In such case, the optimizer has
2905            // detected that the allocation attempt will always result in an
2906            // exception. There is no fall-through projection of this CatchNode .
2907            Node *arg1 = call->in(TypeFunc::Parms+1);
2908            if (arg1->is_Type() &&
2909                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2910              required_outcnt--;
2911            }
2912          }
2913        }
2914      }
2915      // Recheck with a better notion of 'required_outcnt'
2916      if (n->outcnt() != required_outcnt) {
2917        record_method_not_compilable("malformed control flow");
2918        return true;            // Not all targets reachable!
2919      }
2920    }
2921    // Check that I actually visited all kids.  Unreached kids
2922    // must be infinite loops.
2923    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2924      if (!frc._visited.test(n->fast_out(j)->_idx)) {
2925        record_method_not_compilable("infinite loop");
2926        return true;            // Found unvisited kid; must be unreach
2927      }
2928  }
2929
2930  // If original bytecodes contained a mixture of floats and doubles
2931  // check if the optimizer has made it homogenous, item (3).
2932  if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2933      frc.get_float_count() > 32 &&
2934      frc.get_double_count() == 0 &&
2935      (10 * frc.get_call_count() < frc.get_float_count()) ) {
2936    set_24_bit_selection_and_mode( false,  true );
2937  }
2938
2939  set_java_calls(frc.get_java_call_count());
2940  set_inner_loops(frc.get_inner_loop_count());
2941
2942  // No infinite loops, no reason to bail out.
2943  return false;
2944}
2945
2946//-----------------------------too_many_traps----------------------------------
2947// Report if there are too many traps at the current method and bci.
2948// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2949bool Compile::too_many_traps(ciMethod* method,
2950                             int bci,
2951                             Deoptimization::DeoptReason reason) {
2952  ciMethodData* md = method->method_data();
2953  if (md->is_empty()) {
2954    // Assume the trap has not occurred, or that it occurred only
2955    // because of a transient condition during start-up in the interpreter.
2956    return false;
2957  }
2958  if (md->has_trap_at(bci, reason) != 0) {
2959    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2960    // Also, if there are multiple reasons, or if there is no per-BCI record,
2961    // assume the worst.
2962    if (log())
2963      log()->elem("observe trap='%s' count='%d'",
2964                  Deoptimization::trap_reason_name(reason),
2965                  md->trap_count(reason));
2966    return true;
2967  } else {
2968    // Ignore method/bci and see if there have been too many globally.
2969    return too_many_traps(reason, md);
2970  }
2971}
2972
2973// Less-accurate variant which does not require a method and bci.
2974bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2975                             ciMethodData* logmd) {
2976 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2977    // Too many traps globally.
2978    // Note that we use cumulative trap_count, not just md->trap_count.
2979    if (log()) {
2980      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2981      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2982                  Deoptimization::trap_reason_name(reason),
2983                  mcount, trap_count(reason));
2984    }
2985    return true;
2986  } else {
2987    // The coast is clear.
2988    return false;
2989  }
2990}
2991
2992//--------------------------too_many_recompiles--------------------------------
2993// Report if there are too many recompiles at the current method and bci.
2994// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2995// Is not eager to return true, since this will cause the compiler to use
2996// Action_none for a trap point, to avoid too many recompilations.
2997bool Compile::too_many_recompiles(ciMethod* method,
2998                                  int bci,
2999                                  Deoptimization::DeoptReason reason) {
3000  ciMethodData* md = method->method_data();
3001  if (md->is_empty()) {
3002    // Assume the trap has not occurred, or that it occurred only
3003    // because of a transient condition during start-up in the interpreter.
3004    return false;
3005  }
3006  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3007  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3008  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3009  Deoptimization::DeoptReason per_bc_reason
3010    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3011  if ((per_bc_reason == Deoptimization::Reason_none
3012       || md->has_trap_at(bci, reason) != 0)
3013      // The trap frequency measure we care about is the recompile count:
3014      && md->trap_recompiled_at(bci)
3015      && md->overflow_recompile_count() >= bc_cutoff) {
3016    // Do not emit a trap here if it has already caused recompilations.
3017    // Also, if there are multiple reasons, or if there is no per-BCI record,
3018    // assume the worst.
3019    if (log())
3020      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3021                  Deoptimization::trap_reason_name(reason),
3022                  md->trap_count(reason),
3023                  md->overflow_recompile_count());
3024    return true;
3025  } else if (trap_count(reason) != 0
3026             && decompile_count() >= m_cutoff) {
3027    // Too many recompiles globally, and we have seen this sort of trap.
3028    // Use cumulative decompile_count, not just md->decompile_count.
3029    if (log())
3030      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3031                  Deoptimization::trap_reason_name(reason),
3032                  md->trap_count(reason), trap_count(reason),
3033                  md->decompile_count(), decompile_count());
3034    return true;
3035  } else {
3036    // The coast is clear.
3037    return false;
3038  }
3039}
3040
3041
3042#ifndef PRODUCT
3043//------------------------------verify_graph_edges---------------------------
3044// Walk the Graph and verify that there is a one-to-one correspondence
3045// between Use-Def edges and Def-Use edges in the graph.
3046void Compile::verify_graph_edges(bool no_dead_code) {
3047  if (VerifyGraphEdges) {
3048    ResourceArea *area = Thread::current()->resource_area();
3049    Unique_Node_List visited(area);
3050    // Call recursive graph walk to check edges
3051    _root->verify_edges(visited);
3052    if (no_dead_code) {
3053      // Now make sure that no visited node is used by an unvisited node.
3054      bool dead_nodes = 0;
3055      Unique_Node_List checked(area);
3056      while (visited.size() > 0) {
3057        Node* n = visited.pop();
3058        checked.push(n);
3059        for (uint i = 0; i < n->outcnt(); i++) {
3060          Node* use = n->raw_out(i);
3061          if (checked.member(use))  continue;  // already checked
3062          if (visited.member(use))  continue;  // already in the graph
3063          if (use->is_Con())        continue;  // a dead ConNode is OK
3064          // At this point, we have found a dead node which is DU-reachable.
3065          if (dead_nodes++ == 0)
3066            tty->print_cr("*** Dead nodes reachable via DU edges:");
3067          use->dump(2);
3068          tty->print_cr("---");
3069          checked.push(use);  // No repeats; pretend it is now checked.
3070        }
3071      }
3072      assert(dead_nodes == 0, "using nodes must be reachable from root");
3073    }
3074  }
3075}
3076#endif
3077
3078// The Compile object keeps track of failure reasons separately from the ciEnv.
3079// This is required because there is not quite a 1-1 relation between the
3080// ciEnv and its compilation task and the Compile object.  Note that one
3081// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3082// to backtrack and retry without subsuming loads.  Other than this backtracking
3083// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3084// by the logic in C2Compiler.
3085void Compile::record_failure(const char* reason) {
3086  if (log() != NULL) {
3087    log()->elem("failure reason='%s' phase='compile'", reason);
3088  }
3089  if (_failure_reason == NULL) {
3090    // Record the first failure reason.
3091    _failure_reason = reason;
3092  }
3093  if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3094    C->print_method(_failure_reason);
3095  }
3096  _root = NULL;  // flush the graph, too
3097}
3098
3099Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3100  : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3101    _phase_name(name), _dolog(dolog)
3102{
3103  if (dolog) {
3104    C = Compile::current();
3105    _log = C->log();
3106  } else {
3107    C = NULL;
3108    _log = NULL;
3109  }
3110  if (_log != NULL) {
3111    _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3112    _log->stamp();
3113    _log->end_head();
3114  }
3115}
3116
3117Compile::TracePhase::~TracePhase() {
3118
3119  C = Compile::current();
3120  if (_dolog) {
3121    _log = C->log();
3122  } else {
3123    _log = NULL;
3124  }
3125
3126#ifdef ASSERT
3127  if (PrintIdealNodeCount) {
3128    tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3129                  _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3130  }
3131
3132  if (VerifyIdealNodeCount) {
3133    Compile::current()->print_missing_nodes();
3134  }
3135#endif
3136
3137  if (_log != NULL) {
3138    _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3139  }
3140}
3141
3142//=============================================================================
3143// Two Constant's are equal when the type and the value are equal.
3144bool Compile::Constant::operator==(const Constant& other) {
3145  if (type()          != other.type()         )  return false;
3146  if (can_be_reused() != other.can_be_reused())  return false;
3147  // For floating point values we compare the bit pattern.
3148  switch (type()) {
3149  case T_FLOAT:   return (_v._value.i == other._v._value.i);
3150  case T_LONG:
3151  case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3152  case T_OBJECT:
3153  case T_ADDRESS: return (_v._value.l == other._v._value.l);
3154  case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3155  case T_METADATA: return (_v._metadata == other._v._metadata);
3156  default: ShouldNotReachHere();
3157  }
3158  return false;
3159}
3160
3161static int type_to_size_in_bytes(BasicType t) {
3162  switch (t) {
3163  case T_LONG:    return sizeof(jlong  );
3164  case T_FLOAT:   return sizeof(jfloat );
3165  case T_DOUBLE:  return sizeof(jdouble);
3166  case T_METADATA: return sizeof(Metadata*);
3167    // We use T_VOID as marker for jump-table entries (labels) which
3168    // need an internal word relocation.
3169  case T_VOID:
3170  case T_ADDRESS:
3171  case T_OBJECT:  return sizeof(jobject);
3172  }
3173
3174  ShouldNotReachHere();
3175  return -1;
3176}
3177
3178int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3179  // sort descending
3180  if (a->freq() > b->freq())  return -1;
3181  if (a->freq() < b->freq())  return  1;
3182  return 0;
3183}
3184
3185void Compile::ConstantTable::calculate_offsets_and_size() {
3186  // First, sort the array by frequencies.
3187  _constants.sort(qsort_comparator);
3188
3189#ifdef ASSERT
3190  // Make sure all jump-table entries were sorted to the end of the
3191  // array (they have a negative frequency).
3192  bool found_void = false;
3193  for (int i = 0; i < _constants.length(); i++) {
3194    Constant con = _constants.at(i);
3195    if (con.type() == T_VOID)
3196      found_void = true;  // jump-tables
3197    else
3198      assert(!found_void, "wrong sorting");
3199  }
3200#endif
3201
3202  int offset = 0;
3203  for (int i = 0; i < _constants.length(); i++) {
3204    Constant* con = _constants.adr_at(i);
3205
3206    // Align offset for type.
3207    int typesize = type_to_size_in_bytes(con->type());
3208    offset = align_size_up(offset, typesize);
3209    con->set_offset(offset);   // set constant's offset
3210
3211    if (con->type() == T_VOID) {
3212      MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3213      offset = offset + typesize * n->outcnt();  // expand jump-table
3214    } else {
3215      offset = offset + typesize;
3216    }
3217  }
3218
3219  // Align size up to the next section start (which is insts; see
3220  // CodeBuffer::align_at_start).
3221  assert(_size == -1, "already set?");
3222  _size = align_size_up(offset, CodeEntryAlignment);
3223}
3224
3225void Compile::ConstantTable::emit(CodeBuffer& cb) {
3226  MacroAssembler _masm(&cb);
3227  for (int i = 0; i < _constants.length(); i++) {
3228    Constant con = _constants.at(i);
3229    address constant_addr;
3230    switch (con.type()) {
3231    case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3232    case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3233    case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3234    case T_OBJECT: {
3235      jobject obj = con.get_jobject();
3236      int oop_index = _masm.oop_recorder()->find_index(obj);
3237      constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3238      break;
3239    }
3240    case T_ADDRESS: {
3241      address addr = (address) con.get_jobject();
3242      constant_addr = _masm.address_constant(addr);
3243      break;
3244    }
3245    // We use T_VOID as marker for jump-table entries (labels) which
3246    // need an internal word relocation.
3247    case T_VOID: {
3248      MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3249      // Fill the jump-table with a dummy word.  The real value is
3250      // filled in later in fill_jump_table.
3251      address dummy = (address) n;
3252      constant_addr = _masm.address_constant(dummy);
3253      // Expand jump-table
3254      for (uint i = 1; i < n->outcnt(); i++) {
3255        address temp_addr = _masm.address_constant(dummy + i);
3256        assert(temp_addr, "consts section too small");
3257      }
3258      break;
3259    }
3260    case T_METADATA: {
3261      Metadata* obj = con.get_metadata();
3262      int metadata_index = _masm.oop_recorder()->find_index(obj);
3263      constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3264      break;
3265    }
3266    default: ShouldNotReachHere();
3267    }
3268    assert(constant_addr, "consts section too small");
3269    assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3270  }
3271}
3272
3273int Compile::ConstantTable::find_offset(Constant& con) const {
3274  int idx = _constants.find(con);
3275  assert(idx != -1, "constant must be in constant table");
3276  int offset = _constants.at(idx).offset();
3277  assert(offset != -1, "constant table not emitted yet?");
3278  return offset;
3279}
3280
3281void Compile::ConstantTable::add(Constant& con) {
3282  if (con.can_be_reused()) {
3283    int idx = _constants.find(con);
3284    if (idx != -1 && _constants.at(idx).can_be_reused()) {
3285      _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3286      return;
3287    }
3288  }
3289  (void) _constants.append(con);
3290}
3291
3292Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3293  Block* b = Compile::current()->cfg()->_bbs[n->_idx];
3294  Constant con(type, value, b->_freq);
3295  add(con);
3296  return con;
3297}
3298
3299Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3300  Constant con(metadata);
3301  add(con);
3302  return con;
3303}
3304
3305Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3306  jvalue value;
3307  BasicType type = oper->type()->basic_type();
3308  switch (type) {
3309  case T_LONG:    value.j = oper->constantL(); break;
3310  case T_FLOAT:   value.f = oper->constantF(); break;
3311  case T_DOUBLE:  value.d = oper->constantD(); break;
3312  case T_OBJECT:
3313  case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3314  case T_METADATA: return add((Metadata*)oper->constant()); break;
3315  default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3316  }
3317  return add(n, type, value);
3318}
3319
3320Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3321  jvalue value;
3322  // We can use the node pointer here to identify the right jump-table
3323  // as this method is called from Compile::Fill_buffer right before
3324  // the MachNodes are emitted and the jump-table is filled (means the
3325  // MachNode pointers do not change anymore).
3326  value.l = (jobject) n;
3327  Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3328  add(con);
3329  return con;
3330}
3331
3332void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3333  // If called from Compile::scratch_emit_size do nothing.
3334  if (Compile::current()->in_scratch_emit_size())  return;
3335
3336  assert(labels.is_nonempty(), "must be");
3337  assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3338
3339  // Since MachConstantNode::constant_offset() also contains
3340  // table_base_offset() we need to subtract the table_base_offset()
3341  // to get the plain offset into the constant table.
3342  int offset = n->constant_offset() - table_base_offset();
3343
3344  MacroAssembler _masm(&cb);
3345  address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3346
3347  for (uint i = 0; i < n->outcnt(); i++) {
3348    address* constant_addr = &jump_table_base[i];
3349    assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3350    *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3351    cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3352  }
3353}
3354