compile.cpp revision 1668:3e8fbc61cee8
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_compile.cpp.incl"
27
28/// Support for intrinsics.
29
30// Return the index at which m must be inserted (or already exists).
31// The sort order is by the address of the ciMethod, with is_virtual as minor key.
32int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
33#ifdef ASSERT
34  for (int i = 1; i < _intrinsics->length(); i++) {
35    CallGenerator* cg1 = _intrinsics->at(i-1);
36    CallGenerator* cg2 = _intrinsics->at(i);
37    assert(cg1->method() != cg2->method()
38           ? cg1->method()     < cg2->method()
39           : cg1->is_virtual() < cg2->is_virtual(),
40           "compiler intrinsics list must stay sorted");
41  }
42#endif
43  // Binary search sorted list, in decreasing intervals [lo, hi].
44  int lo = 0, hi = _intrinsics->length()-1;
45  while (lo <= hi) {
46    int mid = (uint)(hi + lo) / 2;
47    ciMethod* mid_m = _intrinsics->at(mid)->method();
48    if (m < mid_m) {
49      hi = mid-1;
50    } else if (m > mid_m) {
51      lo = mid+1;
52    } else {
53      // look at minor sort key
54      bool mid_virt = _intrinsics->at(mid)->is_virtual();
55      if (is_virtual < mid_virt) {
56        hi = mid-1;
57      } else if (is_virtual > mid_virt) {
58        lo = mid+1;
59      } else {
60        return mid;  // exact match
61      }
62    }
63  }
64  return lo;  // inexact match
65}
66
67void Compile::register_intrinsic(CallGenerator* cg) {
68  if (_intrinsics == NULL) {
69    _intrinsics = new GrowableArray<CallGenerator*>(60);
70  }
71  // This code is stolen from ciObjectFactory::insert.
72  // Really, GrowableArray should have methods for
73  // insert_at, remove_at, and binary_search.
74  int len = _intrinsics->length();
75  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
76  if (index == len) {
77    _intrinsics->append(cg);
78  } else {
79#ifdef ASSERT
80    CallGenerator* oldcg = _intrinsics->at(index);
81    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
82#endif
83    _intrinsics->append(_intrinsics->at(len-1));
84    int pos;
85    for (pos = len-2; pos >= index; pos--) {
86      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
87    }
88    _intrinsics->at_put(index, cg);
89  }
90  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
91}
92
93CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
94  assert(m->is_loaded(), "don't try this on unloaded methods");
95  if (_intrinsics != NULL) {
96    int index = intrinsic_insertion_index(m, is_virtual);
97    if (index < _intrinsics->length()
98        && _intrinsics->at(index)->method() == m
99        && _intrinsics->at(index)->is_virtual() == is_virtual) {
100      return _intrinsics->at(index);
101    }
102  }
103  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
104  if (m->intrinsic_id() != vmIntrinsics::_none &&
105      m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
106    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
107    if (cg != NULL) {
108      // Save it for next time:
109      register_intrinsic(cg);
110      return cg;
111    } else {
112      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
113    }
114  }
115  return NULL;
116}
117
118// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
119// in library_call.cpp.
120
121
122#ifndef PRODUCT
123// statistics gathering...
124
125juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
126jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
127
128bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
129  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
130  int oflags = _intrinsic_hist_flags[id];
131  assert(flags != 0, "what happened?");
132  if (is_virtual) {
133    flags |= _intrinsic_virtual;
134  }
135  bool changed = (flags != oflags);
136  if ((flags & _intrinsic_worked) != 0) {
137    juint count = (_intrinsic_hist_count[id] += 1);
138    if (count == 1) {
139      changed = true;           // first time
140    }
141    // increment the overall count also:
142    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
143  }
144  if (changed) {
145    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
146      // Something changed about the intrinsic's virtuality.
147      if ((flags & _intrinsic_virtual) != 0) {
148        // This is the first use of this intrinsic as a virtual call.
149        if (oflags != 0) {
150          // We already saw it as a non-virtual, so note both cases.
151          flags |= _intrinsic_both;
152        }
153      } else if ((oflags & _intrinsic_both) == 0) {
154        // This is the first use of this intrinsic as a non-virtual
155        flags |= _intrinsic_both;
156      }
157    }
158    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
159  }
160  // update the overall flags also:
161  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
162  return changed;
163}
164
165static char* format_flags(int flags, char* buf) {
166  buf[0] = 0;
167  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
168  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
169  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
170  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
171  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
172  if (buf[0] == 0)  strcat(buf, ",");
173  assert(buf[0] == ',', "must be");
174  return &buf[1];
175}
176
177void Compile::print_intrinsic_statistics() {
178  char flagsbuf[100];
179  ttyLocker ttyl;
180  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
181  tty->print_cr("Compiler intrinsic usage:");
182  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
183  if (total == 0)  total = 1;  // avoid div0 in case of no successes
184  #define PRINT_STAT_LINE(name, c, f) \
185    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
186  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
187    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
188    int   flags = _intrinsic_hist_flags[id];
189    juint count = _intrinsic_hist_count[id];
190    if ((flags | count) != 0) {
191      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
192    }
193  }
194  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
195  if (xtty != NULL)  xtty->tail("statistics");
196}
197
198void Compile::print_statistics() {
199  { ttyLocker ttyl;
200    if (xtty != NULL)  xtty->head("statistics type='opto'");
201    Parse::print_statistics();
202    PhaseCCP::print_statistics();
203    PhaseRegAlloc::print_statistics();
204    Scheduling::print_statistics();
205    PhasePeephole::print_statistics();
206    PhaseIdealLoop::print_statistics();
207    if (xtty != NULL)  xtty->tail("statistics");
208  }
209  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
210    // put this under its own <statistics> element.
211    print_intrinsic_statistics();
212  }
213}
214#endif //PRODUCT
215
216// Support for bundling info
217Bundle* Compile::node_bundling(const Node *n) {
218  assert(valid_bundle_info(n), "oob");
219  return &_node_bundling_base[n->_idx];
220}
221
222bool Compile::valid_bundle_info(const Node *n) {
223  return (_node_bundling_limit > n->_idx);
224}
225
226
227void Compile::gvn_replace_by(Node* n, Node* nn) {
228  for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
229    Node* use = n->last_out(i);
230    bool is_in_table = initial_gvn()->hash_delete(use);
231    uint uses_found = 0;
232    for (uint j = 0; j < use->len(); j++) {
233      if (use->in(j) == n) {
234        if (j < use->req())
235          use->set_req(j, nn);
236        else
237          use->set_prec(j, nn);
238        uses_found++;
239      }
240    }
241    if (is_in_table) {
242      // reinsert into table
243      initial_gvn()->hash_find_insert(use);
244    }
245    record_for_igvn(use);
246    i -= uses_found;    // we deleted 1 or more copies of this edge
247  }
248}
249
250
251
252
253// Identify all nodes that are reachable from below, useful.
254// Use breadth-first pass that records state in a Unique_Node_List,
255// recursive traversal is slower.
256void Compile::identify_useful_nodes(Unique_Node_List &useful) {
257  int estimated_worklist_size = unique();
258  useful.map( estimated_worklist_size, NULL );  // preallocate space
259
260  // Initialize worklist
261  if (root() != NULL)     { useful.push(root()); }
262  // If 'top' is cached, declare it useful to preserve cached node
263  if( cached_top_node() ) { useful.push(cached_top_node()); }
264
265  // Push all useful nodes onto the list, breadthfirst
266  for( uint next = 0; next < useful.size(); ++next ) {
267    assert( next < unique(), "Unique useful nodes < total nodes");
268    Node *n  = useful.at(next);
269    uint max = n->len();
270    for( uint i = 0; i < max; ++i ) {
271      Node *m = n->in(i);
272      if( m == NULL ) continue;
273      useful.push(m);
274    }
275  }
276}
277
278// Disconnect all useless nodes by disconnecting those at the boundary.
279void Compile::remove_useless_nodes(Unique_Node_List &useful) {
280  uint next = 0;
281  while( next < useful.size() ) {
282    Node *n = useful.at(next++);
283    // Use raw traversal of out edges since this code removes out edges
284    int max = n->outcnt();
285    for (int j = 0; j < max; ++j ) {
286      Node* child = n->raw_out(j);
287      if( ! useful.member(child) ) {
288        assert( !child->is_top() || child != top(),
289                "If top is cached in Compile object it is in useful list");
290        // Only need to remove this out-edge to the useless node
291        n->raw_del_out(j);
292        --j;
293        --max;
294      }
295    }
296    if (n->outcnt() == 1 && n->has_special_unique_user()) {
297      record_for_igvn( n->unique_out() );
298    }
299  }
300  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
301}
302
303//------------------------------frame_size_in_words-----------------------------
304// frame_slots in units of words
305int Compile::frame_size_in_words() const {
306  // shift is 0 in LP32 and 1 in LP64
307  const int shift = (LogBytesPerWord - LogBytesPerInt);
308  int words = _frame_slots >> shift;
309  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
310  return words;
311}
312
313// ============================================================================
314//------------------------------CompileWrapper---------------------------------
315class CompileWrapper : public StackObj {
316  Compile *const _compile;
317 public:
318  CompileWrapper(Compile* compile);
319
320  ~CompileWrapper();
321};
322
323CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
324  // the Compile* pointer is stored in the current ciEnv:
325  ciEnv* env = compile->env();
326  assert(env == ciEnv::current(), "must already be a ciEnv active");
327  assert(env->compiler_data() == NULL, "compile already active?");
328  env->set_compiler_data(compile);
329  assert(compile == Compile::current(), "sanity");
330
331  compile->set_type_dict(NULL);
332  compile->set_type_hwm(NULL);
333  compile->set_type_last_size(0);
334  compile->set_last_tf(NULL, NULL);
335  compile->set_indexSet_arena(NULL);
336  compile->set_indexSet_free_block_list(NULL);
337  compile->init_type_arena();
338  Type::Initialize(compile);
339  _compile->set_scratch_buffer_blob(NULL);
340  _compile->begin_method();
341}
342CompileWrapper::~CompileWrapper() {
343  _compile->end_method();
344  if (_compile->scratch_buffer_blob() != NULL)
345    BufferBlob::free(_compile->scratch_buffer_blob());
346  _compile->env()->set_compiler_data(NULL);
347}
348
349
350//----------------------------print_compile_messages---------------------------
351void Compile::print_compile_messages() {
352#ifndef PRODUCT
353  // Check if recompiling
354  if (_subsume_loads == false && PrintOpto) {
355    // Recompiling without allowing machine instructions to subsume loads
356    tty->print_cr("*********************************************************");
357    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
358    tty->print_cr("*********************************************************");
359  }
360  if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
361    // Recompiling without escape analysis
362    tty->print_cr("*********************************************************");
363    tty->print_cr("** Bailout: Recompile without escape analysis          **");
364    tty->print_cr("*********************************************************");
365  }
366  if (env()->break_at_compile()) {
367    // Open the debugger when compiling this method.
368    tty->print("### Breaking when compiling: ");
369    method()->print_short_name();
370    tty->cr();
371    BREAKPOINT;
372  }
373
374  if( PrintOpto ) {
375    if (is_osr_compilation()) {
376      tty->print("[OSR]%3d", _compile_id);
377    } else {
378      tty->print("%3d", _compile_id);
379    }
380  }
381#endif
382}
383
384
385void Compile::init_scratch_buffer_blob() {
386  if( scratch_buffer_blob() != NULL )  return;
387
388  // Construct a temporary CodeBuffer to have it construct a BufferBlob
389  // Cache this BufferBlob for this compile.
390  ResourceMark rm;
391  int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
392  BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
393  // Record the buffer blob for next time.
394  set_scratch_buffer_blob(blob);
395  // Have we run out of code space?
396  if (scratch_buffer_blob() == NULL) {
397    // Let CompilerBroker disable further compilations.
398    record_failure("Not enough space for scratch buffer in CodeCache");
399    return;
400  }
401
402  // Initialize the relocation buffers
403  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
404  set_scratch_locs_memory(locs_buf);
405}
406
407
408//-----------------------scratch_emit_size-------------------------------------
409// Helper function that computes size by emitting code
410uint Compile::scratch_emit_size(const Node* n) {
411  // Emit into a trash buffer and count bytes emitted.
412  // This is a pretty expensive way to compute a size,
413  // but it works well enough if seldom used.
414  // All common fixed-size instructions are given a size
415  // method by the AD file.
416  // Note that the scratch buffer blob and locs memory are
417  // allocated at the beginning of the compile task, and
418  // may be shared by several calls to scratch_emit_size.
419  // The allocation of the scratch buffer blob is particularly
420  // expensive, since it has to grab the code cache lock.
421  BufferBlob* blob = this->scratch_buffer_blob();
422  assert(blob != NULL, "Initialize BufferBlob at start");
423  assert(blob->size() > MAX_inst_size, "sanity");
424  relocInfo* locs_buf = scratch_locs_memory();
425  address blob_begin = blob->content_begin();
426  address blob_end   = (address)locs_buf;
427  assert(blob->content_contains(blob_end), "sanity");
428  CodeBuffer buf(blob_begin, blob_end - blob_begin);
429  buf.initialize_consts_size(MAX_const_size);
430  buf.initialize_stubs_size(MAX_stubs_size);
431  assert(locs_buf != NULL, "sanity");
432  int lsize = MAX_locs_size / 2;
433  buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
434  buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
435  n->emit(buf, this->regalloc());
436  return buf.insts_size();
437}
438
439
440// ============================================================================
441//------------------------------Compile standard-------------------------------
442debug_only( int Compile::_debug_idx = 100000; )
443
444// Compile a method.  entry_bci is -1 for normal compilations and indicates
445// the continuation bci for on stack replacement.
446
447
448Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
449                : Phase(Compiler),
450                  _env(ci_env),
451                  _log(ci_env->log()),
452                  _compile_id(ci_env->compile_id()),
453                  _save_argument_registers(false),
454                  _stub_name(NULL),
455                  _stub_function(NULL),
456                  _stub_entry_point(NULL),
457                  _method(target),
458                  _entry_bci(osr_bci),
459                  _initial_gvn(NULL),
460                  _for_igvn(NULL),
461                  _warm_calls(NULL),
462                  _subsume_loads(subsume_loads),
463                  _do_escape_analysis(do_escape_analysis),
464                  _failure_reason(NULL),
465                  _code_buffer("Compile::Fill_buffer"),
466                  _orig_pc_slot(0),
467                  _orig_pc_slot_offset_in_bytes(0),
468                  _has_method_handle_invokes(false),
469                  _node_bundling_limit(0),
470                  _node_bundling_base(NULL),
471                  _java_calls(0),
472                  _inner_loops(0),
473#ifndef PRODUCT
474                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
475                  _printer(IdealGraphPrinter::printer()),
476#endif
477                  _congraph(NULL) {
478  C = this;
479
480  CompileWrapper cw(this);
481#ifndef PRODUCT
482  if (TimeCompiler2) {
483    tty->print(" ");
484    target->holder()->name()->print();
485    tty->print(".");
486    target->print_short_name();
487    tty->print("  ");
488  }
489  TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
490  TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
491  bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
492  if (!print_opto_assembly) {
493    bool print_assembly = (PrintAssembly || _method->should_print_assembly());
494    if (print_assembly && !Disassembler::can_decode()) {
495      tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
496      print_opto_assembly = true;
497    }
498  }
499  set_print_assembly(print_opto_assembly);
500  set_parsed_irreducible_loop(false);
501#endif
502
503  if (ProfileTraps) {
504    // Make sure the method being compiled gets its own MDO,
505    // so we can at least track the decompile_count().
506    method()->build_method_data();
507  }
508
509  Init(::AliasLevel);
510
511
512  print_compile_messages();
513
514  if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
515    _ilt = InlineTree::build_inline_tree_root();
516  else
517    _ilt = NULL;
518
519  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
520  assert(num_alias_types() >= AliasIdxRaw, "");
521
522#define MINIMUM_NODE_HASH  1023
523  // Node list that Iterative GVN will start with
524  Unique_Node_List for_igvn(comp_arena());
525  set_for_igvn(&for_igvn);
526
527  // GVN that will be run immediately on new nodes
528  uint estimated_size = method()->code_size()*4+64;
529  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
530  PhaseGVN gvn(node_arena(), estimated_size);
531  set_initial_gvn(&gvn);
532
533  { // Scope for timing the parser
534    TracePhase t3("parse", &_t_parser, true);
535
536    // Put top into the hash table ASAP.
537    initial_gvn()->transform_no_reclaim(top());
538
539    // Set up tf(), start(), and find a CallGenerator.
540    CallGenerator* cg;
541    if (is_osr_compilation()) {
542      const TypeTuple *domain = StartOSRNode::osr_domain();
543      const TypeTuple *range = TypeTuple::make_range(method()->signature());
544      init_tf(TypeFunc::make(domain, range));
545      StartNode* s = new (this, 2) StartOSRNode(root(), domain);
546      initial_gvn()->set_type_bottom(s);
547      init_start(s);
548      cg = CallGenerator::for_osr(method(), entry_bci());
549    } else {
550      // Normal case.
551      init_tf(TypeFunc::make(method()));
552      StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
553      initial_gvn()->set_type_bottom(s);
554      init_start(s);
555      float past_uses = method()->interpreter_invocation_count();
556      float expected_uses = past_uses;
557      cg = CallGenerator::for_inline(method(), expected_uses);
558    }
559    if (failing())  return;
560    if (cg == NULL) {
561      record_method_not_compilable_all_tiers("cannot parse method");
562      return;
563    }
564    JVMState* jvms = build_start_state(start(), tf());
565    if ((jvms = cg->generate(jvms)) == NULL) {
566      record_method_not_compilable("method parse failed");
567      return;
568    }
569    GraphKit kit(jvms);
570
571    if (!kit.stopped()) {
572      // Accept return values, and transfer control we know not where.
573      // This is done by a special, unique ReturnNode bound to root.
574      return_values(kit.jvms());
575    }
576
577    if (kit.has_exceptions()) {
578      // Any exceptions that escape from this call must be rethrown
579      // to whatever caller is dynamically above us on the stack.
580      // This is done by a special, unique RethrowNode bound to root.
581      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
582    }
583
584    if (!failing() && has_stringbuilder()) {
585      {
586        // remove useless nodes to make the usage analysis simpler
587        ResourceMark rm;
588        PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
589      }
590
591      {
592        ResourceMark rm;
593        print_method("Before StringOpts", 3);
594        PhaseStringOpts pso(initial_gvn(), &for_igvn);
595        print_method("After StringOpts", 3);
596      }
597
598      // now inline anything that we skipped the first time around
599      while (_late_inlines.length() > 0) {
600        CallGenerator* cg = _late_inlines.pop();
601        cg->do_late_inline();
602      }
603    }
604    assert(_late_inlines.length() == 0, "should have been processed");
605
606    print_method("Before RemoveUseless", 3);
607
608    // Remove clutter produced by parsing.
609    if (!failing()) {
610      ResourceMark rm;
611      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
612    }
613  }
614
615  // Note:  Large methods are capped off in do_one_bytecode().
616  if (failing())  return;
617
618  // After parsing, node notes are no longer automagic.
619  // They must be propagated by register_new_node_with_optimizer(),
620  // clone(), or the like.
621  set_default_node_notes(NULL);
622
623  for (;;) {
624    int successes = Inline_Warm();
625    if (failing())  return;
626    if (successes == 0)  break;
627  }
628
629  // Drain the list.
630  Finish_Warm();
631#ifndef PRODUCT
632  if (_printer) {
633    _printer->print_inlining(this);
634  }
635#endif
636
637  if (failing())  return;
638  NOT_PRODUCT( verify_graph_edges(); )
639
640  // Now optimize
641  Optimize();
642  if (failing())  return;
643  NOT_PRODUCT( verify_graph_edges(); )
644
645#ifndef PRODUCT
646  if (PrintIdeal) {
647    ttyLocker ttyl;  // keep the following output all in one block
648    // This output goes directly to the tty, not the compiler log.
649    // To enable tools to match it up with the compilation activity,
650    // be sure to tag this tty output with the compile ID.
651    if (xtty != NULL) {
652      xtty->head("ideal compile_id='%d'%s", compile_id(),
653                 is_osr_compilation()    ? " compile_kind='osr'" :
654                 "");
655    }
656    root()->dump(9999);
657    if (xtty != NULL) {
658      xtty->tail("ideal");
659    }
660  }
661#endif
662
663  // Now that we know the size of all the monitors we can add a fixed slot
664  // for the original deopt pc.
665
666  _orig_pc_slot =  fixed_slots();
667  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
668  set_fixed_slots(next_slot);
669
670  // Now generate code
671  Code_Gen();
672  if (failing())  return;
673
674  // Check if we want to skip execution of all compiled code.
675  {
676#ifndef PRODUCT
677    if (OptoNoExecute) {
678      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
679      return;
680    }
681    TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
682#endif
683
684    if (is_osr_compilation()) {
685      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
686      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
687    } else {
688      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
689      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
690    }
691
692    env()->register_method(_method, _entry_bci,
693                           &_code_offsets,
694                           _orig_pc_slot_offset_in_bytes,
695                           code_buffer(),
696                           frame_size_in_words(), _oop_map_set,
697                           &_handler_table, &_inc_table,
698                           compiler,
699                           env()->comp_level(),
700                           true, /*has_debug_info*/
701                           has_unsafe_access()
702                           );
703  }
704}
705
706//------------------------------Compile----------------------------------------
707// Compile a runtime stub
708Compile::Compile( ciEnv* ci_env,
709                  TypeFunc_generator generator,
710                  address stub_function,
711                  const char *stub_name,
712                  int is_fancy_jump,
713                  bool pass_tls,
714                  bool save_arg_registers,
715                  bool return_pc )
716  : Phase(Compiler),
717    _env(ci_env),
718    _log(ci_env->log()),
719    _compile_id(-1),
720    _save_argument_registers(save_arg_registers),
721    _method(NULL),
722    _stub_name(stub_name),
723    _stub_function(stub_function),
724    _stub_entry_point(NULL),
725    _entry_bci(InvocationEntryBci),
726    _initial_gvn(NULL),
727    _for_igvn(NULL),
728    _warm_calls(NULL),
729    _orig_pc_slot(0),
730    _orig_pc_slot_offset_in_bytes(0),
731    _subsume_loads(true),
732    _do_escape_analysis(false),
733    _failure_reason(NULL),
734    _code_buffer("Compile::Fill_buffer"),
735    _has_method_handle_invokes(false),
736    _node_bundling_limit(0),
737    _node_bundling_base(NULL),
738    _java_calls(0),
739    _inner_loops(0),
740#ifndef PRODUCT
741    _trace_opto_output(TraceOptoOutput),
742    _printer(NULL),
743#endif
744    _congraph(NULL) {
745  C = this;
746
747#ifndef PRODUCT
748  TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
749  TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
750  set_print_assembly(PrintFrameConverterAssembly);
751  set_parsed_irreducible_loop(false);
752#endif
753  CompileWrapper cw(this);
754  Init(/*AliasLevel=*/ 0);
755  init_tf((*generator)());
756
757  {
758    // The following is a dummy for the sake of GraphKit::gen_stub
759    Unique_Node_List for_igvn(comp_arena());
760    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
761    PhaseGVN gvn(Thread::current()->resource_area(),255);
762    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
763    gvn.transform_no_reclaim(top());
764
765    GraphKit kit;
766    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
767  }
768
769  NOT_PRODUCT( verify_graph_edges(); )
770  Code_Gen();
771  if (failing())  return;
772
773
774  // Entry point will be accessed using compile->stub_entry_point();
775  if (code_buffer() == NULL) {
776    Matcher::soft_match_failure();
777  } else {
778    if (PrintAssembly && (WizardMode || Verbose))
779      tty->print_cr("### Stub::%s", stub_name);
780
781    if (!failing()) {
782      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
783
784      // Make the NMethod
785      // For now we mark the frame as never safe for profile stackwalking
786      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
787                                                      code_buffer(),
788                                                      CodeOffsets::frame_never_safe,
789                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
790                                                      frame_size_in_words(),
791                                                      _oop_map_set,
792                                                      save_arg_registers);
793      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
794
795      _stub_entry_point = rs->entry_point();
796    }
797  }
798}
799
800#ifndef PRODUCT
801void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
802  if(PrintOpto && Verbose) {
803    tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
804  }
805}
806#endif
807
808void Compile::print_codes() {
809}
810
811//------------------------------Init-------------------------------------------
812// Prepare for a single compilation
813void Compile::Init(int aliaslevel) {
814  _unique  = 0;
815  _regalloc = NULL;
816
817  _tf      = NULL;  // filled in later
818  _top     = NULL;  // cached later
819  _matcher = NULL;  // filled in later
820  _cfg     = NULL;  // filled in later
821
822  set_24_bit_selection_and_mode(Use24BitFP, false);
823
824  _node_note_array = NULL;
825  _default_node_notes = NULL;
826
827  _immutable_memory = NULL; // filled in at first inquiry
828
829  // Globally visible Nodes
830  // First set TOP to NULL to give safe behavior during creation of RootNode
831  set_cached_top_node(NULL);
832  set_root(new (this, 3) RootNode());
833  // Now that you have a Root to point to, create the real TOP
834  set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
835  set_recent_alloc(NULL, NULL);
836
837  // Create Debug Information Recorder to record scopes, oopmaps, etc.
838  env()->set_oop_recorder(new OopRecorder(comp_arena()));
839  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
840  env()->set_dependencies(new Dependencies(env()));
841
842  _fixed_slots = 0;
843  set_has_split_ifs(false);
844  set_has_loops(has_method() && method()->has_loops()); // first approximation
845  set_has_stringbuilder(false);
846  _trap_can_recompile = false;  // no traps emitted yet
847  _major_progress = true; // start out assuming good things will happen
848  set_has_unsafe_access(false);
849  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
850  set_decompile_count(0);
851
852  set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
853  // Compilation level related initialization
854  if (env()->comp_level() == CompLevel_fast_compile) {
855    set_num_loop_opts(Tier1LoopOptsCount);
856    set_do_inlining(Tier1Inline != 0);
857    set_max_inline_size(Tier1MaxInlineSize);
858    set_freq_inline_size(Tier1FreqInlineSize);
859    set_do_scheduling(false);
860    set_do_count_invocations(Tier1CountInvocations);
861    set_do_method_data_update(Tier1UpdateMethodData);
862  } else {
863    assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
864    set_num_loop_opts(LoopOptsCount);
865    set_do_inlining(Inline);
866    set_max_inline_size(MaxInlineSize);
867    set_freq_inline_size(FreqInlineSize);
868    set_do_scheduling(OptoScheduling);
869    set_do_count_invocations(false);
870    set_do_method_data_update(false);
871  }
872
873  if (debug_info()->recording_non_safepoints()) {
874    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
875                        (comp_arena(), 8, 0, NULL));
876    set_default_node_notes(Node_Notes::make(this));
877  }
878
879  // // -- Initialize types before each compile --
880  // // Update cached type information
881  // if( _method && _method->constants() )
882  //   Type::update_loaded_types(_method, _method->constants());
883
884  // Init alias_type map.
885  if (!_do_escape_analysis && aliaslevel == 3)
886    aliaslevel = 2;  // No unique types without escape analysis
887  _AliasLevel = aliaslevel;
888  const int grow_ats = 16;
889  _max_alias_types = grow_ats;
890  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
891  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
892  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
893  {
894    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
895  }
896  // Initialize the first few types.
897  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
898  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
899  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
900  _num_alias_types = AliasIdxRaw+1;
901  // Zero out the alias type cache.
902  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
903  // A NULL adr_type hits in the cache right away.  Preload the right answer.
904  probe_alias_cache(NULL)->_index = AliasIdxTop;
905
906  _intrinsics = NULL;
907  _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
908  _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
909  register_library_intrinsics();
910}
911
912//---------------------------init_start----------------------------------------
913// Install the StartNode on this compile object.
914void Compile::init_start(StartNode* s) {
915  if (failing())
916    return; // already failing
917  assert(s == start(), "");
918}
919
920StartNode* Compile::start() const {
921  assert(!failing(), "");
922  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
923    Node* start = root()->fast_out(i);
924    if( start->is_Start() )
925      return start->as_Start();
926  }
927  ShouldNotReachHere();
928  return NULL;
929}
930
931//-------------------------------immutable_memory-------------------------------------
932// Access immutable memory
933Node* Compile::immutable_memory() {
934  if (_immutable_memory != NULL) {
935    return _immutable_memory;
936  }
937  StartNode* s = start();
938  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
939    Node *p = s->fast_out(i);
940    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
941      _immutable_memory = p;
942      return _immutable_memory;
943    }
944  }
945  ShouldNotReachHere();
946  return NULL;
947}
948
949//----------------------set_cached_top_node------------------------------------
950// Install the cached top node, and make sure Node::is_top works correctly.
951void Compile::set_cached_top_node(Node* tn) {
952  if (tn != NULL)  verify_top(tn);
953  Node* old_top = _top;
954  _top = tn;
955  // Calling Node::setup_is_top allows the nodes the chance to adjust
956  // their _out arrays.
957  if (_top != NULL)     _top->setup_is_top();
958  if (old_top != NULL)  old_top->setup_is_top();
959  assert(_top == NULL || top()->is_top(), "");
960}
961
962#ifndef PRODUCT
963void Compile::verify_top(Node* tn) const {
964  if (tn != NULL) {
965    assert(tn->is_Con(), "top node must be a constant");
966    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
967    assert(tn->in(0) != NULL, "must have live top node");
968  }
969}
970#endif
971
972
973///-------------------Managing Per-Node Debug & Profile Info-------------------
974
975void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
976  guarantee(arr != NULL, "");
977  int num_blocks = arr->length();
978  if (grow_by < num_blocks)  grow_by = num_blocks;
979  int num_notes = grow_by * _node_notes_block_size;
980  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
981  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
982  while (num_notes > 0) {
983    arr->append(notes);
984    notes     += _node_notes_block_size;
985    num_notes -= _node_notes_block_size;
986  }
987  assert(num_notes == 0, "exact multiple, please");
988}
989
990bool Compile::copy_node_notes_to(Node* dest, Node* source) {
991  if (source == NULL || dest == NULL)  return false;
992
993  if (dest->is_Con())
994    return false;               // Do not push debug info onto constants.
995
996#ifdef ASSERT
997  // Leave a bread crumb trail pointing to the original node:
998  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
999    dest->set_debug_orig(source);
1000  }
1001#endif
1002
1003  if (node_note_array() == NULL)
1004    return false;               // Not collecting any notes now.
1005
1006  // This is a copy onto a pre-existing node, which may already have notes.
1007  // If both nodes have notes, do not overwrite any pre-existing notes.
1008  Node_Notes* source_notes = node_notes_at(source->_idx);
1009  if (source_notes == NULL || source_notes->is_clear())  return false;
1010  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1011  if (dest_notes == NULL || dest_notes->is_clear()) {
1012    return set_node_notes_at(dest->_idx, source_notes);
1013  }
1014
1015  Node_Notes merged_notes = (*source_notes);
1016  // The order of operations here ensures that dest notes will win...
1017  merged_notes.update_from(dest_notes);
1018  return set_node_notes_at(dest->_idx, &merged_notes);
1019}
1020
1021
1022//--------------------------allow_range_check_smearing-------------------------
1023// Gating condition for coalescing similar range checks.
1024// Sometimes we try 'speculatively' replacing a series of a range checks by a
1025// single covering check that is at least as strong as any of them.
1026// If the optimization succeeds, the simplified (strengthened) range check
1027// will always succeed.  If it fails, we will deopt, and then give up
1028// on the optimization.
1029bool Compile::allow_range_check_smearing() const {
1030  // If this method has already thrown a range-check,
1031  // assume it was because we already tried range smearing
1032  // and it failed.
1033  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1034  return !already_trapped;
1035}
1036
1037
1038//------------------------------flatten_alias_type-----------------------------
1039const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1040  int offset = tj->offset();
1041  TypePtr::PTR ptr = tj->ptr();
1042
1043  // Known instance (scalarizable allocation) alias only with itself.
1044  bool is_known_inst = tj->isa_oopptr() != NULL &&
1045                       tj->is_oopptr()->is_known_instance();
1046
1047  // Process weird unsafe references.
1048  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1049    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1050    assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1051    tj = TypeOopPtr::BOTTOM;
1052    ptr = tj->ptr();
1053    offset = tj->offset();
1054  }
1055
1056  // Array pointers need some flattening
1057  const TypeAryPtr *ta = tj->isa_aryptr();
1058  if( ta && is_known_inst ) {
1059    if ( offset != Type::OffsetBot &&
1060         offset > arrayOopDesc::length_offset_in_bytes() ) {
1061      offset = Type::OffsetBot; // Flatten constant access into array body only
1062      tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1063    }
1064  } else if( ta && _AliasLevel >= 2 ) {
1065    // For arrays indexed by constant indices, we flatten the alias
1066    // space to include all of the array body.  Only the header, klass
1067    // and array length can be accessed un-aliased.
1068    if( offset != Type::OffsetBot ) {
1069      if( ta->const_oop() ) { // methodDataOop or methodOop
1070        offset = Type::OffsetBot;   // Flatten constant access into array body
1071        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1072      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1073        // range is OK as-is.
1074        tj = ta = TypeAryPtr::RANGE;
1075      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1076        tj = TypeInstPtr::KLASS; // all klass loads look alike
1077        ta = TypeAryPtr::RANGE; // generic ignored junk
1078        ptr = TypePtr::BotPTR;
1079      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1080        tj = TypeInstPtr::MARK;
1081        ta = TypeAryPtr::RANGE; // generic ignored junk
1082        ptr = TypePtr::BotPTR;
1083      } else {                  // Random constant offset into array body
1084        offset = Type::OffsetBot;   // Flatten constant access into array body
1085        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1086      }
1087    }
1088    // Arrays of fixed size alias with arrays of unknown size.
1089    if (ta->size() != TypeInt::POS) {
1090      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1091      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1092    }
1093    // Arrays of known objects become arrays of unknown objects.
1094    if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1095      const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1096      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1097    }
1098    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1099      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1100      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1101    }
1102    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1103    // cannot be distinguished by bytecode alone.
1104    if (ta->elem() == TypeInt::BOOL) {
1105      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1106      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1107      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1108    }
1109    // During the 2nd round of IterGVN, NotNull castings are removed.
1110    // Make sure the Bottom and NotNull variants alias the same.
1111    // Also, make sure exact and non-exact variants alias the same.
1112    if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1113      if (ta->const_oop()) {
1114        tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1115      } else {
1116        tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1117      }
1118    }
1119  }
1120
1121  // Oop pointers need some flattening
1122  const TypeInstPtr *to = tj->isa_instptr();
1123  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1124    if( ptr == TypePtr::Constant ) {
1125      // No constant oop pointers (such as Strings); they alias with
1126      // unknown strings.
1127      assert(!is_known_inst, "not scalarizable allocation");
1128      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1129    } else if( is_known_inst ) {
1130      tj = to; // Keep NotNull and klass_is_exact for instance type
1131    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1132      // During the 2nd round of IterGVN, NotNull castings are removed.
1133      // Make sure the Bottom and NotNull variants alias the same.
1134      // Also, make sure exact and non-exact variants alias the same.
1135      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1136    }
1137    // Canonicalize the holder of this field
1138    ciInstanceKlass *k = to->klass()->as_instance_klass();
1139    if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1140      // First handle header references such as a LoadKlassNode, even if the
1141      // object's klass is unloaded at compile time (4965979).
1142      if (!is_known_inst) { // Do it only for non-instance types
1143        tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1144      }
1145    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1146      to = NULL;
1147      tj = TypeOopPtr::BOTTOM;
1148      offset = tj->offset();
1149    } else {
1150      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1151      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1152        if( is_known_inst ) {
1153          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1154        } else {
1155          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1156        }
1157      }
1158    }
1159  }
1160
1161  // Klass pointers to object array klasses need some flattening
1162  const TypeKlassPtr *tk = tj->isa_klassptr();
1163  if( tk ) {
1164    // If we are referencing a field within a Klass, we need
1165    // to assume the worst case of an Object.  Both exact and
1166    // inexact types must flatten to the same alias class.
1167    // Since the flattened result for a klass is defined to be
1168    // precisely java.lang.Object, use a constant ptr.
1169    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1170
1171      tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1172                                   TypeKlassPtr::OBJECT->klass(),
1173                                   offset);
1174    }
1175
1176    ciKlass* klass = tk->klass();
1177    if( klass->is_obj_array_klass() ) {
1178      ciKlass* k = TypeAryPtr::OOPS->klass();
1179      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1180        k = TypeInstPtr::BOTTOM->klass();
1181      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1182    }
1183
1184    // Check for precise loads from the primary supertype array and force them
1185    // to the supertype cache alias index.  Check for generic array loads from
1186    // the primary supertype array and also force them to the supertype cache
1187    // alias index.  Since the same load can reach both, we need to merge
1188    // these 2 disparate memories into the same alias class.  Since the
1189    // primary supertype array is read-only, there's no chance of confusion
1190    // where we bypass an array load and an array store.
1191    uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1192    if( offset == Type::OffsetBot ||
1193        off2 < Klass::primary_super_limit()*wordSize ) {
1194      offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1195      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1196    }
1197  }
1198
1199  // Flatten all Raw pointers together.
1200  if (tj->base() == Type::RawPtr)
1201    tj = TypeRawPtr::BOTTOM;
1202
1203  if (tj->base() == Type::AnyPtr)
1204    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1205
1206  // Flatten all to bottom for now
1207  switch( _AliasLevel ) {
1208  case 0:
1209    tj = TypePtr::BOTTOM;
1210    break;
1211  case 1:                       // Flatten to: oop, static, field or array
1212    switch (tj->base()) {
1213    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1214    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1215    case Type::AryPtr:   // do not distinguish arrays at all
1216    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1217    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1218    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1219    default: ShouldNotReachHere();
1220    }
1221    break;
1222  case 2:                       // No collapsing at level 2; keep all splits
1223  case 3:                       // No collapsing at level 3; keep all splits
1224    break;
1225  default:
1226    Unimplemented();
1227  }
1228
1229  offset = tj->offset();
1230  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1231
1232  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1233          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1234          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1235          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1236          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1237          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1238          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1239          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1240  assert( tj->ptr() != TypePtr::TopPTR &&
1241          tj->ptr() != TypePtr::AnyNull &&
1242          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1243//    assert( tj->ptr() != TypePtr::Constant ||
1244//            tj->base() == Type::RawPtr ||
1245//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1246
1247  return tj;
1248}
1249
1250void Compile::AliasType::Init(int i, const TypePtr* at) {
1251  _index = i;
1252  _adr_type = at;
1253  _field = NULL;
1254  _is_rewritable = true; // default
1255  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1256  if (atoop != NULL && atoop->is_known_instance()) {
1257    const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1258    _general_index = Compile::current()->get_alias_index(gt);
1259  } else {
1260    _general_index = 0;
1261  }
1262}
1263
1264//---------------------------------print_on------------------------------------
1265#ifndef PRODUCT
1266void Compile::AliasType::print_on(outputStream* st) {
1267  if (index() < 10)
1268        st->print("@ <%d> ", index());
1269  else  st->print("@ <%d>",  index());
1270  st->print(is_rewritable() ? "   " : " RO");
1271  int offset = adr_type()->offset();
1272  if (offset == Type::OffsetBot)
1273        st->print(" +any");
1274  else  st->print(" +%-3d", offset);
1275  st->print(" in ");
1276  adr_type()->dump_on(st);
1277  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1278  if (field() != NULL && tjp) {
1279    if (tjp->klass()  != field()->holder() ||
1280        tjp->offset() != field()->offset_in_bytes()) {
1281      st->print(" != ");
1282      field()->print();
1283      st->print(" ***");
1284    }
1285  }
1286}
1287
1288void print_alias_types() {
1289  Compile* C = Compile::current();
1290  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1291  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1292    C->alias_type(idx)->print_on(tty);
1293    tty->cr();
1294  }
1295}
1296#endif
1297
1298
1299//----------------------------probe_alias_cache--------------------------------
1300Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1301  intptr_t key = (intptr_t) adr_type;
1302  key ^= key >> logAliasCacheSize;
1303  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1304}
1305
1306
1307//-----------------------------grow_alias_types--------------------------------
1308void Compile::grow_alias_types() {
1309  const int old_ats  = _max_alias_types; // how many before?
1310  const int new_ats  = old_ats;          // how many more?
1311  const int grow_ats = old_ats+new_ats;  // how many now?
1312  _max_alias_types = grow_ats;
1313  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1314  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1315  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1316  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1317}
1318
1319
1320//--------------------------------find_alias_type------------------------------
1321Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
1322  if (_AliasLevel == 0)
1323    return alias_type(AliasIdxBot);
1324
1325  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1326  if (ace->_adr_type == adr_type) {
1327    return alias_type(ace->_index);
1328  }
1329
1330  // Handle special cases.
1331  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1332  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1333
1334  // Do it the slow way.
1335  const TypePtr* flat = flatten_alias_type(adr_type);
1336
1337#ifdef ASSERT
1338  assert(flat == flatten_alias_type(flat), "idempotent");
1339  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1340  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1341    const TypeOopPtr* foop = flat->is_oopptr();
1342    // Scalarizable allocations have exact klass always.
1343    bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1344    const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1345    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1346  }
1347  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1348#endif
1349
1350  int idx = AliasIdxTop;
1351  for (int i = 0; i < num_alias_types(); i++) {
1352    if (alias_type(i)->adr_type() == flat) {
1353      idx = i;
1354      break;
1355    }
1356  }
1357
1358  if (idx == AliasIdxTop) {
1359    if (no_create)  return NULL;
1360    // Grow the array if necessary.
1361    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1362    // Add a new alias type.
1363    idx = _num_alias_types++;
1364    _alias_types[idx]->Init(idx, flat);
1365    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1366    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1367    if (flat->isa_instptr()) {
1368      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1369          && flat->is_instptr()->klass() == env()->Class_klass())
1370        alias_type(idx)->set_rewritable(false);
1371    }
1372    if (flat->isa_klassptr()) {
1373      if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1374        alias_type(idx)->set_rewritable(false);
1375      if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1376        alias_type(idx)->set_rewritable(false);
1377      if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1378        alias_type(idx)->set_rewritable(false);
1379      if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1380        alias_type(idx)->set_rewritable(false);
1381    }
1382    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1383    // but the base pointer type is not distinctive enough to identify
1384    // references into JavaThread.)
1385
1386    // Check for final instance fields.
1387    const TypeInstPtr* tinst = flat->isa_instptr();
1388    if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1389      ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1390      ciField* field = k->get_field_by_offset(tinst->offset(), false);
1391      // Set field() and is_rewritable() attributes.
1392      if (field != NULL)  alias_type(idx)->set_field(field);
1393    }
1394    const TypeKlassPtr* tklass = flat->isa_klassptr();
1395    // Check for final static fields.
1396    if (tklass && tklass->klass()->is_instance_klass()) {
1397      ciInstanceKlass *k = tklass->klass()->as_instance_klass();
1398      ciField* field = k->get_field_by_offset(tklass->offset(), true);
1399      // Set field() and is_rewritable() attributes.
1400      if (field != NULL)   alias_type(idx)->set_field(field);
1401    }
1402  }
1403
1404  // Fill the cache for next time.
1405  ace->_adr_type = adr_type;
1406  ace->_index    = idx;
1407  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1408
1409  // Might as well try to fill the cache for the flattened version, too.
1410  AliasCacheEntry* face = probe_alias_cache(flat);
1411  if (face->_adr_type == NULL) {
1412    face->_adr_type = flat;
1413    face->_index    = idx;
1414    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1415  }
1416
1417  return alias_type(idx);
1418}
1419
1420
1421Compile::AliasType* Compile::alias_type(ciField* field) {
1422  const TypeOopPtr* t;
1423  if (field->is_static())
1424    t = TypeKlassPtr::make(field->holder());
1425  else
1426    t = TypeOopPtr::make_from_klass_raw(field->holder());
1427  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
1428  assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1429  return atp;
1430}
1431
1432
1433//------------------------------have_alias_type--------------------------------
1434bool Compile::have_alias_type(const TypePtr* adr_type) {
1435  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1436  if (ace->_adr_type == adr_type) {
1437    return true;
1438  }
1439
1440  // Handle special cases.
1441  if (adr_type == NULL)             return true;
1442  if (adr_type == TypePtr::BOTTOM)  return true;
1443
1444  return find_alias_type(adr_type, true) != NULL;
1445}
1446
1447//-----------------------------must_alias--------------------------------------
1448// True if all values of the given address type are in the given alias category.
1449bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1450  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1451  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1452  if (alias_idx == AliasIdxTop)         return false; // the empty category
1453  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1454
1455  // the only remaining possible overlap is identity
1456  int adr_idx = get_alias_index(adr_type);
1457  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1458  assert(adr_idx == alias_idx ||
1459         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1460          && adr_type                       != TypeOopPtr::BOTTOM),
1461         "should not be testing for overlap with an unsafe pointer");
1462  return adr_idx == alias_idx;
1463}
1464
1465//------------------------------can_alias--------------------------------------
1466// True if any values of the given address type are in the given alias category.
1467bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1468  if (alias_idx == AliasIdxTop)         return false; // the empty category
1469  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1470  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1471  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1472
1473  // the only remaining possible overlap is identity
1474  int adr_idx = get_alias_index(adr_type);
1475  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1476  return adr_idx == alias_idx;
1477}
1478
1479
1480
1481//---------------------------pop_warm_call-------------------------------------
1482WarmCallInfo* Compile::pop_warm_call() {
1483  WarmCallInfo* wci = _warm_calls;
1484  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1485  return wci;
1486}
1487
1488//----------------------------Inline_Warm--------------------------------------
1489int Compile::Inline_Warm() {
1490  // If there is room, try to inline some more warm call sites.
1491  // %%% Do a graph index compaction pass when we think we're out of space?
1492  if (!InlineWarmCalls)  return 0;
1493
1494  int calls_made_hot = 0;
1495  int room_to_grow   = NodeCountInliningCutoff - unique();
1496  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1497  int amount_grown   = 0;
1498  WarmCallInfo* call;
1499  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1500    int est_size = (int)call->size();
1501    if (est_size > (room_to_grow - amount_grown)) {
1502      // This one won't fit anyway.  Get rid of it.
1503      call->make_cold();
1504      continue;
1505    }
1506    call->make_hot();
1507    calls_made_hot++;
1508    amount_grown   += est_size;
1509    amount_to_grow -= est_size;
1510  }
1511
1512  if (calls_made_hot > 0)  set_major_progress();
1513  return calls_made_hot;
1514}
1515
1516
1517//----------------------------Finish_Warm--------------------------------------
1518void Compile::Finish_Warm() {
1519  if (!InlineWarmCalls)  return;
1520  if (failing())  return;
1521  if (warm_calls() == NULL)  return;
1522
1523  // Clean up loose ends, if we are out of space for inlining.
1524  WarmCallInfo* call;
1525  while ((call = pop_warm_call()) != NULL) {
1526    call->make_cold();
1527  }
1528}
1529
1530//---------------------cleanup_loop_predicates-----------------------
1531// Remove the opaque nodes that protect the predicates so that all unused
1532// checks and uncommon_traps will be eliminated from the ideal graph
1533void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1534  if (predicate_count()==0) return;
1535  for (int i = predicate_count(); i > 0; i--) {
1536    Node * n = predicate_opaque1_node(i-1);
1537    assert(n->Opcode() == Op_Opaque1, "must be");
1538    igvn.replace_node(n, n->in(1));
1539  }
1540  assert(predicate_count()==0, "should be clean!");
1541  igvn.optimize();
1542}
1543
1544//------------------------------Optimize---------------------------------------
1545// Given a graph, optimize it.
1546void Compile::Optimize() {
1547  TracePhase t1("optimizer", &_t_optimizer, true);
1548
1549#ifndef PRODUCT
1550  if (env()->break_at_compile()) {
1551    BREAKPOINT;
1552  }
1553
1554#endif
1555
1556  ResourceMark rm;
1557  int          loop_opts_cnt;
1558
1559  NOT_PRODUCT( verify_graph_edges(); )
1560
1561  print_method("After Parsing");
1562
1563 {
1564  // Iterative Global Value Numbering, including ideal transforms
1565  // Initialize IterGVN with types and values from parse-time GVN
1566  PhaseIterGVN igvn(initial_gvn());
1567  {
1568    NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1569    igvn.optimize();
1570  }
1571
1572  print_method("Iter GVN 1", 2);
1573
1574  if (failing())  return;
1575
1576  // Perform escape analysis
1577  if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
1578    TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
1579    ConnectionGraph::do_analysis(this, &igvn);
1580
1581    if (failing())  return;
1582
1583    igvn.optimize();
1584    print_method("Iter GVN 3", 2);
1585
1586    if (failing())  return;
1587
1588  }
1589
1590  // Loop transforms on the ideal graph.  Range Check Elimination,
1591  // peeling, unrolling, etc.
1592
1593  // Set loop opts counter
1594  loop_opts_cnt = num_loop_opts();
1595  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1596    {
1597      TracePhase t2("idealLoop", &_t_idealLoop, true);
1598      PhaseIdealLoop ideal_loop( igvn, true, UseLoopPredicate);
1599      loop_opts_cnt--;
1600      if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1601      if (failing())  return;
1602    }
1603    // Loop opts pass if partial peeling occurred in previous pass
1604    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1605      TracePhase t3("idealLoop", &_t_idealLoop, true);
1606      PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1607      loop_opts_cnt--;
1608      if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1609      if (failing())  return;
1610    }
1611    // Loop opts pass for loop-unrolling before CCP
1612    if(major_progress() && (loop_opts_cnt > 0)) {
1613      TracePhase t4("idealLoop", &_t_idealLoop, true);
1614      PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1615      loop_opts_cnt--;
1616      if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1617    }
1618    if (!failing()) {
1619      // Verify that last round of loop opts produced a valid graph
1620      NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1621      PhaseIdealLoop::verify(igvn);
1622    }
1623  }
1624  if (failing())  return;
1625
1626  // Conditional Constant Propagation;
1627  PhaseCCP ccp( &igvn );
1628  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1629  {
1630    TracePhase t2("ccp", &_t_ccp, true);
1631    ccp.do_transform();
1632  }
1633  print_method("PhaseCPP 1", 2);
1634
1635  assert( true, "Break here to ccp.dump_old2new_map()");
1636
1637  // Iterative Global Value Numbering, including ideal transforms
1638  {
1639    NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1640    igvn = ccp;
1641    igvn.optimize();
1642  }
1643
1644  print_method("Iter GVN 2", 2);
1645
1646  if (failing())  return;
1647
1648  // Loop transforms on the ideal graph.  Range Check Elimination,
1649  // peeling, unrolling, etc.
1650  if(loop_opts_cnt > 0) {
1651    debug_only( int cnt = 0; );
1652    bool loop_predication = UseLoopPredicate;
1653    while(major_progress() && (loop_opts_cnt > 0)) {
1654      TracePhase t2("idealLoop", &_t_idealLoop, true);
1655      assert( cnt++ < 40, "infinite cycle in loop optimization" );
1656      PhaseIdealLoop ideal_loop( igvn, true, loop_predication);
1657      loop_opts_cnt--;
1658      if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1659      if (failing())  return;
1660      // Perform loop predication optimization during first iteration after CCP.
1661      // After that switch it off and cleanup unused loop predicates.
1662      if (loop_predication) {
1663        loop_predication = false;
1664        cleanup_loop_predicates(igvn);
1665        if (failing())  return;
1666      }
1667    }
1668  }
1669
1670  {
1671    // Verify that all previous optimizations produced a valid graph
1672    // at least to this point, even if no loop optimizations were done.
1673    NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1674    PhaseIdealLoop::verify(igvn);
1675  }
1676
1677  {
1678    NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1679    PhaseMacroExpand  mex(igvn);
1680    if (mex.expand_macro_nodes()) {
1681      assert(failing(), "must bail out w/ explicit message");
1682      return;
1683    }
1684  }
1685
1686 } // (End scope of igvn; run destructor if necessary for asserts.)
1687
1688  // A method with only infinite loops has no edges entering loops from root
1689  {
1690    NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1691    if (final_graph_reshaping()) {
1692      assert(failing(), "must bail out w/ explicit message");
1693      return;
1694    }
1695  }
1696
1697  print_method("Optimize finished", 2);
1698}
1699
1700
1701//------------------------------Code_Gen---------------------------------------
1702// Given a graph, generate code for it
1703void Compile::Code_Gen() {
1704  if (failing())  return;
1705
1706  // Perform instruction selection.  You might think we could reclaim Matcher
1707  // memory PDQ, but actually the Matcher is used in generating spill code.
1708  // Internals of the Matcher (including some VectorSets) must remain live
1709  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1710  // set a bit in reclaimed memory.
1711
1712  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1713  // nodes.  Mapping is only valid at the root of each matched subtree.
1714  NOT_PRODUCT( verify_graph_edges(); )
1715
1716  Node_List proj_list;
1717  Matcher m(proj_list);
1718  _matcher = &m;
1719  {
1720    TracePhase t2("matcher", &_t_matcher, true);
1721    m.match();
1722  }
1723  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1724  // nodes.  Mapping is only valid at the root of each matched subtree.
1725  NOT_PRODUCT( verify_graph_edges(); )
1726
1727  // If you have too many nodes, or if matching has failed, bail out
1728  check_node_count(0, "out of nodes matching instructions");
1729  if (failing())  return;
1730
1731  // Build a proper-looking CFG
1732  PhaseCFG cfg(node_arena(), root(), m);
1733  _cfg = &cfg;
1734  {
1735    NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1736    cfg.Dominators();
1737    if (failing())  return;
1738
1739    NOT_PRODUCT( verify_graph_edges(); )
1740
1741    cfg.Estimate_Block_Frequency();
1742    cfg.GlobalCodeMotion(m,unique(),proj_list);
1743
1744    print_method("Global code motion", 2);
1745
1746    if (failing())  return;
1747    NOT_PRODUCT( verify_graph_edges(); )
1748
1749    debug_only( cfg.verify(); )
1750  }
1751  NOT_PRODUCT( verify_graph_edges(); )
1752
1753  PhaseChaitin regalloc(unique(),cfg,m);
1754  _regalloc = &regalloc;
1755  {
1756    TracePhase t2("regalloc", &_t_registerAllocation, true);
1757    // Perform any platform dependent preallocation actions.  This is used,
1758    // for example, to avoid taking an implicit null pointer exception
1759    // using the frame pointer on win95.
1760    _regalloc->pd_preallocate_hook();
1761
1762    // Perform register allocation.  After Chaitin, use-def chains are
1763    // no longer accurate (at spill code) and so must be ignored.
1764    // Node->LRG->reg mappings are still accurate.
1765    _regalloc->Register_Allocate();
1766
1767    // Bail out if the allocator builds too many nodes
1768    if (failing())  return;
1769  }
1770
1771  // Prior to register allocation we kept empty basic blocks in case the
1772  // the allocator needed a place to spill.  After register allocation we
1773  // are not adding any new instructions.  If any basic block is empty, we
1774  // can now safely remove it.
1775  {
1776    NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1777    cfg.remove_empty();
1778    if (do_freq_based_layout()) {
1779      PhaseBlockLayout layout(cfg);
1780    } else {
1781      cfg.set_loop_alignment();
1782    }
1783    cfg.fixup_flow();
1784  }
1785
1786  // Perform any platform dependent postallocation verifications.
1787  debug_only( _regalloc->pd_postallocate_verify_hook(); )
1788
1789  // Apply peephole optimizations
1790  if( OptoPeephole ) {
1791    NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1792    PhasePeephole peep( _regalloc, cfg);
1793    peep.do_transform();
1794  }
1795
1796  // Convert Nodes to instruction bits in a buffer
1797  {
1798    // %%%% workspace merge brought two timers together for one job
1799    TracePhase t2a("output", &_t_output, true);
1800    NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1801    Output();
1802  }
1803
1804  print_method("Final Code");
1805
1806  // He's dead, Jim.
1807  _cfg     = (PhaseCFG*)0xdeadbeef;
1808  _regalloc = (PhaseChaitin*)0xdeadbeef;
1809}
1810
1811
1812//------------------------------dump_asm---------------------------------------
1813// Dump formatted assembly
1814#ifndef PRODUCT
1815void Compile::dump_asm(int *pcs, uint pc_limit) {
1816  bool cut_short = false;
1817  tty->print_cr("#");
1818  tty->print("#  ");  _tf->dump();  tty->cr();
1819  tty->print_cr("#");
1820
1821  // For all blocks
1822  int pc = 0x0;                 // Program counter
1823  char starts_bundle = ' ';
1824  _regalloc->dump_frame();
1825
1826  Node *n = NULL;
1827  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1828    if (VMThread::should_terminate()) { cut_short = true; break; }
1829    Block *b = _cfg->_blocks[i];
1830    if (b->is_connector() && !Verbose) continue;
1831    n = b->_nodes[0];
1832    if (pcs && n->_idx < pc_limit)
1833      tty->print("%3.3x   ", pcs[n->_idx]);
1834    else
1835      tty->print("      ");
1836    b->dump_head( &_cfg->_bbs );
1837    if (b->is_connector()) {
1838      tty->print_cr("        # Empty connector block");
1839    } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1840      tty->print_cr("        # Block is sole successor of call");
1841    }
1842
1843    // For all instructions
1844    Node *delay = NULL;
1845    for( uint j = 0; j<b->_nodes.size(); j++ ) {
1846      if (VMThread::should_terminate()) { cut_short = true; break; }
1847      n = b->_nodes[j];
1848      if (valid_bundle_info(n)) {
1849        Bundle *bundle = node_bundling(n);
1850        if (bundle->used_in_unconditional_delay()) {
1851          delay = n;
1852          continue;
1853        }
1854        if (bundle->starts_bundle())
1855          starts_bundle = '+';
1856      }
1857
1858      if (WizardMode) n->dump();
1859
1860      if( !n->is_Region() &&    // Dont print in the Assembly
1861          !n->is_Phi() &&       // a few noisely useless nodes
1862          !n->is_Proj() &&
1863          !n->is_MachTemp() &&
1864          !n->is_SafePointScalarObject() &&
1865          !n->is_Catch() &&     // Would be nice to print exception table targets
1866          !n->is_MergeMem() &&  // Not very interesting
1867          !n->is_top() &&       // Debug info table constants
1868          !(n->is_Con() && !n->is_Mach())// Debug info table constants
1869          ) {
1870        if (pcs && n->_idx < pc_limit)
1871          tty->print("%3.3x", pcs[n->_idx]);
1872        else
1873          tty->print("   ");
1874        tty->print(" %c ", starts_bundle);
1875        starts_bundle = ' ';
1876        tty->print("\t");
1877        n->format(_regalloc, tty);
1878        tty->cr();
1879      }
1880
1881      // If we have an instruction with a delay slot, and have seen a delay,
1882      // then back up and print it
1883      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1884        assert(delay != NULL, "no unconditional delay instruction");
1885        if (WizardMode) delay->dump();
1886
1887        if (node_bundling(delay)->starts_bundle())
1888          starts_bundle = '+';
1889        if (pcs && n->_idx < pc_limit)
1890          tty->print("%3.3x", pcs[n->_idx]);
1891        else
1892          tty->print("   ");
1893        tty->print(" %c ", starts_bundle);
1894        starts_bundle = ' ';
1895        tty->print("\t");
1896        delay->format(_regalloc, tty);
1897        tty->print_cr("");
1898        delay = NULL;
1899      }
1900
1901      // Dump the exception table as well
1902      if( n->is_Catch() && (Verbose || WizardMode) ) {
1903        // Print the exception table for this offset
1904        _handler_table.print_subtable_for(pc);
1905      }
1906    }
1907
1908    if (pcs && n->_idx < pc_limit)
1909      tty->print_cr("%3.3x", pcs[n->_idx]);
1910    else
1911      tty->print_cr("");
1912
1913    assert(cut_short || delay == NULL, "no unconditional delay branch");
1914
1915  } // End of per-block dump
1916  tty->print_cr("");
1917
1918  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
1919}
1920#endif
1921
1922//------------------------------Final_Reshape_Counts---------------------------
1923// This class defines counters to help identify when a method
1924// may/must be executed using hardware with only 24-bit precision.
1925struct Final_Reshape_Counts : public StackObj {
1926  int  _call_count;             // count non-inlined 'common' calls
1927  int  _float_count;            // count float ops requiring 24-bit precision
1928  int  _double_count;           // count double ops requiring more precision
1929  int  _java_call_count;        // count non-inlined 'java' calls
1930  int  _inner_loop_count;       // count loops which need alignment
1931  VectorSet _visited;           // Visitation flags
1932  Node_List _tests;             // Set of IfNodes & PCTableNodes
1933
1934  Final_Reshape_Counts() :
1935    _call_count(0), _float_count(0), _double_count(0),
1936    _java_call_count(0), _inner_loop_count(0),
1937    _visited( Thread::current()->resource_area() ) { }
1938
1939  void inc_call_count  () { _call_count  ++; }
1940  void inc_float_count () { _float_count ++; }
1941  void inc_double_count() { _double_count++; }
1942  void inc_java_call_count() { _java_call_count++; }
1943  void inc_inner_loop_count() { _inner_loop_count++; }
1944
1945  int  get_call_count  () const { return _call_count  ; }
1946  int  get_float_count () const { return _float_count ; }
1947  int  get_double_count() const { return _double_count; }
1948  int  get_java_call_count() const { return _java_call_count; }
1949  int  get_inner_loop_count() const { return _inner_loop_count; }
1950};
1951
1952static bool oop_offset_is_sane(const TypeInstPtr* tp) {
1953  ciInstanceKlass *k = tp->klass()->as_instance_klass();
1954  // Make sure the offset goes inside the instance layout.
1955  return k->contains_field_offset(tp->offset());
1956  // Note that OffsetBot and OffsetTop are very negative.
1957}
1958
1959//------------------------------final_graph_reshaping_impl----------------------
1960// Implement items 1-5 from final_graph_reshaping below.
1961static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
1962
1963  if ( n->outcnt() == 0 ) return; // dead node
1964  uint nop = n->Opcode();
1965
1966  // Check for 2-input instruction with "last use" on right input.
1967  // Swap to left input.  Implements item (2).
1968  if( n->req() == 3 &&          // two-input instruction
1969      n->in(1)->outcnt() > 1 && // left use is NOT a last use
1970      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
1971      n->in(2)->outcnt() == 1 &&// right use IS a last use
1972      !n->in(2)->is_Con() ) {   // right use is not a constant
1973    // Check for commutative opcode
1974    switch( nop ) {
1975    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
1976    case Op_MaxI:  case Op_MinI:
1977    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
1978    case Op_AndL:  case Op_XorL:  case Op_OrL:
1979    case Op_AndI:  case Op_XorI:  case Op_OrI: {
1980      // Move "last use" input to left by swapping inputs
1981      n->swap_edges(1, 2);
1982      break;
1983    }
1984    default:
1985      break;
1986    }
1987  }
1988
1989#ifdef ASSERT
1990  if( n->is_Mem() ) {
1991    Compile* C = Compile::current();
1992    int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
1993    assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
1994            // oop will be recorded in oop map if load crosses safepoint
1995            n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
1996                             LoadNode::is_immutable_value(n->in(MemNode::Address))),
1997            "raw memory operations should have control edge");
1998  }
1999#endif
2000  // Count FPU ops and common calls, implements item (3)
2001  switch( nop ) {
2002  // Count all float operations that may use FPU
2003  case Op_AddF:
2004  case Op_SubF:
2005  case Op_MulF:
2006  case Op_DivF:
2007  case Op_NegF:
2008  case Op_ModF:
2009  case Op_ConvI2F:
2010  case Op_ConF:
2011  case Op_CmpF:
2012  case Op_CmpF3:
2013  // case Op_ConvL2F: // longs are split into 32-bit halves
2014    frc.inc_float_count();
2015    break;
2016
2017  case Op_ConvF2D:
2018  case Op_ConvD2F:
2019    frc.inc_float_count();
2020    frc.inc_double_count();
2021    break;
2022
2023  // Count all double operations that may use FPU
2024  case Op_AddD:
2025  case Op_SubD:
2026  case Op_MulD:
2027  case Op_DivD:
2028  case Op_NegD:
2029  case Op_ModD:
2030  case Op_ConvI2D:
2031  case Op_ConvD2I:
2032  // case Op_ConvL2D: // handled by leaf call
2033  // case Op_ConvD2L: // handled by leaf call
2034  case Op_ConD:
2035  case Op_CmpD:
2036  case Op_CmpD3:
2037    frc.inc_double_count();
2038    break;
2039  case Op_Opaque1:              // Remove Opaque Nodes before matching
2040  case Op_Opaque2:              // Remove Opaque Nodes before matching
2041    n->subsume_by(n->in(1));
2042    break;
2043  case Op_CallStaticJava:
2044  case Op_CallJava:
2045  case Op_CallDynamicJava:
2046    frc.inc_java_call_count(); // Count java call site;
2047  case Op_CallRuntime:
2048  case Op_CallLeaf:
2049  case Op_CallLeafNoFP: {
2050    assert( n->is_Call(), "" );
2051    CallNode *call = n->as_Call();
2052    // Count call sites where the FP mode bit would have to be flipped.
2053    // Do not count uncommon runtime calls:
2054    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2055    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2056    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2057      frc.inc_call_count();   // Count the call site
2058    } else {                  // See if uncommon argument is shared
2059      Node *n = call->in(TypeFunc::Parms);
2060      int nop = n->Opcode();
2061      // Clone shared simple arguments to uncommon calls, item (1).
2062      if( n->outcnt() > 1 &&
2063          !n->is_Proj() &&
2064          nop != Op_CreateEx &&
2065          nop != Op_CheckCastPP &&
2066          nop != Op_DecodeN &&
2067          !n->is_Mem() ) {
2068        Node *x = n->clone();
2069        call->set_req( TypeFunc::Parms, x );
2070      }
2071    }
2072    break;
2073  }
2074
2075  case Op_StoreD:
2076  case Op_LoadD:
2077  case Op_LoadD_unaligned:
2078    frc.inc_double_count();
2079    goto handle_mem;
2080  case Op_StoreF:
2081  case Op_LoadF:
2082    frc.inc_float_count();
2083    goto handle_mem;
2084
2085  case Op_StoreB:
2086  case Op_StoreC:
2087  case Op_StoreCM:
2088  case Op_StorePConditional:
2089  case Op_StoreI:
2090  case Op_StoreL:
2091  case Op_StoreIConditional:
2092  case Op_StoreLConditional:
2093  case Op_CompareAndSwapI:
2094  case Op_CompareAndSwapL:
2095  case Op_CompareAndSwapP:
2096  case Op_CompareAndSwapN:
2097  case Op_StoreP:
2098  case Op_StoreN:
2099  case Op_LoadB:
2100  case Op_LoadUB:
2101  case Op_LoadUS:
2102  case Op_LoadI:
2103  case Op_LoadUI2L:
2104  case Op_LoadKlass:
2105  case Op_LoadNKlass:
2106  case Op_LoadL:
2107  case Op_LoadL_unaligned:
2108  case Op_LoadPLocked:
2109  case Op_LoadLLocked:
2110  case Op_LoadP:
2111  case Op_LoadN:
2112  case Op_LoadRange:
2113  case Op_LoadS: {
2114  handle_mem:
2115#ifdef ASSERT
2116    if( VerifyOptoOopOffsets ) {
2117      assert( n->is_Mem(), "" );
2118      MemNode *mem  = (MemNode*)n;
2119      // Check to see if address types have grounded out somehow.
2120      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2121      assert( !tp || oop_offset_is_sane(tp), "" );
2122    }
2123#endif
2124    break;
2125  }
2126
2127  case Op_AddP: {               // Assert sane base pointers
2128    Node *addp = n->in(AddPNode::Address);
2129    assert( !addp->is_AddP() ||
2130            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2131            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2132            "Base pointers must match" );
2133#ifdef _LP64
2134    if (UseCompressedOops &&
2135        addp->Opcode() == Op_ConP &&
2136        addp == n->in(AddPNode::Base) &&
2137        n->in(AddPNode::Offset)->is_Con()) {
2138      // Use addressing with narrow klass to load with offset on x86.
2139      // On sparc loading 32-bits constant and decoding it have less
2140      // instructions (4) then load 64-bits constant (7).
2141      // Do this transformation here since IGVN will convert ConN back to ConP.
2142      const Type* t = addp->bottom_type();
2143      if (t->isa_oopptr()) {
2144        Node* nn = NULL;
2145
2146        // Look for existing ConN node of the same exact type.
2147        Compile* C = Compile::current();
2148        Node* r  = C->root();
2149        uint cnt = r->outcnt();
2150        for (uint i = 0; i < cnt; i++) {
2151          Node* m = r->raw_out(i);
2152          if (m!= NULL && m->Opcode() == Op_ConN &&
2153              m->bottom_type()->make_ptr() == t) {
2154            nn = m;
2155            break;
2156          }
2157        }
2158        if (nn != NULL) {
2159          // Decode a narrow oop to match address
2160          // [R12 + narrow_oop_reg<<3 + offset]
2161          nn = new (C,  2) DecodeNNode(nn, t);
2162          n->set_req(AddPNode::Base, nn);
2163          n->set_req(AddPNode::Address, nn);
2164          if (addp->outcnt() == 0) {
2165            addp->disconnect_inputs(NULL);
2166          }
2167        }
2168      }
2169    }
2170#endif
2171    break;
2172  }
2173
2174#ifdef _LP64
2175  case Op_CastPP:
2176    if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2177      Compile* C = Compile::current();
2178      Node* in1 = n->in(1);
2179      const Type* t = n->bottom_type();
2180      Node* new_in1 = in1->clone();
2181      new_in1->as_DecodeN()->set_type(t);
2182
2183      if (!Matcher::narrow_oop_use_complex_address()) {
2184        //
2185        // x86, ARM and friends can handle 2 adds in addressing mode
2186        // and Matcher can fold a DecodeN node into address by using
2187        // a narrow oop directly and do implicit NULL check in address:
2188        //
2189        // [R12 + narrow_oop_reg<<3 + offset]
2190        // NullCheck narrow_oop_reg
2191        //
2192        // On other platforms (Sparc) we have to keep new DecodeN node and
2193        // use it to do implicit NULL check in address:
2194        //
2195        // decode_not_null narrow_oop_reg, base_reg
2196        // [base_reg + offset]
2197        // NullCheck base_reg
2198        //
2199        // Pin the new DecodeN node to non-null path on these platform (Sparc)
2200        // to keep the information to which NULL check the new DecodeN node
2201        // corresponds to use it as value in implicit_null_check().
2202        //
2203        new_in1->set_req(0, n->in(0));
2204      }
2205
2206      n->subsume_by(new_in1);
2207      if (in1->outcnt() == 0) {
2208        in1->disconnect_inputs(NULL);
2209      }
2210    }
2211    break;
2212
2213  case Op_CmpP:
2214    // Do this transformation here to preserve CmpPNode::sub() and
2215    // other TypePtr related Ideal optimizations (for example, ptr nullness).
2216    if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2217      Node* in1 = n->in(1);
2218      Node* in2 = n->in(2);
2219      if (!in1->is_DecodeN()) {
2220        in2 = in1;
2221        in1 = n->in(2);
2222      }
2223      assert(in1->is_DecodeN(), "sanity");
2224
2225      Compile* C = Compile::current();
2226      Node* new_in2 = NULL;
2227      if (in2->is_DecodeN()) {
2228        new_in2 = in2->in(1);
2229      } else if (in2->Opcode() == Op_ConP) {
2230        const Type* t = in2->bottom_type();
2231        if (t == TypePtr::NULL_PTR) {
2232          // Don't convert CmpP null check into CmpN if compressed
2233          // oops implicit null check is not generated.
2234          // This will allow to generate normal oop implicit null check.
2235          if (Matcher::gen_narrow_oop_implicit_null_checks())
2236            new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2237          //
2238          // This transformation together with CastPP transformation above
2239          // will generated code for implicit NULL checks for compressed oops.
2240          //
2241          // The original code after Optimize()
2242          //
2243          //    LoadN memory, narrow_oop_reg
2244          //    decode narrow_oop_reg, base_reg
2245          //    CmpP base_reg, NULL
2246          //    CastPP base_reg // NotNull
2247          //    Load [base_reg + offset], val_reg
2248          //
2249          // after these transformations will be
2250          //
2251          //    LoadN memory, narrow_oop_reg
2252          //    CmpN narrow_oop_reg, NULL
2253          //    decode_not_null narrow_oop_reg, base_reg
2254          //    Load [base_reg + offset], val_reg
2255          //
2256          // and the uncommon path (== NULL) will use narrow_oop_reg directly
2257          // since narrow oops can be used in debug info now (see the code in
2258          // final_graph_reshaping_walk()).
2259          //
2260          // At the end the code will be matched to
2261          // on x86:
2262          //
2263          //    Load_narrow_oop memory, narrow_oop_reg
2264          //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2265          //    NullCheck narrow_oop_reg
2266          //
2267          // and on sparc:
2268          //
2269          //    Load_narrow_oop memory, narrow_oop_reg
2270          //    decode_not_null narrow_oop_reg, base_reg
2271          //    Load [base_reg + offset], val_reg
2272          //    NullCheck base_reg
2273          //
2274        } else if (t->isa_oopptr()) {
2275          new_in2 = ConNode::make(C, t->make_narrowoop());
2276        }
2277      }
2278      if (new_in2 != NULL) {
2279        Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2280        n->subsume_by( cmpN );
2281        if (in1->outcnt() == 0) {
2282          in1->disconnect_inputs(NULL);
2283        }
2284        if (in2->outcnt() == 0) {
2285          in2->disconnect_inputs(NULL);
2286        }
2287      }
2288    }
2289    break;
2290
2291  case Op_DecodeN:
2292    assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2293    // DecodeN could be pinned when it can't be fold into
2294    // an address expression, see the code for Op_CastPP above.
2295    assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
2296    break;
2297
2298  case Op_EncodeP: {
2299    Node* in1 = n->in(1);
2300    if (in1->is_DecodeN()) {
2301      n->subsume_by(in1->in(1));
2302    } else if (in1->Opcode() == Op_ConP) {
2303      Compile* C = Compile::current();
2304      const Type* t = in1->bottom_type();
2305      if (t == TypePtr::NULL_PTR) {
2306        n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2307      } else if (t->isa_oopptr()) {
2308        n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2309      }
2310    }
2311    if (in1->outcnt() == 0) {
2312      in1->disconnect_inputs(NULL);
2313    }
2314    break;
2315  }
2316
2317  case Op_Proj: {
2318    if (OptimizeStringConcat) {
2319      ProjNode* p = n->as_Proj();
2320      if (p->_is_io_use) {
2321        // Separate projections were used for the exception path which
2322        // are normally removed by a late inline.  If it wasn't inlined
2323        // then they will hang around and should just be replaced with
2324        // the original one.
2325        Node* proj = NULL;
2326        // Replace with just one
2327        for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2328          Node *use = i.get();
2329          if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2330            proj = use;
2331            break;
2332          }
2333        }
2334        assert(p != NULL, "must be found");
2335        p->subsume_by(proj);
2336      }
2337    }
2338    break;
2339  }
2340
2341  case Op_Phi:
2342    if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2343      // The EncodeP optimization may create Phi with the same edges
2344      // for all paths. It is not handled well by Register Allocator.
2345      Node* unique_in = n->in(1);
2346      assert(unique_in != NULL, "");
2347      uint cnt = n->req();
2348      for (uint i = 2; i < cnt; i++) {
2349        Node* m = n->in(i);
2350        assert(m != NULL, "");
2351        if (unique_in != m)
2352          unique_in = NULL;
2353      }
2354      if (unique_in != NULL) {
2355        n->subsume_by(unique_in);
2356      }
2357    }
2358    break;
2359
2360#endif
2361
2362  case Op_ModI:
2363    if (UseDivMod) {
2364      // Check if a%b and a/b both exist
2365      Node* d = n->find_similar(Op_DivI);
2366      if (d) {
2367        // Replace them with a fused divmod if supported
2368        Compile* C = Compile::current();
2369        if (Matcher::has_match_rule(Op_DivModI)) {
2370          DivModINode* divmod = DivModINode::make(C, n);
2371          d->subsume_by(divmod->div_proj());
2372          n->subsume_by(divmod->mod_proj());
2373        } else {
2374          // replace a%b with a-((a/b)*b)
2375          Node* mult = new (C, 3) MulINode(d, d->in(2));
2376          Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2377          n->subsume_by( sub );
2378        }
2379      }
2380    }
2381    break;
2382
2383  case Op_ModL:
2384    if (UseDivMod) {
2385      // Check if a%b and a/b both exist
2386      Node* d = n->find_similar(Op_DivL);
2387      if (d) {
2388        // Replace them with a fused divmod if supported
2389        Compile* C = Compile::current();
2390        if (Matcher::has_match_rule(Op_DivModL)) {
2391          DivModLNode* divmod = DivModLNode::make(C, n);
2392          d->subsume_by(divmod->div_proj());
2393          n->subsume_by(divmod->mod_proj());
2394        } else {
2395          // replace a%b with a-((a/b)*b)
2396          Node* mult = new (C, 3) MulLNode(d, d->in(2));
2397          Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2398          n->subsume_by( sub );
2399        }
2400      }
2401    }
2402    break;
2403
2404  case Op_Load16B:
2405  case Op_Load8B:
2406  case Op_Load4B:
2407  case Op_Load8S:
2408  case Op_Load4S:
2409  case Op_Load2S:
2410  case Op_Load8C:
2411  case Op_Load4C:
2412  case Op_Load2C:
2413  case Op_Load4I:
2414  case Op_Load2I:
2415  case Op_Load2L:
2416  case Op_Load4F:
2417  case Op_Load2F:
2418  case Op_Load2D:
2419  case Op_Store16B:
2420  case Op_Store8B:
2421  case Op_Store4B:
2422  case Op_Store8C:
2423  case Op_Store4C:
2424  case Op_Store2C:
2425  case Op_Store4I:
2426  case Op_Store2I:
2427  case Op_Store2L:
2428  case Op_Store4F:
2429  case Op_Store2F:
2430  case Op_Store2D:
2431    break;
2432
2433  case Op_PackB:
2434  case Op_PackS:
2435  case Op_PackC:
2436  case Op_PackI:
2437  case Op_PackF:
2438  case Op_PackL:
2439  case Op_PackD:
2440    if (n->req()-1 > 2) {
2441      // Replace many operand PackNodes with a binary tree for matching
2442      PackNode* p = (PackNode*) n;
2443      Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2444      n->subsume_by(btp);
2445    }
2446    break;
2447  case Op_Loop:
2448  case Op_CountedLoop:
2449    if (n->as_Loop()->is_inner_loop()) {
2450      frc.inc_inner_loop_count();
2451    }
2452    break;
2453  default:
2454    assert( !n->is_Call(), "" );
2455    assert( !n->is_Mem(), "" );
2456    break;
2457  }
2458
2459  // Collect CFG split points
2460  if (n->is_MultiBranch())
2461    frc._tests.push(n);
2462}
2463
2464//------------------------------final_graph_reshaping_walk---------------------
2465// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2466// requires that the walk visits a node's inputs before visiting the node.
2467static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2468  ResourceArea *area = Thread::current()->resource_area();
2469  Unique_Node_List sfpt(area);
2470
2471  frc._visited.set(root->_idx); // first, mark node as visited
2472  uint cnt = root->req();
2473  Node *n = root;
2474  uint  i = 0;
2475  while (true) {
2476    if (i < cnt) {
2477      // Place all non-visited non-null inputs onto stack
2478      Node* m = n->in(i);
2479      ++i;
2480      if (m != NULL && !frc._visited.test_set(m->_idx)) {
2481        if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2482          sfpt.push(m);
2483        cnt = m->req();
2484        nstack.push(n, i); // put on stack parent and next input's index
2485        n = m;
2486        i = 0;
2487      }
2488    } else {
2489      // Now do post-visit work
2490      final_graph_reshaping_impl( n, frc );
2491      if (nstack.is_empty())
2492        break;             // finished
2493      n = nstack.node();   // Get node from stack
2494      cnt = n->req();
2495      i = nstack.index();
2496      nstack.pop();        // Shift to the next node on stack
2497    }
2498  }
2499
2500  // Skip next transformation if compressed oops are not used.
2501  if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
2502    return;
2503
2504  // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2505  // It could be done for an uncommon traps or any safepoints/calls
2506  // if the DecodeN node is referenced only in a debug info.
2507  while (sfpt.size() > 0) {
2508    n = sfpt.pop();
2509    JVMState *jvms = n->as_SafePoint()->jvms();
2510    assert(jvms != NULL, "sanity");
2511    int start = jvms->debug_start();
2512    int end   = n->req();
2513    bool is_uncommon = (n->is_CallStaticJava() &&
2514                        n->as_CallStaticJava()->uncommon_trap_request() != 0);
2515    for (int j = start; j < end; j++) {
2516      Node* in = n->in(j);
2517      if (in->is_DecodeN()) {
2518        bool safe_to_skip = true;
2519        if (!is_uncommon ) {
2520          // Is it safe to skip?
2521          for (uint i = 0; i < in->outcnt(); i++) {
2522            Node* u = in->raw_out(i);
2523            if (!u->is_SafePoint() ||
2524                 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2525              safe_to_skip = false;
2526            }
2527          }
2528        }
2529        if (safe_to_skip) {
2530          n->set_req(j, in->in(1));
2531        }
2532        if (in->outcnt() == 0) {
2533          in->disconnect_inputs(NULL);
2534        }
2535      }
2536    }
2537  }
2538}
2539
2540//------------------------------final_graph_reshaping--------------------------
2541// Final Graph Reshaping.
2542//
2543// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2544//     and not commoned up and forced early.  Must come after regular
2545//     optimizations to avoid GVN undoing the cloning.  Clone constant
2546//     inputs to Loop Phis; these will be split by the allocator anyways.
2547//     Remove Opaque nodes.
2548// (2) Move last-uses by commutative operations to the left input to encourage
2549//     Intel update-in-place two-address operations and better register usage
2550//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2551//     calls canonicalizing them back.
2552// (3) Count the number of double-precision FP ops, single-precision FP ops
2553//     and call sites.  On Intel, we can get correct rounding either by
2554//     forcing singles to memory (requires extra stores and loads after each
2555//     FP bytecode) or we can set a rounding mode bit (requires setting and
2556//     clearing the mode bit around call sites).  The mode bit is only used
2557//     if the relative frequency of single FP ops to calls is low enough.
2558//     This is a key transform for SPEC mpeg_audio.
2559// (4) Detect infinite loops; blobs of code reachable from above but not
2560//     below.  Several of the Code_Gen algorithms fail on such code shapes,
2561//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2562//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2563//     Detection is by looking for IfNodes where only 1 projection is
2564//     reachable from below or CatchNodes missing some targets.
2565// (5) Assert for insane oop offsets in debug mode.
2566
2567bool Compile::final_graph_reshaping() {
2568  // an infinite loop may have been eliminated by the optimizer,
2569  // in which case the graph will be empty.
2570  if (root()->req() == 1) {
2571    record_method_not_compilable("trivial infinite loop");
2572    return true;
2573  }
2574
2575  Final_Reshape_Counts frc;
2576
2577  // Visit everybody reachable!
2578  // Allocate stack of size C->unique()/2 to avoid frequent realloc
2579  Node_Stack nstack(unique() >> 1);
2580  final_graph_reshaping_walk(nstack, root(), frc);
2581
2582  // Check for unreachable (from below) code (i.e., infinite loops).
2583  for( uint i = 0; i < frc._tests.size(); i++ ) {
2584    MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2585    // Get number of CFG targets.
2586    // Note that PCTables include exception targets after calls.
2587    uint required_outcnt = n->required_outcnt();
2588    if (n->outcnt() != required_outcnt) {
2589      // Check for a few special cases.  Rethrow Nodes never take the
2590      // 'fall-thru' path, so expected kids is 1 less.
2591      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2592        if (n->in(0)->in(0)->is_Call()) {
2593          CallNode *call = n->in(0)->in(0)->as_Call();
2594          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2595            required_outcnt--;      // Rethrow always has 1 less kid
2596          } else if (call->req() > TypeFunc::Parms &&
2597                     call->is_CallDynamicJava()) {
2598            // Check for null receiver. In such case, the optimizer has
2599            // detected that the virtual call will always result in a null
2600            // pointer exception. The fall-through projection of this CatchNode
2601            // will not be populated.
2602            Node *arg0 = call->in(TypeFunc::Parms);
2603            if (arg0->is_Type() &&
2604                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2605              required_outcnt--;
2606            }
2607          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2608                     call->req() > TypeFunc::Parms+1 &&
2609                     call->is_CallStaticJava()) {
2610            // Check for negative array length. In such case, the optimizer has
2611            // detected that the allocation attempt will always result in an
2612            // exception. There is no fall-through projection of this CatchNode .
2613            Node *arg1 = call->in(TypeFunc::Parms+1);
2614            if (arg1->is_Type() &&
2615                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2616              required_outcnt--;
2617            }
2618          }
2619        }
2620      }
2621      // Recheck with a better notion of 'required_outcnt'
2622      if (n->outcnt() != required_outcnt) {
2623        record_method_not_compilable("malformed control flow");
2624        return true;            // Not all targets reachable!
2625      }
2626    }
2627    // Check that I actually visited all kids.  Unreached kids
2628    // must be infinite loops.
2629    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2630      if (!frc._visited.test(n->fast_out(j)->_idx)) {
2631        record_method_not_compilable("infinite loop");
2632        return true;            // Found unvisited kid; must be unreach
2633      }
2634  }
2635
2636  // If original bytecodes contained a mixture of floats and doubles
2637  // check if the optimizer has made it homogenous, item (3).
2638  if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2639      frc.get_float_count() > 32 &&
2640      frc.get_double_count() == 0 &&
2641      (10 * frc.get_call_count() < frc.get_float_count()) ) {
2642    set_24_bit_selection_and_mode( false,  true );
2643  }
2644
2645  set_java_calls(frc.get_java_call_count());
2646  set_inner_loops(frc.get_inner_loop_count());
2647
2648  // No infinite loops, no reason to bail out.
2649  return false;
2650}
2651
2652//-----------------------------too_many_traps----------------------------------
2653// Report if there are too many traps at the current method and bci.
2654// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2655bool Compile::too_many_traps(ciMethod* method,
2656                             int bci,
2657                             Deoptimization::DeoptReason reason) {
2658  ciMethodData* md = method->method_data();
2659  if (md->is_empty()) {
2660    // Assume the trap has not occurred, or that it occurred only
2661    // because of a transient condition during start-up in the interpreter.
2662    return false;
2663  }
2664  if (md->has_trap_at(bci, reason) != 0) {
2665    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2666    // Also, if there are multiple reasons, or if there is no per-BCI record,
2667    // assume the worst.
2668    if (log())
2669      log()->elem("observe trap='%s' count='%d'",
2670                  Deoptimization::trap_reason_name(reason),
2671                  md->trap_count(reason));
2672    return true;
2673  } else {
2674    // Ignore method/bci and see if there have been too many globally.
2675    return too_many_traps(reason, md);
2676  }
2677}
2678
2679// Less-accurate variant which does not require a method and bci.
2680bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2681                             ciMethodData* logmd) {
2682 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2683    // Too many traps globally.
2684    // Note that we use cumulative trap_count, not just md->trap_count.
2685    if (log()) {
2686      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2687      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2688                  Deoptimization::trap_reason_name(reason),
2689                  mcount, trap_count(reason));
2690    }
2691    return true;
2692  } else {
2693    // The coast is clear.
2694    return false;
2695  }
2696}
2697
2698//--------------------------too_many_recompiles--------------------------------
2699// Report if there are too many recompiles at the current method and bci.
2700// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2701// Is not eager to return true, since this will cause the compiler to use
2702// Action_none for a trap point, to avoid too many recompilations.
2703bool Compile::too_many_recompiles(ciMethod* method,
2704                                  int bci,
2705                                  Deoptimization::DeoptReason reason) {
2706  ciMethodData* md = method->method_data();
2707  if (md->is_empty()) {
2708    // Assume the trap has not occurred, or that it occurred only
2709    // because of a transient condition during start-up in the interpreter.
2710    return false;
2711  }
2712  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2713  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2714  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2715  Deoptimization::DeoptReason per_bc_reason
2716    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2717  if ((per_bc_reason == Deoptimization::Reason_none
2718       || md->has_trap_at(bci, reason) != 0)
2719      // The trap frequency measure we care about is the recompile count:
2720      && md->trap_recompiled_at(bci)
2721      && md->overflow_recompile_count() >= bc_cutoff) {
2722    // Do not emit a trap here if it has already caused recompilations.
2723    // Also, if there are multiple reasons, or if there is no per-BCI record,
2724    // assume the worst.
2725    if (log())
2726      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2727                  Deoptimization::trap_reason_name(reason),
2728                  md->trap_count(reason),
2729                  md->overflow_recompile_count());
2730    return true;
2731  } else if (trap_count(reason) != 0
2732             && decompile_count() >= m_cutoff) {
2733    // Too many recompiles globally, and we have seen this sort of trap.
2734    // Use cumulative decompile_count, not just md->decompile_count.
2735    if (log())
2736      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2737                  Deoptimization::trap_reason_name(reason),
2738                  md->trap_count(reason), trap_count(reason),
2739                  md->decompile_count(), decompile_count());
2740    return true;
2741  } else {
2742    // The coast is clear.
2743    return false;
2744  }
2745}
2746
2747
2748#ifndef PRODUCT
2749//------------------------------verify_graph_edges---------------------------
2750// Walk the Graph and verify that there is a one-to-one correspondence
2751// between Use-Def edges and Def-Use edges in the graph.
2752void Compile::verify_graph_edges(bool no_dead_code) {
2753  if (VerifyGraphEdges) {
2754    ResourceArea *area = Thread::current()->resource_area();
2755    Unique_Node_List visited(area);
2756    // Call recursive graph walk to check edges
2757    _root->verify_edges(visited);
2758    if (no_dead_code) {
2759      // Now make sure that no visited node is used by an unvisited node.
2760      bool dead_nodes = 0;
2761      Unique_Node_List checked(area);
2762      while (visited.size() > 0) {
2763        Node* n = visited.pop();
2764        checked.push(n);
2765        for (uint i = 0; i < n->outcnt(); i++) {
2766          Node* use = n->raw_out(i);
2767          if (checked.member(use))  continue;  // already checked
2768          if (visited.member(use))  continue;  // already in the graph
2769          if (use->is_Con())        continue;  // a dead ConNode is OK
2770          // At this point, we have found a dead node which is DU-reachable.
2771          if (dead_nodes++ == 0)
2772            tty->print_cr("*** Dead nodes reachable via DU edges:");
2773          use->dump(2);
2774          tty->print_cr("---");
2775          checked.push(use);  // No repeats; pretend it is now checked.
2776        }
2777      }
2778      assert(dead_nodes == 0, "using nodes must be reachable from root");
2779    }
2780  }
2781}
2782#endif
2783
2784// The Compile object keeps track of failure reasons separately from the ciEnv.
2785// This is required because there is not quite a 1-1 relation between the
2786// ciEnv and its compilation task and the Compile object.  Note that one
2787// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2788// to backtrack and retry without subsuming loads.  Other than this backtracking
2789// behavior, the Compile's failure reason is quietly copied up to the ciEnv
2790// by the logic in C2Compiler.
2791void Compile::record_failure(const char* reason) {
2792  if (log() != NULL) {
2793    log()->elem("failure reason='%s' phase='compile'", reason);
2794  }
2795  if (_failure_reason == NULL) {
2796    // Record the first failure reason.
2797    _failure_reason = reason;
2798  }
2799  if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2800    C->print_method(_failure_reason);
2801  }
2802  _root = NULL;  // flush the graph, too
2803}
2804
2805Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2806  : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2807{
2808  if (dolog) {
2809    C = Compile::current();
2810    _log = C->log();
2811  } else {
2812    C = NULL;
2813    _log = NULL;
2814  }
2815  if (_log != NULL) {
2816    _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2817    _log->stamp();
2818    _log->end_head();
2819  }
2820}
2821
2822Compile::TracePhase::~TracePhase() {
2823  if (_log != NULL) {
2824    _log->done("phase nodes='%d'", C->unique());
2825  }
2826}
2827