chaitin.cpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "compiler/oopMap.hpp"
28#include "memory/allocation.inline.hpp"
29#include "opto/addnode.hpp"
30#include "opto/block.hpp"
31#include "opto/callnode.hpp"
32#include "opto/cfgnode.hpp"
33#include "opto/chaitin.hpp"
34#include "opto/coalesce.hpp"
35#include "opto/connode.hpp"
36#include "opto/idealGraphPrinter.hpp"
37#include "opto/indexSet.hpp"
38#include "opto/machnode.hpp"
39#include "opto/memnode.hpp"
40#include "opto/movenode.hpp"
41#include "opto/opcodes.hpp"
42#include "opto/rootnode.hpp"
43
44#ifndef PRODUCT
45void LRG::dump() const {
46  ttyLocker ttyl;
47  tty->print("%d ",num_regs());
48  _mask.dump();
49  if( _msize_valid ) {
50    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
51    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
52  } else {
53    tty->print(", #?(%d) ",_mask.Size());
54  }
55
56  tty->print("EffDeg: ");
57  if( _degree_valid ) tty->print( "%d ", _eff_degree );
58  else tty->print("? ");
59
60  if( is_multidef() ) {
61    tty->print("MultiDef ");
62    if (_defs != NULL) {
63      tty->print("(");
64      for (int i = 0; i < _defs->length(); i++) {
65        tty->print("N%d ", _defs->at(i)->_idx);
66      }
67      tty->print(") ");
68    }
69  }
70  else if( _def == 0 ) tty->print("Dead ");
71  else tty->print("Def: N%d ",_def->_idx);
72
73  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
74  // Flags
75  if( _is_oop ) tty->print("Oop ");
76  if( _is_float ) tty->print("Float ");
77  if( _is_vector ) tty->print("Vector ");
78  if( _was_spilled1 ) tty->print("Spilled ");
79  if( _was_spilled2 ) tty->print("Spilled2 ");
80  if( _direct_conflict ) tty->print("Direct_conflict ");
81  if( _fat_proj ) tty->print("Fat ");
82  if( _was_lo ) tty->print("Lo ");
83  if( _has_copy ) tty->print("Copy ");
84  if( _at_risk ) tty->print("Risk ");
85
86  if( _must_spill ) tty->print("Must_spill ");
87  if( _is_bound ) tty->print("Bound ");
88  if( _msize_valid ) {
89    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
90  }
91
92  tty->cr();
93}
94#endif
95
96// Compute score from cost and area.  Low score is best to spill.
97static double raw_score( double cost, double area ) {
98  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
99}
100
101double LRG::score() const {
102  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
103  // Bigger area lowers score, encourages spilling this live range.
104  // Bigger cost raise score, prevents spilling this live range.
105  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
106  // to turn a divide by a constant into a multiply by the reciprical).
107  double score = raw_score( _cost, _area);
108
109  // Account for area.  Basically, LRGs covering large areas are better
110  // to spill because more other LRGs get freed up.
111  if( _area == 0.0 )            // No area?  Then no progress to spill
112    return 1e35;
113
114  if( _was_spilled2 )           // If spilled once before, we are unlikely
115    return score + 1e30;        // to make progress again.
116
117  if( _cost >= _area*3.0 )      // Tiny area relative to cost
118    return score + 1e17;        // Probably no progress to spill
119
120  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
121    return score + 1e10;        // Likely no progress to spill
122
123  return score;
124}
125
126#define NUMBUCKS 3
127
128// Straight out of Tarjan's union-find algorithm
129uint LiveRangeMap::find_compress(uint lrg) {
130  uint cur = lrg;
131  uint next = _uf_map.at(cur);
132  while (next != cur) { // Scan chain of equivalences
133    assert( next < cur, "always union smaller");
134    cur = next; // until find a fixed-point
135    next = _uf_map.at(cur);
136  }
137
138  // Core of union-find algorithm: update chain of
139  // equivalences to be equal to the root.
140  while (lrg != next) {
141    uint tmp = _uf_map.at(lrg);
142    _uf_map.at_put(lrg, next);
143    lrg = tmp;
144  }
145  return lrg;
146}
147
148// Reset the Union-Find map to identity
149void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
150  _max_lrg_id= max_lrg_id;
151  // Force the Union-Find mapping to be at least this large
152  _uf_map.at_put_grow(_max_lrg_id, 0);
153  // Initialize it to be the ID mapping.
154  for (uint i = 0; i < _max_lrg_id; ++i) {
155    _uf_map.at_put(i, i);
156  }
157}
158
159// Make all Nodes map directly to their final live range; no need for
160// the Union-Find mapping after this call.
161void LiveRangeMap::compress_uf_map_for_nodes() {
162  // For all Nodes, compress mapping
163  uint unique = _names.length();
164  for (uint i = 0; i < unique; ++i) {
165    uint lrg = _names.at(i);
166    uint compressed_lrg = find(lrg);
167    if (lrg != compressed_lrg) {
168      _names.at_put(i, compressed_lrg);
169    }
170  }
171}
172
173// Like Find above, but no path compress, so bad asymptotic behavior
174uint LiveRangeMap::find_const(uint lrg) const {
175  if (!lrg) {
176    return lrg; // Ignore the zero LRG
177  }
178
179  // Off the end?  This happens during debugging dumps when you got
180  // brand new live ranges but have not told the allocator yet.
181  if (lrg >= _max_lrg_id) {
182    return lrg;
183  }
184
185  uint next = _uf_map.at(lrg);
186  while (next != lrg) { // Scan chain of equivalences
187    assert(next < lrg, "always union smaller");
188    lrg = next; // until find a fixed-point
189    next = _uf_map.at(lrg);
190  }
191  return next;
192}
193
194PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
195  : PhaseRegAlloc(unique, cfg, matcher,
196#ifndef PRODUCT
197       print_chaitin_statistics
198#else
199       NULL
200#endif
201       )
202  , _lrg_map(Thread::current()->resource_area(), unique)
203  , _live(0)
204  , _spilled_once(Thread::current()->resource_area())
205  , _spilled_twice(Thread::current()->resource_area())
206  , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
207  , _oldphi(unique)
208#ifndef PRODUCT
209  , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
210#endif
211{
212  Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]);
213
214  _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
215
216  // Build a list of basic blocks, sorted by frequency
217  _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
218  // Experiment with sorting strategies to speed compilation
219  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
220  Block **buckets[NUMBUCKS];             // Array of buckets
221  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
222  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
223  for (uint i = 0; i < NUMBUCKS; i++) {
224    buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
225    buckcnt[i] = 0;
226    // Bump by three orders of magnitude each time
227    cutoff *= 0.001;
228    buckval[i] = cutoff;
229    for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
230      buckets[i][j] = NULL;
231    }
232  }
233  // Sort blocks into buckets
234  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
235    for (uint j = 0; j < NUMBUCKS; j++) {
236      if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
237        // Assign block to end of list for appropriate bucket
238        buckets[j][buckcnt[j]++] = _cfg.get_block(i);
239        break; // kick out of inner loop
240      }
241    }
242  }
243  // Dump buckets into final block array
244  uint blkcnt = 0;
245  for (uint i = 0; i < NUMBUCKS; i++) {
246    for (uint j = 0; j < buckcnt[i]; j++) {
247      _blks[blkcnt++] = buckets[i][j];
248    }
249  }
250
251  assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
252}
253
254// union 2 sets together.
255void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
256  uint src = _lrg_map.find(src_n);
257  uint dst = _lrg_map.find(dst_n);
258  assert(src, "");
259  assert(dst, "");
260  assert(src < _lrg_map.max_lrg_id(), "oob");
261  assert(dst < _lrg_map.max_lrg_id(), "oob");
262  assert(src < dst, "always union smaller");
263  _lrg_map.uf_map(dst, src);
264}
265
266void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
267  // Make the Node->LRG mapping
268  _lrg_map.extend(x->_idx,lrg);
269  // Make the Union-Find mapping an identity function
270  _lrg_map.uf_extend(lrg, lrg);
271}
272
273
274int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
275  assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
276  DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
277  int found_projs = 0;
278  uint cnt = orig->outcnt();
279  for (uint i = 0; i < cnt; i++) {
280    Node* proj = orig->raw_out(i);
281    if (proj->is_MachProj()) {
282      assert(proj->outcnt() == 0, "only kill projections are expected here");
283      assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
284      found_projs++;
285      // Copy kill projections after the cloned node
286      Node* kills = proj->clone();
287      kills->set_req(0, copy);
288      b->insert_node(kills, idx++);
289      _cfg.map_node_to_block(kills, b);
290      new_lrg(kills, max_lrg_id++);
291    }
292  }
293  return found_projs;
294}
295
296// Renumber the live ranges to compact them.  Makes the IFG smaller.
297void PhaseChaitin::compact() {
298  Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]);
299
300  // Current the _uf_map contains a series of short chains which are headed
301  // by a self-cycle.  All the chains run from big numbers to little numbers.
302  // The Find() call chases the chains & shortens them for the next Find call.
303  // We are going to change this structure slightly.  Numbers above a moving
304  // wave 'i' are unchanged.  Numbers below 'j' point directly to their
305  // compacted live range with no further chaining.  There are no chains or
306  // cycles below 'i', so the Find call no longer works.
307  uint j=1;
308  uint i;
309  for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
310    uint lr = _lrg_map.uf_live_range_id(i);
311    // Ignore unallocated live ranges
312    if (!lr) {
313      continue;
314    }
315    assert(lr <= i, "");
316    _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
317  }
318  // Now change the Node->LR mapping to reflect the compacted names
319  uint unique = _lrg_map.size();
320  for (i = 0; i < unique; i++) {
321    uint lrg_id = _lrg_map.live_range_id(i);
322    _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
323  }
324
325  // Reset the Union-Find mapping
326  _lrg_map.reset_uf_map(j);
327}
328
329void PhaseChaitin::Register_Allocate() {
330
331  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
332  // slots in this area are called "arg_slots".  Above the NEW FP (and in
333  // registers) is the outgoing argument area; above that is the spill/temp
334  // area.  These are all "frame_slots".  Arg_slots start at the zero
335  // stack_slots and count up to the known arg_size.  Frame_slots start at
336  // the stack_slot #arg_size and go up.  After allocation I map stack
337  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
338  // by the frame_size; stack-slots in the frame_slot area are biased by 0.
339
340  _trip_cnt = 0;
341  _alternate = 0;
342  _matcher._allocation_started = true;
343
344  ResourceArea split_arena;     // Arena for Split local resources
345  ResourceArea live_arena;      // Arena for liveness & IFG info
346  ResourceMark rm(&live_arena);
347
348  // Need live-ness for the IFG; need the IFG for coalescing.  If the
349  // liveness is JUST for coalescing, then I can get some mileage by renaming
350  // all copy-related live ranges low and then using the max copy-related
351  // live range as a cut-off for LIVE and the IFG.  In other words, I can
352  // build a subset of LIVE and IFG just for copies.
353  PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
354
355  // Need IFG for coalescing and coloring
356  PhaseIFG ifg(&live_arena);
357  _ifg = &ifg;
358
359  // Come out of SSA world to the Named world.  Assign (virtual) registers to
360  // Nodes.  Use the same register for all inputs and the output of PhiNodes
361  // - effectively ending SSA form.  This requires either coalescing live
362  // ranges or inserting copies.  For the moment, we insert "virtual copies"
363  // - we pretend there is a copy prior to each Phi in predecessor blocks.
364  // We will attempt to coalesce such "virtual copies" before we manifest
365  // them for real.
366  de_ssa();
367
368#ifdef ASSERT
369  // Veify the graph before RA.
370  verify(&live_arena);
371#endif
372
373  {
374    Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
375    _live = NULL;                 // Mark live as being not available
376    rm.reset_to_mark();           // Reclaim working storage
377    IndexSet::reset_memory(C, &live_arena);
378    ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
379    gather_lrg_masks( false );    // Collect LRG masks
380    live.compute(_lrg_map.max_lrg_id()); // Compute liveness
381    _live = &live;                // Mark LIVE as being available
382  }
383
384  // Base pointers are currently "used" by instructions which define new
385  // derived pointers.  This makes base pointers live up to the where the
386  // derived pointer is made, but not beyond.  Really, they need to be live
387  // across any GC point where the derived value is live.  So this code looks
388  // at all the GC points, and "stretches" the live range of any base pointer
389  // to the GC point.
390  if (stretch_base_pointer_live_ranges(&live_arena)) {
391    Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]);
392    // Since some live range stretched, I need to recompute live
393    _live = NULL;
394    rm.reset_to_mark();         // Reclaim working storage
395    IndexSet::reset_memory(C, &live_arena);
396    ifg.init(_lrg_map.max_lrg_id());
397    gather_lrg_masks(false);
398    live.compute(_lrg_map.max_lrg_id());
399    _live = &live;
400  }
401  // Create the interference graph using virtual copies
402  build_ifg_virtual();  // Include stack slots this time
403
404  // The IFG is/was triangular.  I am 'squaring it up' so Union can run
405  // faster.  Union requires a 'for all' operation which is slow on the
406  // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
407  // meaning I can visit all the Nodes neighbors less than a Node in time
408  // O(# of neighbors), but I have to visit all the Nodes greater than a
409  // given Node and search them for an instance, i.e., time O(#MaxLRG)).
410  _ifg->SquareUp();
411
412  // Aggressive (but pessimistic) copy coalescing.
413  // This pass works on virtual copies.  Any virtual copies which are not
414  // coalesced get manifested as actual copies
415  {
416    Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]);
417
418    PhaseAggressiveCoalesce coalesce(*this);
419    coalesce.coalesce_driver();
420    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
421    // not match the Phi itself, insert a copy.
422    coalesce.insert_copies(_matcher);
423    if (C->failing()) {
424      return;
425    }
426  }
427
428  // After aggressive coalesce, attempt a first cut at coloring.
429  // To color, we need the IFG and for that we need LIVE.
430  {
431    Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
432    _live = NULL;
433    rm.reset_to_mark();           // Reclaim working storage
434    IndexSet::reset_memory(C, &live_arena);
435    ifg.init(_lrg_map.max_lrg_id());
436    gather_lrg_masks( true );
437    live.compute(_lrg_map.max_lrg_id());
438    _live = &live;
439  }
440
441  // Build physical interference graph
442  uint must_spill = 0;
443  must_spill = build_ifg_physical(&live_arena);
444  // If we have a guaranteed spill, might as well spill now
445  if (must_spill) {
446    if(!_lrg_map.max_lrg_id()) {
447      return;
448    }
449    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
450    C->check_node_count(10*must_spill, "out of nodes before split");
451    if (C->failing()) {
452      return;
453    }
454
455    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
456    _lrg_map.set_max_lrg_id(new_max_lrg_id);
457    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
458    // or we failed to split
459    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
460    if (C->failing()) {
461      return;
462    }
463
464    NOT_PRODUCT(C->verify_graph_edges();)
465
466    compact();                  // Compact LRGs; return new lower max lrg
467
468    {
469      Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
470      _live = NULL;
471      rm.reset_to_mark();         // Reclaim working storage
472      IndexSet::reset_memory(C, &live_arena);
473      ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
474      gather_lrg_masks( true );   // Collect intersect mask
475      live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
476      _live = &live;
477    }
478    build_ifg_physical(&live_arena);
479    _ifg->SquareUp();
480    _ifg->Compute_Effective_Degree();
481    // Only do conservative coalescing if requested
482    if (OptoCoalesce) {
483      Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]);
484      // Conservative (and pessimistic) copy coalescing of those spills
485      PhaseConservativeCoalesce coalesce(*this);
486      // If max live ranges greater than cutoff, don't color the stack.
487      // This cutoff can be larger than below since it is only done once.
488      coalesce.coalesce_driver();
489    }
490    _lrg_map.compress_uf_map_for_nodes();
491
492#ifdef ASSERT
493    verify(&live_arena, true);
494#endif
495  } else {
496    ifg.SquareUp();
497    ifg.Compute_Effective_Degree();
498#ifdef ASSERT
499    set_was_low();
500#endif
501  }
502
503  // Prepare for Simplify & Select
504  cache_lrg_info();           // Count degree of LRGs
505
506  // Simplify the InterFerence Graph by removing LRGs of low degree.
507  // LRGs of low degree are trivially colorable.
508  Simplify();
509
510  // Select colors by re-inserting LRGs back into the IFG in reverse order.
511  // Return whether or not something spills.
512  uint spills = Select( );
513
514  // If we spill, split and recycle the entire thing
515  while( spills ) {
516    if( _trip_cnt++ > 24 ) {
517      DEBUG_ONLY( dump_for_spill_split_recycle(); )
518      if( _trip_cnt > 27 ) {
519        C->record_method_not_compilable("failed spill-split-recycle sanity check");
520        return;
521      }
522    }
523
524    if (!_lrg_map.max_lrg_id()) {
525      return;
526    }
527    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
528    _lrg_map.set_max_lrg_id(new_max_lrg_id);
529    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
530    C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
531    if (C->failing()) {
532      return;
533    }
534
535    compact(); // Compact LRGs; return new lower max lrg
536
537    // Nuke the live-ness and interference graph and LiveRanGe info
538    {
539      Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
540      _live = NULL;
541      rm.reset_to_mark();         // Reclaim working storage
542      IndexSet::reset_memory(C, &live_arena);
543      ifg.init(_lrg_map.max_lrg_id());
544
545      // Create LiveRanGe array.
546      // Intersect register masks for all USEs and DEFs
547      gather_lrg_masks(true);
548      live.compute(_lrg_map.max_lrg_id());
549      _live = &live;
550    }
551    must_spill = build_ifg_physical(&live_arena);
552    _ifg->SquareUp();
553    _ifg->Compute_Effective_Degree();
554
555    // Only do conservative coalescing if requested
556    if (OptoCoalesce) {
557      Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]);
558      // Conservative (and pessimistic) copy coalescing
559      PhaseConservativeCoalesce coalesce(*this);
560      // Check for few live ranges determines how aggressive coalesce is.
561      coalesce.coalesce_driver();
562    }
563    _lrg_map.compress_uf_map_for_nodes();
564#ifdef ASSERT
565    verify(&live_arena, true);
566#endif
567    cache_lrg_info();           // Count degree of LRGs
568
569    // Simplify the InterFerence Graph by removing LRGs of low degree.
570    // LRGs of low degree are trivially colorable.
571    Simplify();
572
573    // Select colors by re-inserting LRGs back into the IFG in reverse order.
574    // Return whether or not something spills.
575    spills = Select();
576  }
577
578  // Count number of Simplify-Select trips per coloring success.
579  _allocator_attempts += _trip_cnt + 1;
580  _allocator_successes += 1;
581
582  // Peephole remove copies
583  post_allocate_copy_removal();
584
585  // Merge multidefs if multiple defs representing the same value are used in a single block.
586  merge_multidefs();
587
588#ifdef ASSERT
589  // Veify the graph after RA.
590  verify(&live_arena);
591#endif
592
593  // max_reg is past the largest *register* used.
594  // Convert that to a frame_slot number.
595  if (_max_reg <= _matcher._new_SP) {
596    _framesize = C->out_preserve_stack_slots();
597  }
598  else {
599    _framesize = _max_reg -_matcher._new_SP;
600  }
601  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
602
603  // This frame must preserve the required fp alignment
604  _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
605  assert(_framesize <= 1000000, "sanity check");
606#ifndef PRODUCT
607  _total_framesize += _framesize;
608  if ((int)_framesize > _max_framesize) {
609    _max_framesize = _framesize;
610  }
611#endif
612
613  // Convert CISC spills
614  fixup_spills();
615
616  // Log regalloc results
617  CompileLog* log = Compile::current()->log();
618  if (log != NULL) {
619    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
620  }
621
622  if (C->failing()) {
623    return;
624  }
625
626  NOT_PRODUCT(C->verify_graph_edges();)
627
628  // Move important info out of the live_arena to longer lasting storage.
629  alloc_node_regs(_lrg_map.size());
630  for (uint i=0; i < _lrg_map.size(); i++) {
631    if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
632      LRG &lrg = lrgs(_lrg_map.live_range_id(i));
633      if (!lrg.alive()) {
634        set_bad(i);
635      } else if (lrg.num_regs() == 1) {
636        set1(i, lrg.reg());
637      } else {                  // Must be a register-set
638        if (!lrg._fat_proj) {   // Must be aligned adjacent register set
639          // Live ranges record the highest register in their mask.
640          // We want the low register for the AD file writer's convenience.
641          OptoReg::Name hi = lrg.reg(); // Get hi register
642          OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
643          // We have to use pair [lo,lo+1] even for wide vectors because
644          // the rest of code generation works only with pairs. It is safe
645          // since for registers encoding only 'lo' is used.
646          // Second reg from pair is used in ScheduleAndBundle on SPARC where
647          // vector max size is 8 which corresponds to registers pair.
648          // It is also used in BuildOopMaps but oop operations are not
649          // vectorized.
650          set2(i, lo);
651        } else {                // Misaligned; extract 2 bits
652          OptoReg::Name hi = lrg.reg(); // Get hi register
653          lrg.Remove(hi);       // Yank from mask
654          int lo = lrg.mask().find_first_elem(); // Find lo
655          set_pair(i, hi, lo);
656        }
657      }
658      if( lrg._is_oop ) _node_oops.set(i);
659    } else {
660      set_bad(i);
661    }
662  }
663
664  // Done!
665  _live = NULL;
666  _ifg = NULL;
667  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
668}
669
670void PhaseChaitin::de_ssa() {
671  // Set initial Names for all Nodes.  Most Nodes get the virtual register
672  // number.  A few get the ZERO live range number.  These do not
673  // get allocated, but instead rely on correct scheduling to ensure that
674  // only one instance is simultaneously live at a time.
675  uint lr_counter = 1;
676  for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
677    Block* block = _cfg.get_block(i);
678    uint cnt = block->number_of_nodes();
679
680    // Handle all the normal Nodes in the block
681    for( uint j = 0; j < cnt; j++ ) {
682      Node *n = block->get_node(j);
683      // Pre-color to the zero live range, or pick virtual register
684      const RegMask &rm = n->out_RegMask();
685      _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
686    }
687  }
688
689  // Reset the Union-Find mapping to be identity
690  _lrg_map.reset_uf_map(lr_counter);
691}
692
693
694// Gather LiveRanGe information, including register masks.  Modification of
695// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
696void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
697
698  // Nail down the frame pointer live range
699  uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
700  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
701
702  // For all blocks
703  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
704    Block* block = _cfg.get_block(i);
705
706    // For all instructions
707    for (uint j = 1; j < block->number_of_nodes(); j++) {
708      Node* n = block->get_node(j);
709      uint input_edge_start =1; // Skip control most nodes
710      if (n->is_Mach()) {
711        input_edge_start = n->as_Mach()->oper_input_base();
712      }
713      uint idx = n->is_Copy();
714
715      // Get virtual register number, same as LiveRanGe index
716      uint vreg = _lrg_map.live_range_id(n);
717      LRG& lrg = lrgs(vreg);
718      if (vreg) {              // No vreg means un-allocable (e.g. memory)
719
720        // Collect has-copy bit
721        if (idx) {
722          lrg._has_copy = 1;
723          uint clidx = _lrg_map.live_range_id(n->in(idx));
724          LRG& copy_src = lrgs(clidx);
725          copy_src._has_copy = 1;
726        }
727
728        // Check for float-vs-int live range (used in register-pressure
729        // calculations)
730        const Type *n_type = n->bottom_type();
731        if (n_type->is_floatingpoint()) {
732          lrg._is_float = 1;
733        }
734
735        // Check for twice prior spilling.  Once prior spilling might have
736        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
737        // further spilling is unlikely to make progress.
738        if (_spilled_once.test(n->_idx)) {
739          lrg._was_spilled1 = 1;
740          if (_spilled_twice.test(n->_idx)) {
741            lrg._was_spilled2 = 1;
742          }
743        }
744
745#ifndef PRODUCT
746        if (trace_spilling() && lrg._def != NULL) {
747          // collect defs for MultiDef printing
748          if (lrg._defs == NULL) {
749            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
750            lrg._defs->append(lrg._def);
751          }
752          lrg._defs->append(n);
753        }
754#endif
755
756        // Check for a single def LRG; these can spill nicely
757        // via rematerialization.  Flag as NULL for no def found
758        // yet, or 'n' for single def or -1 for many defs.
759        lrg._def = lrg._def ? NodeSentinel : n;
760
761        // Limit result register mask to acceptable registers
762        const RegMask &rm = n->out_RegMask();
763        lrg.AND( rm );
764
765        int ireg = n->ideal_reg();
766        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
767                "oops must be in Op_RegP's" );
768
769        // Check for vector live range (only if vector register is used).
770        // On SPARC vector uses RegD which could be misaligned so it is not
771        // processes as vector in RA.
772        if (RegMask::is_vector(ireg))
773          lrg._is_vector = 1;
774        assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL,
775               "vector must be in vector registers");
776
777        // Check for bound register masks
778        const RegMask &lrgmask = lrg.mask();
779        if (lrgmask.is_bound(ireg)) {
780          lrg._is_bound = 1;
781        }
782
783        // Check for maximum frequency value
784        if (lrg._maxfreq < block->_freq) {
785          lrg._maxfreq = block->_freq;
786        }
787
788        // Check for oop-iness, or long/double
789        // Check for multi-kill projection
790        switch (ireg) {
791        case MachProjNode::fat_proj:
792          // Fat projections have size equal to number of registers killed
793          lrg.set_num_regs(rm.Size());
794          lrg.set_reg_pressure(lrg.num_regs());
795          lrg._fat_proj = 1;
796          lrg._is_bound = 1;
797          break;
798        case Op_RegP:
799#ifdef _LP64
800          lrg.set_num_regs(2);  // Size is 2 stack words
801#else
802          lrg.set_num_regs(1);  // Size is 1 stack word
803#endif
804          // Register pressure is tracked relative to the maximum values
805          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
806          // and relative to other types which compete for the same regs.
807          //
808          // The following table contains suggested values based on the
809          // architectures as defined in each .ad file.
810          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
811          // compile-speed or performance.
812          // Note1:
813          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
814          // since .ad registers are defined as high and low halves.
815          // These reg_pressure values remain compatible with the code
816          // in is_high_pressure() which relates get_invalid_mask_size(),
817          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
818          // Note2:
819          // SPARC -d32 has 24 registers available for integral values,
820          // but only 10 of these are safe for 64-bit longs.
821          // Using set_reg_pressure(2) for both int and long means
822          // the allocator will believe it can fit 26 longs into
823          // registers.  Using 2 for longs and 1 for ints means the
824          // allocator will attempt to put 52 integers into registers.
825          // The settings below limit this problem to methods with
826          // many long values which are being run on 32-bit SPARC.
827          //
828          // ------------------- reg_pressure --------------------
829          // Each entry is reg_pressure_per_value,number_of_regs
830          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
831          // IA32     2     1     1          1    1          6           6
832          // IA64     1     1     1          1    1         50          41
833          // SPARC    2     2     2          2    2         48 (24)     52 (26)
834          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
835          // AMD64    1     1     1          1    1         14          15
836          // -----------------------------------------------------
837#if defined(SPARC)
838          lrg.set_reg_pressure(2);  // use for v9 as well
839#else
840          lrg.set_reg_pressure(1);  // normally one value per register
841#endif
842          if( n_type->isa_oop_ptr() ) {
843            lrg._is_oop = 1;
844          }
845          break;
846        case Op_RegL:           // Check for long or double
847        case Op_RegD:
848          lrg.set_num_regs(2);
849          // Define platform specific register pressure
850#if defined(SPARC) || defined(ARM32)
851          lrg.set_reg_pressure(2);
852#elif defined(IA32)
853          if( ireg == Op_RegL ) {
854            lrg.set_reg_pressure(2);
855          } else {
856            lrg.set_reg_pressure(1);
857          }
858#else
859          lrg.set_reg_pressure(1);  // normally one value per register
860#endif
861          // If this def of a double forces a mis-aligned double,
862          // flag as '_fat_proj' - really flag as allowing misalignment
863          // AND changes how we count interferences.  A mis-aligned
864          // double can interfere with TWO aligned pairs, or effectively
865          // FOUR registers!
866          if (rm.is_misaligned_pair()) {
867            lrg._fat_proj = 1;
868            lrg._is_bound = 1;
869          }
870          break;
871        case Op_RegF:
872        case Op_RegI:
873        case Op_RegN:
874        case Op_RegFlags:
875        case 0:                 // not an ideal register
876          lrg.set_num_regs(1);
877#ifdef SPARC
878          lrg.set_reg_pressure(2);
879#else
880          lrg.set_reg_pressure(1);
881#endif
882          break;
883        case Op_VecS:
884          assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
885          assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
886          lrg.set_num_regs(RegMask::SlotsPerVecS);
887          lrg.set_reg_pressure(1);
888          break;
889        case Op_VecD:
890          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
891          assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
892          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
893          lrg.set_num_regs(RegMask::SlotsPerVecD);
894          lrg.set_reg_pressure(1);
895          break;
896        case Op_VecX:
897          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
898          assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
899          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
900          lrg.set_num_regs(RegMask::SlotsPerVecX);
901          lrg.set_reg_pressure(1);
902          break;
903        case Op_VecY:
904          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
905          assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
906          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
907          lrg.set_num_regs(RegMask::SlotsPerVecY);
908          lrg.set_reg_pressure(1);
909          break;
910        case Op_VecZ:
911          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
912          assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
913          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
914          lrg.set_num_regs(RegMask::SlotsPerVecZ);
915          lrg.set_reg_pressure(1);
916          break;
917        default:
918          ShouldNotReachHere();
919        }
920      }
921
922      // Now do the same for inputs
923      uint cnt = n->req();
924      // Setup for CISC SPILLING
925      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
926      if( UseCISCSpill && after_aggressive ) {
927        inp = n->cisc_operand();
928        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
929          // Convert operand number to edge index number
930          inp = n->as_Mach()->operand_index(inp);
931      }
932      // Prepare register mask for each input
933      for( uint k = input_edge_start; k < cnt; k++ ) {
934        uint vreg = _lrg_map.live_range_id(n->in(k));
935        if (!vreg) {
936          continue;
937        }
938
939        // If this instruction is CISC Spillable, add the flags
940        // bit to its appropriate input
941        if( UseCISCSpill && after_aggressive && inp == k ) {
942#ifndef PRODUCT
943          if( TraceCISCSpill ) {
944            tty->print("  use_cisc_RegMask: ");
945            n->dump();
946          }
947#endif
948          n->as_Mach()->use_cisc_RegMask();
949        }
950
951        LRG &lrg = lrgs(vreg);
952        // // Testing for floating point code shape
953        // Node *test = n->in(k);
954        // if( test->is_Mach() ) {
955        //   MachNode *m = test->as_Mach();
956        //   int  op = m->ideal_Opcode();
957        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
958        //     int zzz = 1;
959        //   }
960        // }
961
962        // Limit result register mask to acceptable registers.
963        // Do not limit registers from uncommon uses before
964        // AggressiveCoalesce.  This effectively pre-virtual-splits
965        // around uncommon uses of common defs.
966        const RegMask &rm = n->in_RegMask(k);
967        if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
968          // Since we are BEFORE aggressive coalesce, leave the register
969          // mask untrimmed by the call.  This encourages more coalescing.
970          // Later, AFTER aggressive, this live range will have to spill
971          // but the spiller handles slow-path calls very nicely.
972        } else {
973          lrg.AND( rm );
974        }
975
976        // Check for bound register masks
977        const RegMask &lrgmask = lrg.mask();
978        int kreg = n->in(k)->ideal_reg();
979        bool is_vect = RegMask::is_vector(kreg);
980        assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
981               is_vect || kreg == Op_RegD || kreg == Op_RegL,
982               "vector must be in vector registers");
983        if (lrgmask.is_bound(kreg))
984          lrg._is_bound = 1;
985
986        // If this use of a double forces a mis-aligned double,
987        // flag as '_fat_proj' - really flag as allowing misalignment
988        // AND changes how we count interferences.  A mis-aligned
989        // double can interfere with TWO aligned pairs, or effectively
990        // FOUR registers!
991#ifdef ASSERT
992        if (is_vect) {
993          if (lrg.num_regs() != 0) {
994            assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
995            assert(!lrg._fat_proj, "sanity");
996            assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
997          } else {
998            assert(n->is_Phi(), "not all inputs processed only if Phi");
999          }
1000        }
1001#endif
1002        if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1003          lrg._fat_proj = 1;
1004          lrg._is_bound = 1;
1005        }
1006        // if the LRG is an unaligned pair, we will have to spill
1007        // so clear the LRG's register mask if it is not already spilled
1008        if (!is_vect && !n->is_SpillCopy() &&
1009            (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1010            lrgmask.is_misaligned_pair()) {
1011          lrg.Clear();
1012        }
1013
1014        // Check for maximum frequency value
1015        if (lrg._maxfreq < block->_freq) {
1016          lrg._maxfreq = block->_freq;
1017        }
1018
1019      } // End for all allocated inputs
1020    } // end for all instructions
1021  } // end for all blocks
1022
1023  // Final per-liverange setup
1024  for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1025    LRG &lrg = lrgs(i2);
1026    assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1027    if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1028      lrg.clear_to_sets();
1029    }
1030    lrg.compute_set_mask_size();
1031    if (lrg.not_free()) {      // Handle case where we lose from the start
1032      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1033      lrg._direct_conflict = 1;
1034    }
1035    lrg.set_degree(0);          // no neighbors in IFG yet
1036  }
1037}
1038
1039// Set the was-lo-degree bit.  Conservative coalescing should not change the
1040// colorability of the graph.  If any live range was of low-degree before
1041// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
1042// The bit is checked in Simplify.
1043void PhaseChaitin::set_was_low() {
1044#ifdef ASSERT
1045  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1046    int size = lrgs(i).num_regs();
1047    uint old_was_lo = lrgs(i)._was_lo;
1048    lrgs(i)._was_lo = 0;
1049    if( lrgs(i).lo_degree() ) {
1050      lrgs(i)._was_lo = 1;      // Trivially of low degree
1051    } else {                    // Else check the Brigg's assertion
1052      // Brigg's observation is that the lo-degree neighbors of a
1053      // hi-degree live range will not interfere with the color choices
1054      // of said hi-degree live range.  The Simplify reverse-stack-coloring
1055      // order takes care of the details.  Hence you do not have to count
1056      // low-degree neighbors when determining if this guy colors.
1057      int briggs_degree = 0;
1058      IndexSet *s = _ifg->neighbors(i);
1059      IndexSetIterator elements(s);
1060      uint lidx;
1061      while((lidx = elements.next()) != 0) {
1062        if( !lrgs(lidx).lo_degree() )
1063          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1064      }
1065      if( briggs_degree < lrgs(i).degrees_of_freedom() )
1066        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
1067    }
1068    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1069  }
1070#endif
1071}
1072
1073#define REGISTER_CONSTRAINED 16
1074
1075// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
1076void PhaseChaitin::cache_lrg_info( ) {
1077  Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]);
1078
1079  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1080    LRG &lrg = lrgs(i);
1081
1082    // Check for being of low degree: means we can be trivially colored.
1083    // Low degree, dead or must-spill guys just get to simplify right away
1084    if( lrg.lo_degree() ||
1085       !lrg.alive() ||
1086        lrg._must_spill ) {
1087      // Split low degree list into those guys that must get a
1088      // register and those that can go to register or stack.
1089      // The idea is LRGs that can go register or stack color first when
1090      // they have a good chance of getting a register.  The register-only
1091      // lo-degree live ranges always get a register.
1092      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1093      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1094        lrg._next = _lo_stk_degree;
1095        _lo_stk_degree = i;
1096      } else {
1097        lrg._next = _lo_degree;
1098        _lo_degree = i;
1099      }
1100    } else {                    // Else high degree
1101      lrgs(_hi_degree)._prev = i;
1102      lrg._next = _hi_degree;
1103      lrg._prev = 0;
1104      _hi_degree = i;
1105    }
1106  }
1107}
1108
1109// Simplify the IFG by removing LRGs of low degree that have NO copies
1110void PhaseChaitin::Pre_Simplify( ) {
1111
1112  // Warm up the lo-degree no-copy list
1113  int lo_no_copy = 0;
1114  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1115    if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
1116        !lrgs(i).alive() ||
1117        lrgs(i)._must_spill) {
1118      lrgs(i)._next = lo_no_copy;
1119      lo_no_copy = i;
1120    }
1121  }
1122
1123  while( lo_no_copy ) {
1124    uint lo = lo_no_copy;
1125    lo_no_copy = lrgs(lo)._next;
1126    int size = lrgs(lo).num_regs();
1127
1128    // Put the simplified guy on the simplified list.
1129    lrgs(lo)._next = _simplified;
1130    _simplified = lo;
1131
1132    // Yank this guy from the IFG.
1133    IndexSet *adj = _ifg->remove_node( lo );
1134
1135    // If any neighbors' degrees fall below their number of
1136    // allowed registers, then put that neighbor on the low degree
1137    // list.  Note that 'degree' can only fall and 'numregs' is
1138    // unchanged by this action.  Thus the two are equal at most once,
1139    // so LRGs hit the lo-degree worklists at most once.
1140    IndexSetIterator elements(adj);
1141    uint neighbor;
1142    while ((neighbor = elements.next()) != 0) {
1143      LRG *n = &lrgs(neighbor);
1144      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1145
1146      // Check for just becoming of-low-degree
1147      if( n->just_lo_degree() && !n->_has_copy ) {
1148        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1149        // Put on lo-degree list
1150        n->_next = lo_no_copy;
1151        lo_no_copy = neighbor;
1152      }
1153    }
1154  } // End of while lo-degree no_copy worklist not empty
1155
1156  // No more lo-degree no-copy live ranges to simplify
1157}
1158
1159// Simplify the IFG by removing LRGs of low degree.
1160void PhaseChaitin::Simplify( ) {
1161  Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]);
1162
1163  while( 1 ) {                  // Repeat till simplified it all
1164    // May want to explore simplifying lo_degree before _lo_stk_degree.
1165    // This might result in more spills coloring into registers during
1166    // Select().
1167    while( _lo_degree || _lo_stk_degree ) {
1168      // If possible, pull from lo_stk first
1169      uint lo;
1170      if( _lo_degree ) {
1171        lo = _lo_degree;
1172        _lo_degree = lrgs(lo)._next;
1173      } else {
1174        lo = _lo_stk_degree;
1175        _lo_stk_degree = lrgs(lo)._next;
1176      }
1177
1178      // Put the simplified guy on the simplified list.
1179      lrgs(lo)._next = _simplified;
1180      _simplified = lo;
1181      // If this guy is "at risk" then mark his current neighbors
1182      if( lrgs(lo)._at_risk ) {
1183        IndexSetIterator elements(_ifg->neighbors(lo));
1184        uint datum;
1185        while ((datum = elements.next()) != 0) {
1186          lrgs(datum)._risk_bias = lo;
1187        }
1188      }
1189
1190      // Yank this guy from the IFG.
1191      IndexSet *adj = _ifg->remove_node( lo );
1192
1193      // If any neighbors' degrees fall below their number of
1194      // allowed registers, then put that neighbor on the low degree
1195      // list.  Note that 'degree' can only fall and 'numregs' is
1196      // unchanged by this action.  Thus the two are equal at most once,
1197      // so LRGs hit the lo-degree worklist at most once.
1198      IndexSetIterator elements(adj);
1199      uint neighbor;
1200      while ((neighbor = elements.next()) != 0) {
1201        LRG *n = &lrgs(neighbor);
1202#ifdef ASSERT
1203        if( VerifyOpto || VerifyRegisterAllocator ) {
1204          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1205        }
1206#endif
1207
1208        // Check for just becoming of-low-degree just counting registers.
1209        // _must_spill live ranges are already on the low degree list.
1210        if( n->just_lo_degree() && !n->_must_spill ) {
1211          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1212          // Pull from hi-degree list
1213          uint prev = n->_prev;
1214          uint next = n->_next;
1215          if( prev ) lrgs(prev)._next = next;
1216          else _hi_degree = next;
1217          lrgs(next)._prev = prev;
1218          n->_next = _lo_degree;
1219          _lo_degree = neighbor;
1220        }
1221      }
1222    } // End of while lo-degree/lo_stk_degree worklist not empty
1223
1224    // Check for got everything: is hi-degree list empty?
1225    if( !_hi_degree ) break;
1226
1227    // Time to pick a potential spill guy
1228    uint lo_score = _hi_degree;
1229    double score = lrgs(lo_score).score();
1230    double area = lrgs(lo_score)._area;
1231    double cost = lrgs(lo_score)._cost;
1232    bool bound = lrgs(lo_score)._is_bound;
1233
1234    // Find cheapest guy
1235    debug_only( int lo_no_simplify=0; );
1236    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1237      assert( !(*_ifg->_yanked)[i], "" );
1238      // It's just vaguely possible to move hi-degree to lo-degree without
1239      // going through a just-lo-degree stage: If you remove a double from
1240      // a float live range it's degree will drop by 2 and you can skip the
1241      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1242      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1243      if( lrgs(i).lo_degree() ) {
1244        lo_score = i;
1245        break;
1246      }
1247      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1248      double iscore = lrgs(i).score();
1249      double iarea = lrgs(i)._area;
1250      double icost = lrgs(i)._cost;
1251      bool ibound = lrgs(i)._is_bound;
1252
1253      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1254      // wins.  Ties happen because all live ranges in question have spilled
1255      // a few times before and the spill-score adds a huge number which
1256      // washes out the low order bits.  We are choosing the lesser of 2
1257      // evils; in this case pick largest area to spill.
1258      // Ties also happen when live ranges are defined and used only inside
1259      // one block. In which case their area is 0 and score set to max.
1260      // In such case choose bound live range over unbound to free registers
1261      // or with smaller cost to spill.
1262      if( iscore < score ||
1263          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1264          (iscore == score && iarea == area &&
1265           ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1266        lo_score = i;
1267        score = iscore;
1268        area = iarea;
1269        cost = icost;
1270        bound = ibound;
1271      }
1272    }
1273    LRG *lo_lrg = &lrgs(lo_score);
1274    // The live range we choose for spilling is either hi-degree, or very
1275    // rarely it can be low-degree.  If we choose a hi-degree live range
1276    // there better not be any lo-degree choices.
1277    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1278
1279    // Pull from hi-degree list
1280    uint prev = lo_lrg->_prev;
1281    uint next = lo_lrg->_next;
1282    if( prev ) lrgs(prev)._next = next;
1283    else _hi_degree = next;
1284    lrgs(next)._prev = prev;
1285    // Jam him on the lo-degree list, despite his high degree.
1286    // Maybe he'll get a color, and maybe he'll spill.
1287    // Only Select() will know.
1288    lrgs(lo_score)._at_risk = true;
1289    _lo_degree = lo_score;
1290    lo_lrg->_next = 0;
1291
1292  } // End of while not simplified everything
1293
1294}
1295
1296// Is 'reg' register legal for 'lrg'?
1297static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1298  if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1299      lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1300    // RA uses OptoReg which represent the highest element of a registers set.
1301    // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1302    // in which XMMd is used by RA to represent such vectors. A double value
1303    // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1304    // The register mask uses largest bits set of overlapping register sets.
1305    // On x86 with AVX it uses 8 bits for each XMM registers set.
1306    //
1307    // The 'lrg' already has cleared-to-set register mask (done in Select()
1308    // before calling choose_color()). Passing mask.Member(reg) check above
1309    // indicates that the size (num_regs) of 'reg' set is less or equal to
1310    // 'lrg' set size.
1311    // For set size 1 any register which is member of 'lrg' mask is legal.
1312    if (lrg.num_regs()==1)
1313      return true;
1314    // For larger sets only an aligned register with the same set size is legal.
1315    int mask = lrg.num_regs()-1;
1316    if ((reg&mask) == mask)
1317      return true;
1318  }
1319  return false;
1320}
1321
1322// Choose a color using the biasing heuristic
1323OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1324
1325  // Check for "at_risk" LRG's
1326  uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1327  if( risk_lrg != 0 ) {
1328    // Walk the colored neighbors of the "at_risk" candidate
1329    // Choose a color which is both legal and already taken by a neighbor
1330    // of the "at_risk" candidate in order to improve the chances of the
1331    // "at_risk" candidate of coloring
1332    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1333    uint datum;
1334    while ((datum = elements.next()) != 0) {
1335      OptoReg::Name reg = lrgs(datum).reg();
1336      // If this LRG's register is legal for us, choose it
1337      if (is_legal_reg(lrg, reg, chunk))
1338        return reg;
1339    }
1340  }
1341
1342  uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1343  if( copy_lrg != 0 ) {
1344    // If he has a color,
1345    if( !(*(_ifg->_yanked))[copy_lrg] ) {
1346      OptoReg::Name reg = lrgs(copy_lrg).reg();
1347      //  And it is legal for you,
1348      if (is_legal_reg(lrg, reg, chunk))
1349        return reg;
1350    } else if( chunk == 0 ) {
1351      // Choose a color which is legal for him
1352      RegMask tempmask = lrg.mask();
1353      tempmask.AND(lrgs(copy_lrg).mask());
1354      tempmask.clear_to_sets(lrg.num_regs());
1355      OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
1356      if (OptoReg::is_valid(reg))
1357        return reg;
1358    }
1359  }
1360
1361  // If no bias info exists, just go with the register selection ordering
1362  if (lrg._is_vector || lrg.num_regs() == 2) {
1363    // Find an aligned set
1364    return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
1365  }
1366
1367  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1368  // copy removal to remove many more copies, by preventing a just-assigned
1369  // register from being repeatedly assigned.
1370  OptoReg::Name reg = lrg.mask().find_first_elem();
1371  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1372    // This 'Remove; find; Insert' idiom is an expensive way to find the
1373    // SECOND element in the mask.
1374    lrg.Remove(reg);
1375    OptoReg::Name reg2 = lrg.mask().find_first_elem();
1376    lrg.Insert(reg);
1377    if( OptoReg::is_reg(reg2))
1378      reg = reg2;
1379  }
1380  return OptoReg::add( reg, chunk );
1381}
1382
1383// Choose a color in the current chunk
1384OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1385  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1386  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1387
1388  if( lrg.num_regs() == 1 ||    // Common Case
1389      !lrg._fat_proj )          // Aligned+adjacent pairs ok
1390    // Use a heuristic to "bias" the color choice
1391    return bias_color(lrg, chunk);
1392
1393  assert(!lrg._is_vector, "should be not vector here" );
1394  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1395
1396  // Fat-proj case or misaligned double argument.
1397  assert(lrg.compute_mask_size() == lrg.num_regs() ||
1398         lrg.num_regs() == 2,"fat projs exactly color" );
1399  assert( !chunk, "always color in 1st chunk" );
1400  // Return the highest element in the set.
1401  return lrg.mask().find_last_elem();
1402}
1403
1404// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1405// in reverse order of removal.  As long as nothing of hi-degree was yanked,
1406// everything going back is guaranteed a color.  Select that color.  If some
1407// hi-degree LRG cannot get a color then we record that we must spill.
1408uint PhaseChaitin::Select( ) {
1409  Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]);
1410
1411  uint spill_reg = LRG::SPILL_REG;
1412  _max_reg = OptoReg::Name(0);  // Past max register used
1413  while( _simplified ) {
1414    // Pull next LRG from the simplified list - in reverse order of removal
1415    uint lidx = _simplified;
1416    LRG *lrg = &lrgs(lidx);
1417    _simplified = lrg->_next;
1418
1419
1420#ifndef PRODUCT
1421    if (trace_spilling()) {
1422      ttyLocker ttyl;
1423      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1424                    lrg->degrees_of_freedom());
1425      lrg->dump();
1426    }
1427#endif
1428
1429    // Re-insert into the IFG
1430    _ifg->re_insert(lidx);
1431    if( !lrg->alive() ) continue;
1432    // capture allstackedness flag before mask is hacked
1433    const int is_allstack = lrg->mask().is_AllStack();
1434
1435    // Yeah, yeah, yeah, I know, I know.  I can refactor this
1436    // to avoid the GOTO, although the refactored code will not
1437    // be much clearer.  We arrive here IFF we have a stack-based
1438    // live range that cannot color in the current chunk, and it
1439    // has to move into the next free stack chunk.
1440    int chunk = 0;              // Current chunk is first chunk
1441    retry_next_chunk:
1442
1443    // Remove neighbor colors
1444    IndexSet *s = _ifg->neighbors(lidx);
1445
1446    debug_only(RegMask orig_mask = lrg->mask();)
1447    IndexSetIterator elements(s);
1448    uint neighbor;
1449    while ((neighbor = elements.next()) != 0) {
1450      // Note that neighbor might be a spill_reg.  In this case, exclusion
1451      // of its color will be a no-op, since the spill_reg chunk is in outer
1452      // space.  Also, if neighbor is in a different chunk, this exclusion
1453      // will be a no-op.  (Later on, if lrg runs out of possible colors in
1454      // its chunk, a new chunk of color may be tried, in which case
1455      // examination of neighbors is started again, at retry_next_chunk.)
1456      LRG &nlrg = lrgs(neighbor);
1457      OptoReg::Name nreg = nlrg.reg();
1458      // Only subtract masks in the same chunk
1459      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1460#ifndef PRODUCT
1461        uint size = lrg->mask().Size();
1462        RegMask rm = lrg->mask();
1463#endif
1464        lrg->SUBTRACT(nlrg.mask());
1465#ifndef PRODUCT
1466        if (trace_spilling() && lrg->mask().Size() != size) {
1467          ttyLocker ttyl;
1468          tty->print("L%d ", lidx);
1469          rm.dump();
1470          tty->print(" intersected L%d ", neighbor);
1471          nlrg.mask().dump();
1472          tty->print(" removed ");
1473          rm.SUBTRACT(lrg->mask());
1474          rm.dump();
1475          tty->print(" leaving ");
1476          lrg->mask().dump();
1477          tty->cr();
1478        }
1479#endif
1480      }
1481    }
1482    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1483    // Aligned pairs need aligned masks
1484    assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1485    if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1486      lrg->clear_to_sets();
1487    }
1488
1489    // Check if a color is available and if so pick the color
1490    OptoReg::Name reg = choose_color( *lrg, chunk );
1491#ifdef SPARC
1492    debug_only(lrg->compute_set_mask_size());
1493    assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1494#endif
1495
1496    //---------------
1497    // If we fail to color and the AllStack flag is set, trigger
1498    // a chunk-rollover event
1499    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1500      // Bump register mask up to next stack chunk
1501      chunk += RegMask::CHUNK_SIZE;
1502      lrg->Set_All();
1503
1504      goto retry_next_chunk;
1505    }
1506
1507    //---------------
1508    // Did we get a color?
1509    else if( OptoReg::is_valid(reg)) {
1510#ifndef PRODUCT
1511      RegMask avail_rm = lrg->mask();
1512#endif
1513
1514      // Record selected register
1515      lrg->set_reg(reg);
1516
1517      if( reg >= _max_reg )     // Compute max register limit
1518        _max_reg = OptoReg::add(reg,1);
1519      // Fold reg back into normal space
1520      reg = OptoReg::add(reg,-chunk);
1521
1522      // If the live range is not bound, then we actually had some choices
1523      // to make.  In this case, the mask has more bits in it than the colors
1524      // chosen.  Restrict the mask to just what was picked.
1525      int n_regs = lrg->num_regs();
1526      assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1527      if (n_regs == 1 || !lrg->_fat_proj) {
1528        assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1529        lrg->Clear();           // Clear the mask
1530        lrg->Insert(reg);       // Set regmask to match selected reg
1531        // For vectors and pairs, also insert the low bit of the pair
1532        for (int i = 1; i < n_regs; i++)
1533          lrg->Insert(OptoReg::add(reg,-i));
1534        lrg->set_mask_size(n_regs);
1535      } else {                  // Else fatproj
1536        // mask must be equal to fatproj bits, by definition
1537      }
1538#ifndef PRODUCT
1539      if (trace_spilling()) {
1540        ttyLocker ttyl;
1541        tty->print("L%d selected ", lidx);
1542        lrg->mask().dump();
1543        tty->print(" from ");
1544        avail_rm.dump();
1545        tty->cr();
1546      }
1547#endif
1548      // Note that reg is the highest-numbered register in the newly-bound mask.
1549    } // end color available case
1550
1551    //---------------
1552    // Live range is live and no colors available
1553    else {
1554      assert( lrg->alive(), "" );
1555      assert( !lrg->_fat_proj || lrg->is_multidef() ||
1556              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1557      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1558
1559      // Assign the special spillreg register
1560      lrg->set_reg(OptoReg::Name(spill_reg++));
1561      // Do not empty the regmask; leave mask_size lying around
1562      // for use during Spilling
1563#ifndef PRODUCT
1564      if( trace_spilling() ) {
1565        ttyLocker ttyl;
1566        tty->print("L%d spilling with neighbors: ", lidx);
1567        s->dump();
1568        debug_only(tty->print(" original mask: "));
1569        debug_only(orig_mask.dump());
1570        dump_lrg(lidx);
1571      }
1572#endif
1573    } // end spill case
1574
1575  }
1576
1577  return spill_reg-LRG::SPILL_REG;      // Return number of spills
1578}
1579
1580// Copy 'was_spilled'-edness from the source Node to the dst Node.
1581void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1582  if( _spilled_once.test(src->_idx) ) {
1583    _spilled_once.set(dst->_idx);
1584    lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
1585    if( _spilled_twice.test(src->_idx) ) {
1586      _spilled_twice.set(dst->_idx);
1587      lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
1588    }
1589  }
1590}
1591
1592// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1593void PhaseChaitin::set_was_spilled( Node *n ) {
1594  if( _spilled_once.test_set(n->_idx) )
1595    _spilled_twice.set(n->_idx);
1596}
1597
1598// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1599// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1600void PhaseChaitin::fixup_spills() {
1601  // This function does only cisc spill work.
1602  if( !UseCISCSpill ) return;
1603
1604  Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]);
1605
1606  // Grab the Frame Pointer
1607  Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1608
1609  // For all blocks
1610  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1611    Block* block = _cfg.get_block(i);
1612
1613    // For all instructions in block
1614    uint last_inst = block->end_idx();
1615    for (uint j = 1; j <= last_inst; j++) {
1616      Node* n = block->get_node(j);
1617
1618      // Dead instruction???
1619      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1620              C->top() == n ||  // Or the random TOP node
1621              n->is_Proj(),     // Or a fat-proj kill node
1622              "No dead instructions after post-alloc" );
1623
1624      int inp = n->cisc_operand();
1625      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1626        // Convert operand number to edge index number
1627        MachNode *mach = n->as_Mach();
1628        inp = mach->operand_index(inp);
1629        Node *src = n->in(inp);   // Value to load or store
1630        LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1631        OptoReg::Name src_reg = lrg_cisc.reg();
1632        // Doubles record the HIGH register of an adjacent pair.
1633        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1634        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1635          // This is a CISC Spill, get stack offset and construct new node
1636#ifndef PRODUCT
1637          if( TraceCISCSpill ) {
1638            tty->print("    reg-instr:  ");
1639            n->dump();
1640          }
1641#endif
1642          int stk_offset = reg2offset(src_reg);
1643          // Bailout if we might exceed node limit when spilling this instruction
1644          C->check_node_count(0, "out of nodes fixing spills");
1645          if (C->failing())  return;
1646          // Transform node
1647          MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1648          cisc->set_req(inp,fp);          // Base register is frame pointer
1649          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1650            assert( cisc->oper_input_base() == 2, "Only adding one edge");
1651            cisc->ins_req(1,src);         // Requires a memory edge
1652          }
1653          block->map_node(cisc, j);          // Insert into basic block
1654          n->subsume_by(cisc, C); // Correct graph
1655          //
1656          ++_used_cisc_instructions;
1657#ifndef PRODUCT
1658          if( TraceCISCSpill ) {
1659            tty->print("    cisc-instr: ");
1660            cisc->dump();
1661          }
1662#endif
1663        } else {
1664#ifndef PRODUCT
1665          if( TraceCISCSpill ) {
1666            tty->print("    using reg-instr: ");
1667            n->dump();
1668          }
1669#endif
1670          ++_unused_cisc_instructions;    // input can be on stack
1671        }
1672      }
1673
1674    } // End of for all instructions
1675
1676  } // End of for all blocks
1677}
1678
1679// Helper to stretch above; recursively discover the base Node for a
1680// given derived Node.  Easy for AddP-related machine nodes, but needs
1681// to be recursive for derived Phis.
1682Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1683  // See if already computed; if so return it
1684  if( derived_base_map[derived->_idx] )
1685    return derived_base_map[derived->_idx];
1686
1687  // See if this happens to be a base.
1688  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1689  // pointers derived from NULL!  These are always along paths that
1690  // can't happen at run-time but the optimizer cannot deduce it so
1691  // we have to handle it gracefully.
1692  assert(!derived->bottom_type()->isa_narrowoop() ||
1693          derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1694  const TypePtr *tj = derived->bottom_type()->isa_ptr();
1695  // If its an OOP with a non-zero offset, then it is derived.
1696  if( tj == NULL || tj->_offset == 0 ) {
1697    derived_base_map[derived->_idx] = derived;
1698    return derived;
1699  }
1700  // Derived is NULL+offset?  Base is NULL!
1701  if( derived->is_Con() ) {
1702    Node *base = _matcher.mach_null();
1703    assert(base != NULL, "sanity");
1704    if (base->in(0) == NULL) {
1705      // Initialize it once and make it shared:
1706      // set control to _root and place it into Start block
1707      // (where top() node is placed).
1708      base->init_req(0, _cfg.get_root_node());
1709      Block *startb = _cfg.get_block_for_node(C->top());
1710      uint node_pos = startb->find_node(C->top());
1711      startb->insert_node(base, node_pos);
1712      _cfg.map_node_to_block(base, startb);
1713      assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1714
1715      // The loadConP0 might have projection nodes depending on architecture
1716      // Add the projection nodes to the CFG
1717      for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1718        Node* use = base->fast_out(i);
1719        if (use->is_MachProj()) {
1720          startb->insert_node(use, ++node_pos);
1721          _cfg.map_node_to_block(use, startb);
1722          new_lrg(use, maxlrg++);
1723        }
1724      }
1725    }
1726    if (_lrg_map.live_range_id(base) == 0) {
1727      new_lrg(base, maxlrg++);
1728    }
1729    assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
1730    derived_base_map[derived->_idx] = base;
1731    return base;
1732  }
1733
1734  // Check for AddP-related opcodes
1735  if (!derived->is_Phi()) {
1736    assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1737    Node *base = derived->in(AddPNode::Base);
1738    derived_base_map[derived->_idx] = base;
1739    return base;
1740  }
1741
1742  // Recursively find bases for Phis.
1743  // First check to see if we can avoid a base Phi here.
1744  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1745  uint i;
1746  for( i = 2; i < derived->req(); i++ )
1747    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1748      break;
1749  // Went to the end without finding any different bases?
1750  if( i == derived->req() ) {   // No need for a base Phi here
1751    derived_base_map[derived->_idx] = base;
1752    return base;
1753  }
1754
1755  // Now we see we need a base-Phi here to merge the bases
1756  const Type *t = base->bottom_type();
1757  base = new PhiNode( derived->in(0), t );
1758  for( i = 1; i < derived->req(); i++ ) {
1759    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1760    t = t->meet(base->in(i)->bottom_type());
1761  }
1762  base->as_Phi()->set_type(t);
1763
1764  // Search the current block for an existing base-Phi
1765  Block *b = _cfg.get_block_for_node(derived);
1766  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1767    Node *phi = b->get_node(i);
1768    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1769      b->insert_node(base,  i); // Must insert created Phi here as base
1770      _cfg.map_node_to_block(base, b);
1771      new_lrg(base,maxlrg++);
1772      break;
1773    }
1774    // See if Phi matches.
1775    uint j;
1776    for( j = 1; j < base->req(); j++ )
1777      if( phi->in(j) != base->in(j) &&
1778          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1779        break;
1780    if( j == base->req() ) {    // All inputs match?
1781      base = phi;               // Then use existing 'phi' and drop 'base'
1782      break;
1783    }
1784  }
1785
1786
1787  // Cache info for later passes
1788  derived_base_map[derived->_idx] = base;
1789  return base;
1790}
1791
1792// At each Safepoint, insert extra debug edges for each pair of derived value/
1793// base pointer that is live across the Safepoint for oopmap building.  The
1794// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1795// required edge set.
1796bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1797  int must_recompute_live = false;
1798  uint maxlrg = _lrg_map.max_lrg_id();
1799  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1800  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1801
1802  // For all blocks in RPO do...
1803  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1804    Block* block = _cfg.get_block(i);
1805    // Note use of deep-copy constructor.  I cannot hammer the original
1806    // liveout bits, because they are needed by the following coalesce pass.
1807    IndexSet liveout(_live->live(block));
1808
1809    for (uint j = block->end_idx() + 1; j > 1; j--) {
1810      Node* n = block->get_node(j - 1);
1811
1812      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1813      // like to see in the same register.  Compare uses the loop-phi and so
1814      // extends its live range BUT cannot be part of the cycle.  If this
1815      // extended live range overlaps with the update of the loop-phi value
1816      // we need both alive at the same time -- which requires at least 1
1817      // copy.  But because Intel has only 2-address registers we end up with
1818      // at least 2 copies, one before the loop-phi update instruction and
1819      // one after.  Instead we split the input to the compare just after the
1820      // phi.
1821      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1822        Node *phi = n->in(1);
1823        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1824          Block *phi_block = _cfg.get_block_for_node(phi);
1825          if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1826            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1827            Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1828            insert_proj( phi_block, 1, spill, maxlrg++ );
1829            n->set_req(1,spill);
1830            must_recompute_live = true;
1831          }
1832        }
1833      }
1834
1835      // Get value being defined
1836      uint lidx = _lrg_map.live_range_id(n);
1837      // Ignore the occasional brand-new live range
1838      if (lidx && lidx < _lrg_map.max_lrg_id()) {
1839        // Remove from live-out set
1840        liveout.remove(lidx);
1841
1842        // Copies do not define a new value and so do not interfere.
1843        // Remove the copies source from the liveout set before interfering.
1844        uint idx = n->is_Copy();
1845        if (idx) {
1846          liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1847        }
1848      }
1849
1850      // Found a safepoint?
1851      JVMState *jvms = n->jvms();
1852      if( jvms ) {
1853        // Now scan for a live derived pointer
1854        IndexSetIterator elements(&liveout);
1855        uint neighbor;
1856        while ((neighbor = elements.next()) != 0) {
1857          // Find reaching DEF for base and derived values
1858          // This works because we are still in SSA during this call.
1859          Node *derived = lrgs(neighbor)._def;
1860          const TypePtr *tj = derived->bottom_type()->isa_ptr();
1861          assert(!derived->bottom_type()->isa_narrowoop() ||
1862                  derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1863          // If its an OOP with a non-zero offset, then it is derived.
1864          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1865            Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1866            assert(base->_idx < _lrg_map.size(), "");
1867            // Add reaching DEFs of derived pointer and base pointer as a
1868            // pair of inputs
1869            n->add_req(derived);
1870            n->add_req(base);
1871
1872            // See if the base pointer is already live to this point.
1873            // Since I'm working on the SSA form, live-ness amounts to
1874            // reaching def's.  So if I find the base's live range then
1875            // I know the base's def reaches here.
1876            if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1877                 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1878                 (_lrg_map.live_range_id(base) > 0) && // not a constant
1879                 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
1880              // Base pointer is not currently live.  Since I stretched
1881              // the base pointer to here and it crosses basic-block
1882              // boundaries, the global live info is now incorrect.
1883              // Recompute live.
1884              must_recompute_live = true;
1885            } // End of if base pointer is not live to debug info
1886          }
1887        } // End of scan all live data for derived ptrs crossing GC point
1888      } // End of if found a GC point
1889
1890      // Make all inputs live
1891      if (!n->is_Phi()) {      // Phi function uses come from prior block
1892        for (uint k = 1; k < n->req(); k++) {
1893          uint lidx = _lrg_map.live_range_id(n->in(k));
1894          if (lidx < _lrg_map.max_lrg_id()) {
1895            liveout.insert(lidx);
1896          }
1897        }
1898      }
1899
1900    } // End of forall instructions in block
1901    liveout.clear();  // Free the memory used by liveout.
1902
1903  } // End of forall blocks
1904  _lrg_map.set_max_lrg_id(maxlrg);
1905
1906  // If I created a new live range I need to recompute live
1907  if (maxlrg != _ifg->_maxlrg) {
1908    must_recompute_live = true;
1909  }
1910
1911  return must_recompute_live != 0;
1912}
1913
1914// Extend the node to LRG mapping
1915
1916void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1917  _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1918}
1919
1920#ifndef PRODUCT
1921void PhaseChaitin::dump(const Node *n) const {
1922  uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
1923  tty->print("L%d",r);
1924  if (r && n->Opcode() != Op_Phi) {
1925    if( _node_regs ) {          // Got a post-allocation copy of allocation?
1926      tty->print("[");
1927      OptoReg::Name second = get_reg_second(n);
1928      if( OptoReg::is_valid(second) ) {
1929        if( OptoReg::is_reg(second) )
1930          tty->print("%s:",Matcher::regName[second]);
1931        else
1932          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1933      }
1934      OptoReg::Name first = get_reg_first(n);
1935      if( OptoReg::is_reg(first) )
1936        tty->print("%s]",Matcher::regName[first]);
1937      else
1938         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1939    } else
1940    n->out_RegMask().dump();
1941  }
1942  tty->print("/N%d\t",n->_idx);
1943  tty->print("%s === ", n->Name());
1944  uint k;
1945  for (k = 0; k < n->req(); k++) {
1946    Node *m = n->in(k);
1947    if (!m) {
1948      tty->print("_ ");
1949    }
1950    else {
1951      uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1952      tty->print("L%d",r);
1953      // Data MultiNode's can have projections with no real registers.
1954      // Don't die while dumping them.
1955      int op = n->Opcode();
1956      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1957        if( _node_regs ) {
1958          tty->print("[");
1959          OptoReg::Name second = get_reg_second(n->in(k));
1960          if( OptoReg::is_valid(second) ) {
1961            if( OptoReg::is_reg(second) )
1962              tty->print("%s:",Matcher::regName[second]);
1963            else
1964              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1965                         reg2offset_unchecked(second));
1966          }
1967          OptoReg::Name first = get_reg_first(n->in(k));
1968          if( OptoReg::is_reg(first) )
1969            tty->print("%s]",Matcher::regName[first]);
1970          else
1971            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1972                       reg2offset_unchecked(first));
1973        } else
1974          n->in_RegMask(k).dump();
1975      }
1976      tty->print("/N%d ",m->_idx);
1977    }
1978  }
1979  if( k < n->len() && n->in(k) ) tty->print("| ");
1980  for( ; k < n->len(); k++ ) {
1981    Node *m = n->in(k);
1982    if(!m) {
1983      break;
1984    }
1985    uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1986    tty->print("L%d",r);
1987    tty->print("/N%d ",m->_idx);
1988  }
1989  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1990  else n->dump_spec(tty);
1991  if( _spilled_once.test(n->_idx ) ) {
1992    tty->print(" Spill_1");
1993    if( _spilled_twice.test(n->_idx ) )
1994      tty->print(" Spill_2");
1995  }
1996  tty->print("\n");
1997}
1998
1999void PhaseChaitin::dump(const Block *b) const {
2000  b->dump_head(&_cfg);
2001
2002  // For all instructions
2003  for( uint j = 0; j < b->number_of_nodes(); j++ )
2004    dump(b->get_node(j));
2005  // Print live-out info at end of block
2006  if( _live ) {
2007    tty->print("Liveout: ");
2008    IndexSet *live = _live->live(b);
2009    IndexSetIterator elements(live);
2010    tty->print("{");
2011    uint i;
2012    while ((i = elements.next()) != 0) {
2013      tty->print("L%d ", _lrg_map.find_const(i));
2014    }
2015    tty->print_cr("}");
2016  }
2017  tty->print("\n");
2018}
2019
2020void PhaseChaitin::dump() const {
2021  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
2022              _matcher._new_SP, _framesize );
2023
2024  // For all blocks
2025  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2026    dump(_cfg.get_block(i));
2027  }
2028  // End of per-block dump
2029  tty->print("\n");
2030
2031  if (!_ifg) {
2032    tty->print("(No IFG.)\n");
2033    return;
2034  }
2035
2036  // Dump LRG array
2037  tty->print("--- Live RanGe Array ---\n");
2038  for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2039    tty->print("L%d: ",i2);
2040    if (i2 < _ifg->_maxlrg) {
2041      lrgs(i2).dump();
2042    }
2043    else {
2044      tty->print_cr("new LRG");
2045    }
2046  }
2047  tty->cr();
2048
2049  // Dump lo-degree list
2050  tty->print("Lo degree: ");
2051  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2052    tty->print("L%d ",i3);
2053  tty->cr();
2054
2055  // Dump lo-stk-degree list
2056  tty->print("Lo stk degree: ");
2057  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2058    tty->print("L%d ",i4);
2059  tty->cr();
2060
2061  // Dump lo-degree list
2062  tty->print("Hi degree: ");
2063  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2064    tty->print("L%d ",i5);
2065  tty->cr();
2066}
2067
2068void PhaseChaitin::dump_degree_lists() const {
2069  // Dump lo-degree list
2070  tty->print("Lo degree: ");
2071  for( uint i = _lo_degree; i; i = lrgs(i)._next )
2072    tty->print("L%d ",i);
2073  tty->cr();
2074
2075  // Dump lo-stk-degree list
2076  tty->print("Lo stk degree: ");
2077  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2078    tty->print("L%d ",i2);
2079  tty->cr();
2080
2081  // Dump lo-degree list
2082  tty->print("Hi degree: ");
2083  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2084    tty->print("L%d ",i3);
2085  tty->cr();
2086}
2087
2088void PhaseChaitin::dump_simplified() const {
2089  tty->print("Simplified: ");
2090  for( uint i = _simplified; i; i = lrgs(i)._next )
2091    tty->print("L%d ",i);
2092  tty->cr();
2093}
2094
2095static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
2096  if ((int)reg < 0)
2097    sprintf(buf, "<OptoReg::%d>", (int)reg);
2098  else if (OptoReg::is_reg(reg))
2099    strcpy(buf, Matcher::regName[reg]);
2100  else
2101    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2102            pc->reg2offset(reg));
2103  return buf+strlen(buf);
2104}
2105
2106// Dump a register name into a buffer.  Be intelligent if we get called
2107// before allocation is complete.
2108char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
2109  if( this == NULL ) {          // Not got anything?
2110    sprintf(buf,"N%d",n->_idx); // Then use Node index
2111  } else if( _node_regs ) {
2112    // Post allocation, use direct mappings, no LRG info available
2113    print_reg( get_reg_first(n), this, buf );
2114  } else {
2115    uint lidx = _lrg_map.find_const(n); // Grab LRG number
2116    if( !_ifg ) {
2117      sprintf(buf,"L%d",lidx);  // No register binding yet
2118    } else if( !lidx ) {        // Special, not allocated value
2119      strcpy(buf,"Special");
2120    } else {
2121      if (lrgs(lidx)._is_vector) {
2122        if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2123          print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2124        else
2125          sprintf(buf,"L%d",lidx); // No register binding yet
2126      } else if( (lrgs(lidx).num_regs() == 1)
2127                 ? lrgs(lidx).mask().is_bound1()
2128                 : lrgs(lidx).mask().is_bound_pair() ) {
2129        // Hah!  We have a bound machine register
2130        print_reg( lrgs(lidx).reg(), this, buf );
2131      } else {
2132        sprintf(buf,"L%d",lidx); // No register binding yet
2133      }
2134    }
2135  }
2136  return buf+strlen(buf);
2137}
2138
2139void PhaseChaitin::dump_for_spill_split_recycle() const {
2140  if( WizardMode && (PrintCompilation || PrintOpto) ) {
2141    // Display which live ranges need to be split and the allocator's state
2142    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2143    for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2144      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2145        tty->print("L%d: ", bidx);
2146        lrgs(bidx).dump();
2147      }
2148    }
2149    tty->cr();
2150    dump();
2151  }
2152}
2153
2154void PhaseChaitin::dump_frame() const {
2155  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2156  const TypeTuple *domain = C->tf()->domain();
2157  const int        argcnt = domain->cnt() - TypeFunc::Parms;
2158
2159  // Incoming arguments in registers dump
2160  for( int k = 0; k < argcnt; k++ ) {
2161    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2162    if( OptoReg::is_reg(parmreg))  {
2163      const char *reg_name = OptoReg::regname(parmreg);
2164      tty->print("#r%3.3d %s", parmreg, reg_name);
2165      parmreg = _matcher._parm_regs[k].second();
2166      if( OptoReg::is_reg(parmreg))  {
2167        tty->print(":%s", OptoReg::regname(parmreg));
2168      }
2169      tty->print("   : parm %d: ", k);
2170      domain->field_at(k + TypeFunc::Parms)->dump();
2171      tty->cr();
2172    }
2173  }
2174
2175  // Check for un-owned padding above incoming args
2176  OptoReg::Name reg = _matcher._new_SP;
2177  if( reg > _matcher._in_arg_limit ) {
2178    reg = OptoReg::add(reg, -1);
2179    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2180  }
2181
2182  // Incoming argument area dump
2183  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2184  while( reg > begin_in_arg ) {
2185    reg = OptoReg::add(reg, -1);
2186    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2187    int j;
2188    for( j = 0; j < argcnt; j++) {
2189      if( _matcher._parm_regs[j].first() == reg ||
2190          _matcher._parm_regs[j].second() == reg ) {
2191        tty->print("parm %d: ",j);
2192        domain->field_at(j + TypeFunc::Parms)->dump();
2193        tty->cr();
2194        break;
2195      }
2196    }
2197    if( j >= argcnt )
2198      tty->print_cr("HOLE, owned by SELF");
2199  }
2200
2201  // Old outgoing preserve area
2202  while( reg > _matcher._old_SP ) {
2203    reg = OptoReg::add(reg, -1);
2204    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2205  }
2206
2207  // Old SP
2208  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2209    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2210
2211  // Preserve area dump
2212  int fixed_slots = C->fixed_slots();
2213  OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2214  OptoReg::Name return_addr = _matcher.return_addr();
2215
2216  reg = OptoReg::add(reg, -1);
2217  while (OptoReg::is_stack(reg)) {
2218    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2219    if (return_addr == reg) {
2220      tty->print_cr("return address");
2221    } else if (reg >= begin_in_preserve) {
2222      // Preserved slots are present on x86
2223      if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2224        tty->print_cr("saved fp register");
2225      else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2226               VerifyStackAtCalls)
2227        tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
2228      else
2229        tty->print_cr("in_preserve");
2230    } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2231      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2232    } else {
2233      tty->print_cr("pad2, stack alignment");
2234    }
2235    reg = OptoReg::add(reg, -1);
2236  }
2237
2238  // Spill area dump
2239  reg = OptoReg::add(_matcher._new_SP, _framesize );
2240  while( reg > _matcher._out_arg_limit ) {
2241    reg = OptoReg::add(reg, -1);
2242    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2243  }
2244
2245  // Outgoing argument area dump
2246  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2247    reg = OptoReg::add(reg, -1);
2248    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2249  }
2250
2251  // Outgoing new preserve area
2252  while( reg > _matcher._new_SP ) {
2253    reg = OptoReg::add(reg, -1);
2254    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2255  }
2256  tty->print_cr("#");
2257}
2258
2259void PhaseChaitin::dump_bb( uint pre_order ) const {
2260  tty->print_cr("---dump of B%d---",pre_order);
2261  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2262    Block* block = _cfg.get_block(i);
2263    if (block->_pre_order == pre_order) {
2264      dump(block);
2265    }
2266  }
2267}
2268
2269void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2270  tty->print_cr("---dump of L%d---",lidx);
2271
2272  if (_ifg) {
2273    if (lidx >= _lrg_map.max_lrg_id()) {
2274      tty->print("Attempt to print live range index beyond max live range.\n");
2275      return;
2276    }
2277    tty->print("L%d: ",lidx);
2278    if (lidx < _ifg->_maxlrg) {
2279      lrgs(lidx).dump();
2280    } else {
2281      tty->print_cr("new LRG");
2282    }
2283  }
2284  if( _ifg && lidx < _ifg->_maxlrg) {
2285    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2286    _ifg->neighbors(lidx)->dump();
2287    tty->cr();
2288  }
2289  // For all blocks
2290  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2291    Block* block = _cfg.get_block(i);
2292    int dump_once = 0;
2293
2294    // For all instructions
2295    for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2296      Node *n = block->get_node(j);
2297      if (_lrg_map.find_const(n) == lidx) {
2298        if (!dump_once++) {
2299          tty->cr();
2300          block->dump_head(&_cfg);
2301        }
2302        dump(n);
2303        continue;
2304      }
2305      if (!defs_only) {
2306        uint cnt = n->req();
2307        for( uint k = 1; k < cnt; k++ ) {
2308          Node *m = n->in(k);
2309          if (!m)  {
2310            continue;  // be robust in the dumper
2311          }
2312          if (_lrg_map.find_const(m) == lidx) {
2313            if (!dump_once++) {
2314              tty->cr();
2315              block->dump_head(&_cfg);
2316            }
2317            dump(n);
2318          }
2319        }
2320      }
2321    }
2322  } // End of per-block dump
2323  tty->cr();
2324}
2325#endif // not PRODUCT
2326
2327int PhaseChaitin::_final_loads  = 0;
2328int PhaseChaitin::_final_stores = 0;
2329int PhaseChaitin::_final_memoves= 0;
2330int PhaseChaitin::_final_copies = 0;
2331double PhaseChaitin::_final_load_cost  = 0;
2332double PhaseChaitin::_final_store_cost = 0;
2333double PhaseChaitin::_final_memove_cost= 0;
2334double PhaseChaitin::_final_copy_cost  = 0;
2335int PhaseChaitin::_conserv_coalesce = 0;
2336int PhaseChaitin::_conserv_coalesce_pair = 0;
2337int PhaseChaitin::_conserv_coalesce_trie = 0;
2338int PhaseChaitin::_conserv_coalesce_quad = 0;
2339int PhaseChaitin::_post_alloc = 0;
2340int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2341int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2342int PhaseChaitin::_used_cisc_instructions   = 0;
2343int PhaseChaitin::_unused_cisc_instructions = 0;
2344int PhaseChaitin::_allocator_attempts       = 0;
2345int PhaseChaitin::_allocator_successes      = 0;
2346
2347#ifndef PRODUCT
2348uint PhaseChaitin::_high_pressure           = 0;
2349uint PhaseChaitin::_low_pressure            = 0;
2350
2351void PhaseChaitin::print_chaitin_statistics() {
2352  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2353  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2354  tty->print_cr("Adjusted spill cost = %7.0f.",
2355                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2356                _final_copy_cost*1.0 + _final_memove_cost*12.0);
2357  tty->print("Conservatively coalesced %d copies, %d pairs",
2358                _conserv_coalesce, _conserv_coalesce_pair);
2359  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2360    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2361  tty->print_cr(", %d post alloc.", _post_alloc);
2362  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2363    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2364                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2365  if( _used_cisc_instructions || _unused_cisc_instructions )
2366    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2367                   _used_cisc_instructions, _unused_cisc_instructions);
2368  if( _allocator_successes != 0 )
2369    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2370  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2371}
2372#endif // not PRODUCT
2373