chaitin.cpp revision 6010:abec000618bf
1/*
2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "compiler/oopMap.hpp"
28#include "memory/allocation.inline.hpp"
29#include "opto/addnode.hpp"
30#include "opto/block.hpp"
31#include "opto/callnode.hpp"
32#include "opto/cfgnode.hpp"
33#include "opto/chaitin.hpp"
34#include "opto/coalesce.hpp"
35#include "opto/connode.hpp"
36#include "opto/idealGraphPrinter.hpp"
37#include "opto/indexSet.hpp"
38#include "opto/machnode.hpp"
39#include "opto/memnode.hpp"
40#include "opto/opcodes.hpp"
41#include "opto/rootnode.hpp"
42
43#ifndef PRODUCT
44void LRG::dump() const {
45  ttyLocker ttyl;
46  tty->print("%d ",num_regs());
47  _mask.dump();
48  if( _msize_valid ) {
49    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
50    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
51  } else {
52    tty->print(", #?(%d) ",_mask.Size());
53  }
54
55  tty->print("EffDeg: ");
56  if( _degree_valid ) tty->print( "%d ", _eff_degree );
57  else tty->print("? ");
58
59  if( is_multidef() ) {
60    tty->print("MultiDef ");
61    if (_defs != NULL) {
62      tty->print("(");
63      for (int i = 0; i < _defs->length(); i++) {
64        tty->print("N%d ", _defs->at(i)->_idx);
65      }
66      tty->print(") ");
67    }
68  }
69  else if( _def == 0 ) tty->print("Dead ");
70  else tty->print("Def: N%d ",_def->_idx);
71
72  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
73  // Flags
74  if( _is_oop ) tty->print("Oop ");
75  if( _is_float ) tty->print("Float ");
76  if( _is_vector ) tty->print("Vector ");
77  if( _was_spilled1 ) tty->print("Spilled ");
78  if( _was_spilled2 ) tty->print("Spilled2 ");
79  if( _direct_conflict ) tty->print("Direct_conflict ");
80  if( _fat_proj ) tty->print("Fat ");
81  if( _was_lo ) tty->print("Lo ");
82  if( _has_copy ) tty->print("Copy ");
83  if( _at_risk ) tty->print("Risk ");
84
85  if( _must_spill ) tty->print("Must_spill ");
86  if( _is_bound ) tty->print("Bound ");
87  if( _msize_valid ) {
88    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
89  }
90
91  tty->cr();
92}
93#endif
94
95// Compute score from cost and area.  Low score is best to spill.
96static double raw_score( double cost, double area ) {
97  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
98}
99
100double LRG::score() const {
101  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
102  // Bigger area lowers score, encourages spilling this live range.
103  // Bigger cost raise score, prevents spilling this live range.
104  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
105  // to turn a divide by a constant into a multiply by the reciprical).
106  double score = raw_score( _cost, _area);
107
108  // Account for area.  Basically, LRGs covering large areas are better
109  // to spill because more other LRGs get freed up.
110  if( _area == 0.0 )            // No area?  Then no progress to spill
111    return 1e35;
112
113  if( _was_spilled2 )           // If spilled once before, we are unlikely
114    return score + 1e30;        // to make progress again.
115
116  if( _cost >= _area*3.0 )      // Tiny area relative to cost
117    return score + 1e17;        // Probably no progress to spill
118
119  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
120    return score + 1e10;        // Likely no progress to spill
121
122  return score;
123}
124
125#define NUMBUCKS 3
126
127// Straight out of Tarjan's union-find algorithm
128uint LiveRangeMap::find_compress(uint lrg) {
129  uint cur = lrg;
130  uint next = _uf_map.at(cur);
131  while (next != cur) { // Scan chain of equivalences
132    assert( next < cur, "always union smaller");
133    cur = next; // until find a fixed-point
134    next = _uf_map.at(cur);
135  }
136
137  // Core of union-find algorithm: update chain of
138  // equivalences to be equal to the root.
139  while (lrg != next) {
140    uint tmp = _uf_map.at(lrg);
141    _uf_map.at_put(lrg, next);
142    lrg = tmp;
143  }
144  return lrg;
145}
146
147// Reset the Union-Find map to identity
148void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
149  _max_lrg_id= max_lrg_id;
150  // Force the Union-Find mapping to be at least this large
151  _uf_map.at_put_grow(_max_lrg_id, 0);
152  // Initialize it to be the ID mapping.
153  for (uint i = 0; i < _max_lrg_id; ++i) {
154    _uf_map.at_put(i, i);
155  }
156}
157
158// Make all Nodes map directly to their final live range; no need for
159// the Union-Find mapping after this call.
160void LiveRangeMap::compress_uf_map_for_nodes() {
161  // For all Nodes, compress mapping
162  uint unique = _names.length();
163  for (uint i = 0; i < unique; ++i) {
164    uint lrg = _names.at(i);
165    uint compressed_lrg = find(lrg);
166    if (lrg != compressed_lrg) {
167      _names.at_put(i, compressed_lrg);
168    }
169  }
170}
171
172// Like Find above, but no path compress, so bad asymptotic behavior
173uint LiveRangeMap::find_const(uint lrg) const {
174  if (!lrg) {
175    return lrg; // Ignore the zero LRG
176  }
177
178  // Off the end?  This happens during debugging dumps when you got
179  // brand new live ranges but have not told the allocator yet.
180  if (lrg >= _max_lrg_id) {
181    return lrg;
182  }
183
184  uint next = _uf_map.at(lrg);
185  while (next != lrg) { // Scan chain of equivalences
186    assert(next < lrg, "always union smaller");
187    lrg = next; // until find a fixed-point
188    next = _uf_map.at(lrg);
189  }
190  return next;
191}
192
193PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
194  : PhaseRegAlloc(unique, cfg, matcher,
195#ifndef PRODUCT
196       print_chaitin_statistics
197#else
198       NULL
199#endif
200       )
201  , _lrg_map(Thread::current()->resource_area(), unique)
202  , _live(0)
203  , _spilled_once(Thread::current()->resource_area())
204  , _spilled_twice(Thread::current()->resource_area())
205  , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
206  , _oldphi(unique)
207#ifndef PRODUCT
208  , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
209#endif
210{
211  NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
212
213  _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
214
215  // Build a list of basic blocks, sorted by frequency
216  _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
217  // Experiment with sorting strategies to speed compilation
218  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
219  Block **buckets[NUMBUCKS];             // Array of buckets
220  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
221  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
222  for (uint i = 0; i < NUMBUCKS; i++) {
223    buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
224    buckcnt[i] = 0;
225    // Bump by three orders of magnitude each time
226    cutoff *= 0.001;
227    buckval[i] = cutoff;
228    for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
229      buckets[i][j] = NULL;
230    }
231  }
232  // Sort blocks into buckets
233  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
234    for (uint j = 0; j < NUMBUCKS; j++) {
235      if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
236        // Assign block to end of list for appropriate bucket
237        buckets[j][buckcnt[j]++] = _cfg.get_block(i);
238        break; // kick out of inner loop
239      }
240    }
241  }
242  // Dump buckets into final block array
243  uint blkcnt = 0;
244  for (uint i = 0; i < NUMBUCKS; i++) {
245    for (uint j = 0; j < buckcnt[i]; j++) {
246      _blks[blkcnt++] = buckets[i][j];
247    }
248  }
249
250  assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
251}
252
253// union 2 sets together.
254void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
255  uint src = _lrg_map.find(src_n);
256  uint dst = _lrg_map.find(dst_n);
257  assert(src, "");
258  assert(dst, "");
259  assert(src < _lrg_map.max_lrg_id(), "oob");
260  assert(dst < _lrg_map.max_lrg_id(), "oob");
261  assert(src < dst, "always union smaller");
262  _lrg_map.uf_map(dst, src);
263}
264
265void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
266  // Make the Node->LRG mapping
267  _lrg_map.extend(x->_idx,lrg);
268  // Make the Union-Find mapping an identity function
269  _lrg_map.uf_extend(lrg, lrg);
270}
271
272
273int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
274  assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
275  DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
276  int found_projs = 0;
277  uint cnt = orig->outcnt();
278  for (uint i = 0; i < cnt; i++) {
279    Node* proj = orig->raw_out(i);
280    if (proj->is_MachProj()) {
281      assert(proj->outcnt() == 0, "only kill projections are expected here");
282      assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
283      found_projs++;
284      // Copy kill projections after the cloned node
285      Node* kills = proj->clone();
286      kills->set_req(0, copy);
287      b->insert_node(kills, idx++);
288      _cfg.map_node_to_block(kills, b);
289      new_lrg(kills, max_lrg_id++);
290    }
291  }
292  return found_projs;
293}
294
295// Renumber the live ranges to compact them.  Makes the IFG smaller.
296void PhaseChaitin::compact() {
297  // Current the _uf_map contains a series of short chains which are headed
298  // by a self-cycle.  All the chains run from big numbers to little numbers.
299  // The Find() call chases the chains & shortens them for the next Find call.
300  // We are going to change this structure slightly.  Numbers above a moving
301  // wave 'i' are unchanged.  Numbers below 'j' point directly to their
302  // compacted live range with no further chaining.  There are no chains or
303  // cycles below 'i', so the Find call no longer works.
304  uint j=1;
305  uint i;
306  for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
307    uint lr = _lrg_map.uf_live_range_id(i);
308    // Ignore unallocated live ranges
309    if (!lr) {
310      continue;
311    }
312    assert(lr <= i, "");
313    _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
314  }
315  // Now change the Node->LR mapping to reflect the compacted names
316  uint unique = _lrg_map.size();
317  for (i = 0; i < unique; i++) {
318    uint lrg_id = _lrg_map.live_range_id(i);
319    _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
320  }
321
322  // Reset the Union-Find mapping
323  _lrg_map.reset_uf_map(j);
324}
325
326void PhaseChaitin::Register_Allocate() {
327
328  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
329  // slots in this area are called "arg_slots".  Above the NEW FP (and in
330  // registers) is the outgoing argument area; above that is the spill/temp
331  // area.  These are all "frame_slots".  Arg_slots start at the zero
332  // stack_slots and count up to the known arg_size.  Frame_slots start at
333  // the stack_slot #arg_size and go up.  After allocation I map stack
334  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
335  // by the frame_size; stack-slots in the frame_slot area are biased by 0.
336
337  _trip_cnt = 0;
338  _alternate = 0;
339  _matcher._allocation_started = true;
340
341  ResourceArea split_arena;     // Arena for Split local resources
342  ResourceArea live_arena;      // Arena for liveness & IFG info
343  ResourceMark rm(&live_arena);
344
345  // Need live-ness for the IFG; need the IFG for coalescing.  If the
346  // liveness is JUST for coalescing, then I can get some mileage by renaming
347  // all copy-related live ranges low and then using the max copy-related
348  // live range as a cut-off for LIVE and the IFG.  In other words, I can
349  // build a subset of LIVE and IFG just for copies.
350  PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
351
352  // Need IFG for coalescing and coloring
353  PhaseIFG ifg(&live_arena);
354  _ifg = &ifg;
355
356  // Come out of SSA world to the Named world.  Assign (virtual) registers to
357  // Nodes.  Use the same register for all inputs and the output of PhiNodes
358  // - effectively ending SSA form.  This requires either coalescing live
359  // ranges or inserting copies.  For the moment, we insert "virtual copies"
360  // - we pretend there is a copy prior to each Phi in predecessor blocks.
361  // We will attempt to coalesce such "virtual copies" before we manifest
362  // them for real.
363  de_ssa();
364
365#ifdef ASSERT
366  // Veify the graph before RA.
367  verify(&live_arena);
368#endif
369
370  {
371    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
372    _live = NULL;                 // Mark live as being not available
373    rm.reset_to_mark();           // Reclaim working storage
374    IndexSet::reset_memory(C, &live_arena);
375    ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
376    gather_lrg_masks( false );    // Collect LRG masks
377    live.compute(_lrg_map.max_lrg_id()); // Compute liveness
378    _live = &live;                // Mark LIVE as being available
379  }
380
381  // Base pointers are currently "used" by instructions which define new
382  // derived pointers.  This makes base pointers live up to the where the
383  // derived pointer is made, but not beyond.  Really, they need to be live
384  // across any GC point where the derived value is live.  So this code looks
385  // at all the GC points, and "stretches" the live range of any base pointer
386  // to the GC point.
387  if (stretch_base_pointer_live_ranges(&live_arena)) {
388    NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
389    // Since some live range stretched, I need to recompute live
390    _live = NULL;
391    rm.reset_to_mark();         // Reclaim working storage
392    IndexSet::reset_memory(C, &live_arena);
393    ifg.init(_lrg_map.max_lrg_id());
394    gather_lrg_masks(false);
395    live.compute(_lrg_map.max_lrg_id());
396    _live = &live;
397  }
398  // Create the interference graph using virtual copies
399  build_ifg_virtual();  // Include stack slots this time
400
401  // Aggressive (but pessimistic) copy coalescing.
402  // This pass works on virtual copies.  Any virtual copies which are not
403  // coalesced get manifested as actual copies
404  {
405    // The IFG is/was triangular.  I am 'squaring it up' so Union can run
406    // faster.  Union requires a 'for all' operation which is slow on the
407    // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
408    // meaning I can visit all the Nodes neighbors less than a Node in time
409    // O(# of neighbors), but I have to visit all the Nodes greater than a
410    // given Node and search them for an instance, i.e., time O(#MaxLRG)).
411    _ifg->SquareUp();
412
413    PhaseAggressiveCoalesce coalesce(*this);
414    coalesce.coalesce_driver();
415    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
416    // not match the Phi itself, insert a copy.
417    coalesce.insert_copies(_matcher);
418    if (C->failing()) {
419      return;
420    }
421  }
422
423  // After aggressive coalesce, attempt a first cut at coloring.
424  // To color, we need the IFG and for that we need LIVE.
425  {
426    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
427    _live = NULL;
428    rm.reset_to_mark();           // Reclaim working storage
429    IndexSet::reset_memory(C, &live_arena);
430    ifg.init(_lrg_map.max_lrg_id());
431    gather_lrg_masks( true );
432    live.compute(_lrg_map.max_lrg_id());
433    _live = &live;
434  }
435
436  // Build physical interference graph
437  uint must_spill = 0;
438  must_spill = build_ifg_physical(&live_arena);
439  // If we have a guaranteed spill, might as well spill now
440  if (must_spill) {
441    if(!_lrg_map.max_lrg_id()) {
442      return;
443    }
444    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
445    C->check_node_count(10*must_spill, "out of nodes before split");
446    if (C->failing()) {
447      return;
448    }
449
450    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
451    _lrg_map.set_max_lrg_id(new_max_lrg_id);
452    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
453    // or we failed to split
454    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
455    if (C->failing()) {
456      return;
457    }
458
459    NOT_PRODUCT(C->verify_graph_edges();)
460
461    compact();                  // Compact LRGs; return new lower max lrg
462
463    {
464      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
465      _live = NULL;
466      rm.reset_to_mark();         // Reclaim working storage
467      IndexSet::reset_memory(C, &live_arena);
468      ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
469      gather_lrg_masks( true );   // Collect intersect mask
470      live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
471      _live = &live;
472    }
473    build_ifg_physical(&live_arena);
474    _ifg->SquareUp();
475    _ifg->Compute_Effective_Degree();
476    // Only do conservative coalescing if requested
477    if (OptoCoalesce) {
478      // Conservative (and pessimistic) copy coalescing of those spills
479      PhaseConservativeCoalesce coalesce(*this);
480      // If max live ranges greater than cutoff, don't color the stack.
481      // This cutoff can be larger than below since it is only done once.
482      coalesce.coalesce_driver();
483    }
484    _lrg_map.compress_uf_map_for_nodes();
485
486#ifdef ASSERT
487    verify(&live_arena, true);
488#endif
489  } else {
490    ifg.SquareUp();
491    ifg.Compute_Effective_Degree();
492#ifdef ASSERT
493    set_was_low();
494#endif
495  }
496
497  // Prepare for Simplify & Select
498  cache_lrg_info();           // Count degree of LRGs
499
500  // Simplify the InterFerence Graph by removing LRGs of low degree.
501  // LRGs of low degree are trivially colorable.
502  Simplify();
503
504  // Select colors by re-inserting LRGs back into the IFG in reverse order.
505  // Return whether or not something spills.
506  uint spills = Select( );
507
508  // If we spill, split and recycle the entire thing
509  while( spills ) {
510    if( _trip_cnt++ > 24 ) {
511      DEBUG_ONLY( dump_for_spill_split_recycle(); )
512      if( _trip_cnt > 27 ) {
513        C->record_method_not_compilable("failed spill-split-recycle sanity check");
514        return;
515      }
516    }
517
518    if (!_lrg_map.max_lrg_id()) {
519      return;
520    }
521    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
522    _lrg_map.set_max_lrg_id(new_max_lrg_id);
523    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
524    C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
525    if (C->failing()) {
526      return;
527    }
528
529    compact(); // Compact LRGs; return new lower max lrg
530
531    // Nuke the live-ness and interference graph and LiveRanGe info
532    {
533      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
534      _live = NULL;
535      rm.reset_to_mark();         // Reclaim working storage
536      IndexSet::reset_memory(C, &live_arena);
537      ifg.init(_lrg_map.max_lrg_id());
538
539      // Create LiveRanGe array.
540      // Intersect register masks for all USEs and DEFs
541      gather_lrg_masks(true);
542      live.compute(_lrg_map.max_lrg_id());
543      _live = &live;
544    }
545    must_spill = build_ifg_physical(&live_arena);
546    _ifg->SquareUp();
547    _ifg->Compute_Effective_Degree();
548
549    // Only do conservative coalescing if requested
550    if (OptoCoalesce) {
551      // Conservative (and pessimistic) copy coalescing
552      PhaseConservativeCoalesce coalesce(*this);
553      // Check for few live ranges determines how aggressive coalesce is.
554      coalesce.coalesce_driver();
555    }
556    _lrg_map.compress_uf_map_for_nodes();
557#ifdef ASSERT
558    verify(&live_arena, true);
559#endif
560    cache_lrg_info();           // Count degree of LRGs
561
562    // Simplify the InterFerence Graph by removing LRGs of low degree.
563    // LRGs of low degree are trivially colorable.
564    Simplify();
565
566    // Select colors by re-inserting LRGs back into the IFG in reverse order.
567    // Return whether or not something spills.
568    spills = Select();
569  }
570
571  // Count number of Simplify-Select trips per coloring success.
572  _allocator_attempts += _trip_cnt + 1;
573  _allocator_successes += 1;
574
575  // Peephole remove copies
576  post_allocate_copy_removal();
577
578#ifdef ASSERT
579  // Veify the graph after RA.
580  verify(&live_arena);
581#endif
582
583  // max_reg is past the largest *register* used.
584  // Convert that to a frame_slot number.
585  if (_max_reg <= _matcher._new_SP) {
586    _framesize = C->out_preserve_stack_slots();
587  }
588  else {
589    _framesize = _max_reg -_matcher._new_SP;
590  }
591  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
592
593  // This frame must preserve the required fp alignment
594  _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
595  assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
596#ifndef PRODUCT
597  _total_framesize += _framesize;
598  if ((int)_framesize > _max_framesize) {
599    _max_framesize = _framesize;
600  }
601#endif
602
603  // Convert CISC spills
604  fixup_spills();
605
606  // Log regalloc results
607  CompileLog* log = Compile::current()->log();
608  if (log != NULL) {
609    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
610  }
611
612  if (C->failing()) {
613    return;
614  }
615
616  NOT_PRODUCT(C->verify_graph_edges();)
617
618  // Move important info out of the live_arena to longer lasting storage.
619  alloc_node_regs(_lrg_map.size());
620  for (uint i=0; i < _lrg_map.size(); i++) {
621    if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
622      LRG &lrg = lrgs(_lrg_map.live_range_id(i));
623      if (!lrg.alive()) {
624        set_bad(i);
625      } else if (lrg.num_regs() == 1) {
626        set1(i, lrg.reg());
627      } else {                  // Must be a register-set
628        if (!lrg._fat_proj) {   // Must be aligned adjacent register set
629          // Live ranges record the highest register in their mask.
630          // We want the low register for the AD file writer's convenience.
631          OptoReg::Name hi = lrg.reg(); // Get hi register
632          OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
633          // We have to use pair [lo,lo+1] even for wide vectors because
634          // the rest of code generation works only with pairs. It is safe
635          // since for registers encoding only 'lo' is used.
636          // Second reg from pair is used in ScheduleAndBundle on SPARC where
637          // vector max size is 8 which corresponds to registers pair.
638          // It is also used in BuildOopMaps but oop operations are not
639          // vectorized.
640          set2(i, lo);
641        } else {                // Misaligned; extract 2 bits
642          OptoReg::Name hi = lrg.reg(); // Get hi register
643          lrg.Remove(hi);       // Yank from mask
644          int lo = lrg.mask().find_first_elem(); // Find lo
645          set_pair(i, hi, lo);
646        }
647      }
648      if( lrg._is_oop ) _node_oops.set(i);
649    } else {
650      set_bad(i);
651    }
652  }
653
654  // Done!
655  _live = NULL;
656  _ifg = NULL;
657  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
658}
659
660void PhaseChaitin::de_ssa() {
661  // Set initial Names for all Nodes.  Most Nodes get the virtual register
662  // number.  A few get the ZERO live range number.  These do not
663  // get allocated, but instead rely on correct scheduling to ensure that
664  // only one instance is simultaneously live at a time.
665  uint lr_counter = 1;
666  for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
667    Block* block = _cfg.get_block(i);
668    uint cnt = block->number_of_nodes();
669
670    // Handle all the normal Nodes in the block
671    for( uint j = 0; j < cnt; j++ ) {
672      Node *n = block->get_node(j);
673      // Pre-color to the zero live range, or pick virtual register
674      const RegMask &rm = n->out_RegMask();
675      _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
676    }
677  }
678
679  // Reset the Union-Find mapping to be identity
680  _lrg_map.reset_uf_map(lr_counter);
681}
682
683
684// Gather LiveRanGe information, including register masks.  Modification of
685// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
686void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
687
688  // Nail down the frame pointer live range
689  uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
690  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
691
692  // For all blocks
693  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
694    Block* block = _cfg.get_block(i);
695
696    // For all instructions
697    for (uint j = 1; j < block->number_of_nodes(); j++) {
698      Node* n = block->get_node(j);
699      uint input_edge_start =1; // Skip control most nodes
700      if (n->is_Mach()) {
701        input_edge_start = n->as_Mach()->oper_input_base();
702      }
703      uint idx = n->is_Copy();
704
705      // Get virtual register number, same as LiveRanGe index
706      uint vreg = _lrg_map.live_range_id(n);
707      LRG& lrg = lrgs(vreg);
708      if (vreg) {              // No vreg means un-allocable (e.g. memory)
709
710        // Collect has-copy bit
711        if (idx) {
712          lrg._has_copy = 1;
713          uint clidx = _lrg_map.live_range_id(n->in(idx));
714          LRG& copy_src = lrgs(clidx);
715          copy_src._has_copy = 1;
716        }
717
718        // Check for float-vs-int live range (used in register-pressure
719        // calculations)
720        const Type *n_type = n->bottom_type();
721        if (n_type->is_floatingpoint()) {
722          lrg._is_float = 1;
723        }
724
725        // Check for twice prior spilling.  Once prior spilling might have
726        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
727        // further spilling is unlikely to make progress.
728        if (_spilled_once.test(n->_idx)) {
729          lrg._was_spilled1 = 1;
730          if (_spilled_twice.test(n->_idx)) {
731            lrg._was_spilled2 = 1;
732          }
733        }
734
735#ifndef PRODUCT
736        if (trace_spilling() && lrg._def != NULL) {
737          // collect defs for MultiDef printing
738          if (lrg._defs == NULL) {
739            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
740            lrg._defs->append(lrg._def);
741          }
742          lrg._defs->append(n);
743        }
744#endif
745
746        // Check for a single def LRG; these can spill nicely
747        // via rematerialization.  Flag as NULL for no def found
748        // yet, or 'n' for single def or -1 for many defs.
749        lrg._def = lrg._def ? NodeSentinel : n;
750
751        // Limit result register mask to acceptable registers
752        const RegMask &rm = n->out_RegMask();
753        lrg.AND( rm );
754
755        int ireg = n->ideal_reg();
756        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
757                "oops must be in Op_RegP's" );
758
759        // Check for vector live range (only if vector register is used).
760        // On SPARC vector uses RegD which could be misaligned so it is not
761        // processes as vector in RA.
762        if (RegMask::is_vector(ireg))
763          lrg._is_vector = 1;
764        assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL,
765               "vector must be in vector registers");
766
767        // Check for bound register masks
768        const RegMask &lrgmask = lrg.mask();
769        if (lrgmask.is_bound(ireg)) {
770          lrg._is_bound = 1;
771        }
772
773        // Check for maximum frequency value
774        if (lrg._maxfreq < block->_freq) {
775          lrg._maxfreq = block->_freq;
776        }
777
778        // Check for oop-iness, or long/double
779        // Check for multi-kill projection
780        switch (ireg) {
781        case MachProjNode::fat_proj:
782          // Fat projections have size equal to number of registers killed
783          lrg.set_num_regs(rm.Size());
784          lrg.set_reg_pressure(lrg.num_regs());
785          lrg._fat_proj = 1;
786          lrg._is_bound = 1;
787          break;
788        case Op_RegP:
789#ifdef _LP64
790          lrg.set_num_regs(2);  // Size is 2 stack words
791#else
792          lrg.set_num_regs(1);  // Size is 1 stack word
793#endif
794          // Register pressure is tracked relative to the maximum values
795          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
796          // and relative to other types which compete for the same regs.
797          //
798          // The following table contains suggested values based on the
799          // architectures as defined in each .ad file.
800          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
801          // compile-speed or performance.
802          // Note1:
803          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
804          // since .ad registers are defined as high and low halves.
805          // These reg_pressure values remain compatible with the code
806          // in is_high_pressure() which relates get_invalid_mask_size(),
807          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
808          // Note2:
809          // SPARC -d32 has 24 registers available for integral values,
810          // but only 10 of these are safe for 64-bit longs.
811          // Using set_reg_pressure(2) for both int and long means
812          // the allocator will believe it can fit 26 longs into
813          // registers.  Using 2 for longs and 1 for ints means the
814          // allocator will attempt to put 52 integers into registers.
815          // The settings below limit this problem to methods with
816          // many long values which are being run on 32-bit SPARC.
817          //
818          // ------------------- reg_pressure --------------------
819          // Each entry is reg_pressure_per_value,number_of_regs
820          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
821          // IA32     2     1     1          1    1          6           6
822          // IA64     1     1     1          1    1         50          41
823          // SPARC    2     2     2          2    2         48 (24)     52 (26)
824          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
825          // AMD64    1     1     1          1    1         14          15
826          // -----------------------------------------------------
827#if defined(SPARC)
828          lrg.set_reg_pressure(2);  // use for v9 as well
829#else
830          lrg.set_reg_pressure(1);  // normally one value per register
831#endif
832          if( n_type->isa_oop_ptr() ) {
833            lrg._is_oop = 1;
834          }
835          break;
836        case Op_RegL:           // Check for long or double
837        case Op_RegD:
838          lrg.set_num_regs(2);
839          // Define platform specific register pressure
840#if defined(SPARC) || defined(ARM)
841          lrg.set_reg_pressure(2);
842#elif defined(IA32)
843          if( ireg == Op_RegL ) {
844            lrg.set_reg_pressure(2);
845          } else {
846            lrg.set_reg_pressure(1);
847          }
848#else
849          lrg.set_reg_pressure(1);  // normally one value per register
850#endif
851          // If this def of a double forces a mis-aligned double,
852          // flag as '_fat_proj' - really flag as allowing misalignment
853          // AND changes how we count interferences.  A mis-aligned
854          // double can interfere with TWO aligned pairs, or effectively
855          // FOUR registers!
856          if (rm.is_misaligned_pair()) {
857            lrg._fat_proj = 1;
858            lrg._is_bound = 1;
859          }
860          break;
861        case Op_RegF:
862        case Op_RegI:
863        case Op_RegN:
864        case Op_RegFlags:
865        case 0:                 // not an ideal register
866          lrg.set_num_regs(1);
867#ifdef SPARC
868          lrg.set_reg_pressure(2);
869#else
870          lrg.set_reg_pressure(1);
871#endif
872          break;
873        case Op_VecS:
874          assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
875          assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
876          lrg.set_num_regs(RegMask::SlotsPerVecS);
877          lrg.set_reg_pressure(1);
878          break;
879        case Op_VecD:
880          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
881          assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
882          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
883          lrg.set_num_regs(RegMask::SlotsPerVecD);
884          lrg.set_reg_pressure(1);
885          break;
886        case Op_VecX:
887          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
888          assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
889          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
890          lrg.set_num_regs(RegMask::SlotsPerVecX);
891          lrg.set_reg_pressure(1);
892          break;
893        case Op_VecY:
894          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
895          assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
896          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
897          lrg.set_num_regs(RegMask::SlotsPerVecY);
898          lrg.set_reg_pressure(1);
899          break;
900        default:
901          ShouldNotReachHere();
902        }
903      }
904
905      // Now do the same for inputs
906      uint cnt = n->req();
907      // Setup for CISC SPILLING
908      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
909      if( UseCISCSpill && after_aggressive ) {
910        inp = n->cisc_operand();
911        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
912          // Convert operand number to edge index number
913          inp = n->as_Mach()->operand_index(inp);
914      }
915      // Prepare register mask for each input
916      for( uint k = input_edge_start; k < cnt; k++ ) {
917        uint vreg = _lrg_map.live_range_id(n->in(k));
918        if (!vreg) {
919          continue;
920        }
921
922        // If this instruction is CISC Spillable, add the flags
923        // bit to its appropriate input
924        if( UseCISCSpill && after_aggressive && inp == k ) {
925#ifndef PRODUCT
926          if( TraceCISCSpill ) {
927            tty->print("  use_cisc_RegMask: ");
928            n->dump();
929          }
930#endif
931          n->as_Mach()->use_cisc_RegMask();
932        }
933
934        LRG &lrg = lrgs(vreg);
935        // // Testing for floating point code shape
936        // Node *test = n->in(k);
937        // if( test->is_Mach() ) {
938        //   MachNode *m = test->as_Mach();
939        //   int  op = m->ideal_Opcode();
940        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
941        //     int zzz = 1;
942        //   }
943        // }
944
945        // Limit result register mask to acceptable registers.
946        // Do not limit registers from uncommon uses before
947        // AggressiveCoalesce.  This effectively pre-virtual-splits
948        // around uncommon uses of common defs.
949        const RegMask &rm = n->in_RegMask(k);
950        if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
951          // Since we are BEFORE aggressive coalesce, leave the register
952          // mask untrimmed by the call.  This encourages more coalescing.
953          // Later, AFTER aggressive, this live range will have to spill
954          // but the spiller handles slow-path calls very nicely.
955        } else {
956          lrg.AND( rm );
957        }
958
959        // Check for bound register masks
960        const RegMask &lrgmask = lrg.mask();
961        int kreg = n->in(k)->ideal_reg();
962        bool is_vect = RegMask::is_vector(kreg);
963        assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
964               is_vect || kreg == Op_RegD || kreg == Op_RegL,
965               "vector must be in vector registers");
966        if (lrgmask.is_bound(kreg))
967          lrg._is_bound = 1;
968
969        // If this use of a double forces a mis-aligned double,
970        // flag as '_fat_proj' - really flag as allowing misalignment
971        // AND changes how we count interferences.  A mis-aligned
972        // double can interfere with TWO aligned pairs, or effectively
973        // FOUR registers!
974#ifdef ASSERT
975        if (is_vect) {
976          assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
977          assert(!lrg._fat_proj, "sanity");
978          assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
979        }
980#endif
981        if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
982          lrg._fat_proj = 1;
983          lrg._is_bound = 1;
984        }
985        // if the LRG is an unaligned pair, we will have to spill
986        // so clear the LRG's register mask if it is not already spilled
987        if (!is_vect && !n->is_SpillCopy() &&
988            (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
989            lrgmask.is_misaligned_pair()) {
990          lrg.Clear();
991        }
992
993        // Check for maximum frequency value
994        if (lrg._maxfreq < block->_freq) {
995          lrg._maxfreq = block->_freq;
996        }
997
998      } // End for all allocated inputs
999    } // end for all instructions
1000  } // end for all blocks
1001
1002  // Final per-liverange setup
1003  for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1004    LRG &lrg = lrgs(i2);
1005    assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1006    if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1007      lrg.clear_to_sets();
1008    }
1009    lrg.compute_set_mask_size();
1010    if (lrg.not_free()) {      // Handle case where we lose from the start
1011      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1012      lrg._direct_conflict = 1;
1013    }
1014    lrg.set_degree(0);          // no neighbors in IFG yet
1015  }
1016}
1017
1018// Set the was-lo-degree bit.  Conservative coalescing should not change the
1019// colorability of the graph.  If any live range was of low-degree before
1020// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
1021// The bit is checked in Simplify.
1022void PhaseChaitin::set_was_low() {
1023#ifdef ASSERT
1024  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1025    int size = lrgs(i).num_regs();
1026    uint old_was_lo = lrgs(i)._was_lo;
1027    lrgs(i)._was_lo = 0;
1028    if( lrgs(i).lo_degree() ) {
1029      lrgs(i)._was_lo = 1;      // Trivially of low degree
1030    } else {                    // Else check the Brigg's assertion
1031      // Brigg's observation is that the lo-degree neighbors of a
1032      // hi-degree live range will not interfere with the color choices
1033      // of said hi-degree live range.  The Simplify reverse-stack-coloring
1034      // order takes care of the details.  Hence you do not have to count
1035      // low-degree neighbors when determining if this guy colors.
1036      int briggs_degree = 0;
1037      IndexSet *s = _ifg->neighbors(i);
1038      IndexSetIterator elements(s);
1039      uint lidx;
1040      while((lidx = elements.next()) != 0) {
1041        if( !lrgs(lidx).lo_degree() )
1042          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1043      }
1044      if( briggs_degree < lrgs(i).degrees_of_freedom() )
1045        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
1046    }
1047    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1048  }
1049#endif
1050}
1051
1052#define REGISTER_CONSTRAINED 16
1053
1054// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
1055void PhaseChaitin::cache_lrg_info( ) {
1056
1057  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1058    LRG &lrg = lrgs(i);
1059
1060    // Check for being of low degree: means we can be trivially colored.
1061    // Low degree, dead or must-spill guys just get to simplify right away
1062    if( lrg.lo_degree() ||
1063       !lrg.alive() ||
1064        lrg._must_spill ) {
1065      // Split low degree list into those guys that must get a
1066      // register and those that can go to register or stack.
1067      // The idea is LRGs that can go register or stack color first when
1068      // they have a good chance of getting a register.  The register-only
1069      // lo-degree live ranges always get a register.
1070      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1071      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1072        lrg._next = _lo_stk_degree;
1073        _lo_stk_degree = i;
1074      } else {
1075        lrg._next = _lo_degree;
1076        _lo_degree = i;
1077      }
1078    } else {                    // Else high degree
1079      lrgs(_hi_degree)._prev = i;
1080      lrg._next = _hi_degree;
1081      lrg._prev = 0;
1082      _hi_degree = i;
1083    }
1084  }
1085}
1086
1087// Simplify the IFG by removing LRGs of low degree that have NO copies
1088void PhaseChaitin::Pre_Simplify( ) {
1089
1090  // Warm up the lo-degree no-copy list
1091  int lo_no_copy = 0;
1092  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1093    if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
1094        !lrgs(i).alive() ||
1095        lrgs(i)._must_spill) {
1096      lrgs(i)._next = lo_no_copy;
1097      lo_no_copy = i;
1098    }
1099  }
1100
1101  while( lo_no_copy ) {
1102    uint lo = lo_no_copy;
1103    lo_no_copy = lrgs(lo)._next;
1104    int size = lrgs(lo).num_regs();
1105
1106    // Put the simplified guy on the simplified list.
1107    lrgs(lo)._next = _simplified;
1108    _simplified = lo;
1109
1110    // Yank this guy from the IFG.
1111    IndexSet *adj = _ifg->remove_node( lo );
1112
1113    // If any neighbors' degrees fall below their number of
1114    // allowed registers, then put that neighbor on the low degree
1115    // list.  Note that 'degree' can only fall and 'numregs' is
1116    // unchanged by this action.  Thus the two are equal at most once,
1117    // so LRGs hit the lo-degree worklists at most once.
1118    IndexSetIterator elements(adj);
1119    uint neighbor;
1120    while ((neighbor = elements.next()) != 0) {
1121      LRG *n = &lrgs(neighbor);
1122      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1123
1124      // Check for just becoming of-low-degree
1125      if( n->just_lo_degree() && !n->_has_copy ) {
1126        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1127        // Put on lo-degree list
1128        n->_next = lo_no_copy;
1129        lo_no_copy = neighbor;
1130      }
1131    }
1132  } // End of while lo-degree no_copy worklist not empty
1133
1134  // No more lo-degree no-copy live ranges to simplify
1135}
1136
1137// Simplify the IFG by removing LRGs of low degree.
1138void PhaseChaitin::Simplify( ) {
1139
1140  while( 1 ) {                  // Repeat till simplified it all
1141    // May want to explore simplifying lo_degree before _lo_stk_degree.
1142    // This might result in more spills coloring into registers during
1143    // Select().
1144    while( _lo_degree || _lo_stk_degree ) {
1145      // If possible, pull from lo_stk first
1146      uint lo;
1147      if( _lo_degree ) {
1148        lo = _lo_degree;
1149        _lo_degree = lrgs(lo)._next;
1150      } else {
1151        lo = _lo_stk_degree;
1152        _lo_stk_degree = lrgs(lo)._next;
1153      }
1154
1155      // Put the simplified guy on the simplified list.
1156      lrgs(lo)._next = _simplified;
1157      _simplified = lo;
1158      // If this guy is "at risk" then mark his current neighbors
1159      if( lrgs(lo)._at_risk ) {
1160        IndexSetIterator elements(_ifg->neighbors(lo));
1161        uint datum;
1162        while ((datum = elements.next()) != 0) {
1163          lrgs(datum)._risk_bias = lo;
1164        }
1165      }
1166
1167      // Yank this guy from the IFG.
1168      IndexSet *adj = _ifg->remove_node( lo );
1169
1170      // If any neighbors' degrees fall below their number of
1171      // allowed registers, then put that neighbor on the low degree
1172      // list.  Note that 'degree' can only fall and 'numregs' is
1173      // unchanged by this action.  Thus the two are equal at most once,
1174      // so LRGs hit the lo-degree worklist at most once.
1175      IndexSetIterator elements(adj);
1176      uint neighbor;
1177      while ((neighbor = elements.next()) != 0) {
1178        LRG *n = &lrgs(neighbor);
1179#ifdef ASSERT
1180        if( VerifyOpto || VerifyRegisterAllocator ) {
1181          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1182        }
1183#endif
1184
1185        // Check for just becoming of-low-degree just counting registers.
1186        // _must_spill live ranges are already on the low degree list.
1187        if( n->just_lo_degree() && !n->_must_spill ) {
1188          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1189          // Pull from hi-degree list
1190          uint prev = n->_prev;
1191          uint next = n->_next;
1192          if( prev ) lrgs(prev)._next = next;
1193          else _hi_degree = next;
1194          lrgs(next)._prev = prev;
1195          n->_next = _lo_degree;
1196          _lo_degree = neighbor;
1197        }
1198      }
1199    } // End of while lo-degree/lo_stk_degree worklist not empty
1200
1201    // Check for got everything: is hi-degree list empty?
1202    if( !_hi_degree ) break;
1203
1204    // Time to pick a potential spill guy
1205    uint lo_score = _hi_degree;
1206    double score = lrgs(lo_score).score();
1207    double area = lrgs(lo_score)._area;
1208    double cost = lrgs(lo_score)._cost;
1209    bool bound = lrgs(lo_score)._is_bound;
1210
1211    // Find cheapest guy
1212    debug_only( int lo_no_simplify=0; );
1213    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1214      assert( !(*_ifg->_yanked)[i], "" );
1215      // It's just vaguely possible to move hi-degree to lo-degree without
1216      // going through a just-lo-degree stage: If you remove a double from
1217      // a float live range it's degree will drop by 2 and you can skip the
1218      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1219      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1220      if( lrgs(i).lo_degree() ) {
1221        lo_score = i;
1222        break;
1223      }
1224      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1225      double iscore = lrgs(i).score();
1226      double iarea = lrgs(i)._area;
1227      double icost = lrgs(i)._cost;
1228      bool ibound = lrgs(i)._is_bound;
1229
1230      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1231      // wins.  Ties happen because all live ranges in question have spilled
1232      // a few times before and the spill-score adds a huge number which
1233      // washes out the low order bits.  We are choosing the lesser of 2
1234      // evils; in this case pick largest area to spill.
1235      // Ties also happen when live ranges are defined and used only inside
1236      // one block. In which case their area is 0 and score set to max.
1237      // In such case choose bound live range over unbound to free registers
1238      // or with smaller cost to spill.
1239      if( iscore < score ||
1240          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1241          (iscore == score && iarea == area &&
1242           ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1243        lo_score = i;
1244        score = iscore;
1245        area = iarea;
1246        cost = icost;
1247        bound = ibound;
1248      }
1249    }
1250    LRG *lo_lrg = &lrgs(lo_score);
1251    // The live range we choose for spilling is either hi-degree, or very
1252    // rarely it can be low-degree.  If we choose a hi-degree live range
1253    // there better not be any lo-degree choices.
1254    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1255
1256    // Pull from hi-degree list
1257    uint prev = lo_lrg->_prev;
1258    uint next = lo_lrg->_next;
1259    if( prev ) lrgs(prev)._next = next;
1260    else _hi_degree = next;
1261    lrgs(next)._prev = prev;
1262    // Jam him on the lo-degree list, despite his high degree.
1263    // Maybe he'll get a color, and maybe he'll spill.
1264    // Only Select() will know.
1265    lrgs(lo_score)._at_risk = true;
1266    _lo_degree = lo_score;
1267    lo_lrg->_next = 0;
1268
1269  } // End of while not simplified everything
1270
1271}
1272
1273// Is 'reg' register legal for 'lrg'?
1274static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1275  if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1276      lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1277    // RA uses OptoReg which represent the highest element of a registers set.
1278    // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1279    // in which XMMd is used by RA to represent such vectors. A double value
1280    // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1281    // The register mask uses largest bits set of overlapping register sets.
1282    // On x86 with AVX it uses 8 bits for each XMM registers set.
1283    //
1284    // The 'lrg' already has cleared-to-set register mask (done in Select()
1285    // before calling choose_color()). Passing mask.Member(reg) check above
1286    // indicates that the size (num_regs) of 'reg' set is less or equal to
1287    // 'lrg' set size.
1288    // For set size 1 any register which is member of 'lrg' mask is legal.
1289    if (lrg.num_regs()==1)
1290      return true;
1291    // For larger sets only an aligned register with the same set size is legal.
1292    int mask = lrg.num_regs()-1;
1293    if ((reg&mask) == mask)
1294      return true;
1295  }
1296  return false;
1297}
1298
1299// Choose a color using the biasing heuristic
1300OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1301
1302  // Check for "at_risk" LRG's
1303  uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1304  if( risk_lrg != 0 ) {
1305    // Walk the colored neighbors of the "at_risk" candidate
1306    // Choose a color which is both legal and already taken by a neighbor
1307    // of the "at_risk" candidate in order to improve the chances of the
1308    // "at_risk" candidate of coloring
1309    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1310    uint datum;
1311    while ((datum = elements.next()) != 0) {
1312      OptoReg::Name reg = lrgs(datum).reg();
1313      // If this LRG's register is legal for us, choose it
1314      if (is_legal_reg(lrg, reg, chunk))
1315        return reg;
1316    }
1317  }
1318
1319  uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1320  if( copy_lrg != 0 ) {
1321    // If he has a color,
1322    if( !(*(_ifg->_yanked))[copy_lrg] ) {
1323      OptoReg::Name reg = lrgs(copy_lrg).reg();
1324      //  And it is legal for you,
1325      if (is_legal_reg(lrg, reg, chunk))
1326        return reg;
1327    } else if( chunk == 0 ) {
1328      // Choose a color which is legal for him
1329      RegMask tempmask = lrg.mask();
1330      tempmask.AND(lrgs(copy_lrg).mask());
1331      tempmask.clear_to_sets(lrg.num_regs());
1332      OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
1333      if (OptoReg::is_valid(reg))
1334        return reg;
1335    }
1336  }
1337
1338  // If no bias info exists, just go with the register selection ordering
1339  if (lrg._is_vector || lrg.num_regs() == 2) {
1340    // Find an aligned set
1341    return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
1342  }
1343
1344  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1345  // copy removal to remove many more copies, by preventing a just-assigned
1346  // register from being repeatedly assigned.
1347  OptoReg::Name reg = lrg.mask().find_first_elem();
1348  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1349    // This 'Remove; find; Insert' idiom is an expensive way to find the
1350    // SECOND element in the mask.
1351    lrg.Remove(reg);
1352    OptoReg::Name reg2 = lrg.mask().find_first_elem();
1353    lrg.Insert(reg);
1354    if( OptoReg::is_reg(reg2))
1355      reg = reg2;
1356  }
1357  return OptoReg::add( reg, chunk );
1358}
1359
1360// Choose a color in the current chunk
1361OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1362  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1363  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1364
1365  if( lrg.num_regs() == 1 ||    // Common Case
1366      !lrg._fat_proj )          // Aligned+adjacent pairs ok
1367    // Use a heuristic to "bias" the color choice
1368    return bias_color(lrg, chunk);
1369
1370  assert(!lrg._is_vector, "should be not vector here" );
1371  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1372
1373  // Fat-proj case or misaligned double argument.
1374  assert(lrg.compute_mask_size() == lrg.num_regs() ||
1375         lrg.num_regs() == 2,"fat projs exactly color" );
1376  assert( !chunk, "always color in 1st chunk" );
1377  // Return the highest element in the set.
1378  return lrg.mask().find_last_elem();
1379}
1380
1381// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1382// in reverse order of removal.  As long as nothing of hi-degree was yanked,
1383// everything going back is guaranteed a color.  Select that color.  If some
1384// hi-degree LRG cannot get a color then we record that we must spill.
1385uint PhaseChaitin::Select( ) {
1386  uint spill_reg = LRG::SPILL_REG;
1387  _max_reg = OptoReg::Name(0);  // Past max register used
1388  while( _simplified ) {
1389    // Pull next LRG from the simplified list - in reverse order of removal
1390    uint lidx = _simplified;
1391    LRG *lrg = &lrgs(lidx);
1392    _simplified = lrg->_next;
1393
1394
1395#ifndef PRODUCT
1396    if (trace_spilling()) {
1397      ttyLocker ttyl;
1398      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1399                    lrg->degrees_of_freedom());
1400      lrg->dump();
1401    }
1402#endif
1403
1404    // Re-insert into the IFG
1405    _ifg->re_insert(lidx);
1406    if( !lrg->alive() ) continue;
1407    // capture allstackedness flag before mask is hacked
1408    const int is_allstack = lrg->mask().is_AllStack();
1409
1410    // Yeah, yeah, yeah, I know, I know.  I can refactor this
1411    // to avoid the GOTO, although the refactored code will not
1412    // be much clearer.  We arrive here IFF we have a stack-based
1413    // live range that cannot color in the current chunk, and it
1414    // has to move into the next free stack chunk.
1415    int chunk = 0;              // Current chunk is first chunk
1416    retry_next_chunk:
1417
1418    // Remove neighbor colors
1419    IndexSet *s = _ifg->neighbors(lidx);
1420
1421    debug_only(RegMask orig_mask = lrg->mask();)
1422    IndexSetIterator elements(s);
1423    uint neighbor;
1424    while ((neighbor = elements.next()) != 0) {
1425      // Note that neighbor might be a spill_reg.  In this case, exclusion
1426      // of its color will be a no-op, since the spill_reg chunk is in outer
1427      // space.  Also, if neighbor is in a different chunk, this exclusion
1428      // will be a no-op.  (Later on, if lrg runs out of possible colors in
1429      // its chunk, a new chunk of color may be tried, in which case
1430      // examination of neighbors is started again, at retry_next_chunk.)
1431      LRG &nlrg = lrgs(neighbor);
1432      OptoReg::Name nreg = nlrg.reg();
1433      // Only subtract masks in the same chunk
1434      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1435#ifndef PRODUCT
1436        uint size = lrg->mask().Size();
1437        RegMask rm = lrg->mask();
1438#endif
1439        lrg->SUBTRACT(nlrg.mask());
1440#ifndef PRODUCT
1441        if (trace_spilling() && lrg->mask().Size() != size) {
1442          ttyLocker ttyl;
1443          tty->print("L%d ", lidx);
1444          rm.dump();
1445          tty->print(" intersected L%d ", neighbor);
1446          nlrg.mask().dump();
1447          tty->print(" removed ");
1448          rm.SUBTRACT(lrg->mask());
1449          rm.dump();
1450          tty->print(" leaving ");
1451          lrg->mask().dump();
1452          tty->cr();
1453        }
1454#endif
1455      }
1456    }
1457    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1458    // Aligned pairs need aligned masks
1459    assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1460    if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1461      lrg->clear_to_sets();
1462    }
1463
1464    // Check if a color is available and if so pick the color
1465    OptoReg::Name reg = choose_color( *lrg, chunk );
1466#ifdef SPARC
1467    debug_only(lrg->compute_set_mask_size());
1468    assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1469#endif
1470
1471    //---------------
1472    // If we fail to color and the AllStack flag is set, trigger
1473    // a chunk-rollover event
1474    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1475      // Bump register mask up to next stack chunk
1476      chunk += RegMask::CHUNK_SIZE;
1477      lrg->Set_All();
1478
1479      goto retry_next_chunk;
1480    }
1481
1482    //---------------
1483    // Did we get a color?
1484    else if( OptoReg::is_valid(reg)) {
1485#ifndef PRODUCT
1486      RegMask avail_rm = lrg->mask();
1487#endif
1488
1489      // Record selected register
1490      lrg->set_reg(reg);
1491
1492      if( reg >= _max_reg )     // Compute max register limit
1493        _max_reg = OptoReg::add(reg,1);
1494      // Fold reg back into normal space
1495      reg = OptoReg::add(reg,-chunk);
1496
1497      // If the live range is not bound, then we actually had some choices
1498      // to make.  In this case, the mask has more bits in it than the colors
1499      // chosen.  Restrict the mask to just what was picked.
1500      int n_regs = lrg->num_regs();
1501      assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1502      if (n_regs == 1 || !lrg->_fat_proj) {
1503        assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
1504        lrg->Clear();           // Clear the mask
1505        lrg->Insert(reg);       // Set regmask to match selected reg
1506        // For vectors and pairs, also insert the low bit of the pair
1507        for (int i = 1; i < n_regs; i++)
1508          lrg->Insert(OptoReg::add(reg,-i));
1509        lrg->set_mask_size(n_regs);
1510      } else {                  // Else fatproj
1511        // mask must be equal to fatproj bits, by definition
1512      }
1513#ifndef PRODUCT
1514      if (trace_spilling()) {
1515        ttyLocker ttyl;
1516        tty->print("L%d selected ", lidx);
1517        lrg->mask().dump();
1518        tty->print(" from ");
1519        avail_rm.dump();
1520        tty->cr();
1521      }
1522#endif
1523      // Note that reg is the highest-numbered register in the newly-bound mask.
1524    } // end color available case
1525
1526    //---------------
1527    // Live range is live and no colors available
1528    else {
1529      assert( lrg->alive(), "" );
1530      assert( !lrg->_fat_proj || lrg->is_multidef() ||
1531              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1532      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1533
1534      // Assign the special spillreg register
1535      lrg->set_reg(OptoReg::Name(spill_reg++));
1536      // Do not empty the regmask; leave mask_size lying around
1537      // for use during Spilling
1538#ifndef PRODUCT
1539      if( trace_spilling() ) {
1540        ttyLocker ttyl;
1541        tty->print("L%d spilling with neighbors: ", lidx);
1542        s->dump();
1543        debug_only(tty->print(" original mask: "));
1544        debug_only(orig_mask.dump());
1545        dump_lrg(lidx);
1546      }
1547#endif
1548    } // end spill case
1549
1550  }
1551
1552  return spill_reg-LRG::SPILL_REG;      // Return number of spills
1553}
1554
1555// Copy 'was_spilled'-edness from the source Node to the dst Node.
1556void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1557  if( _spilled_once.test(src->_idx) ) {
1558    _spilled_once.set(dst->_idx);
1559    lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
1560    if( _spilled_twice.test(src->_idx) ) {
1561      _spilled_twice.set(dst->_idx);
1562      lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
1563    }
1564  }
1565}
1566
1567// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1568void PhaseChaitin::set_was_spilled( Node *n ) {
1569  if( _spilled_once.test_set(n->_idx) )
1570    _spilled_twice.set(n->_idx);
1571}
1572
1573// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1574// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1575void PhaseChaitin::fixup_spills() {
1576  // This function does only cisc spill work.
1577  if( !UseCISCSpill ) return;
1578
1579  NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1580
1581  // Grab the Frame Pointer
1582  Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1583
1584  // For all blocks
1585  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1586    Block* block = _cfg.get_block(i);
1587
1588    // For all instructions in block
1589    uint last_inst = block->end_idx();
1590    for (uint j = 1; j <= last_inst; j++) {
1591      Node* n = block->get_node(j);
1592
1593      // Dead instruction???
1594      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1595              C->top() == n ||  // Or the random TOP node
1596              n->is_Proj(),     // Or a fat-proj kill node
1597              "No dead instructions after post-alloc" );
1598
1599      int inp = n->cisc_operand();
1600      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1601        // Convert operand number to edge index number
1602        MachNode *mach = n->as_Mach();
1603        inp = mach->operand_index(inp);
1604        Node *src = n->in(inp);   // Value to load or store
1605        LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1606        OptoReg::Name src_reg = lrg_cisc.reg();
1607        // Doubles record the HIGH register of an adjacent pair.
1608        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1609        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1610          // This is a CISC Spill, get stack offset and construct new node
1611#ifndef PRODUCT
1612          if( TraceCISCSpill ) {
1613            tty->print("    reg-instr:  ");
1614            n->dump();
1615          }
1616#endif
1617          int stk_offset = reg2offset(src_reg);
1618          // Bailout if we might exceed node limit when spilling this instruction
1619          C->check_node_count(0, "out of nodes fixing spills");
1620          if (C->failing())  return;
1621          // Transform node
1622          MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1623          cisc->set_req(inp,fp);          // Base register is frame pointer
1624          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1625            assert( cisc->oper_input_base() == 2, "Only adding one edge");
1626            cisc->ins_req(1,src);         // Requires a memory edge
1627          }
1628          block->map_node(cisc, j);          // Insert into basic block
1629          n->subsume_by(cisc, C); // Correct graph
1630          //
1631          ++_used_cisc_instructions;
1632#ifndef PRODUCT
1633          if( TraceCISCSpill ) {
1634            tty->print("    cisc-instr: ");
1635            cisc->dump();
1636          }
1637#endif
1638        } else {
1639#ifndef PRODUCT
1640          if( TraceCISCSpill ) {
1641            tty->print("    using reg-instr: ");
1642            n->dump();
1643          }
1644#endif
1645          ++_unused_cisc_instructions;    // input can be on stack
1646        }
1647      }
1648
1649    } // End of for all instructions
1650
1651  } // End of for all blocks
1652}
1653
1654// Helper to stretch above; recursively discover the base Node for a
1655// given derived Node.  Easy for AddP-related machine nodes, but needs
1656// to be recursive for derived Phis.
1657Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1658  // See if already computed; if so return it
1659  if( derived_base_map[derived->_idx] )
1660    return derived_base_map[derived->_idx];
1661
1662  // See if this happens to be a base.
1663  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1664  // pointers derived from NULL!  These are always along paths that
1665  // can't happen at run-time but the optimizer cannot deduce it so
1666  // we have to handle it gracefully.
1667  assert(!derived->bottom_type()->isa_narrowoop() ||
1668          derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1669  const TypePtr *tj = derived->bottom_type()->isa_ptr();
1670  // If its an OOP with a non-zero offset, then it is derived.
1671  if( tj == NULL || tj->_offset == 0 ) {
1672    derived_base_map[derived->_idx] = derived;
1673    return derived;
1674  }
1675  // Derived is NULL+offset?  Base is NULL!
1676  if( derived->is_Con() ) {
1677    Node *base = _matcher.mach_null();
1678    assert(base != NULL, "sanity");
1679    if (base->in(0) == NULL) {
1680      // Initialize it once and make it shared:
1681      // set control to _root and place it into Start block
1682      // (where top() node is placed).
1683      base->init_req(0, _cfg.get_root_node());
1684      Block *startb = _cfg.get_block_for_node(C->top());
1685      uint node_pos = startb->find_node(C->top());
1686      startb->insert_node(base, node_pos);
1687      _cfg.map_node_to_block(base, startb);
1688      assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1689
1690      // The loadConP0 might have projection nodes depending on architecture
1691      // Add the projection nodes to the CFG
1692      for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1693        Node* use = base->fast_out(i);
1694        if (use->is_MachProj()) {
1695          startb->insert_node(use, ++node_pos);
1696          _cfg.map_node_to_block(use, startb);
1697          new_lrg(use, maxlrg++);
1698        }
1699      }
1700    }
1701    if (_lrg_map.live_range_id(base) == 0) {
1702      new_lrg(base, maxlrg++);
1703    }
1704    assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
1705    derived_base_map[derived->_idx] = base;
1706    return base;
1707  }
1708
1709  // Check for AddP-related opcodes
1710  if (!derived->is_Phi()) {
1711    assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
1712    Node *base = derived->in(AddPNode::Base);
1713    derived_base_map[derived->_idx] = base;
1714    return base;
1715  }
1716
1717  // Recursively find bases for Phis.
1718  // First check to see if we can avoid a base Phi here.
1719  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1720  uint i;
1721  for( i = 2; i < derived->req(); i++ )
1722    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1723      break;
1724  // Went to the end without finding any different bases?
1725  if( i == derived->req() ) {   // No need for a base Phi here
1726    derived_base_map[derived->_idx] = base;
1727    return base;
1728  }
1729
1730  // Now we see we need a base-Phi here to merge the bases
1731  const Type *t = base->bottom_type();
1732  base = new (C) PhiNode( derived->in(0), t );
1733  for( i = 1; i < derived->req(); i++ ) {
1734    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1735    t = t->meet(base->in(i)->bottom_type());
1736  }
1737  base->as_Phi()->set_type(t);
1738
1739  // Search the current block for an existing base-Phi
1740  Block *b = _cfg.get_block_for_node(derived);
1741  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1742    Node *phi = b->get_node(i);
1743    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1744      b->insert_node(base,  i); // Must insert created Phi here as base
1745      _cfg.map_node_to_block(base, b);
1746      new_lrg(base,maxlrg++);
1747      break;
1748    }
1749    // See if Phi matches.
1750    uint j;
1751    for( j = 1; j < base->req(); j++ )
1752      if( phi->in(j) != base->in(j) &&
1753          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1754        break;
1755    if( j == base->req() ) {    // All inputs match?
1756      base = phi;               // Then use existing 'phi' and drop 'base'
1757      break;
1758    }
1759  }
1760
1761
1762  // Cache info for later passes
1763  derived_base_map[derived->_idx] = base;
1764  return base;
1765}
1766
1767// At each Safepoint, insert extra debug edges for each pair of derived value/
1768// base pointer that is live across the Safepoint for oopmap building.  The
1769// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1770// required edge set.
1771bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1772  int must_recompute_live = false;
1773  uint maxlrg = _lrg_map.max_lrg_id();
1774  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1775  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1776
1777  // For all blocks in RPO do...
1778  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1779    Block* block = _cfg.get_block(i);
1780    // Note use of deep-copy constructor.  I cannot hammer the original
1781    // liveout bits, because they are needed by the following coalesce pass.
1782    IndexSet liveout(_live->live(block));
1783
1784    for (uint j = block->end_idx() + 1; j > 1; j--) {
1785      Node* n = block->get_node(j - 1);
1786
1787      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1788      // like to see in the same register.  Compare uses the loop-phi and so
1789      // extends its live range BUT cannot be part of the cycle.  If this
1790      // extended live range overlaps with the update of the loop-phi value
1791      // we need both alive at the same time -- which requires at least 1
1792      // copy.  But because Intel has only 2-address registers we end up with
1793      // at least 2 copies, one before the loop-phi update instruction and
1794      // one after.  Instead we split the input to the compare just after the
1795      // phi.
1796      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1797        Node *phi = n->in(1);
1798        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1799          Block *phi_block = _cfg.get_block_for_node(phi);
1800          if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1801            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1802            Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1803            insert_proj( phi_block, 1, spill, maxlrg++ );
1804            n->set_req(1,spill);
1805            must_recompute_live = true;
1806          }
1807        }
1808      }
1809
1810      // Get value being defined
1811      uint lidx = _lrg_map.live_range_id(n);
1812      // Ignore the occasional brand-new live range
1813      if (lidx && lidx < _lrg_map.max_lrg_id()) {
1814        // Remove from live-out set
1815        liveout.remove(lidx);
1816
1817        // Copies do not define a new value and so do not interfere.
1818        // Remove the copies source from the liveout set before interfering.
1819        uint idx = n->is_Copy();
1820        if (idx) {
1821          liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1822        }
1823      }
1824
1825      // Found a safepoint?
1826      JVMState *jvms = n->jvms();
1827      if( jvms ) {
1828        // Now scan for a live derived pointer
1829        IndexSetIterator elements(&liveout);
1830        uint neighbor;
1831        while ((neighbor = elements.next()) != 0) {
1832          // Find reaching DEF for base and derived values
1833          // This works because we are still in SSA during this call.
1834          Node *derived = lrgs(neighbor)._def;
1835          const TypePtr *tj = derived->bottom_type()->isa_ptr();
1836          assert(!derived->bottom_type()->isa_narrowoop() ||
1837                  derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1838          // If its an OOP with a non-zero offset, then it is derived.
1839          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1840            Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1841            assert(base->_idx < _lrg_map.size(), "");
1842            // Add reaching DEFs of derived pointer and base pointer as a
1843            // pair of inputs
1844            n->add_req(derived);
1845            n->add_req(base);
1846
1847            // See if the base pointer is already live to this point.
1848            // Since I'm working on the SSA form, live-ness amounts to
1849            // reaching def's.  So if I find the base's live range then
1850            // I know the base's def reaches here.
1851            if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1852                 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1853                 (_lrg_map.live_range_id(base) > 0) && // not a constant
1854                 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
1855              // Base pointer is not currently live.  Since I stretched
1856              // the base pointer to here and it crosses basic-block
1857              // boundaries, the global live info is now incorrect.
1858              // Recompute live.
1859              must_recompute_live = true;
1860            } // End of if base pointer is not live to debug info
1861          }
1862        } // End of scan all live data for derived ptrs crossing GC point
1863      } // End of if found a GC point
1864
1865      // Make all inputs live
1866      if (!n->is_Phi()) {      // Phi function uses come from prior block
1867        for (uint k = 1; k < n->req(); k++) {
1868          uint lidx = _lrg_map.live_range_id(n->in(k));
1869          if (lidx < _lrg_map.max_lrg_id()) {
1870            liveout.insert(lidx);
1871          }
1872        }
1873      }
1874
1875    } // End of forall instructions in block
1876    liveout.clear();  // Free the memory used by liveout.
1877
1878  } // End of forall blocks
1879  _lrg_map.set_max_lrg_id(maxlrg);
1880
1881  // If I created a new live range I need to recompute live
1882  if (maxlrg != _ifg->_maxlrg) {
1883    must_recompute_live = true;
1884  }
1885
1886  return must_recompute_live != 0;
1887}
1888
1889// Extend the node to LRG mapping
1890
1891void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1892  _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1893}
1894
1895#ifndef PRODUCT
1896void PhaseChaitin::dump(const Node *n) const {
1897  uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
1898  tty->print("L%d",r);
1899  if (r && n->Opcode() != Op_Phi) {
1900    if( _node_regs ) {          // Got a post-allocation copy of allocation?
1901      tty->print("[");
1902      OptoReg::Name second = get_reg_second(n);
1903      if( OptoReg::is_valid(second) ) {
1904        if( OptoReg::is_reg(second) )
1905          tty->print("%s:",Matcher::regName[second]);
1906        else
1907          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1908      }
1909      OptoReg::Name first = get_reg_first(n);
1910      if( OptoReg::is_reg(first) )
1911        tty->print("%s]",Matcher::regName[first]);
1912      else
1913         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1914    } else
1915    n->out_RegMask().dump();
1916  }
1917  tty->print("/N%d\t",n->_idx);
1918  tty->print("%s === ", n->Name());
1919  uint k;
1920  for (k = 0; k < n->req(); k++) {
1921    Node *m = n->in(k);
1922    if (!m) {
1923      tty->print("_ ");
1924    }
1925    else {
1926      uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1927      tty->print("L%d",r);
1928      // Data MultiNode's can have projections with no real registers.
1929      // Don't die while dumping them.
1930      int op = n->Opcode();
1931      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1932        if( _node_regs ) {
1933          tty->print("[");
1934          OptoReg::Name second = get_reg_second(n->in(k));
1935          if( OptoReg::is_valid(second) ) {
1936            if( OptoReg::is_reg(second) )
1937              tty->print("%s:",Matcher::regName[second]);
1938            else
1939              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1940                         reg2offset_unchecked(second));
1941          }
1942          OptoReg::Name first = get_reg_first(n->in(k));
1943          if( OptoReg::is_reg(first) )
1944            tty->print("%s]",Matcher::regName[first]);
1945          else
1946            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1947                       reg2offset_unchecked(first));
1948        } else
1949          n->in_RegMask(k).dump();
1950      }
1951      tty->print("/N%d ",m->_idx);
1952    }
1953  }
1954  if( k < n->len() && n->in(k) ) tty->print("| ");
1955  for( ; k < n->len(); k++ ) {
1956    Node *m = n->in(k);
1957    if(!m) {
1958      break;
1959    }
1960    uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1961    tty->print("L%d",r);
1962    tty->print("/N%d ",m->_idx);
1963  }
1964  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1965  else n->dump_spec(tty);
1966  if( _spilled_once.test(n->_idx ) ) {
1967    tty->print(" Spill_1");
1968    if( _spilled_twice.test(n->_idx ) )
1969      tty->print(" Spill_2");
1970  }
1971  tty->print("\n");
1972}
1973
1974void PhaseChaitin::dump(const Block *b) const {
1975  b->dump_head(&_cfg);
1976
1977  // For all instructions
1978  for( uint j = 0; j < b->number_of_nodes(); j++ )
1979    dump(b->get_node(j));
1980  // Print live-out info at end of block
1981  if( _live ) {
1982    tty->print("Liveout: ");
1983    IndexSet *live = _live->live(b);
1984    IndexSetIterator elements(live);
1985    tty->print("{");
1986    uint i;
1987    while ((i = elements.next()) != 0) {
1988      tty->print("L%d ", _lrg_map.find_const(i));
1989    }
1990    tty->print_cr("}");
1991  }
1992  tty->print("\n");
1993}
1994
1995void PhaseChaitin::dump() const {
1996  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
1997              _matcher._new_SP, _framesize );
1998
1999  // For all blocks
2000  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2001    dump(_cfg.get_block(i));
2002  }
2003  // End of per-block dump
2004  tty->print("\n");
2005
2006  if (!_ifg) {
2007    tty->print("(No IFG.)\n");
2008    return;
2009  }
2010
2011  // Dump LRG array
2012  tty->print("--- Live RanGe Array ---\n");
2013  for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2014    tty->print("L%d: ",i2);
2015    if (i2 < _ifg->_maxlrg) {
2016      lrgs(i2).dump();
2017    }
2018    else {
2019      tty->print_cr("new LRG");
2020    }
2021  }
2022  tty->print_cr("");
2023
2024  // Dump lo-degree list
2025  tty->print("Lo degree: ");
2026  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2027    tty->print("L%d ",i3);
2028  tty->print_cr("");
2029
2030  // Dump lo-stk-degree list
2031  tty->print("Lo stk degree: ");
2032  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2033    tty->print("L%d ",i4);
2034  tty->print_cr("");
2035
2036  // Dump lo-degree list
2037  tty->print("Hi degree: ");
2038  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2039    tty->print("L%d ",i5);
2040  tty->print_cr("");
2041}
2042
2043void PhaseChaitin::dump_degree_lists() const {
2044  // Dump lo-degree list
2045  tty->print("Lo degree: ");
2046  for( uint i = _lo_degree; i; i = lrgs(i)._next )
2047    tty->print("L%d ",i);
2048  tty->print_cr("");
2049
2050  // Dump lo-stk-degree list
2051  tty->print("Lo stk degree: ");
2052  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2053    tty->print("L%d ",i2);
2054  tty->print_cr("");
2055
2056  // Dump lo-degree list
2057  tty->print("Hi degree: ");
2058  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2059    tty->print("L%d ",i3);
2060  tty->print_cr("");
2061}
2062
2063void PhaseChaitin::dump_simplified() const {
2064  tty->print("Simplified: ");
2065  for( uint i = _simplified; i; i = lrgs(i)._next )
2066    tty->print("L%d ",i);
2067  tty->print_cr("");
2068}
2069
2070static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
2071  if ((int)reg < 0)
2072    sprintf(buf, "<OptoReg::%d>", (int)reg);
2073  else if (OptoReg::is_reg(reg))
2074    strcpy(buf, Matcher::regName[reg]);
2075  else
2076    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2077            pc->reg2offset(reg));
2078  return buf+strlen(buf);
2079}
2080
2081// Dump a register name into a buffer.  Be intelligent if we get called
2082// before allocation is complete.
2083char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
2084  if( !this ) {                 // Not got anything?
2085    sprintf(buf,"N%d",n->_idx); // Then use Node index
2086  } else if( _node_regs ) {
2087    // Post allocation, use direct mappings, no LRG info available
2088    print_reg( get_reg_first(n), this, buf );
2089  } else {
2090    uint lidx = _lrg_map.find_const(n); // Grab LRG number
2091    if( !_ifg ) {
2092      sprintf(buf,"L%d",lidx);  // No register binding yet
2093    } else if( !lidx ) {        // Special, not allocated value
2094      strcpy(buf,"Special");
2095    } else {
2096      if (lrgs(lidx)._is_vector) {
2097        if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2098          print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2099        else
2100          sprintf(buf,"L%d",lidx); // No register binding yet
2101      } else if( (lrgs(lidx).num_regs() == 1)
2102                 ? lrgs(lidx).mask().is_bound1()
2103                 : lrgs(lidx).mask().is_bound_pair() ) {
2104        // Hah!  We have a bound machine register
2105        print_reg( lrgs(lidx).reg(), this, buf );
2106      } else {
2107        sprintf(buf,"L%d",lidx); // No register binding yet
2108      }
2109    }
2110  }
2111  return buf+strlen(buf);
2112}
2113
2114void PhaseChaitin::dump_for_spill_split_recycle() const {
2115  if( WizardMode && (PrintCompilation || PrintOpto) ) {
2116    // Display which live ranges need to be split and the allocator's state
2117    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2118    for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2119      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2120        tty->print("L%d: ", bidx);
2121        lrgs(bidx).dump();
2122      }
2123    }
2124    tty->cr();
2125    dump();
2126  }
2127}
2128
2129void PhaseChaitin::dump_frame() const {
2130  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2131  const TypeTuple *domain = C->tf()->domain();
2132  const int        argcnt = domain->cnt() - TypeFunc::Parms;
2133
2134  // Incoming arguments in registers dump
2135  for( int k = 0; k < argcnt; k++ ) {
2136    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2137    if( OptoReg::is_reg(parmreg))  {
2138      const char *reg_name = OptoReg::regname(parmreg);
2139      tty->print("#r%3.3d %s", parmreg, reg_name);
2140      parmreg = _matcher._parm_regs[k].second();
2141      if( OptoReg::is_reg(parmreg))  {
2142        tty->print(":%s", OptoReg::regname(parmreg));
2143      }
2144      tty->print("   : parm %d: ", k);
2145      domain->field_at(k + TypeFunc::Parms)->dump();
2146      tty->print_cr("");
2147    }
2148  }
2149
2150  // Check for un-owned padding above incoming args
2151  OptoReg::Name reg = _matcher._new_SP;
2152  if( reg > _matcher._in_arg_limit ) {
2153    reg = OptoReg::add(reg, -1);
2154    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2155  }
2156
2157  // Incoming argument area dump
2158  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2159  while( reg > begin_in_arg ) {
2160    reg = OptoReg::add(reg, -1);
2161    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2162    int j;
2163    for( j = 0; j < argcnt; j++) {
2164      if( _matcher._parm_regs[j].first() == reg ||
2165          _matcher._parm_regs[j].second() == reg ) {
2166        tty->print("parm %d: ",j);
2167        domain->field_at(j + TypeFunc::Parms)->dump();
2168        tty->print_cr("");
2169        break;
2170      }
2171    }
2172    if( j >= argcnt )
2173      tty->print_cr("HOLE, owned by SELF");
2174  }
2175
2176  // Old outgoing preserve area
2177  while( reg > _matcher._old_SP ) {
2178    reg = OptoReg::add(reg, -1);
2179    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2180  }
2181
2182  // Old SP
2183  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2184    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2185
2186  // Preserve area dump
2187  int fixed_slots = C->fixed_slots();
2188  OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2189  OptoReg::Name return_addr = _matcher.return_addr();
2190
2191  reg = OptoReg::add(reg, -1);
2192  while (OptoReg::is_stack(reg)) {
2193    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2194    if (return_addr == reg) {
2195      tty->print_cr("return address");
2196    } else if (reg >= begin_in_preserve) {
2197      // Preserved slots are present on x86
2198      if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2199        tty->print_cr("saved fp register");
2200      else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2201               VerifyStackAtCalls)
2202        tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
2203      else
2204        tty->print_cr("in_preserve");
2205    } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2206      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2207    } else {
2208      tty->print_cr("pad2, stack alignment");
2209    }
2210    reg = OptoReg::add(reg, -1);
2211  }
2212
2213  // Spill area dump
2214  reg = OptoReg::add(_matcher._new_SP, _framesize );
2215  while( reg > _matcher._out_arg_limit ) {
2216    reg = OptoReg::add(reg, -1);
2217    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2218  }
2219
2220  // Outgoing argument area dump
2221  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2222    reg = OptoReg::add(reg, -1);
2223    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2224  }
2225
2226  // Outgoing new preserve area
2227  while( reg > _matcher._new_SP ) {
2228    reg = OptoReg::add(reg, -1);
2229    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2230  }
2231  tty->print_cr("#");
2232}
2233
2234void PhaseChaitin::dump_bb( uint pre_order ) const {
2235  tty->print_cr("---dump of B%d---",pre_order);
2236  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2237    Block* block = _cfg.get_block(i);
2238    if (block->_pre_order == pre_order) {
2239      dump(block);
2240    }
2241  }
2242}
2243
2244void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2245  tty->print_cr("---dump of L%d---",lidx);
2246
2247  if (_ifg) {
2248    if (lidx >= _lrg_map.max_lrg_id()) {
2249      tty->print("Attempt to print live range index beyond max live range.\n");
2250      return;
2251    }
2252    tty->print("L%d: ",lidx);
2253    if (lidx < _ifg->_maxlrg) {
2254      lrgs(lidx).dump();
2255    } else {
2256      tty->print_cr("new LRG");
2257    }
2258  }
2259  if( _ifg && lidx < _ifg->_maxlrg) {
2260    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2261    _ifg->neighbors(lidx)->dump();
2262    tty->cr();
2263  }
2264  // For all blocks
2265  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2266    Block* block = _cfg.get_block(i);
2267    int dump_once = 0;
2268
2269    // For all instructions
2270    for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2271      Node *n = block->get_node(j);
2272      if (_lrg_map.find_const(n) == lidx) {
2273        if (!dump_once++) {
2274          tty->cr();
2275          block->dump_head(&_cfg);
2276        }
2277        dump(n);
2278        continue;
2279      }
2280      if (!defs_only) {
2281        uint cnt = n->req();
2282        for( uint k = 1; k < cnt; k++ ) {
2283          Node *m = n->in(k);
2284          if (!m)  {
2285            continue;  // be robust in the dumper
2286          }
2287          if (_lrg_map.find_const(m) == lidx) {
2288            if (!dump_once++) {
2289              tty->cr();
2290              block->dump_head(&_cfg);
2291            }
2292            dump(n);
2293          }
2294        }
2295      }
2296    }
2297  } // End of per-block dump
2298  tty->cr();
2299}
2300#endif // not PRODUCT
2301
2302int PhaseChaitin::_final_loads  = 0;
2303int PhaseChaitin::_final_stores = 0;
2304int PhaseChaitin::_final_memoves= 0;
2305int PhaseChaitin::_final_copies = 0;
2306double PhaseChaitin::_final_load_cost  = 0;
2307double PhaseChaitin::_final_store_cost = 0;
2308double PhaseChaitin::_final_memove_cost= 0;
2309double PhaseChaitin::_final_copy_cost  = 0;
2310int PhaseChaitin::_conserv_coalesce = 0;
2311int PhaseChaitin::_conserv_coalesce_pair = 0;
2312int PhaseChaitin::_conserv_coalesce_trie = 0;
2313int PhaseChaitin::_conserv_coalesce_quad = 0;
2314int PhaseChaitin::_post_alloc = 0;
2315int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2316int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2317int PhaseChaitin::_used_cisc_instructions   = 0;
2318int PhaseChaitin::_unused_cisc_instructions = 0;
2319int PhaseChaitin::_allocator_attempts       = 0;
2320int PhaseChaitin::_allocator_successes      = 0;
2321
2322#ifndef PRODUCT
2323uint PhaseChaitin::_high_pressure           = 0;
2324uint PhaseChaitin::_low_pressure            = 0;
2325
2326void PhaseChaitin::print_chaitin_statistics() {
2327  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2328  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2329  tty->print_cr("Adjusted spill cost = %7.0f.",
2330                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2331                _final_copy_cost*1.0 + _final_memove_cost*12.0);
2332  tty->print("Conservatively coalesced %d copies, %d pairs",
2333                _conserv_coalesce, _conserv_coalesce_pair);
2334  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2335    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2336  tty->print_cr(", %d post alloc.", _post_alloc);
2337  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2338    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2339                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2340  if( _used_cisc_instructions || _unused_cisc_instructions )
2341    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2342                   _used_cisc_instructions, _unused_cisc_instructions);
2343  if( _allocator_successes != 0 )
2344    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2345  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2346}
2347#endif // not PRODUCT
2348