chaitin.cpp revision 579:0fbdb4381b99
1/*
2 * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_chaitin.cpp.incl"
27
28//=============================================================================
29
30#ifndef PRODUCT
31void LRG::dump( ) const {
32  ttyLocker ttyl;
33  tty->print("%d ",num_regs());
34  _mask.dump();
35  if( _msize_valid ) {
36    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
37    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
38  } else {
39    tty->print(", #?(%d) ",_mask.Size());
40  }
41
42  tty->print("EffDeg: ");
43  if( _degree_valid ) tty->print( "%d ", _eff_degree );
44  else tty->print("? ");
45
46  if( is_multidef() ) {
47    tty->print("MultiDef ");
48    if (_defs != NULL) {
49      tty->print("(");
50      for (int i = 0; i < _defs->length(); i++) {
51        tty->print("N%d ", _defs->at(i)->_idx);
52      }
53      tty->print(") ");
54    }
55  }
56  else if( _def == 0 ) tty->print("Dead ");
57  else tty->print("Def: N%d ",_def->_idx);
58
59  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
60  // Flags
61  if( _is_oop ) tty->print("Oop ");
62  if( _is_float ) tty->print("Float ");
63  if( _was_spilled1 ) tty->print("Spilled ");
64  if( _was_spilled2 ) tty->print("Spilled2 ");
65  if( _direct_conflict ) tty->print("Direct_conflict ");
66  if( _fat_proj ) tty->print("Fat ");
67  if( _was_lo ) tty->print("Lo ");
68  if( _has_copy ) tty->print("Copy ");
69  if( _at_risk ) tty->print("Risk ");
70
71  if( _must_spill ) tty->print("Must_spill ");
72  if( _is_bound ) tty->print("Bound ");
73  if( _msize_valid ) {
74    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
75  }
76
77  tty->cr();
78}
79#endif
80
81//------------------------------score------------------------------------------
82// Compute score from cost and area.  Low score is best to spill.
83static double raw_score( double cost, double area ) {
84  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
85}
86
87double LRG::score() const {
88  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
89  // Bigger area lowers score, encourages spilling this live range.
90  // Bigger cost raise score, prevents spilling this live range.
91  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
92  // to turn a divide by a constant into a multiply by the reciprical).
93  double score = raw_score( _cost, _area);
94
95  // Account for area.  Basically, LRGs covering large areas are better
96  // to spill because more other LRGs get freed up.
97  if( _area == 0.0 )            // No area?  Then no progress to spill
98    return 1e35;
99
100  if( _was_spilled2 )           // If spilled once before, we are unlikely
101    return score + 1e30;        // to make progress again.
102
103  if( _cost >= _area*3.0 )      // Tiny area relative to cost
104    return score + 1e17;        // Probably no progress to spill
105
106  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
107    return score + 1e10;        // Likely no progress to spill
108
109  return score;
110}
111
112//------------------------------LRG_List---------------------------------------
113LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
114  memset( _lidxs, 0, sizeof(uint)*max );
115}
116
117void LRG_List::extend( uint nidx, uint lidx ) {
118  _nesting.check();
119  if( nidx >= _max ) {
120    uint size = 16;
121    while( size <= nidx ) size <<=1;
122    _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
123    _max = size;
124  }
125  while( _cnt <= nidx )
126    _lidxs[_cnt++] = 0;
127  _lidxs[nidx] = lidx;
128}
129
130#define NUMBUCKS 3
131
132//------------------------------Chaitin----------------------------------------
133PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
134  : PhaseRegAlloc(unique, cfg, matcher,
135#ifndef PRODUCT
136       print_chaitin_statistics
137#else
138       NULL
139#endif
140       ),
141    _names(unique), _uf_map(unique),
142    _maxlrg(0), _live(0),
143    _spilled_once(Thread::current()->resource_area()),
144    _spilled_twice(Thread::current()->resource_area()),
145    _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
146    _oldphi(unique)
147#ifndef PRODUCT
148  , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
149#endif
150{
151  NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
152  uint i,j;
153  // Build a list of basic blocks, sorted by frequency
154  _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
155  // Experiment with sorting strategies to speed compilation
156  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
157  Block **buckets[NUMBUCKS];             // Array of buckets
158  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
159  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
160  for( i = 0; i < NUMBUCKS; i++ ) {
161    buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
162    buckcnt[i] = 0;
163    // Bump by three orders of magnitude each time
164    cutoff *= 0.001;
165    buckval[i] = cutoff;
166    for( j = 0; j < _cfg._num_blocks; j++ ) {
167      buckets[i][j] = NULL;
168    }
169  }
170  // Sort blocks into buckets
171  for( i = 0; i < _cfg._num_blocks; i++ ) {
172    for( j = 0; j < NUMBUCKS; j++ ) {
173      if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
174        // Assign block to end of list for appropriate bucket
175        buckets[j][buckcnt[j]++] = _cfg._blocks[i];
176        break;                      // kick out of inner loop
177      }
178    }
179  }
180  // Dump buckets into final block array
181  uint blkcnt = 0;
182  for( i = 0; i < NUMBUCKS; i++ ) {
183    for( j = 0; j < buckcnt[i]; j++ ) {
184      _blks[blkcnt++] = buckets[i][j];
185    }
186  }
187
188  assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
189}
190
191void PhaseChaitin::Register_Allocate() {
192
193  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
194  // slots in this area are called "arg_slots".  Above the NEW FP (and in
195  // registers) is the outgoing argument area; above that is the spill/temp
196  // area.  These are all "frame_slots".  Arg_slots start at the zero
197  // stack_slots and count up to the known arg_size.  Frame_slots start at
198  // the stack_slot #arg_size and go up.  After allocation I map stack
199  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
200  // by the frame_size; stack-slots in the frame_slot area are biased by 0.
201
202  _trip_cnt = 0;
203  _alternate = 0;
204  _matcher._allocation_started = true;
205
206  ResourceArea live_arena;      // Arena for liveness & IFG info
207  ResourceMark rm(&live_arena);
208
209  // Need live-ness for the IFG; need the IFG for coalescing.  If the
210  // liveness is JUST for coalescing, then I can get some mileage by renaming
211  // all copy-related live ranges low and then using the max copy-related
212  // live range as a cut-off for LIVE and the IFG.  In other words, I can
213  // build a subset of LIVE and IFG just for copies.
214  PhaseLive live(_cfg,_names,&live_arena);
215
216  // Need IFG for coalescing and coloring
217  PhaseIFG ifg( &live_arena );
218  _ifg = &ifg;
219
220  if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
221
222  // Come out of SSA world to the Named world.  Assign (virtual) registers to
223  // Nodes.  Use the same register for all inputs and the output of PhiNodes
224  // - effectively ending SSA form.  This requires either coalescing live
225  // ranges or inserting copies.  For the moment, we insert "virtual copies"
226  // - we pretend there is a copy prior to each Phi in predecessor blocks.
227  // We will attempt to coalesce such "virtual copies" before we manifest
228  // them for real.
229  de_ssa();
230
231#ifdef ASSERT
232  // Veify the graph before RA.
233  verify(&live_arena);
234#endif
235
236  {
237    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
238    _live = NULL;                 // Mark live as being not available
239    rm.reset_to_mark();           // Reclaim working storage
240    IndexSet::reset_memory(C, &live_arena);
241    ifg.init(_maxlrg);            // Empty IFG
242    gather_lrg_masks( false );    // Collect LRG masks
243    live.compute( _maxlrg );      // Compute liveness
244    _live = &live;                // Mark LIVE as being available
245  }
246
247  // Base pointers are currently "used" by instructions which define new
248  // derived pointers.  This makes base pointers live up to the where the
249  // derived pointer is made, but not beyond.  Really, they need to be live
250  // across any GC point where the derived value is live.  So this code looks
251  // at all the GC points, and "stretches" the live range of any base pointer
252  // to the GC point.
253  if( stretch_base_pointer_live_ranges(&live_arena) ) {
254    NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
255    // Since some live range stretched, I need to recompute live
256    _live = NULL;
257    rm.reset_to_mark();         // Reclaim working storage
258    IndexSet::reset_memory(C, &live_arena);
259    ifg.init(_maxlrg);
260    gather_lrg_masks( false );
261    live.compute( _maxlrg );
262    _live = &live;
263  }
264  // Create the interference graph using virtual copies
265  build_ifg_virtual( );  // Include stack slots this time
266
267  // Aggressive (but pessimistic) copy coalescing.
268  // This pass works on virtual copies.  Any virtual copies which are not
269  // coalesced get manifested as actual copies
270  {
271    // The IFG is/was triangular.  I am 'squaring it up' so Union can run
272    // faster.  Union requires a 'for all' operation which is slow on the
273    // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
274    // meaning I can visit all the Nodes neighbors less than a Node in time
275    // O(# of neighbors), but I have to visit all the Nodes greater than a
276    // given Node and search them for an instance, i.e., time O(#MaxLRG)).
277    _ifg->SquareUp();
278
279    PhaseAggressiveCoalesce coalesce( *this );
280    coalesce.coalesce_driver( );
281    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
282    // not match the Phi itself, insert a copy.
283    coalesce.insert_copies(_matcher);
284  }
285
286  // After aggressive coalesce, attempt a first cut at coloring.
287  // To color, we need the IFG and for that we need LIVE.
288  {
289    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
290    _live = NULL;
291    rm.reset_to_mark();           // Reclaim working storage
292    IndexSet::reset_memory(C, &live_arena);
293    ifg.init(_maxlrg);
294    gather_lrg_masks( true );
295    live.compute( _maxlrg );
296    _live = &live;
297  }
298
299  // Build physical interference graph
300  uint must_spill = 0;
301  must_spill = build_ifg_physical( &live_arena );
302  // If we have a guaranteed spill, might as well spill now
303  if( must_spill ) {
304    if( !_maxlrg ) return;
305    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
306    C->check_node_count(10*must_spill, "out of nodes before split");
307    if (C->failing())  return;
308    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
309    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
310    // or we failed to split
311    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
312    if (C->failing())  return;
313
314    NOT_PRODUCT( C->verify_graph_edges(); )
315
316    compact();                  // Compact LRGs; return new lower max lrg
317
318    {
319      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
320      _live = NULL;
321      rm.reset_to_mark();         // Reclaim working storage
322      IndexSet::reset_memory(C, &live_arena);
323      ifg.init(_maxlrg);          // Build a new interference graph
324      gather_lrg_masks( true );   // Collect intersect mask
325      live.compute( _maxlrg );    // Compute LIVE
326      _live = &live;
327    }
328    build_ifg_physical( &live_arena );
329    _ifg->SquareUp();
330    _ifg->Compute_Effective_Degree();
331    // Only do conservative coalescing if requested
332    if( OptoCoalesce ) {
333      // Conservative (and pessimistic) copy coalescing of those spills
334      PhaseConservativeCoalesce coalesce( *this );
335      // If max live ranges greater than cutoff, don't color the stack.
336      // This cutoff can be larger than below since it is only done once.
337      coalesce.coalesce_driver( );
338    }
339    compress_uf_map_for_nodes();
340
341#ifdef ASSERT
342    verify(&live_arena, true);
343#endif
344  } else {
345    ifg.SquareUp();
346    ifg.Compute_Effective_Degree();
347#ifdef ASSERT
348    set_was_low();
349#endif
350  }
351
352  // Prepare for Simplify & Select
353  cache_lrg_info();           // Count degree of LRGs
354
355  // Simplify the InterFerence Graph by removing LRGs of low degree.
356  // LRGs of low degree are trivially colorable.
357  Simplify();
358
359  // Select colors by re-inserting LRGs back into the IFG in reverse order.
360  // Return whether or not something spills.
361  uint spills = Select( );
362
363  // If we spill, split and recycle the entire thing
364  while( spills ) {
365    if( _trip_cnt++ > 24 ) {
366      DEBUG_ONLY( dump_for_spill_split_recycle(); )
367      if( _trip_cnt > 27 ) {
368        C->record_method_not_compilable("failed spill-split-recycle sanity check");
369        return;
370      }
371    }
372
373    if( !_maxlrg ) return;
374    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
375    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
376    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
377    if (C->failing())  return;
378
379    compact();                  // Compact LRGs; return new lower max lrg
380
381    // Nuke the live-ness and interference graph and LiveRanGe info
382    {
383      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
384      _live = NULL;
385      rm.reset_to_mark();         // Reclaim working storage
386      IndexSet::reset_memory(C, &live_arena);
387      ifg.init(_maxlrg);
388
389      // Create LiveRanGe array.
390      // Intersect register masks for all USEs and DEFs
391      gather_lrg_masks( true );
392      live.compute( _maxlrg );
393      _live = &live;
394    }
395    must_spill = build_ifg_physical( &live_arena );
396    _ifg->SquareUp();
397    _ifg->Compute_Effective_Degree();
398
399    // Only do conservative coalescing if requested
400    if( OptoCoalesce ) {
401      // Conservative (and pessimistic) copy coalescing
402      PhaseConservativeCoalesce coalesce( *this );
403      // Check for few live ranges determines how aggressive coalesce is.
404      coalesce.coalesce_driver( );
405    }
406    compress_uf_map_for_nodes();
407#ifdef ASSERT
408    verify(&live_arena, true);
409#endif
410    cache_lrg_info();           // Count degree of LRGs
411
412    // Simplify the InterFerence Graph by removing LRGs of low degree.
413    // LRGs of low degree are trivially colorable.
414    Simplify();
415
416    // Select colors by re-inserting LRGs back into the IFG in reverse order.
417    // Return whether or not something spills.
418    spills = Select( );
419  }
420
421  // Count number of Simplify-Select trips per coloring success.
422  _allocator_attempts += _trip_cnt + 1;
423  _allocator_successes += 1;
424
425  // Peephole remove copies
426  post_allocate_copy_removal();
427
428#ifdef ASSERT
429  // Veify the graph after RA.
430  verify(&live_arena);
431#endif
432
433  // max_reg is past the largest *register* used.
434  // Convert that to a frame_slot number.
435  if( _max_reg <= _matcher._new_SP )
436    _framesize = C->out_preserve_stack_slots();
437  else _framesize = _max_reg -_matcher._new_SP;
438  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
439
440  // This frame must preserve the required fp alignment
441  _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
442  assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
443#ifndef PRODUCT
444  _total_framesize += _framesize;
445  if( (int)_framesize > _max_framesize )
446    _max_framesize = _framesize;
447#endif
448
449  // Convert CISC spills
450  fixup_spills();
451
452  // Log regalloc results
453  CompileLog* log = Compile::current()->log();
454  if (log != NULL) {
455    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
456  }
457
458  if (C->failing())  return;
459
460  NOT_PRODUCT( C->verify_graph_edges(); )
461
462  // Move important info out of the live_arena to longer lasting storage.
463  alloc_node_regs(_names.Size());
464  for( uint i=0; i < _names.Size(); i++ ) {
465    if( _names[i] ) {           // Live range associated with Node?
466      LRG &lrg = lrgs( _names[i] );
467      if( lrg.num_regs() == 1 ) {
468        _node_regs[i].set1( lrg.reg() );
469      } else {                  // Must be a register-pair
470        if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
471          // Live ranges record the highest register in their mask.
472          // We want the low register for the AD file writer's convenience.
473          _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
474        } else {                // Misaligned; extract 2 bits
475          OptoReg::Name hi = lrg.reg(); // Get hi register
476          lrg.Remove(hi);       // Yank from mask
477          int lo = lrg.mask().find_first_elem(); // Find lo
478          _node_regs[i].set_pair( hi, lo );
479        }
480      }
481      if( lrg._is_oop ) _node_oops.set(i);
482    } else {
483      _node_regs[i].set_bad();
484    }
485  }
486
487  // Done!
488  _live = NULL;
489  _ifg = NULL;
490  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
491}
492
493//------------------------------de_ssa-----------------------------------------
494void PhaseChaitin::de_ssa() {
495  // Set initial Names for all Nodes.  Most Nodes get the virtual register
496  // number.  A few get the ZERO live range number.  These do not
497  // get allocated, but instead rely on correct scheduling to ensure that
498  // only one instance is simultaneously live at a time.
499  uint lr_counter = 1;
500  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
501    Block *b = _cfg._blocks[i];
502    uint cnt = b->_nodes.size();
503
504    // Handle all the normal Nodes in the block
505    for( uint j = 0; j < cnt; j++ ) {
506      Node *n = b->_nodes[j];
507      // Pre-color to the zero live range, or pick virtual register
508      const RegMask &rm = n->out_RegMask();
509      _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
510    }
511  }
512  // Reset the Union-Find mapping to be identity
513  reset_uf_map(lr_counter);
514}
515
516
517//------------------------------gather_lrg_masks-------------------------------
518// Gather LiveRanGe information, including register masks.  Modification of
519// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
520void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
521
522  // Nail down the frame pointer live range
523  uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
524  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
525
526  // For all blocks
527  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
528    Block *b = _cfg._blocks[i];
529
530    // For all instructions
531    for( uint j = 1; j < b->_nodes.size(); j++ ) {
532      Node *n = b->_nodes[j];
533      uint input_edge_start =1; // Skip control most nodes
534      if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
535      uint idx = n->is_Copy();
536
537      // Get virtual register number, same as LiveRanGe index
538      uint vreg = n2lidx(n);
539      LRG &lrg = lrgs(vreg);
540      if( vreg ) {              // No vreg means un-allocable (e.g. memory)
541
542        // Collect has-copy bit
543        if( idx ) {
544          lrg._has_copy = 1;
545          uint clidx = n2lidx(n->in(idx));
546          LRG &copy_src = lrgs(clidx);
547          copy_src._has_copy = 1;
548        }
549
550        // Check for float-vs-int live range (used in register-pressure
551        // calculations)
552        const Type *n_type = n->bottom_type();
553        if( n_type->is_floatingpoint() )
554          lrg._is_float = 1;
555
556        // Check for twice prior spilling.  Once prior spilling might have
557        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
558        // further spilling is unlikely to make progress.
559        if( _spilled_once.test(n->_idx) ) {
560          lrg._was_spilled1 = 1;
561          if( _spilled_twice.test(n->_idx) )
562            lrg._was_spilled2 = 1;
563        }
564
565#ifndef PRODUCT
566        if (trace_spilling() && lrg._def != NULL) {
567          // collect defs for MultiDef printing
568          if (lrg._defs == NULL) {
569            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
570            lrg._defs->append(lrg._def);
571          }
572          lrg._defs->append(n);
573        }
574#endif
575
576        // Check for a single def LRG; these can spill nicely
577        // via rematerialization.  Flag as NULL for no def found
578        // yet, or 'n' for single def or -1 for many defs.
579        lrg._def = lrg._def ? NodeSentinel : n;
580
581        // Limit result register mask to acceptable registers
582        const RegMask &rm = n->out_RegMask();
583        lrg.AND( rm );
584        // Check for bound register masks
585        const RegMask &lrgmask = lrg.mask();
586        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
587          lrg._is_bound = 1;
588
589        // Check for maximum frequency value
590        if( lrg._maxfreq < b->_freq )
591          lrg._maxfreq = b->_freq;
592
593        int ireg = n->ideal_reg();
594        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
595                "oops must be in Op_RegP's" );
596        // Check for oop-iness, or long/double
597        // Check for multi-kill projection
598        switch( ireg ) {
599        case MachProjNode::fat_proj:
600          // Fat projections have size equal to number of registers killed
601          lrg.set_num_regs(rm.Size());
602          lrg.set_reg_pressure(lrg.num_regs());
603          lrg._fat_proj = 1;
604          lrg._is_bound = 1;
605          break;
606        case Op_RegP:
607#ifdef _LP64
608          lrg.set_num_regs(2);  // Size is 2 stack words
609#else
610          lrg.set_num_regs(1);  // Size is 1 stack word
611#endif
612          // Register pressure is tracked relative to the maximum values
613          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
614          // and relative to other types which compete for the same regs.
615          //
616          // The following table contains suggested values based on the
617          // architectures as defined in each .ad file.
618          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
619          // compile-speed or performance.
620          // Note1:
621          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
622          // since .ad registers are defined as high and low halves.
623          // These reg_pressure values remain compatible with the code
624          // in is_high_pressure() which relates get_invalid_mask_size(),
625          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
626          // Note2:
627          // SPARC -d32 has 24 registers available for integral values,
628          // but only 10 of these are safe for 64-bit longs.
629          // Using set_reg_pressure(2) for both int and long means
630          // the allocator will believe it can fit 26 longs into
631          // registers.  Using 2 for longs and 1 for ints means the
632          // allocator will attempt to put 52 integers into registers.
633          // The settings below limit this problem to methods with
634          // many long values which are being run on 32-bit SPARC.
635          //
636          // ------------------- reg_pressure --------------------
637          // Each entry is reg_pressure_per_value,number_of_regs
638          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
639          // IA32     2     1     1          1    1          6           6
640          // IA64     1     1     1          1    1         50          41
641          // SPARC    2     2     2          2    2         48 (24)     52 (26)
642          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
643          // AMD64    1     1     1          1    1         14          15
644          // -----------------------------------------------------
645#if defined(SPARC)
646          lrg.set_reg_pressure(2);  // use for v9 as well
647#else
648          lrg.set_reg_pressure(1);  // normally one value per register
649#endif
650          if( n_type->isa_oop_ptr() ) {
651            lrg._is_oop = 1;
652          }
653          break;
654        case Op_RegL:           // Check for long or double
655        case Op_RegD:
656          lrg.set_num_regs(2);
657          // Define platform specific register pressure
658#ifdef SPARC
659          lrg.set_reg_pressure(2);
660#elif defined(IA32)
661          if( ireg == Op_RegL ) {
662            lrg.set_reg_pressure(2);
663          } else {
664            lrg.set_reg_pressure(1);
665          }
666#else
667          lrg.set_reg_pressure(1);  // normally one value per register
668#endif
669          // If this def of a double forces a mis-aligned double,
670          // flag as '_fat_proj' - really flag as allowing misalignment
671          // AND changes how we count interferences.  A mis-aligned
672          // double can interfere with TWO aligned pairs, or effectively
673          // FOUR registers!
674          if( rm.is_misaligned_Pair() ) {
675            lrg._fat_proj = 1;
676            lrg._is_bound = 1;
677          }
678          break;
679        case Op_RegF:
680        case Op_RegI:
681        case Op_RegN:
682        case Op_RegFlags:
683        case 0:                 // not an ideal register
684          lrg.set_num_regs(1);
685#ifdef SPARC
686          lrg.set_reg_pressure(2);
687#else
688          lrg.set_reg_pressure(1);
689#endif
690          break;
691        default:
692          ShouldNotReachHere();
693        }
694      }
695
696      // Now do the same for inputs
697      uint cnt = n->req();
698      // Setup for CISC SPILLING
699      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
700      if( UseCISCSpill && after_aggressive ) {
701        inp = n->cisc_operand();
702        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
703          // Convert operand number to edge index number
704          inp = n->as_Mach()->operand_index(inp);
705      }
706      // Prepare register mask for each input
707      for( uint k = input_edge_start; k < cnt; k++ ) {
708        uint vreg = n2lidx(n->in(k));
709        if( !vreg ) continue;
710
711        // If this instruction is CISC Spillable, add the flags
712        // bit to its appropriate input
713        if( UseCISCSpill && after_aggressive && inp == k ) {
714#ifndef PRODUCT
715          if( TraceCISCSpill ) {
716            tty->print("  use_cisc_RegMask: ");
717            n->dump();
718          }
719#endif
720          n->as_Mach()->use_cisc_RegMask();
721        }
722
723        LRG &lrg = lrgs(vreg);
724        // // Testing for floating point code shape
725        // Node *test = n->in(k);
726        // if( test->is_Mach() ) {
727        //   MachNode *m = test->as_Mach();
728        //   int  op = m->ideal_Opcode();
729        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
730        //     int zzz = 1;
731        //   }
732        // }
733
734        // Limit result register mask to acceptable registers.
735        // Do not limit registers from uncommon uses before
736        // AggressiveCoalesce.  This effectively pre-virtual-splits
737        // around uncommon uses of common defs.
738        const RegMask &rm = n->in_RegMask(k);
739        if( !after_aggressive &&
740          _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
741          // Since we are BEFORE aggressive coalesce, leave the register
742          // mask untrimmed by the call.  This encourages more coalescing.
743          // Later, AFTER aggressive, this live range will have to spill
744          // but the spiller handles slow-path calls very nicely.
745        } else {
746          lrg.AND( rm );
747        }
748        // Check for bound register masks
749        const RegMask &lrgmask = lrg.mask();
750        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
751          lrg._is_bound = 1;
752        // If this use of a double forces a mis-aligned double,
753        // flag as '_fat_proj' - really flag as allowing misalignment
754        // AND changes how we count interferences.  A mis-aligned
755        // double can interfere with TWO aligned pairs, or effectively
756        // FOUR registers!
757        if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
758          lrg._fat_proj = 1;
759          lrg._is_bound = 1;
760        }
761        // if the LRG is an unaligned pair, we will have to spill
762        // so clear the LRG's register mask if it is not already spilled
763        if ( !n->is_SpillCopy() &&
764               (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
765               lrgmask.is_misaligned_Pair()) {
766          lrg.Clear();
767        }
768
769        // Check for maximum frequency value
770        if( lrg._maxfreq < b->_freq )
771          lrg._maxfreq = b->_freq;
772
773      } // End for all allocated inputs
774    } // end for all instructions
775  } // end for all blocks
776
777  // Final per-liverange setup
778  for( uint i2=0; i2<_maxlrg; i2++ ) {
779    LRG &lrg = lrgs(i2);
780    if( lrg.num_regs() == 2 && !lrg._fat_proj )
781      lrg.ClearToPairs();
782    lrg.compute_set_mask_size();
783    if( lrg.not_free() ) {      // Handle case where we lose from the start
784      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
785      lrg._direct_conflict = 1;
786    }
787    lrg.set_degree(0);          // no neighbors in IFG yet
788  }
789}
790
791//------------------------------set_was_low------------------------------------
792// Set the was-lo-degree bit.  Conservative coalescing should not change the
793// colorability of the graph.  If any live range was of low-degree before
794// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
795// The bit is checked in Simplify.
796void PhaseChaitin::set_was_low() {
797#ifdef ASSERT
798  for( uint i = 1; i < _maxlrg; i++ ) {
799    int size = lrgs(i).num_regs();
800    uint old_was_lo = lrgs(i)._was_lo;
801    lrgs(i)._was_lo = 0;
802    if( lrgs(i).lo_degree() ) {
803      lrgs(i)._was_lo = 1;      // Trivially of low degree
804    } else {                    // Else check the Brigg's assertion
805      // Brigg's observation is that the lo-degree neighbors of a
806      // hi-degree live range will not interfere with the color choices
807      // of said hi-degree live range.  The Simplify reverse-stack-coloring
808      // order takes care of the details.  Hence you do not have to count
809      // low-degree neighbors when determining if this guy colors.
810      int briggs_degree = 0;
811      IndexSet *s = _ifg->neighbors(i);
812      IndexSetIterator elements(s);
813      uint lidx;
814      while((lidx = elements.next()) != 0) {
815        if( !lrgs(lidx).lo_degree() )
816          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
817      }
818      if( briggs_degree < lrgs(i).degrees_of_freedom() )
819        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
820    }
821    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
822  }
823#endif
824}
825
826#define REGISTER_CONSTRAINED 16
827
828//------------------------------cache_lrg_info---------------------------------
829// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
830void PhaseChaitin::cache_lrg_info( ) {
831
832  for( uint i = 1; i < _maxlrg; i++ ) {
833    LRG &lrg = lrgs(i);
834
835    // Check for being of low degree: means we can be trivially colored.
836    // Low degree, dead or must-spill guys just get to simplify right away
837    if( lrg.lo_degree() ||
838       !lrg.alive() ||
839        lrg._must_spill ) {
840      // Split low degree list into those guys that must get a
841      // register and those that can go to register or stack.
842      // The idea is LRGs that can go register or stack color first when
843      // they have a good chance of getting a register.  The register-only
844      // lo-degree live ranges always get a register.
845      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
846      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
847        lrg._next = _lo_stk_degree;
848        _lo_stk_degree = i;
849      } else {
850        lrg._next = _lo_degree;
851        _lo_degree = i;
852      }
853    } else {                    // Else high degree
854      lrgs(_hi_degree)._prev = i;
855      lrg._next = _hi_degree;
856      lrg._prev = 0;
857      _hi_degree = i;
858    }
859  }
860}
861
862//------------------------------Pre-Simplify-----------------------------------
863// Simplify the IFG by removing LRGs of low degree that have NO copies
864void PhaseChaitin::Pre_Simplify( ) {
865
866  // Warm up the lo-degree no-copy list
867  int lo_no_copy = 0;
868  for( uint i = 1; i < _maxlrg; i++ ) {
869    if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
870        !lrgs(i).alive() ||
871        lrgs(i)._must_spill ) {
872      lrgs(i)._next = lo_no_copy;
873      lo_no_copy = i;
874    }
875  }
876
877  while( lo_no_copy ) {
878    uint lo = lo_no_copy;
879    lo_no_copy = lrgs(lo)._next;
880    int size = lrgs(lo).num_regs();
881
882    // Put the simplified guy on the simplified list.
883    lrgs(lo)._next = _simplified;
884    _simplified = lo;
885
886    // Yank this guy from the IFG.
887    IndexSet *adj = _ifg->remove_node( lo );
888
889    // If any neighbors' degrees fall below their number of
890    // allowed registers, then put that neighbor on the low degree
891    // list.  Note that 'degree' can only fall and 'numregs' is
892    // unchanged by this action.  Thus the two are equal at most once,
893    // so LRGs hit the lo-degree worklists at most once.
894    IndexSetIterator elements(adj);
895    uint neighbor;
896    while ((neighbor = elements.next()) != 0) {
897      LRG *n = &lrgs(neighbor);
898      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
899
900      // Check for just becoming of-low-degree
901      if( n->just_lo_degree() && !n->_has_copy ) {
902        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
903        // Put on lo-degree list
904        n->_next = lo_no_copy;
905        lo_no_copy = neighbor;
906      }
907    }
908  } // End of while lo-degree no_copy worklist not empty
909
910  // No more lo-degree no-copy live ranges to simplify
911}
912
913//------------------------------Simplify---------------------------------------
914// Simplify the IFG by removing LRGs of low degree.
915void PhaseChaitin::Simplify( ) {
916
917  while( 1 ) {                  // Repeat till simplified it all
918    // May want to explore simplifying lo_degree before _lo_stk_degree.
919    // This might result in more spills coloring into registers during
920    // Select().
921    while( _lo_degree || _lo_stk_degree ) {
922      // If possible, pull from lo_stk first
923      uint lo;
924      if( _lo_degree ) {
925        lo = _lo_degree;
926        _lo_degree = lrgs(lo)._next;
927      } else {
928        lo = _lo_stk_degree;
929        _lo_stk_degree = lrgs(lo)._next;
930      }
931
932      // Put the simplified guy on the simplified list.
933      lrgs(lo)._next = _simplified;
934      _simplified = lo;
935      // If this guy is "at risk" then mark his current neighbors
936      if( lrgs(lo)._at_risk ) {
937        IndexSetIterator elements(_ifg->neighbors(lo));
938        uint datum;
939        while ((datum = elements.next()) != 0) {
940          lrgs(datum)._risk_bias = lo;
941        }
942      }
943
944      // Yank this guy from the IFG.
945      IndexSet *adj = _ifg->remove_node( lo );
946
947      // If any neighbors' degrees fall below their number of
948      // allowed registers, then put that neighbor on the low degree
949      // list.  Note that 'degree' can only fall and 'numregs' is
950      // unchanged by this action.  Thus the two are equal at most once,
951      // so LRGs hit the lo-degree worklist at most once.
952      IndexSetIterator elements(adj);
953      uint neighbor;
954      while ((neighbor = elements.next()) != 0) {
955        LRG *n = &lrgs(neighbor);
956#ifdef ASSERT
957        if( VerifyOpto || VerifyRegisterAllocator ) {
958          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
959        }
960#endif
961
962        // Check for just becoming of-low-degree just counting registers.
963        // _must_spill live ranges are already on the low degree list.
964        if( n->just_lo_degree() && !n->_must_spill ) {
965          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
966          // Pull from hi-degree list
967          uint prev = n->_prev;
968          uint next = n->_next;
969          if( prev ) lrgs(prev)._next = next;
970          else _hi_degree = next;
971          lrgs(next)._prev = prev;
972          n->_next = _lo_degree;
973          _lo_degree = neighbor;
974        }
975      }
976    } // End of while lo-degree/lo_stk_degree worklist not empty
977
978    // Check for got everything: is hi-degree list empty?
979    if( !_hi_degree ) break;
980
981    // Time to pick a potential spill guy
982    uint lo_score = _hi_degree;
983    double score = lrgs(lo_score).score();
984    double area = lrgs(lo_score)._area;
985
986    // Find cheapest guy
987    debug_only( int lo_no_simplify=0; );
988    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
989      assert( !(*_ifg->_yanked)[i], "" );
990      // It's just vaguely possible to move hi-degree to lo-degree without
991      // going through a just-lo-degree stage: If you remove a double from
992      // a float live range it's degree will drop by 2 and you can skip the
993      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
994      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
995      if( lrgs(i).lo_degree() ) {
996        lo_score = i;
997        break;
998      }
999      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1000      double iscore = lrgs(i).score();
1001      double iarea = lrgs(i)._area;
1002
1003      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1004      // wins.  Ties happen because all live ranges in question have spilled
1005      // a few times before and the spill-score adds a huge number which
1006      // washes out the low order bits.  We are choosing the lesser of 2
1007      // evils; in this case pick largest area to spill.
1008      if( iscore < score ||
1009          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
1010        lo_score = i;
1011        score = iscore;
1012        area = iarea;
1013      }
1014    }
1015    LRG *lo_lrg = &lrgs(lo_score);
1016    // The live range we choose for spilling is either hi-degree, or very
1017    // rarely it can be low-degree.  If we choose a hi-degree live range
1018    // there better not be any lo-degree choices.
1019    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1020
1021    // Pull from hi-degree list
1022    uint prev = lo_lrg->_prev;
1023    uint next = lo_lrg->_next;
1024    if( prev ) lrgs(prev)._next = next;
1025    else _hi_degree = next;
1026    lrgs(next)._prev = prev;
1027    // Jam him on the lo-degree list, despite his high degree.
1028    // Maybe he'll get a color, and maybe he'll spill.
1029    // Only Select() will know.
1030    lrgs(lo_score)._at_risk = true;
1031    _lo_degree = lo_score;
1032    lo_lrg->_next = 0;
1033
1034  } // End of while not simplified everything
1035
1036}
1037
1038//------------------------------bias_color-------------------------------------
1039// Choose a color using the biasing heuristic
1040OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1041
1042  // Check for "at_risk" LRG's
1043  uint risk_lrg = Find(lrg._risk_bias);
1044  if( risk_lrg != 0 ) {
1045    // Walk the colored neighbors of the "at_risk" candidate
1046    // Choose a color which is both legal and already taken by a neighbor
1047    // of the "at_risk" candidate in order to improve the chances of the
1048    // "at_risk" candidate of coloring
1049    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1050    uint datum;
1051    while ((datum = elements.next()) != 0) {
1052      OptoReg::Name reg = lrgs(datum).reg();
1053      // If this LRG's register is legal for us, choose it
1054      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1055          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1056          (lrg.num_regs()==1 || // either size 1
1057           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1058        return reg;
1059    }
1060  }
1061
1062  uint copy_lrg = Find(lrg._copy_bias);
1063  if( copy_lrg != 0 ) {
1064    // If he has a color,
1065    if( !(*(_ifg->_yanked))[copy_lrg] ) {
1066      OptoReg::Name reg = lrgs(copy_lrg).reg();
1067      //  And it is legal for you,
1068      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1069          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1070          (lrg.num_regs()==1 || // either size 1
1071           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1072        return reg;
1073    } else if( chunk == 0 ) {
1074      // Choose a color which is legal for him
1075      RegMask tempmask = lrg.mask();
1076      tempmask.AND(lrgs(copy_lrg).mask());
1077      OptoReg::Name reg;
1078      if( lrg.num_regs() == 1 ) {
1079        reg = tempmask.find_first_elem();
1080      } else {
1081        tempmask.ClearToPairs();
1082        reg = tempmask.find_first_pair();
1083      }
1084      if( OptoReg::is_valid(reg) )
1085        return reg;
1086    }
1087  }
1088
1089  // If no bias info exists, just go with the register selection ordering
1090  if( lrg.num_regs() == 2 ) {
1091    // Find an aligned pair
1092    return OptoReg::add(lrg.mask().find_first_pair(),chunk);
1093  }
1094
1095  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1096  // copy removal to remove many more copies, by preventing a just-assigned
1097  // register from being repeatedly assigned.
1098  OptoReg::Name reg = lrg.mask().find_first_elem();
1099  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1100    // This 'Remove; find; Insert' idiom is an expensive way to find the
1101    // SECOND element in the mask.
1102    lrg.Remove(reg);
1103    OptoReg::Name reg2 = lrg.mask().find_first_elem();
1104    lrg.Insert(reg);
1105    if( OptoReg::is_reg(reg2))
1106      reg = reg2;
1107  }
1108  return OptoReg::add( reg, chunk );
1109}
1110
1111//------------------------------choose_color-----------------------------------
1112// Choose a color in the current chunk
1113OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1114  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1115  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1116
1117  if( lrg.num_regs() == 1 ||    // Common Case
1118      !lrg._fat_proj )          // Aligned+adjacent pairs ok
1119    // Use a heuristic to "bias" the color choice
1120    return bias_color(lrg, chunk);
1121
1122  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1123
1124  // Fat-proj case or misaligned double argument.
1125  assert(lrg.compute_mask_size() == lrg.num_regs() ||
1126         lrg.num_regs() == 2,"fat projs exactly color" );
1127  assert( !chunk, "always color in 1st chunk" );
1128  // Return the highest element in the set.
1129  return lrg.mask().find_last_elem();
1130}
1131
1132//------------------------------Select-----------------------------------------
1133// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1134// in reverse order of removal.  As long as nothing of hi-degree was yanked,
1135// everything going back is guaranteed a color.  Select that color.  If some
1136// hi-degree LRG cannot get a color then we record that we must spill.
1137uint PhaseChaitin::Select( ) {
1138  uint spill_reg = LRG::SPILL_REG;
1139  _max_reg = OptoReg::Name(0);  // Past max register used
1140  while( _simplified ) {
1141    // Pull next LRG from the simplified list - in reverse order of removal
1142    uint lidx = _simplified;
1143    LRG *lrg = &lrgs(lidx);
1144    _simplified = lrg->_next;
1145
1146
1147#ifndef PRODUCT
1148    if (trace_spilling()) {
1149      ttyLocker ttyl;
1150      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1151                    lrg->degrees_of_freedom());
1152      lrg->dump();
1153    }
1154#endif
1155
1156    // Re-insert into the IFG
1157    _ifg->re_insert(lidx);
1158    if( !lrg->alive() ) continue;
1159    // capture allstackedness flag before mask is hacked
1160    const int is_allstack = lrg->mask().is_AllStack();
1161
1162    // Yeah, yeah, yeah, I know, I know.  I can refactor this
1163    // to avoid the GOTO, although the refactored code will not
1164    // be much clearer.  We arrive here IFF we have a stack-based
1165    // live range that cannot color in the current chunk, and it
1166    // has to move into the next free stack chunk.
1167    int chunk = 0;              // Current chunk is first chunk
1168    retry_next_chunk:
1169
1170    // Remove neighbor colors
1171    IndexSet *s = _ifg->neighbors(lidx);
1172
1173    debug_only(RegMask orig_mask = lrg->mask();)
1174    IndexSetIterator elements(s);
1175    uint neighbor;
1176    while ((neighbor = elements.next()) != 0) {
1177      // Note that neighbor might be a spill_reg.  In this case, exclusion
1178      // of its color will be a no-op, since the spill_reg chunk is in outer
1179      // space.  Also, if neighbor is in a different chunk, this exclusion
1180      // will be a no-op.  (Later on, if lrg runs out of possible colors in
1181      // its chunk, a new chunk of color may be tried, in which case
1182      // examination of neighbors is started again, at retry_next_chunk.)
1183      LRG &nlrg = lrgs(neighbor);
1184      OptoReg::Name nreg = nlrg.reg();
1185      // Only subtract masks in the same chunk
1186      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1187#ifndef PRODUCT
1188        uint size = lrg->mask().Size();
1189        RegMask rm = lrg->mask();
1190#endif
1191        lrg->SUBTRACT(nlrg.mask());
1192#ifndef PRODUCT
1193        if (trace_spilling() && lrg->mask().Size() != size) {
1194          ttyLocker ttyl;
1195          tty->print("L%d ", lidx);
1196          rm.dump();
1197          tty->print(" intersected L%d ", neighbor);
1198          nlrg.mask().dump();
1199          tty->print(" removed ");
1200          rm.SUBTRACT(lrg->mask());
1201          rm.dump();
1202          tty->print(" leaving ");
1203          lrg->mask().dump();
1204          tty->cr();
1205        }
1206#endif
1207      }
1208    }
1209    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1210    // Aligned pairs need aligned masks
1211    if( lrg->num_regs() == 2 && !lrg->_fat_proj )
1212      lrg->ClearToPairs();
1213
1214    // Check if a color is available and if so pick the color
1215    OptoReg::Name reg = choose_color( *lrg, chunk );
1216#ifdef SPARC
1217    debug_only(lrg->compute_set_mask_size());
1218    assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1219#endif
1220
1221    //---------------
1222    // If we fail to color and the AllStack flag is set, trigger
1223    // a chunk-rollover event
1224    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1225      // Bump register mask up to next stack chunk
1226      chunk += RegMask::CHUNK_SIZE;
1227      lrg->Set_All();
1228
1229      goto retry_next_chunk;
1230    }
1231
1232    //---------------
1233    // Did we get a color?
1234    else if( OptoReg::is_valid(reg)) {
1235#ifndef PRODUCT
1236      RegMask avail_rm = lrg->mask();
1237#endif
1238
1239      // Record selected register
1240      lrg->set_reg(reg);
1241
1242      if( reg >= _max_reg )     // Compute max register limit
1243        _max_reg = OptoReg::add(reg,1);
1244      // Fold reg back into normal space
1245      reg = OptoReg::add(reg,-chunk);
1246
1247      // If the live range is not bound, then we actually had some choices
1248      // to make.  In this case, the mask has more bits in it than the colors
1249      // choosen.  Restrict the mask to just what was picked.
1250      if( lrg->num_regs() == 1 ) { // Size 1 live range
1251        lrg->Clear();           // Clear the mask
1252        lrg->Insert(reg);       // Set regmask to match selected reg
1253        lrg->set_mask_size(1);
1254      } else if( !lrg->_fat_proj ) {
1255        // For pairs, also insert the low bit of the pair
1256        assert( lrg->num_regs() == 2, "unbound fatproj???" );
1257        lrg->Clear();           // Clear the mask
1258        lrg->Insert(reg);       // Set regmask to match selected reg
1259        lrg->Insert(OptoReg::add(reg,-1));
1260        lrg->set_mask_size(2);
1261      } else {                  // Else fatproj
1262        // mask must be equal to fatproj bits, by definition
1263      }
1264#ifndef PRODUCT
1265      if (trace_spilling()) {
1266        ttyLocker ttyl;
1267        tty->print("L%d selected ", lidx);
1268        lrg->mask().dump();
1269        tty->print(" from ");
1270        avail_rm.dump();
1271        tty->cr();
1272      }
1273#endif
1274      // Note that reg is the highest-numbered register in the newly-bound mask.
1275    } // end color available case
1276
1277    //---------------
1278    // Live range is live and no colors available
1279    else {
1280      assert( lrg->alive(), "" );
1281      assert( !lrg->_fat_proj || lrg->is_multidef() ||
1282              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1283      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1284
1285      // Assign the special spillreg register
1286      lrg->set_reg(OptoReg::Name(spill_reg++));
1287      // Do not empty the regmask; leave mask_size lying around
1288      // for use during Spilling
1289#ifndef PRODUCT
1290      if( trace_spilling() ) {
1291        ttyLocker ttyl;
1292        tty->print("L%d spilling with neighbors: ", lidx);
1293        s->dump();
1294        debug_only(tty->print(" original mask: "));
1295        debug_only(orig_mask.dump());
1296        dump_lrg(lidx);
1297      }
1298#endif
1299    } // end spill case
1300
1301  }
1302
1303  return spill_reg-LRG::SPILL_REG;      // Return number of spills
1304}
1305
1306
1307//------------------------------copy_was_spilled-------------------------------
1308// Copy 'was_spilled'-edness from the source Node to the dst Node.
1309void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1310  if( _spilled_once.test(src->_idx) ) {
1311    _spilled_once.set(dst->_idx);
1312    lrgs(Find(dst))._was_spilled1 = 1;
1313    if( _spilled_twice.test(src->_idx) ) {
1314      _spilled_twice.set(dst->_idx);
1315      lrgs(Find(dst))._was_spilled2 = 1;
1316    }
1317  }
1318}
1319
1320//------------------------------set_was_spilled--------------------------------
1321// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1322void PhaseChaitin::set_was_spilled( Node *n ) {
1323  if( _spilled_once.test_set(n->_idx) )
1324    _spilled_twice.set(n->_idx);
1325}
1326
1327//------------------------------fixup_spills-----------------------------------
1328// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1329// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1330void PhaseChaitin::fixup_spills() {
1331  // This function does only cisc spill work.
1332  if( !UseCISCSpill ) return;
1333
1334  NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1335
1336  // Grab the Frame Pointer
1337  Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
1338
1339  // For all blocks
1340  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1341    Block *b = _cfg._blocks[i];
1342
1343    // For all instructions in block
1344    uint last_inst = b->end_idx();
1345    for( uint j = 1; j <= last_inst; j++ ) {
1346      Node *n = b->_nodes[j];
1347
1348      // Dead instruction???
1349      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1350              C->top() == n ||  // Or the random TOP node
1351              n->is_Proj(),     // Or a fat-proj kill node
1352              "No dead instructions after post-alloc" );
1353
1354      int inp = n->cisc_operand();
1355      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1356        // Convert operand number to edge index number
1357        MachNode *mach = n->as_Mach();
1358        inp = mach->operand_index(inp);
1359        Node *src = n->in(inp);   // Value to load or store
1360        LRG &lrg_cisc = lrgs( Find_const(src) );
1361        OptoReg::Name src_reg = lrg_cisc.reg();
1362        // Doubles record the HIGH register of an adjacent pair.
1363        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1364        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1365          // This is a CISC Spill, get stack offset and construct new node
1366#ifndef PRODUCT
1367          if( TraceCISCSpill ) {
1368            tty->print("    reg-instr:  ");
1369            n->dump();
1370          }
1371#endif
1372          int stk_offset = reg2offset(src_reg);
1373          // Bailout if we might exceed node limit when spilling this instruction
1374          C->check_node_count(0, "out of nodes fixing spills");
1375          if (C->failing())  return;
1376          // Transform node
1377          MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1378          cisc->set_req(inp,fp);          // Base register is frame pointer
1379          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1380            assert( cisc->oper_input_base() == 2, "Only adding one edge");
1381            cisc->ins_req(1,src);         // Requires a memory edge
1382          }
1383          b->_nodes.map(j,cisc);          // Insert into basic block
1384          n->subsume_by(cisc); // Correct graph
1385          //
1386          ++_used_cisc_instructions;
1387#ifndef PRODUCT
1388          if( TraceCISCSpill ) {
1389            tty->print("    cisc-instr: ");
1390            cisc->dump();
1391          }
1392#endif
1393        } else {
1394#ifndef PRODUCT
1395          if( TraceCISCSpill ) {
1396            tty->print("    using reg-instr: ");
1397            n->dump();
1398          }
1399#endif
1400          ++_unused_cisc_instructions;    // input can be on stack
1401        }
1402      }
1403
1404    } // End of for all instructions
1405
1406  } // End of for all blocks
1407}
1408
1409//------------------------------find_base_for_derived--------------------------
1410// Helper to stretch above; recursively discover the base Node for a
1411// given derived Node.  Easy for AddP-related machine nodes, but needs
1412// to be recursive for derived Phis.
1413Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1414  // See if already computed; if so return it
1415  if( derived_base_map[derived->_idx] )
1416    return derived_base_map[derived->_idx];
1417
1418  // See if this happens to be a base.
1419  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1420  // pointers derived from NULL!  These are always along paths that
1421  // can't happen at run-time but the optimizer cannot deduce it so
1422  // we have to handle it gracefully.
1423  const TypePtr *tj = derived->bottom_type()->isa_ptr();
1424  // If its an OOP with a non-zero offset, then it is derived.
1425  if( tj->_offset == 0 ) {
1426    derived_base_map[derived->_idx] = derived;
1427    return derived;
1428  }
1429  // Derived is NULL+offset?  Base is NULL!
1430  if( derived->is_Con() ) {
1431    Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR );
1432    uint no_lidx = 0;  // an unmatched constant in debug info has no LRG
1433    _names.extend(base->_idx, no_lidx);
1434    derived_base_map[derived->_idx] = base;
1435    return base;
1436  }
1437
1438  // Check for AddP-related opcodes
1439  if( !derived->is_Phi() ) {
1440    assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
1441    Node *base = derived->in(AddPNode::Base);
1442    derived_base_map[derived->_idx] = base;
1443    return base;
1444  }
1445
1446  // Recursively find bases for Phis.
1447  // First check to see if we can avoid a base Phi here.
1448  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1449  uint i;
1450  for( i = 2; i < derived->req(); i++ )
1451    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1452      break;
1453  // Went to the end without finding any different bases?
1454  if( i == derived->req() ) {   // No need for a base Phi here
1455    derived_base_map[derived->_idx] = base;
1456    return base;
1457  }
1458
1459  // Now we see we need a base-Phi here to merge the bases
1460  base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() );
1461  for( i = 1; i < derived->req(); i++ )
1462    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1463
1464  // Search the current block for an existing base-Phi
1465  Block *b = _cfg._bbs[derived->_idx];
1466  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1467    Node *phi = b->_nodes[i];
1468    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1469      b->_nodes.insert( i, base ); // Must insert created Phi here as base
1470      _cfg._bbs.map( base->_idx, b );
1471      new_lrg(base,maxlrg++);
1472      break;
1473    }
1474    // See if Phi matches.
1475    uint j;
1476    for( j = 1; j < base->req(); j++ )
1477      if( phi->in(j) != base->in(j) &&
1478          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1479        break;
1480    if( j == base->req() ) {    // All inputs match?
1481      base = phi;               // Then use existing 'phi' and drop 'base'
1482      break;
1483    }
1484  }
1485
1486
1487  // Cache info for later passes
1488  derived_base_map[derived->_idx] = base;
1489  return base;
1490}
1491
1492
1493//------------------------------stretch_base_pointer_live_ranges---------------
1494// At each Safepoint, insert extra debug edges for each pair of derived value/
1495// base pointer that is live across the Safepoint for oopmap building.  The
1496// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1497// required edge set.
1498bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
1499  int must_recompute_live = false;
1500  uint maxlrg = _maxlrg;
1501  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1502  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1503
1504  // For all blocks in RPO do...
1505  for( uint i=0; i<_cfg._num_blocks; i++ ) {
1506    Block *b = _cfg._blocks[i];
1507    // Note use of deep-copy constructor.  I cannot hammer the original
1508    // liveout bits, because they are needed by the following coalesce pass.
1509    IndexSet liveout(_live->live(b));
1510
1511    for( uint j = b->end_idx() + 1; j > 1; j-- ) {
1512      Node *n = b->_nodes[j-1];
1513
1514      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1515      // like to see in the same register.  Compare uses the loop-phi and so
1516      // extends its live range BUT cannot be part of the cycle.  If this
1517      // extended live range overlaps with the update of the loop-phi value
1518      // we need both alive at the same time -- which requires at least 1
1519      // copy.  But because Intel has only 2-address registers we end up with
1520      // at least 2 copies, one before the loop-phi update instruction and
1521      // one after.  Instead we split the input to the compare just after the
1522      // phi.
1523      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1524        Node *phi = n->in(1);
1525        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1526          Block *phi_block = _cfg._bbs[phi->_idx];
1527          if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
1528            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1529            Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1530            insert_proj( phi_block, 1, spill, maxlrg++ );
1531            n->set_req(1,spill);
1532            must_recompute_live = true;
1533          }
1534        }
1535      }
1536
1537      // Get value being defined
1538      uint lidx = n2lidx(n);
1539      if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
1540        // Remove from live-out set
1541        liveout.remove(lidx);
1542
1543        // Copies do not define a new value and so do not interfere.
1544        // Remove the copies source from the liveout set before interfering.
1545        uint idx = n->is_Copy();
1546        if( idx ) liveout.remove( n2lidx(n->in(idx)) );
1547      }
1548
1549      // Found a safepoint?
1550      JVMState *jvms = n->jvms();
1551      if( jvms ) {
1552        // Now scan for a live derived pointer
1553        IndexSetIterator elements(&liveout);
1554        uint neighbor;
1555        while ((neighbor = elements.next()) != 0) {
1556          // Find reaching DEF for base and derived values
1557          // This works because we are still in SSA during this call.
1558          Node *derived = lrgs(neighbor)._def;
1559          const TypePtr *tj = derived->bottom_type()->isa_ptr();
1560          // If its an OOP with a non-zero offset, then it is derived.
1561          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1562            Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
1563            assert( base->_idx < _names.Size(), "" );
1564            // Add reaching DEFs of derived pointer and base pointer as a
1565            // pair of inputs
1566            n->add_req( derived );
1567            n->add_req( base );
1568
1569            // See if the base pointer is already live to this point.
1570            // Since I'm working on the SSA form, live-ness amounts to
1571            // reaching def's.  So if I find the base's live range then
1572            // I know the base's def reaches here.
1573            if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
1574                 !liveout.member( n2lidx(base) ) ) && // not live) AND
1575                 (n2lidx(base) > 0)                && // not a constant
1576                 _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
1577              // Base pointer is not currently live.  Since I stretched
1578              // the base pointer to here and it crosses basic-block
1579              // boundaries, the global live info is now incorrect.
1580              // Recompute live.
1581              must_recompute_live = true;
1582            } // End of if base pointer is not live to debug info
1583          }
1584        } // End of scan all live data for derived ptrs crossing GC point
1585      } // End of if found a GC point
1586
1587      // Make all inputs live
1588      if( !n->is_Phi() ) {      // Phi function uses come from prior block
1589        for( uint k = 1; k < n->req(); k++ ) {
1590          uint lidx = n2lidx(n->in(k));
1591          if( lidx < _maxlrg )
1592            liveout.insert( lidx );
1593        }
1594      }
1595
1596    } // End of forall instructions in block
1597    liveout.clear();  // Free the memory used by liveout.
1598
1599  } // End of forall blocks
1600  _maxlrg = maxlrg;
1601
1602  // If I created a new live range I need to recompute live
1603  if( maxlrg != _ifg->_maxlrg )
1604    must_recompute_live = true;
1605
1606  return must_recompute_live != 0;
1607}
1608
1609
1610//------------------------------add_reference----------------------------------
1611// Extend the node to LRG mapping
1612void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
1613  _names.extend( node->_idx, n2lidx(old_node) );
1614}
1615
1616//------------------------------dump-------------------------------------------
1617#ifndef PRODUCT
1618void PhaseChaitin::dump( const Node *n ) const {
1619  uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
1620  tty->print("L%d",r);
1621  if( r && n->Opcode() != Op_Phi ) {
1622    if( _node_regs ) {          // Got a post-allocation copy of allocation?
1623      tty->print("[");
1624      OptoReg::Name second = get_reg_second(n);
1625      if( OptoReg::is_valid(second) ) {
1626        if( OptoReg::is_reg(second) )
1627          tty->print("%s:",Matcher::regName[second]);
1628        else
1629          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1630      }
1631      OptoReg::Name first = get_reg_first(n);
1632      if( OptoReg::is_reg(first) )
1633        tty->print("%s]",Matcher::regName[first]);
1634      else
1635         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1636    } else
1637    n->out_RegMask().dump();
1638  }
1639  tty->print("/N%d\t",n->_idx);
1640  tty->print("%s === ", n->Name());
1641  uint k;
1642  for( k = 0; k < n->req(); k++) {
1643    Node *m = n->in(k);
1644    if( !m ) tty->print("_ ");
1645    else {
1646      uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1647      tty->print("L%d",r);
1648      // Data MultiNode's can have projections with no real registers.
1649      // Don't die while dumping them.
1650      int op = n->Opcode();
1651      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1652        if( _node_regs ) {
1653          tty->print("[");
1654          OptoReg::Name second = get_reg_second(n->in(k));
1655          if( OptoReg::is_valid(second) ) {
1656            if( OptoReg::is_reg(second) )
1657              tty->print("%s:",Matcher::regName[second]);
1658            else
1659              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1660                         reg2offset_unchecked(second));
1661          }
1662          OptoReg::Name first = get_reg_first(n->in(k));
1663          if( OptoReg::is_reg(first) )
1664            tty->print("%s]",Matcher::regName[first]);
1665          else
1666            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1667                       reg2offset_unchecked(first));
1668        } else
1669          n->in_RegMask(k).dump();
1670      }
1671      tty->print("/N%d ",m->_idx);
1672    }
1673  }
1674  if( k < n->len() && n->in(k) ) tty->print("| ");
1675  for( ; k < n->len(); k++ ) {
1676    Node *m = n->in(k);
1677    if( !m ) break;
1678    uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1679    tty->print("L%d",r);
1680    tty->print("/N%d ",m->_idx);
1681  }
1682  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1683  else n->dump_spec(tty);
1684  if( _spilled_once.test(n->_idx ) ) {
1685    tty->print(" Spill_1");
1686    if( _spilled_twice.test(n->_idx ) )
1687      tty->print(" Spill_2");
1688  }
1689  tty->print("\n");
1690}
1691
1692void PhaseChaitin::dump( const Block * b ) const {
1693  b->dump_head( &_cfg._bbs );
1694
1695  // For all instructions
1696  for( uint j = 0; j < b->_nodes.size(); j++ )
1697    dump(b->_nodes[j]);
1698  // Print live-out info at end of block
1699  if( _live ) {
1700    tty->print("Liveout: ");
1701    IndexSet *live = _live->live(b);
1702    IndexSetIterator elements(live);
1703    tty->print("{");
1704    uint i;
1705    while ((i = elements.next()) != 0) {
1706      tty->print("L%d ", Find_const(i));
1707    }
1708    tty->print_cr("}");
1709  }
1710  tty->print("\n");
1711}
1712
1713void PhaseChaitin::dump() const {
1714  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
1715              _matcher._new_SP, _framesize );
1716
1717  // For all blocks
1718  for( uint i = 0; i < _cfg._num_blocks; i++ )
1719    dump(_cfg._blocks[i]);
1720  // End of per-block dump
1721  tty->print("\n");
1722
1723  if (!_ifg) {
1724    tty->print("(No IFG.)\n");
1725    return;
1726  }
1727
1728  // Dump LRG array
1729  tty->print("--- Live RanGe Array ---\n");
1730  for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
1731    tty->print("L%d: ",i2);
1732    if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
1733    else tty->print("new LRG");
1734  }
1735  tty->print_cr("");
1736
1737  // Dump lo-degree list
1738  tty->print("Lo degree: ");
1739  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
1740    tty->print("L%d ",i3);
1741  tty->print_cr("");
1742
1743  // Dump lo-stk-degree list
1744  tty->print("Lo stk degree: ");
1745  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
1746    tty->print("L%d ",i4);
1747  tty->print_cr("");
1748
1749  // Dump lo-degree list
1750  tty->print("Hi degree: ");
1751  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
1752    tty->print("L%d ",i5);
1753  tty->print_cr("");
1754}
1755
1756//------------------------------dump_degree_lists------------------------------
1757void PhaseChaitin::dump_degree_lists() const {
1758  // Dump lo-degree list
1759  tty->print("Lo degree: ");
1760  for( uint i = _lo_degree; i; i = lrgs(i)._next )
1761    tty->print("L%d ",i);
1762  tty->print_cr("");
1763
1764  // Dump lo-stk-degree list
1765  tty->print("Lo stk degree: ");
1766  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
1767    tty->print("L%d ",i2);
1768  tty->print_cr("");
1769
1770  // Dump lo-degree list
1771  tty->print("Hi degree: ");
1772  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
1773    tty->print("L%d ",i3);
1774  tty->print_cr("");
1775}
1776
1777//------------------------------dump_simplified--------------------------------
1778void PhaseChaitin::dump_simplified() const {
1779  tty->print("Simplified: ");
1780  for( uint i = _simplified; i; i = lrgs(i)._next )
1781    tty->print("L%d ",i);
1782  tty->print_cr("");
1783}
1784
1785static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
1786  if ((int)reg < 0)
1787    sprintf(buf, "<OptoReg::%d>", (int)reg);
1788  else if (OptoReg::is_reg(reg))
1789    strcpy(buf, Matcher::regName[reg]);
1790  else
1791    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
1792            pc->reg2offset(reg));
1793  return buf+strlen(buf);
1794}
1795
1796//------------------------------dump_register----------------------------------
1797// Dump a register name into a buffer.  Be intelligent if we get called
1798// before allocation is complete.
1799char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
1800  if( !this ) {                 // Not got anything?
1801    sprintf(buf,"N%d",n->_idx); // Then use Node index
1802  } else if( _node_regs ) {
1803    // Post allocation, use direct mappings, no LRG info available
1804    print_reg( get_reg_first(n), this, buf );
1805  } else {
1806    uint lidx = Find_const(n); // Grab LRG number
1807    if( !_ifg ) {
1808      sprintf(buf,"L%d",lidx);  // No register binding yet
1809    } else if( !lidx ) {        // Special, not allocated value
1810      strcpy(buf,"Special");
1811    } else if( (lrgs(lidx).num_regs() == 1)
1812                ? !lrgs(lidx).mask().is_bound1()
1813                : !lrgs(lidx).mask().is_bound2() ) {
1814      sprintf(buf,"L%d",lidx); // No register binding yet
1815    } else {                    // Hah!  We have a bound machine register
1816      print_reg( lrgs(lidx).reg(), this, buf );
1817    }
1818  }
1819  return buf+strlen(buf);
1820}
1821
1822//----------------------dump_for_spill_split_recycle--------------------------
1823void PhaseChaitin::dump_for_spill_split_recycle() const {
1824  if( WizardMode && (PrintCompilation || PrintOpto) ) {
1825    // Display which live ranges need to be split and the allocator's state
1826    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
1827    for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
1828      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
1829        tty->print("L%d: ", bidx);
1830        lrgs(bidx).dump();
1831      }
1832    }
1833    tty->cr();
1834    dump();
1835  }
1836}
1837
1838//------------------------------dump_frame------------------------------------
1839void PhaseChaitin::dump_frame() const {
1840  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
1841  const TypeTuple *domain = C->tf()->domain();
1842  const int        argcnt = domain->cnt() - TypeFunc::Parms;
1843
1844  // Incoming arguments in registers dump
1845  for( int k = 0; k < argcnt; k++ ) {
1846    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
1847    if( OptoReg::is_reg(parmreg))  {
1848      const char *reg_name = OptoReg::regname(parmreg);
1849      tty->print("#r%3.3d %s", parmreg, reg_name);
1850      parmreg = _matcher._parm_regs[k].second();
1851      if( OptoReg::is_reg(parmreg))  {
1852        tty->print(":%s", OptoReg::regname(parmreg));
1853      }
1854      tty->print("   : parm %d: ", k);
1855      domain->field_at(k + TypeFunc::Parms)->dump();
1856      tty->print_cr("");
1857    }
1858  }
1859
1860  // Check for un-owned padding above incoming args
1861  OptoReg::Name reg = _matcher._new_SP;
1862  if( reg > _matcher._in_arg_limit ) {
1863    reg = OptoReg::add(reg, -1);
1864    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
1865  }
1866
1867  // Incoming argument area dump
1868  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
1869  while( reg > begin_in_arg ) {
1870    reg = OptoReg::add(reg, -1);
1871    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1872    int j;
1873    for( j = 0; j < argcnt; j++) {
1874      if( _matcher._parm_regs[j].first() == reg ||
1875          _matcher._parm_regs[j].second() == reg ) {
1876        tty->print("parm %d: ",j);
1877        domain->field_at(j + TypeFunc::Parms)->dump();
1878        tty->print_cr("");
1879        break;
1880      }
1881    }
1882    if( j >= argcnt )
1883      tty->print_cr("HOLE, owned by SELF");
1884  }
1885
1886  // Old outgoing preserve area
1887  while( reg > _matcher._old_SP ) {
1888    reg = OptoReg::add(reg, -1);
1889    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
1890  }
1891
1892  // Old SP
1893  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
1894    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
1895
1896  // Preserve area dump
1897  reg = OptoReg::add(reg, -1);
1898  while( OptoReg::is_stack(reg)) {
1899    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1900    if( _matcher.return_addr() == reg )
1901      tty->print_cr("return address");
1902    else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
1903             VerifyStackAtCalls )
1904      tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
1905    else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
1906      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
1907    else
1908      tty->print_cr("pad2, in_preserve");
1909    reg = OptoReg::add(reg, -1);
1910  }
1911
1912  // Spill area dump
1913  reg = OptoReg::add(_matcher._new_SP, _framesize );
1914  while( reg > _matcher._out_arg_limit ) {
1915    reg = OptoReg::add(reg, -1);
1916    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
1917  }
1918
1919  // Outgoing argument area dump
1920  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
1921    reg = OptoReg::add(reg, -1);
1922    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
1923  }
1924
1925  // Outgoing new preserve area
1926  while( reg > _matcher._new_SP ) {
1927    reg = OptoReg::add(reg, -1);
1928    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
1929  }
1930  tty->print_cr("#");
1931}
1932
1933//------------------------------dump_bb----------------------------------------
1934void PhaseChaitin::dump_bb( uint pre_order ) const {
1935  tty->print_cr("---dump of B%d---",pre_order);
1936  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1937    Block *b = _cfg._blocks[i];
1938    if( b->_pre_order == pre_order )
1939      dump(b);
1940  }
1941}
1942
1943//------------------------------dump_lrg---------------------------------------
1944void PhaseChaitin::dump_lrg( uint lidx ) const {
1945  tty->print_cr("---dump of L%d---",lidx);
1946
1947  if( _ifg ) {
1948    if( lidx >= _maxlrg ) {
1949      tty->print("Attempt to print live range index beyond max live range.\n");
1950      return;
1951    }
1952    tty->print("L%d: ",lidx);
1953    lrgs(lidx).dump( );
1954  }
1955  if( _ifg ) {    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
1956    _ifg->neighbors(lidx)->dump();
1957    tty->cr();
1958  }
1959  // For all blocks
1960  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1961    Block *b = _cfg._blocks[i];
1962    int dump_once = 0;
1963
1964    // For all instructions
1965    for( uint j = 0; j < b->_nodes.size(); j++ ) {
1966      Node *n = b->_nodes[j];
1967      if( Find_const(n) == lidx ) {
1968        if( !dump_once++ ) {
1969          tty->cr();
1970          b->dump_head( &_cfg._bbs );
1971        }
1972        dump(n);
1973        continue;
1974      }
1975      uint cnt = n->req();
1976      for( uint k = 1; k < cnt; k++ ) {
1977        Node *m = n->in(k);
1978        if (!m)  continue;  // be robust in the dumper
1979        if( Find_const(m) == lidx ) {
1980          if( !dump_once++ ) {
1981            tty->cr();
1982            b->dump_head( &_cfg._bbs );
1983          }
1984          dump(n);
1985        }
1986      }
1987    }
1988  } // End of per-block dump
1989  tty->cr();
1990}
1991#endif // not PRODUCT
1992
1993//------------------------------print_chaitin_statistics-------------------------------
1994int PhaseChaitin::_final_loads  = 0;
1995int PhaseChaitin::_final_stores = 0;
1996int PhaseChaitin::_final_memoves= 0;
1997int PhaseChaitin::_final_copies = 0;
1998double PhaseChaitin::_final_load_cost  = 0;
1999double PhaseChaitin::_final_store_cost = 0;
2000double PhaseChaitin::_final_memove_cost= 0;
2001double PhaseChaitin::_final_copy_cost  = 0;
2002int PhaseChaitin::_conserv_coalesce = 0;
2003int PhaseChaitin::_conserv_coalesce_pair = 0;
2004int PhaseChaitin::_conserv_coalesce_trie = 0;
2005int PhaseChaitin::_conserv_coalesce_quad = 0;
2006int PhaseChaitin::_post_alloc = 0;
2007int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2008int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2009int PhaseChaitin::_used_cisc_instructions   = 0;
2010int PhaseChaitin::_unused_cisc_instructions = 0;
2011int PhaseChaitin::_allocator_attempts       = 0;
2012int PhaseChaitin::_allocator_successes      = 0;
2013
2014#ifndef PRODUCT
2015uint PhaseChaitin::_high_pressure           = 0;
2016uint PhaseChaitin::_low_pressure            = 0;
2017
2018void PhaseChaitin::print_chaitin_statistics() {
2019  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2020  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2021  tty->print_cr("Adjusted spill cost = %7.0f.",
2022                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2023                _final_copy_cost*1.0 + _final_memove_cost*12.0);
2024  tty->print("Conservatively coalesced %d copies, %d pairs",
2025                _conserv_coalesce, _conserv_coalesce_pair);
2026  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2027    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2028  tty->print_cr(", %d post alloc.", _post_alloc);
2029  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2030    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2031                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2032  if( _used_cisc_instructions || _unused_cisc_instructions )
2033    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2034                   _used_cisc_instructions, _unused_cisc_instructions);
2035  if( _allocator_successes != 0 )
2036    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2037  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2038}
2039#endif // not PRODUCT
2040