chaitin.cpp revision 3142:9b8ce46870df
1/*
2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "compiler/oopMap.hpp"
28#include "memory/allocation.inline.hpp"
29#include "opto/addnode.hpp"
30#include "opto/block.hpp"
31#include "opto/callnode.hpp"
32#include "opto/cfgnode.hpp"
33#include "opto/chaitin.hpp"
34#include "opto/coalesce.hpp"
35#include "opto/connode.hpp"
36#include "opto/idealGraphPrinter.hpp"
37#include "opto/indexSet.hpp"
38#include "opto/machnode.hpp"
39#include "opto/memnode.hpp"
40#include "opto/opcodes.hpp"
41#include "opto/rootnode.hpp"
42
43//=============================================================================
44
45#ifndef PRODUCT
46void LRG::dump( ) const {
47  ttyLocker ttyl;
48  tty->print("%d ",num_regs());
49  _mask.dump();
50  if( _msize_valid ) {
51    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
52    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
53  } else {
54    tty->print(", #?(%d) ",_mask.Size());
55  }
56
57  tty->print("EffDeg: ");
58  if( _degree_valid ) tty->print( "%d ", _eff_degree );
59  else tty->print("? ");
60
61  if( is_multidef() ) {
62    tty->print("MultiDef ");
63    if (_defs != NULL) {
64      tty->print("(");
65      for (int i = 0; i < _defs->length(); i++) {
66        tty->print("N%d ", _defs->at(i)->_idx);
67      }
68      tty->print(") ");
69    }
70  }
71  else if( _def == 0 ) tty->print("Dead ");
72  else tty->print("Def: N%d ",_def->_idx);
73
74  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
75  // Flags
76  if( _is_oop ) tty->print("Oop ");
77  if( _is_float ) tty->print("Float ");
78  if( _was_spilled1 ) tty->print("Spilled ");
79  if( _was_spilled2 ) tty->print("Spilled2 ");
80  if( _direct_conflict ) tty->print("Direct_conflict ");
81  if( _fat_proj ) tty->print("Fat ");
82  if( _was_lo ) tty->print("Lo ");
83  if( _has_copy ) tty->print("Copy ");
84  if( _at_risk ) tty->print("Risk ");
85
86  if( _must_spill ) tty->print("Must_spill ");
87  if( _is_bound ) tty->print("Bound ");
88  if( _msize_valid ) {
89    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
90  }
91
92  tty->cr();
93}
94#endif
95
96//------------------------------score------------------------------------------
97// Compute score from cost and area.  Low score is best to spill.
98static double raw_score( double cost, double area ) {
99  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
100}
101
102double LRG::score() const {
103  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
104  // Bigger area lowers score, encourages spilling this live range.
105  // Bigger cost raise score, prevents spilling this live range.
106  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
107  // to turn a divide by a constant into a multiply by the reciprical).
108  double score = raw_score( _cost, _area);
109
110  // Account for area.  Basically, LRGs covering large areas are better
111  // to spill because more other LRGs get freed up.
112  if( _area == 0.0 )            // No area?  Then no progress to spill
113    return 1e35;
114
115  if( _was_spilled2 )           // If spilled once before, we are unlikely
116    return score + 1e30;        // to make progress again.
117
118  if( _cost >= _area*3.0 )      // Tiny area relative to cost
119    return score + 1e17;        // Probably no progress to spill
120
121  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
122    return score + 1e10;        // Likely no progress to spill
123
124  return score;
125}
126
127//------------------------------LRG_List---------------------------------------
128LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
129  memset( _lidxs, 0, sizeof(uint)*max );
130}
131
132void LRG_List::extend( uint nidx, uint lidx ) {
133  _nesting.check();
134  if( nidx >= _max ) {
135    uint size = 16;
136    while( size <= nidx ) size <<=1;
137    _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
138    _max = size;
139  }
140  while( _cnt <= nidx )
141    _lidxs[_cnt++] = 0;
142  _lidxs[nidx] = lidx;
143}
144
145#define NUMBUCKS 3
146
147//------------------------------Chaitin----------------------------------------
148PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
149  : PhaseRegAlloc(unique, cfg, matcher,
150#ifndef PRODUCT
151       print_chaitin_statistics
152#else
153       NULL
154#endif
155       ),
156    _names(unique), _uf_map(unique),
157    _maxlrg(0), _live(0),
158    _spilled_once(Thread::current()->resource_area()),
159    _spilled_twice(Thread::current()->resource_area()),
160    _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
161    _oldphi(unique)
162#ifndef PRODUCT
163  , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
164#endif
165{
166  NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
167
168  _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
169
170  uint i,j;
171  // Build a list of basic blocks, sorted by frequency
172  _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
173  // Experiment with sorting strategies to speed compilation
174  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
175  Block **buckets[NUMBUCKS];             // Array of buckets
176  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
177  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
178  for( i = 0; i < NUMBUCKS; i++ ) {
179    buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
180    buckcnt[i] = 0;
181    // Bump by three orders of magnitude each time
182    cutoff *= 0.001;
183    buckval[i] = cutoff;
184    for( j = 0; j < _cfg._num_blocks; j++ ) {
185      buckets[i][j] = NULL;
186    }
187  }
188  // Sort blocks into buckets
189  for( i = 0; i < _cfg._num_blocks; i++ ) {
190    for( j = 0; j < NUMBUCKS; j++ ) {
191      if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
192        // Assign block to end of list for appropriate bucket
193        buckets[j][buckcnt[j]++] = _cfg._blocks[i];
194        break;                      // kick out of inner loop
195      }
196    }
197  }
198  // Dump buckets into final block array
199  uint blkcnt = 0;
200  for( i = 0; i < NUMBUCKS; i++ ) {
201    for( j = 0; j < buckcnt[i]; j++ ) {
202      _blks[blkcnt++] = buckets[i][j];
203    }
204  }
205
206  assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
207}
208
209void PhaseChaitin::Register_Allocate() {
210
211  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
212  // slots in this area are called "arg_slots".  Above the NEW FP (and in
213  // registers) is the outgoing argument area; above that is the spill/temp
214  // area.  These are all "frame_slots".  Arg_slots start at the zero
215  // stack_slots and count up to the known arg_size.  Frame_slots start at
216  // the stack_slot #arg_size and go up.  After allocation I map stack
217  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
218  // by the frame_size; stack-slots in the frame_slot area are biased by 0.
219
220  _trip_cnt = 0;
221  _alternate = 0;
222  _matcher._allocation_started = true;
223
224  ResourceArea live_arena;      // Arena for liveness & IFG info
225  ResourceMark rm(&live_arena);
226
227  // Need live-ness for the IFG; need the IFG for coalescing.  If the
228  // liveness is JUST for coalescing, then I can get some mileage by renaming
229  // all copy-related live ranges low and then using the max copy-related
230  // live range as a cut-off for LIVE and the IFG.  In other words, I can
231  // build a subset of LIVE and IFG just for copies.
232  PhaseLive live(_cfg,_names,&live_arena);
233
234  // Need IFG for coalescing and coloring
235  PhaseIFG ifg( &live_arena );
236  _ifg = &ifg;
237
238  if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
239
240  // Come out of SSA world to the Named world.  Assign (virtual) registers to
241  // Nodes.  Use the same register for all inputs and the output of PhiNodes
242  // - effectively ending SSA form.  This requires either coalescing live
243  // ranges or inserting copies.  For the moment, we insert "virtual copies"
244  // - we pretend there is a copy prior to each Phi in predecessor blocks.
245  // We will attempt to coalesce such "virtual copies" before we manifest
246  // them for real.
247  de_ssa();
248
249#ifdef ASSERT
250  // Veify the graph before RA.
251  verify(&live_arena);
252#endif
253
254  {
255    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
256    _live = NULL;                 // Mark live as being not available
257    rm.reset_to_mark();           // Reclaim working storage
258    IndexSet::reset_memory(C, &live_arena);
259    ifg.init(_maxlrg);            // Empty IFG
260    gather_lrg_masks( false );    // Collect LRG masks
261    live.compute( _maxlrg );      // Compute liveness
262    _live = &live;                // Mark LIVE as being available
263  }
264
265  // Base pointers are currently "used" by instructions which define new
266  // derived pointers.  This makes base pointers live up to the where the
267  // derived pointer is made, but not beyond.  Really, they need to be live
268  // across any GC point where the derived value is live.  So this code looks
269  // at all the GC points, and "stretches" the live range of any base pointer
270  // to the GC point.
271  if( stretch_base_pointer_live_ranges(&live_arena) ) {
272    NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
273    // Since some live range stretched, I need to recompute live
274    _live = NULL;
275    rm.reset_to_mark();         // Reclaim working storage
276    IndexSet::reset_memory(C, &live_arena);
277    ifg.init(_maxlrg);
278    gather_lrg_masks( false );
279    live.compute( _maxlrg );
280    _live = &live;
281  }
282  // Create the interference graph using virtual copies
283  build_ifg_virtual( );  // Include stack slots this time
284
285  // Aggressive (but pessimistic) copy coalescing.
286  // This pass works on virtual copies.  Any virtual copies which are not
287  // coalesced get manifested as actual copies
288  {
289    // The IFG is/was triangular.  I am 'squaring it up' so Union can run
290    // faster.  Union requires a 'for all' operation which is slow on the
291    // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
292    // meaning I can visit all the Nodes neighbors less than a Node in time
293    // O(# of neighbors), but I have to visit all the Nodes greater than a
294    // given Node and search them for an instance, i.e., time O(#MaxLRG)).
295    _ifg->SquareUp();
296
297    PhaseAggressiveCoalesce coalesce( *this );
298    coalesce.coalesce_driver( );
299    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
300    // not match the Phi itself, insert a copy.
301    coalesce.insert_copies(_matcher);
302  }
303
304  // After aggressive coalesce, attempt a first cut at coloring.
305  // To color, we need the IFG and for that we need LIVE.
306  {
307    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
308    _live = NULL;
309    rm.reset_to_mark();           // Reclaim working storage
310    IndexSet::reset_memory(C, &live_arena);
311    ifg.init(_maxlrg);
312    gather_lrg_masks( true );
313    live.compute( _maxlrg );
314    _live = &live;
315  }
316
317  // Build physical interference graph
318  uint must_spill = 0;
319  must_spill = build_ifg_physical( &live_arena );
320  // If we have a guaranteed spill, might as well spill now
321  if( must_spill ) {
322    if( !_maxlrg ) return;
323    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
324    C->check_node_count(10*must_spill, "out of nodes before split");
325    if (C->failing())  return;
326    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
327    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
328    // or we failed to split
329    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
330    if (C->failing())  return;
331
332    NOT_PRODUCT( C->verify_graph_edges(); )
333
334    compact();                  // Compact LRGs; return new lower max lrg
335
336    {
337      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
338      _live = NULL;
339      rm.reset_to_mark();         // Reclaim working storage
340      IndexSet::reset_memory(C, &live_arena);
341      ifg.init(_maxlrg);          // Build a new interference graph
342      gather_lrg_masks( true );   // Collect intersect mask
343      live.compute( _maxlrg );    // Compute LIVE
344      _live = &live;
345    }
346    build_ifg_physical( &live_arena );
347    _ifg->SquareUp();
348    _ifg->Compute_Effective_Degree();
349    // Only do conservative coalescing if requested
350    if( OptoCoalesce ) {
351      // Conservative (and pessimistic) copy coalescing of those spills
352      PhaseConservativeCoalesce coalesce( *this );
353      // If max live ranges greater than cutoff, don't color the stack.
354      // This cutoff can be larger than below since it is only done once.
355      coalesce.coalesce_driver( );
356    }
357    compress_uf_map_for_nodes();
358
359#ifdef ASSERT
360    verify(&live_arena, true);
361#endif
362  } else {
363    ifg.SquareUp();
364    ifg.Compute_Effective_Degree();
365#ifdef ASSERT
366    set_was_low();
367#endif
368  }
369
370  // Prepare for Simplify & Select
371  cache_lrg_info();           // Count degree of LRGs
372
373  // Simplify the InterFerence Graph by removing LRGs of low degree.
374  // LRGs of low degree are trivially colorable.
375  Simplify();
376
377  // Select colors by re-inserting LRGs back into the IFG in reverse order.
378  // Return whether or not something spills.
379  uint spills = Select( );
380
381  // If we spill, split and recycle the entire thing
382  while( spills ) {
383    if( _trip_cnt++ > 24 ) {
384      DEBUG_ONLY( dump_for_spill_split_recycle(); )
385      if( _trip_cnt > 27 ) {
386        C->record_method_not_compilable("failed spill-split-recycle sanity check");
387        return;
388      }
389    }
390
391    if( !_maxlrg ) return;
392    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
393    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
394    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
395    if (C->failing())  return;
396
397    compact();                  // Compact LRGs; return new lower max lrg
398
399    // Nuke the live-ness and interference graph and LiveRanGe info
400    {
401      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
402      _live = NULL;
403      rm.reset_to_mark();         // Reclaim working storage
404      IndexSet::reset_memory(C, &live_arena);
405      ifg.init(_maxlrg);
406
407      // Create LiveRanGe array.
408      // Intersect register masks for all USEs and DEFs
409      gather_lrg_masks( true );
410      live.compute( _maxlrg );
411      _live = &live;
412    }
413    must_spill = build_ifg_physical( &live_arena );
414    _ifg->SquareUp();
415    _ifg->Compute_Effective_Degree();
416
417    // Only do conservative coalescing if requested
418    if( OptoCoalesce ) {
419      // Conservative (and pessimistic) copy coalescing
420      PhaseConservativeCoalesce coalesce( *this );
421      // Check for few live ranges determines how aggressive coalesce is.
422      coalesce.coalesce_driver( );
423    }
424    compress_uf_map_for_nodes();
425#ifdef ASSERT
426    verify(&live_arena, true);
427#endif
428    cache_lrg_info();           // Count degree of LRGs
429
430    // Simplify the InterFerence Graph by removing LRGs of low degree.
431    // LRGs of low degree are trivially colorable.
432    Simplify();
433
434    // Select colors by re-inserting LRGs back into the IFG in reverse order.
435    // Return whether or not something spills.
436    spills = Select( );
437  }
438
439  // Count number of Simplify-Select trips per coloring success.
440  _allocator_attempts += _trip_cnt + 1;
441  _allocator_successes += 1;
442
443  // Peephole remove copies
444  post_allocate_copy_removal();
445
446#ifdef ASSERT
447  // Veify the graph after RA.
448  verify(&live_arena);
449#endif
450
451  // max_reg is past the largest *register* used.
452  // Convert that to a frame_slot number.
453  if( _max_reg <= _matcher._new_SP )
454    _framesize = C->out_preserve_stack_slots();
455  else _framesize = _max_reg -_matcher._new_SP;
456  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
457
458  // This frame must preserve the required fp alignment
459  _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
460  assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
461#ifndef PRODUCT
462  _total_framesize += _framesize;
463  if( (int)_framesize > _max_framesize )
464    _max_framesize = _framesize;
465#endif
466
467  // Convert CISC spills
468  fixup_spills();
469
470  // Log regalloc results
471  CompileLog* log = Compile::current()->log();
472  if (log != NULL) {
473    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
474  }
475
476  if (C->failing())  return;
477
478  NOT_PRODUCT( C->verify_graph_edges(); )
479
480  // Move important info out of the live_arena to longer lasting storage.
481  alloc_node_regs(_names.Size());
482  for( uint i=0; i < _names.Size(); i++ ) {
483    if( _names[i] ) {           // Live range associated with Node?
484      LRG &lrg = lrgs( _names[i] );
485      if( lrg.num_regs() == 1 ) {
486        _node_regs[i].set1( lrg.reg() );
487      } else {                  // Must be a register-pair
488        if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
489          // Live ranges record the highest register in their mask.
490          // We want the low register for the AD file writer's convenience.
491          _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
492        } else {                // Misaligned; extract 2 bits
493          OptoReg::Name hi = lrg.reg(); // Get hi register
494          lrg.Remove(hi);       // Yank from mask
495          int lo = lrg.mask().find_first_elem(); // Find lo
496          _node_regs[i].set_pair( hi, lo );
497        }
498      }
499      if( lrg._is_oop ) _node_oops.set(i);
500    } else {
501      _node_regs[i].set_bad();
502    }
503  }
504
505  // Done!
506  _live = NULL;
507  _ifg = NULL;
508  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
509}
510
511//------------------------------de_ssa-----------------------------------------
512void PhaseChaitin::de_ssa() {
513  // Set initial Names for all Nodes.  Most Nodes get the virtual register
514  // number.  A few get the ZERO live range number.  These do not
515  // get allocated, but instead rely on correct scheduling to ensure that
516  // only one instance is simultaneously live at a time.
517  uint lr_counter = 1;
518  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
519    Block *b = _cfg._blocks[i];
520    uint cnt = b->_nodes.size();
521
522    // Handle all the normal Nodes in the block
523    for( uint j = 0; j < cnt; j++ ) {
524      Node *n = b->_nodes[j];
525      // Pre-color to the zero live range, or pick virtual register
526      const RegMask &rm = n->out_RegMask();
527      _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
528    }
529  }
530  // Reset the Union-Find mapping to be identity
531  reset_uf_map(lr_counter);
532}
533
534
535//------------------------------gather_lrg_masks-------------------------------
536// Gather LiveRanGe information, including register masks.  Modification of
537// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
538void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
539
540  // Nail down the frame pointer live range
541  uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
542  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
543
544  // For all blocks
545  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
546    Block *b = _cfg._blocks[i];
547
548    // For all instructions
549    for( uint j = 1; j < b->_nodes.size(); j++ ) {
550      Node *n = b->_nodes[j];
551      uint input_edge_start =1; // Skip control most nodes
552      if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
553      uint idx = n->is_Copy();
554
555      // Get virtual register number, same as LiveRanGe index
556      uint vreg = n2lidx(n);
557      LRG &lrg = lrgs(vreg);
558      if( vreg ) {              // No vreg means un-allocable (e.g. memory)
559
560        // Collect has-copy bit
561        if( idx ) {
562          lrg._has_copy = 1;
563          uint clidx = n2lidx(n->in(idx));
564          LRG &copy_src = lrgs(clidx);
565          copy_src._has_copy = 1;
566        }
567
568        // Check for float-vs-int live range (used in register-pressure
569        // calculations)
570        const Type *n_type = n->bottom_type();
571        if( n_type->is_floatingpoint() )
572          lrg._is_float = 1;
573
574        // Check for twice prior spilling.  Once prior spilling might have
575        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
576        // further spilling is unlikely to make progress.
577        if( _spilled_once.test(n->_idx) ) {
578          lrg._was_spilled1 = 1;
579          if( _spilled_twice.test(n->_idx) )
580            lrg._was_spilled2 = 1;
581        }
582
583#ifndef PRODUCT
584        if (trace_spilling() && lrg._def != NULL) {
585          // collect defs for MultiDef printing
586          if (lrg._defs == NULL) {
587            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
588            lrg._defs->append(lrg._def);
589          }
590          lrg._defs->append(n);
591        }
592#endif
593
594        // Check for a single def LRG; these can spill nicely
595        // via rematerialization.  Flag as NULL for no def found
596        // yet, or 'n' for single def or -1 for many defs.
597        lrg._def = lrg._def ? NodeSentinel : n;
598
599        // Limit result register mask to acceptable registers
600        const RegMask &rm = n->out_RegMask();
601        lrg.AND( rm );
602        // Check for bound register masks
603        const RegMask &lrgmask = lrg.mask();
604        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
605          lrg._is_bound = 1;
606
607        // Check for maximum frequency value
608        if( lrg._maxfreq < b->_freq )
609          lrg._maxfreq = b->_freq;
610
611        int ireg = n->ideal_reg();
612        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
613                "oops must be in Op_RegP's" );
614        // Check for oop-iness, or long/double
615        // Check for multi-kill projection
616        switch( ireg ) {
617        case MachProjNode::fat_proj:
618          // Fat projections have size equal to number of registers killed
619          lrg.set_num_regs(rm.Size());
620          lrg.set_reg_pressure(lrg.num_regs());
621          lrg._fat_proj = 1;
622          lrg._is_bound = 1;
623          break;
624        case Op_RegP:
625#ifdef _LP64
626          lrg.set_num_regs(2);  // Size is 2 stack words
627#else
628          lrg.set_num_regs(1);  // Size is 1 stack word
629#endif
630          // Register pressure is tracked relative to the maximum values
631          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
632          // and relative to other types which compete for the same regs.
633          //
634          // The following table contains suggested values based on the
635          // architectures as defined in each .ad file.
636          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
637          // compile-speed or performance.
638          // Note1:
639          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
640          // since .ad registers are defined as high and low halves.
641          // These reg_pressure values remain compatible with the code
642          // in is_high_pressure() which relates get_invalid_mask_size(),
643          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
644          // Note2:
645          // SPARC -d32 has 24 registers available for integral values,
646          // but only 10 of these are safe for 64-bit longs.
647          // Using set_reg_pressure(2) for both int and long means
648          // the allocator will believe it can fit 26 longs into
649          // registers.  Using 2 for longs and 1 for ints means the
650          // allocator will attempt to put 52 integers into registers.
651          // The settings below limit this problem to methods with
652          // many long values which are being run on 32-bit SPARC.
653          //
654          // ------------------- reg_pressure --------------------
655          // Each entry is reg_pressure_per_value,number_of_regs
656          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
657          // IA32     2     1     1          1    1          6           6
658          // IA64     1     1     1          1    1         50          41
659          // SPARC    2     2     2          2    2         48 (24)     52 (26)
660          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
661          // AMD64    1     1     1          1    1         14          15
662          // -----------------------------------------------------
663#if defined(SPARC)
664          lrg.set_reg_pressure(2);  // use for v9 as well
665#else
666          lrg.set_reg_pressure(1);  // normally one value per register
667#endif
668          if( n_type->isa_oop_ptr() ) {
669            lrg._is_oop = 1;
670          }
671          break;
672        case Op_RegL:           // Check for long or double
673        case Op_RegD:
674          lrg.set_num_regs(2);
675          // Define platform specific register pressure
676#if defined(SPARC) || defined(ARM)
677          lrg.set_reg_pressure(2);
678#elif defined(IA32)
679          if( ireg == Op_RegL ) {
680            lrg.set_reg_pressure(2);
681          } else {
682            lrg.set_reg_pressure(1);
683          }
684#else
685          lrg.set_reg_pressure(1);  // normally one value per register
686#endif
687          // If this def of a double forces a mis-aligned double,
688          // flag as '_fat_proj' - really flag as allowing misalignment
689          // AND changes how we count interferences.  A mis-aligned
690          // double can interfere with TWO aligned pairs, or effectively
691          // FOUR registers!
692          if( rm.is_misaligned_Pair() ) {
693            lrg._fat_proj = 1;
694            lrg._is_bound = 1;
695          }
696          break;
697        case Op_RegF:
698        case Op_RegI:
699        case Op_RegN:
700        case Op_RegFlags:
701        case 0:                 // not an ideal register
702          lrg.set_num_regs(1);
703#ifdef SPARC
704          lrg.set_reg_pressure(2);
705#else
706          lrg.set_reg_pressure(1);
707#endif
708          break;
709        default:
710          ShouldNotReachHere();
711        }
712      }
713
714      // Now do the same for inputs
715      uint cnt = n->req();
716      // Setup for CISC SPILLING
717      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
718      if( UseCISCSpill && after_aggressive ) {
719        inp = n->cisc_operand();
720        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
721          // Convert operand number to edge index number
722          inp = n->as_Mach()->operand_index(inp);
723      }
724      // Prepare register mask for each input
725      for( uint k = input_edge_start; k < cnt; k++ ) {
726        uint vreg = n2lidx(n->in(k));
727        if( !vreg ) continue;
728
729        // If this instruction is CISC Spillable, add the flags
730        // bit to its appropriate input
731        if( UseCISCSpill && after_aggressive && inp == k ) {
732#ifndef PRODUCT
733          if( TraceCISCSpill ) {
734            tty->print("  use_cisc_RegMask: ");
735            n->dump();
736          }
737#endif
738          n->as_Mach()->use_cisc_RegMask();
739        }
740
741        LRG &lrg = lrgs(vreg);
742        // // Testing for floating point code shape
743        // Node *test = n->in(k);
744        // if( test->is_Mach() ) {
745        //   MachNode *m = test->as_Mach();
746        //   int  op = m->ideal_Opcode();
747        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
748        //     int zzz = 1;
749        //   }
750        // }
751
752        // Limit result register mask to acceptable registers.
753        // Do not limit registers from uncommon uses before
754        // AggressiveCoalesce.  This effectively pre-virtual-splits
755        // around uncommon uses of common defs.
756        const RegMask &rm = n->in_RegMask(k);
757        if( !after_aggressive &&
758          _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
759          // Since we are BEFORE aggressive coalesce, leave the register
760          // mask untrimmed by the call.  This encourages more coalescing.
761          // Later, AFTER aggressive, this live range will have to spill
762          // but the spiller handles slow-path calls very nicely.
763        } else {
764          lrg.AND( rm );
765        }
766        // Check for bound register masks
767        const RegMask &lrgmask = lrg.mask();
768        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
769          lrg._is_bound = 1;
770        // If this use of a double forces a mis-aligned double,
771        // flag as '_fat_proj' - really flag as allowing misalignment
772        // AND changes how we count interferences.  A mis-aligned
773        // double can interfere with TWO aligned pairs, or effectively
774        // FOUR registers!
775        if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
776          lrg._fat_proj = 1;
777          lrg._is_bound = 1;
778        }
779        // if the LRG is an unaligned pair, we will have to spill
780        // so clear the LRG's register mask if it is not already spilled
781        if ( !n->is_SpillCopy() &&
782               (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
783               lrgmask.is_misaligned_Pair()) {
784          lrg.Clear();
785        }
786
787        // Check for maximum frequency value
788        if( lrg._maxfreq < b->_freq )
789          lrg._maxfreq = b->_freq;
790
791      } // End for all allocated inputs
792    } // end for all instructions
793  } // end for all blocks
794
795  // Final per-liverange setup
796  for( uint i2=0; i2<_maxlrg; i2++ ) {
797    LRG &lrg = lrgs(i2);
798    if( lrg.num_regs() == 2 && !lrg._fat_proj )
799      lrg.ClearToPairs();
800    lrg.compute_set_mask_size();
801    if( lrg.not_free() ) {      // Handle case where we lose from the start
802      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
803      lrg._direct_conflict = 1;
804    }
805    lrg.set_degree(0);          // no neighbors in IFG yet
806  }
807}
808
809//------------------------------set_was_low------------------------------------
810// Set the was-lo-degree bit.  Conservative coalescing should not change the
811// colorability of the graph.  If any live range was of low-degree before
812// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
813// The bit is checked in Simplify.
814void PhaseChaitin::set_was_low() {
815#ifdef ASSERT
816  for( uint i = 1; i < _maxlrg; i++ ) {
817    int size = lrgs(i).num_regs();
818    uint old_was_lo = lrgs(i)._was_lo;
819    lrgs(i)._was_lo = 0;
820    if( lrgs(i).lo_degree() ) {
821      lrgs(i)._was_lo = 1;      // Trivially of low degree
822    } else {                    // Else check the Brigg's assertion
823      // Brigg's observation is that the lo-degree neighbors of a
824      // hi-degree live range will not interfere with the color choices
825      // of said hi-degree live range.  The Simplify reverse-stack-coloring
826      // order takes care of the details.  Hence you do not have to count
827      // low-degree neighbors when determining if this guy colors.
828      int briggs_degree = 0;
829      IndexSet *s = _ifg->neighbors(i);
830      IndexSetIterator elements(s);
831      uint lidx;
832      while((lidx = elements.next()) != 0) {
833        if( !lrgs(lidx).lo_degree() )
834          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
835      }
836      if( briggs_degree < lrgs(i).degrees_of_freedom() )
837        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
838    }
839    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
840  }
841#endif
842}
843
844#define REGISTER_CONSTRAINED 16
845
846//------------------------------cache_lrg_info---------------------------------
847// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
848void PhaseChaitin::cache_lrg_info( ) {
849
850  for( uint i = 1; i < _maxlrg; i++ ) {
851    LRG &lrg = lrgs(i);
852
853    // Check for being of low degree: means we can be trivially colored.
854    // Low degree, dead or must-spill guys just get to simplify right away
855    if( lrg.lo_degree() ||
856       !lrg.alive() ||
857        lrg._must_spill ) {
858      // Split low degree list into those guys that must get a
859      // register and those that can go to register or stack.
860      // The idea is LRGs that can go register or stack color first when
861      // they have a good chance of getting a register.  The register-only
862      // lo-degree live ranges always get a register.
863      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
864      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
865        lrg._next = _lo_stk_degree;
866        _lo_stk_degree = i;
867      } else {
868        lrg._next = _lo_degree;
869        _lo_degree = i;
870      }
871    } else {                    // Else high degree
872      lrgs(_hi_degree)._prev = i;
873      lrg._next = _hi_degree;
874      lrg._prev = 0;
875      _hi_degree = i;
876    }
877  }
878}
879
880//------------------------------Pre-Simplify-----------------------------------
881// Simplify the IFG by removing LRGs of low degree that have NO copies
882void PhaseChaitin::Pre_Simplify( ) {
883
884  // Warm up the lo-degree no-copy list
885  int lo_no_copy = 0;
886  for( uint i = 1; i < _maxlrg; i++ ) {
887    if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
888        !lrgs(i).alive() ||
889        lrgs(i)._must_spill ) {
890      lrgs(i)._next = lo_no_copy;
891      lo_no_copy = i;
892    }
893  }
894
895  while( lo_no_copy ) {
896    uint lo = lo_no_copy;
897    lo_no_copy = lrgs(lo)._next;
898    int size = lrgs(lo).num_regs();
899
900    // Put the simplified guy on the simplified list.
901    lrgs(lo)._next = _simplified;
902    _simplified = lo;
903
904    // Yank this guy from the IFG.
905    IndexSet *adj = _ifg->remove_node( lo );
906
907    // If any neighbors' degrees fall below their number of
908    // allowed registers, then put that neighbor on the low degree
909    // list.  Note that 'degree' can only fall and 'numregs' is
910    // unchanged by this action.  Thus the two are equal at most once,
911    // so LRGs hit the lo-degree worklists at most once.
912    IndexSetIterator elements(adj);
913    uint neighbor;
914    while ((neighbor = elements.next()) != 0) {
915      LRG *n = &lrgs(neighbor);
916      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
917
918      // Check for just becoming of-low-degree
919      if( n->just_lo_degree() && !n->_has_copy ) {
920        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
921        // Put on lo-degree list
922        n->_next = lo_no_copy;
923        lo_no_copy = neighbor;
924      }
925    }
926  } // End of while lo-degree no_copy worklist not empty
927
928  // No more lo-degree no-copy live ranges to simplify
929}
930
931//------------------------------Simplify---------------------------------------
932// Simplify the IFG by removing LRGs of low degree.
933void PhaseChaitin::Simplify( ) {
934
935  while( 1 ) {                  // Repeat till simplified it all
936    // May want to explore simplifying lo_degree before _lo_stk_degree.
937    // This might result in more spills coloring into registers during
938    // Select().
939    while( _lo_degree || _lo_stk_degree ) {
940      // If possible, pull from lo_stk first
941      uint lo;
942      if( _lo_degree ) {
943        lo = _lo_degree;
944        _lo_degree = lrgs(lo)._next;
945      } else {
946        lo = _lo_stk_degree;
947        _lo_stk_degree = lrgs(lo)._next;
948      }
949
950      // Put the simplified guy on the simplified list.
951      lrgs(lo)._next = _simplified;
952      _simplified = lo;
953      // If this guy is "at risk" then mark his current neighbors
954      if( lrgs(lo)._at_risk ) {
955        IndexSetIterator elements(_ifg->neighbors(lo));
956        uint datum;
957        while ((datum = elements.next()) != 0) {
958          lrgs(datum)._risk_bias = lo;
959        }
960      }
961
962      // Yank this guy from the IFG.
963      IndexSet *adj = _ifg->remove_node( lo );
964
965      // If any neighbors' degrees fall below their number of
966      // allowed registers, then put that neighbor on the low degree
967      // list.  Note that 'degree' can only fall and 'numregs' is
968      // unchanged by this action.  Thus the two are equal at most once,
969      // so LRGs hit the lo-degree worklist at most once.
970      IndexSetIterator elements(adj);
971      uint neighbor;
972      while ((neighbor = elements.next()) != 0) {
973        LRG *n = &lrgs(neighbor);
974#ifdef ASSERT
975        if( VerifyOpto || VerifyRegisterAllocator ) {
976          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
977        }
978#endif
979
980        // Check for just becoming of-low-degree just counting registers.
981        // _must_spill live ranges are already on the low degree list.
982        if( n->just_lo_degree() && !n->_must_spill ) {
983          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
984          // Pull from hi-degree list
985          uint prev = n->_prev;
986          uint next = n->_next;
987          if( prev ) lrgs(prev)._next = next;
988          else _hi_degree = next;
989          lrgs(next)._prev = prev;
990          n->_next = _lo_degree;
991          _lo_degree = neighbor;
992        }
993      }
994    } // End of while lo-degree/lo_stk_degree worklist not empty
995
996    // Check for got everything: is hi-degree list empty?
997    if( !_hi_degree ) break;
998
999    // Time to pick a potential spill guy
1000    uint lo_score = _hi_degree;
1001    double score = lrgs(lo_score).score();
1002    double area = lrgs(lo_score)._area;
1003    double cost = lrgs(lo_score)._cost;
1004    bool bound = lrgs(lo_score)._is_bound;
1005
1006    // Find cheapest guy
1007    debug_only( int lo_no_simplify=0; );
1008    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1009      assert( !(*_ifg->_yanked)[i], "" );
1010      // It's just vaguely possible to move hi-degree to lo-degree without
1011      // going through a just-lo-degree stage: If you remove a double from
1012      // a float live range it's degree will drop by 2 and you can skip the
1013      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1014      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1015      if( lrgs(i).lo_degree() ) {
1016        lo_score = i;
1017        break;
1018      }
1019      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1020      double iscore = lrgs(i).score();
1021      double iarea = lrgs(i)._area;
1022      double icost = lrgs(i)._cost;
1023      bool ibound = lrgs(i)._is_bound;
1024
1025      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1026      // wins.  Ties happen because all live ranges in question have spilled
1027      // a few times before and the spill-score adds a huge number which
1028      // washes out the low order bits.  We are choosing the lesser of 2
1029      // evils; in this case pick largest area to spill.
1030      // Ties also happen when live ranges are defined and used only inside
1031      // one block. In which case their area is 0 and score set to max.
1032      // In such case choose bound live range over unbound to free registers
1033      // or with smaller cost to spill.
1034      if( iscore < score ||
1035          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1036          (iscore == score && iarea == area &&
1037           ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1038        lo_score = i;
1039        score = iscore;
1040        area = iarea;
1041        cost = icost;
1042        bound = ibound;
1043      }
1044    }
1045    LRG *lo_lrg = &lrgs(lo_score);
1046    // The live range we choose for spilling is either hi-degree, or very
1047    // rarely it can be low-degree.  If we choose a hi-degree live range
1048    // there better not be any lo-degree choices.
1049    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1050
1051    // Pull from hi-degree list
1052    uint prev = lo_lrg->_prev;
1053    uint next = lo_lrg->_next;
1054    if( prev ) lrgs(prev)._next = next;
1055    else _hi_degree = next;
1056    lrgs(next)._prev = prev;
1057    // Jam him on the lo-degree list, despite his high degree.
1058    // Maybe he'll get a color, and maybe he'll spill.
1059    // Only Select() will know.
1060    lrgs(lo_score)._at_risk = true;
1061    _lo_degree = lo_score;
1062    lo_lrg->_next = 0;
1063
1064  } // End of while not simplified everything
1065
1066}
1067
1068//------------------------------bias_color-------------------------------------
1069// Choose a color using the biasing heuristic
1070OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1071
1072  // Check for "at_risk" LRG's
1073  uint risk_lrg = Find(lrg._risk_bias);
1074  if( risk_lrg != 0 ) {
1075    // Walk the colored neighbors of the "at_risk" candidate
1076    // Choose a color which is both legal and already taken by a neighbor
1077    // of the "at_risk" candidate in order to improve the chances of the
1078    // "at_risk" candidate of coloring
1079    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1080    uint datum;
1081    while ((datum = elements.next()) != 0) {
1082      OptoReg::Name reg = lrgs(datum).reg();
1083      // If this LRG's register is legal for us, choose it
1084      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1085          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1086          (lrg.num_regs()==1 || // either size 1
1087           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1088        return reg;
1089    }
1090  }
1091
1092  uint copy_lrg = Find(lrg._copy_bias);
1093  if( copy_lrg != 0 ) {
1094    // If he has a color,
1095    if( !(*(_ifg->_yanked))[copy_lrg] ) {
1096      OptoReg::Name reg = lrgs(copy_lrg).reg();
1097      //  And it is legal for you,
1098      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1099          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1100          (lrg.num_regs()==1 || // either size 1
1101           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1102        return reg;
1103    } else if( chunk == 0 ) {
1104      // Choose a color which is legal for him
1105      RegMask tempmask = lrg.mask();
1106      tempmask.AND(lrgs(copy_lrg).mask());
1107      OptoReg::Name reg;
1108      if( lrg.num_regs() == 1 ) {
1109        reg = tempmask.find_first_elem();
1110      } else {
1111        tempmask.ClearToPairs();
1112        reg = tempmask.find_first_pair();
1113      }
1114      if( OptoReg::is_valid(reg) )
1115        return reg;
1116    }
1117  }
1118
1119  // If no bias info exists, just go with the register selection ordering
1120  if( lrg.num_regs() == 2 ) {
1121    // Find an aligned pair
1122    return OptoReg::add(lrg.mask().find_first_pair(),chunk);
1123  }
1124
1125  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1126  // copy removal to remove many more copies, by preventing a just-assigned
1127  // register from being repeatedly assigned.
1128  OptoReg::Name reg = lrg.mask().find_first_elem();
1129  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1130    // This 'Remove; find; Insert' idiom is an expensive way to find the
1131    // SECOND element in the mask.
1132    lrg.Remove(reg);
1133    OptoReg::Name reg2 = lrg.mask().find_first_elem();
1134    lrg.Insert(reg);
1135    if( OptoReg::is_reg(reg2))
1136      reg = reg2;
1137  }
1138  return OptoReg::add( reg, chunk );
1139}
1140
1141//------------------------------choose_color-----------------------------------
1142// Choose a color in the current chunk
1143OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1144  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1145  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1146
1147  if( lrg.num_regs() == 1 ||    // Common Case
1148      !lrg._fat_proj )          // Aligned+adjacent pairs ok
1149    // Use a heuristic to "bias" the color choice
1150    return bias_color(lrg, chunk);
1151
1152  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1153
1154  // Fat-proj case or misaligned double argument.
1155  assert(lrg.compute_mask_size() == lrg.num_regs() ||
1156         lrg.num_regs() == 2,"fat projs exactly color" );
1157  assert( !chunk, "always color in 1st chunk" );
1158  // Return the highest element in the set.
1159  return lrg.mask().find_last_elem();
1160}
1161
1162//------------------------------Select-----------------------------------------
1163// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1164// in reverse order of removal.  As long as nothing of hi-degree was yanked,
1165// everything going back is guaranteed a color.  Select that color.  If some
1166// hi-degree LRG cannot get a color then we record that we must spill.
1167uint PhaseChaitin::Select( ) {
1168  uint spill_reg = LRG::SPILL_REG;
1169  _max_reg = OptoReg::Name(0);  // Past max register used
1170  while( _simplified ) {
1171    // Pull next LRG from the simplified list - in reverse order of removal
1172    uint lidx = _simplified;
1173    LRG *lrg = &lrgs(lidx);
1174    _simplified = lrg->_next;
1175
1176
1177#ifndef PRODUCT
1178    if (trace_spilling()) {
1179      ttyLocker ttyl;
1180      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1181                    lrg->degrees_of_freedom());
1182      lrg->dump();
1183    }
1184#endif
1185
1186    // Re-insert into the IFG
1187    _ifg->re_insert(lidx);
1188    if( !lrg->alive() ) continue;
1189    // capture allstackedness flag before mask is hacked
1190    const int is_allstack = lrg->mask().is_AllStack();
1191
1192    // Yeah, yeah, yeah, I know, I know.  I can refactor this
1193    // to avoid the GOTO, although the refactored code will not
1194    // be much clearer.  We arrive here IFF we have a stack-based
1195    // live range that cannot color in the current chunk, and it
1196    // has to move into the next free stack chunk.
1197    int chunk = 0;              // Current chunk is first chunk
1198    retry_next_chunk:
1199
1200    // Remove neighbor colors
1201    IndexSet *s = _ifg->neighbors(lidx);
1202
1203    debug_only(RegMask orig_mask = lrg->mask();)
1204    IndexSetIterator elements(s);
1205    uint neighbor;
1206    while ((neighbor = elements.next()) != 0) {
1207      // Note that neighbor might be a spill_reg.  In this case, exclusion
1208      // of its color will be a no-op, since the spill_reg chunk is in outer
1209      // space.  Also, if neighbor is in a different chunk, this exclusion
1210      // will be a no-op.  (Later on, if lrg runs out of possible colors in
1211      // its chunk, a new chunk of color may be tried, in which case
1212      // examination of neighbors is started again, at retry_next_chunk.)
1213      LRG &nlrg = lrgs(neighbor);
1214      OptoReg::Name nreg = nlrg.reg();
1215      // Only subtract masks in the same chunk
1216      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1217#ifndef PRODUCT
1218        uint size = lrg->mask().Size();
1219        RegMask rm = lrg->mask();
1220#endif
1221        lrg->SUBTRACT(nlrg.mask());
1222#ifndef PRODUCT
1223        if (trace_spilling() && lrg->mask().Size() != size) {
1224          ttyLocker ttyl;
1225          tty->print("L%d ", lidx);
1226          rm.dump();
1227          tty->print(" intersected L%d ", neighbor);
1228          nlrg.mask().dump();
1229          tty->print(" removed ");
1230          rm.SUBTRACT(lrg->mask());
1231          rm.dump();
1232          tty->print(" leaving ");
1233          lrg->mask().dump();
1234          tty->cr();
1235        }
1236#endif
1237      }
1238    }
1239    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1240    // Aligned pairs need aligned masks
1241    if( lrg->num_regs() == 2 && !lrg->_fat_proj )
1242      lrg->ClearToPairs();
1243
1244    // Check if a color is available and if so pick the color
1245    OptoReg::Name reg = choose_color( *lrg, chunk );
1246#ifdef SPARC
1247    debug_only(lrg->compute_set_mask_size());
1248    assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1249#endif
1250
1251    //---------------
1252    // If we fail to color and the AllStack flag is set, trigger
1253    // a chunk-rollover event
1254    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1255      // Bump register mask up to next stack chunk
1256      chunk += RegMask::CHUNK_SIZE;
1257      lrg->Set_All();
1258
1259      goto retry_next_chunk;
1260    }
1261
1262    //---------------
1263    // Did we get a color?
1264    else if( OptoReg::is_valid(reg)) {
1265#ifndef PRODUCT
1266      RegMask avail_rm = lrg->mask();
1267#endif
1268
1269      // Record selected register
1270      lrg->set_reg(reg);
1271
1272      if( reg >= _max_reg )     // Compute max register limit
1273        _max_reg = OptoReg::add(reg,1);
1274      // Fold reg back into normal space
1275      reg = OptoReg::add(reg,-chunk);
1276
1277      // If the live range is not bound, then we actually had some choices
1278      // to make.  In this case, the mask has more bits in it than the colors
1279      // chosen.  Restrict the mask to just what was picked.
1280      if( lrg->num_regs() == 1 ) { // Size 1 live range
1281        lrg->Clear();           // Clear the mask
1282        lrg->Insert(reg);       // Set regmask to match selected reg
1283        lrg->set_mask_size(1);
1284      } else if( !lrg->_fat_proj ) {
1285        // For pairs, also insert the low bit of the pair
1286        assert( lrg->num_regs() == 2, "unbound fatproj???" );
1287        lrg->Clear();           // Clear the mask
1288        lrg->Insert(reg);       // Set regmask to match selected reg
1289        lrg->Insert(OptoReg::add(reg,-1));
1290        lrg->set_mask_size(2);
1291      } else {                  // Else fatproj
1292        // mask must be equal to fatproj bits, by definition
1293      }
1294#ifndef PRODUCT
1295      if (trace_spilling()) {
1296        ttyLocker ttyl;
1297        tty->print("L%d selected ", lidx);
1298        lrg->mask().dump();
1299        tty->print(" from ");
1300        avail_rm.dump();
1301        tty->cr();
1302      }
1303#endif
1304      // Note that reg is the highest-numbered register in the newly-bound mask.
1305    } // end color available case
1306
1307    //---------------
1308    // Live range is live and no colors available
1309    else {
1310      assert( lrg->alive(), "" );
1311      assert( !lrg->_fat_proj || lrg->is_multidef() ||
1312              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1313      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1314
1315      // Assign the special spillreg register
1316      lrg->set_reg(OptoReg::Name(spill_reg++));
1317      // Do not empty the regmask; leave mask_size lying around
1318      // for use during Spilling
1319#ifndef PRODUCT
1320      if( trace_spilling() ) {
1321        ttyLocker ttyl;
1322        tty->print("L%d spilling with neighbors: ", lidx);
1323        s->dump();
1324        debug_only(tty->print(" original mask: "));
1325        debug_only(orig_mask.dump());
1326        dump_lrg(lidx);
1327      }
1328#endif
1329    } // end spill case
1330
1331  }
1332
1333  return spill_reg-LRG::SPILL_REG;      // Return number of spills
1334}
1335
1336
1337//------------------------------copy_was_spilled-------------------------------
1338// Copy 'was_spilled'-edness from the source Node to the dst Node.
1339void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1340  if( _spilled_once.test(src->_idx) ) {
1341    _spilled_once.set(dst->_idx);
1342    lrgs(Find(dst))._was_spilled1 = 1;
1343    if( _spilled_twice.test(src->_idx) ) {
1344      _spilled_twice.set(dst->_idx);
1345      lrgs(Find(dst))._was_spilled2 = 1;
1346    }
1347  }
1348}
1349
1350//------------------------------set_was_spilled--------------------------------
1351// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1352void PhaseChaitin::set_was_spilled( Node *n ) {
1353  if( _spilled_once.test_set(n->_idx) )
1354    _spilled_twice.set(n->_idx);
1355}
1356
1357//------------------------------fixup_spills-----------------------------------
1358// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1359// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1360void PhaseChaitin::fixup_spills() {
1361  // This function does only cisc spill work.
1362  if( !UseCISCSpill ) return;
1363
1364  NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1365
1366  // Grab the Frame Pointer
1367  Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
1368
1369  // For all blocks
1370  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1371    Block *b = _cfg._blocks[i];
1372
1373    // For all instructions in block
1374    uint last_inst = b->end_idx();
1375    for( uint j = 1; j <= last_inst; j++ ) {
1376      Node *n = b->_nodes[j];
1377
1378      // Dead instruction???
1379      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1380              C->top() == n ||  // Or the random TOP node
1381              n->is_Proj(),     // Or a fat-proj kill node
1382              "No dead instructions after post-alloc" );
1383
1384      int inp = n->cisc_operand();
1385      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1386        // Convert operand number to edge index number
1387        MachNode *mach = n->as_Mach();
1388        inp = mach->operand_index(inp);
1389        Node *src = n->in(inp);   // Value to load or store
1390        LRG &lrg_cisc = lrgs( Find_const(src) );
1391        OptoReg::Name src_reg = lrg_cisc.reg();
1392        // Doubles record the HIGH register of an adjacent pair.
1393        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1394        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1395          // This is a CISC Spill, get stack offset and construct new node
1396#ifndef PRODUCT
1397          if( TraceCISCSpill ) {
1398            tty->print("    reg-instr:  ");
1399            n->dump();
1400          }
1401#endif
1402          int stk_offset = reg2offset(src_reg);
1403          // Bailout if we might exceed node limit when spilling this instruction
1404          C->check_node_count(0, "out of nodes fixing spills");
1405          if (C->failing())  return;
1406          // Transform node
1407          MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1408          cisc->set_req(inp,fp);          // Base register is frame pointer
1409          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1410            assert( cisc->oper_input_base() == 2, "Only adding one edge");
1411            cisc->ins_req(1,src);         // Requires a memory edge
1412          }
1413          b->_nodes.map(j,cisc);          // Insert into basic block
1414          n->subsume_by(cisc); // Correct graph
1415          //
1416          ++_used_cisc_instructions;
1417#ifndef PRODUCT
1418          if( TraceCISCSpill ) {
1419            tty->print("    cisc-instr: ");
1420            cisc->dump();
1421          }
1422#endif
1423        } else {
1424#ifndef PRODUCT
1425          if( TraceCISCSpill ) {
1426            tty->print("    using reg-instr: ");
1427            n->dump();
1428          }
1429#endif
1430          ++_unused_cisc_instructions;    // input can be on stack
1431        }
1432      }
1433
1434    } // End of for all instructions
1435
1436  } // End of for all blocks
1437}
1438
1439//------------------------------find_base_for_derived--------------------------
1440// Helper to stretch above; recursively discover the base Node for a
1441// given derived Node.  Easy for AddP-related machine nodes, but needs
1442// to be recursive for derived Phis.
1443Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1444  // See if already computed; if so return it
1445  if( derived_base_map[derived->_idx] )
1446    return derived_base_map[derived->_idx];
1447
1448  // See if this happens to be a base.
1449  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1450  // pointers derived from NULL!  These are always along paths that
1451  // can't happen at run-time but the optimizer cannot deduce it so
1452  // we have to handle it gracefully.
1453  assert(!derived->bottom_type()->isa_narrowoop() ||
1454          derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1455  const TypePtr *tj = derived->bottom_type()->isa_ptr();
1456  // If its an OOP with a non-zero offset, then it is derived.
1457  if( tj == NULL || tj->_offset == 0 ) {
1458    derived_base_map[derived->_idx] = derived;
1459    return derived;
1460  }
1461  // Derived is NULL+offset?  Base is NULL!
1462  if( derived->is_Con() ) {
1463    Node *base = _matcher.mach_null();
1464    assert(base != NULL, "sanity");
1465    if (base->in(0) == NULL) {
1466      // Initialize it once and make it shared:
1467      // set control to _root and place it into Start block
1468      // (where top() node is placed).
1469      base->init_req(0, _cfg._root);
1470      Block *startb = _cfg._bbs[C->top()->_idx];
1471      startb->_nodes.insert(startb->find_node(C->top()), base );
1472      _cfg._bbs.map( base->_idx, startb );
1473      assert (n2lidx(base) == 0, "should not have LRG yet");
1474    }
1475    if (n2lidx(base) == 0) {
1476      new_lrg(base, maxlrg++);
1477    }
1478    assert(base->in(0) == _cfg._root &&
1479           _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
1480    derived_base_map[derived->_idx] = base;
1481    return base;
1482  }
1483
1484  // Check for AddP-related opcodes
1485  if( !derived->is_Phi() ) {
1486    assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
1487    Node *base = derived->in(AddPNode::Base);
1488    derived_base_map[derived->_idx] = base;
1489    return base;
1490  }
1491
1492  // Recursively find bases for Phis.
1493  // First check to see if we can avoid a base Phi here.
1494  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1495  uint i;
1496  for( i = 2; i < derived->req(); i++ )
1497    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1498      break;
1499  // Went to the end without finding any different bases?
1500  if( i == derived->req() ) {   // No need for a base Phi here
1501    derived_base_map[derived->_idx] = base;
1502    return base;
1503  }
1504
1505  // Now we see we need a base-Phi here to merge the bases
1506  const Type *t = base->bottom_type();
1507  base = new (C, derived->req()) PhiNode( derived->in(0), t );
1508  for( i = 1; i < derived->req(); i++ ) {
1509    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1510    t = t->meet(base->in(i)->bottom_type());
1511  }
1512  base->as_Phi()->set_type(t);
1513
1514  // Search the current block for an existing base-Phi
1515  Block *b = _cfg._bbs[derived->_idx];
1516  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1517    Node *phi = b->_nodes[i];
1518    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1519      b->_nodes.insert( i, base ); // Must insert created Phi here as base
1520      _cfg._bbs.map( base->_idx, b );
1521      new_lrg(base,maxlrg++);
1522      break;
1523    }
1524    // See if Phi matches.
1525    uint j;
1526    for( j = 1; j < base->req(); j++ )
1527      if( phi->in(j) != base->in(j) &&
1528          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1529        break;
1530    if( j == base->req() ) {    // All inputs match?
1531      base = phi;               // Then use existing 'phi' and drop 'base'
1532      break;
1533    }
1534  }
1535
1536
1537  // Cache info for later passes
1538  derived_base_map[derived->_idx] = base;
1539  return base;
1540}
1541
1542
1543//------------------------------stretch_base_pointer_live_ranges---------------
1544// At each Safepoint, insert extra debug edges for each pair of derived value/
1545// base pointer that is live across the Safepoint for oopmap building.  The
1546// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1547// required edge set.
1548bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
1549  int must_recompute_live = false;
1550  uint maxlrg = _maxlrg;
1551  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1552  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1553
1554  // For all blocks in RPO do...
1555  for( uint i=0; i<_cfg._num_blocks; i++ ) {
1556    Block *b = _cfg._blocks[i];
1557    // Note use of deep-copy constructor.  I cannot hammer the original
1558    // liveout bits, because they are needed by the following coalesce pass.
1559    IndexSet liveout(_live->live(b));
1560
1561    for( uint j = b->end_idx() + 1; j > 1; j-- ) {
1562      Node *n = b->_nodes[j-1];
1563
1564      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1565      // like to see in the same register.  Compare uses the loop-phi and so
1566      // extends its live range BUT cannot be part of the cycle.  If this
1567      // extended live range overlaps with the update of the loop-phi value
1568      // we need both alive at the same time -- which requires at least 1
1569      // copy.  But because Intel has only 2-address registers we end up with
1570      // at least 2 copies, one before the loop-phi update instruction and
1571      // one after.  Instead we split the input to the compare just after the
1572      // phi.
1573      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1574        Node *phi = n->in(1);
1575        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1576          Block *phi_block = _cfg._bbs[phi->_idx];
1577          if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
1578            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1579            Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1580            insert_proj( phi_block, 1, spill, maxlrg++ );
1581            n->set_req(1,spill);
1582            must_recompute_live = true;
1583          }
1584        }
1585      }
1586
1587      // Get value being defined
1588      uint lidx = n2lidx(n);
1589      if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
1590        // Remove from live-out set
1591        liveout.remove(lidx);
1592
1593        // Copies do not define a new value and so do not interfere.
1594        // Remove the copies source from the liveout set before interfering.
1595        uint idx = n->is_Copy();
1596        if( idx ) liveout.remove( n2lidx(n->in(idx)) );
1597      }
1598
1599      // Found a safepoint?
1600      JVMState *jvms = n->jvms();
1601      if( jvms ) {
1602        // Now scan for a live derived pointer
1603        IndexSetIterator elements(&liveout);
1604        uint neighbor;
1605        while ((neighbor = elements.next()) != 0) {
1606          // Find reaching DEF for base and derived values
1607          // This works because we are still in SSA during this call.
1608          Node *derived = lrgs(neighbor)._def;
1609          const TypePtr *tj = derived->bottom_type()->isa_ptr();
1610          assert(!derived->bottom_type()->isa_narrowoop() ||
1611                  derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1612          // If its an OOP with a non-zero offset, then it is derived.
1613          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1614            Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
1615            assert( base->_idx < _names.Size(), "" );
1616            // Add reaching DEFs of derived pointer and base pointer as a
1617            // pair of inputs
1618            n->add_req( derived );
1619            n->add_req( base );
1620
1621            // See if the base pointer is already live to this point.
1622            // Since I'm working on the SSA form, live-ness amounts to
1623            // reaching def's.  So if I find the base's live range then
1624            // I know the base's def reaches here.
1625            if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
1626                 !liveout.member( n2lidx(base) ) ) && // not live) AND
1627                 (n2lidx(base) > 0)                && // not a constant
1628                 _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
1629              // Base pointer is not currently live.  Since I stretched
1630              // the base pointer to here and it crosses basic-block
1631              // boundaries, the global live info is now incorrect.
1632              // Recompute live.
1633              must_recompute_live = true;
1634            } // End of if base pointer is not live to debug info
1635          }
1636        } // End of scan all live data for derived ptrs crossing GC point
1637      } // End of if found a GC point
1638
1639      // Make all inputs live
1640      if( !n->is_Phi() ) {      // Phi function uses come from prior block
1641        for( uint k = 1; k < n->req(); k++ ) {
1642          uint lidx = n2lidx(n->in(k));
1643          if( lidx < _maxlrg )
1644            liveout.insert( lidx );
1645        }
1646      }
1647
1648    } // End of forall instructions in block
1649    liveout.clear();  // Free the memory used by liveout.
1650
1651  } // End of forall blocks
1652  _maxlrg = maxlrg;
1653
1654  // If I created a new live range I need to recompute live
1655  if( maxlrg != _ifg->_maxlrg )
1656    must_recompute_live = true;
1657
1658  return must_recompute_live != 0;
1659}
1660
1661
1662//------------------------------add_reference----------------------------------
1663// Extend the node to LRG mapping
1664void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
1665  _names.extend( node->_idx, n2lidx(old_node) );
1666}
1667
1668//------------------------------dump-------------------------------------------
1669#ifndef PRODUCT
1670void PhaseChaitin::dump( const Node *n ) const {
1671  uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
1672  tty->print("L%d",r);
1673  if( r && n->Opcode() != Op_Phi ) {
1674    if( _node_regs ) {          // Got a post-allocation copy of allocation?
1675      tty->print("[");
1676      OptoReg::Name second = get_reg_second(n);
1677      if( OptoReg::is_valid(second) ) {
1678        if( OptoReg::is_reg(second) )
1679          tty->print("%s:",Matcher::regName[second]);
1680        else
1681          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1682      }
1683      OptoReg::Name first = get_reg_first(n);
1684      if( OptoReg::is_reg(first) )
1685        tty->print("%s]",Matcher::regName[first]);
1686      else
1687         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1688    } else
1689    n->out_RegMask().dump();
1690  }
1691  tty->print("/N%d\t",n->_idx);
1692  tty->print("%s === ", n->Name());
1693  uint k;
1694  for( k = 0; k < n->req(); k++) {
1695    Node *m = n->in(k);
1696    if( !m ) tty->print("_ ");
1697    else {
1698      uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1699      tty->print("L%d",r);
1700      // Data MultiNode's can have projections with no real registers.
1701      // Don't die while dumping them.
1702      int op = n->Opcode();
1703      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1704        if( _node_regs ) {
1705          tty->print("[");
1706          OptoReg::Name second = get_reg_second(n->in(k));
1707          if( OptoReg::is_valid(second) ) {
1708            if( OptoReg::is_reg(second) )
1709              tty->print("%s:",Matcher::regName[second]);
1710            else
1711              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1712                         reg2offset_unchecked(second));
1713          }
1714          OptoReg::Name first = get_reg_first(n->in(k));
1715          if( OptoReg::is_reg(first) )
1716            tty->print("%s]",Matcher::regName[first]);
1717          else
1718            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1719                       reg2offset_unchecked(first));
1720        } else
1721          n->in_RegMask(k).dump();
1722      }
1723      tty->print("/N%d ",m->_idx);
1724    }
1725  }
1726  if( k < n->len() && n->in(k) ) tty->print("| ");
1727  for( ; k < n->len(); k++ ) {
1728    Node *m = n->in(k);
1729    if( !m ) break;
1730    uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1731    tty->print("L%d",r);
1732    tty->print("/N%d ",m->_idx);
1733  }
1734  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1735  else n->dump_spec(tty);
1736  if( _spilled_once.test(n->_idx ) ) {
1737    tty->print(" Spill_1");
1738    if( _spilled_twice.test(n->_idx ) )
1739      tty->print(" Spill_2");
1740  }
1741  tty->print("\n");
1742}
1743
1744void PhaseChaitin::dump( const Block * b ) const {
1745  b->dump_head( &_cfg._bbs );
1746
1747  // For all instructions
1748  for( uint j = 0; j < b->_nodes.size(); j++ )
1749    dump(b->_nodes[j]);
1750  // Print live-out info at end of block
1751  if( _live ) {
1752    tty->print("Liveout: ");
1753    IndexSet *live = _live->live(b);
1754    IndexSetIterator elements(live);
1755    tty->print("{");
1756    uint i;
1757    while ((i = elements.next()) != 0) {
1758      tty->print("L%d ", Find_const(i));
1759    }
1760    tty->print_cr("}");
1761  }
1762  tty->print("\n");
1763}
1764
1765void PhaseChaitin::dump() const {
1766  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
1767              _matcher._new_SP, _framesize );
1768
1769  // For all blocks
1770  for( uint i = 0; i < _cfg._num_blocks; i++ )
1771    dump(_cfg._blocks[i]);
1772  // End of per-block dump
1773  tty->print("\n");
1774
1775  if (!_ifg) {
1776    tty->print("(No IFG.)\n");
1777    return;
1778  }
1779
1780  // Dump LRG array
1781  tty->print("--- Live RanGe Array ---\n");
1782  for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
1783    tty->print("L%d: ",i2);
1784    if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
1785    else tty->print_cr("new LRG");
1786  }
1787  tty->print_cr("");
1788
1789  // Dump lo-degree list
1790  tty->print("Lo degree: ");
1791  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
1792    tty->print("L%d ",i3);
1793  tty->print_cr("");
1794
1795  // Dump lo-stk-degree list
1796  tty->print("Lo stk degree: ");
1797  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
1798    tty->print("L%d ",i4);
1799  tty->print_cr("");
1800
1801  // Dump lo-degree list
1802  tty->print("Hi degree: ");
1803  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
1804    tty->print("L%d ",i5);
1805  tty->print_cr("");
1806}
1807
1808//------------------------------dump_degree_lists------------------------------
1809void PhaseChaitin::dump_degree_lists() const {
1810  // Dump lo-degree list
1811  tty->print("Lo degree: ");
1812  for( uint i = _lo_degree; i; i = lrgs(i)._next )
1813    tty->print("L%d ",i);
1814  tty->print_cr("");
1815
1816  // Dump lo-stk-degree list
1817  tty->print("Lo stk degree: ");
1818  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
1819    tty->print("L%d ",i2);
1820  tty->print_cr("");
1821
1822  // Dump lo-degree list
1823  tty->print("Hi degree: ");
1824  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
1825    tty->print("L%d ",i3);
1826  tty->print_cr("");
1827}
1828
1829//------------------------------dump_simplified--------------------------------
1830void PhaseChaitin::dump_simplified() const {
1831  tty->print("Simplified: ");
1832  for( uint i = _simplified; i; i = lrgs(i)._next )
1833    tty->print("L%d ",i);
1834  tty->print_cr("");
1835}
1836
1837static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
1838  if ((int)reg < 0)
1839    sprintf(buf, "<OptoReg::%d>", (int)reg);
1840  else if (OptoReg::is_reg(reg))
1841    strcpy(buf, Matcher::regName[reg]);
1842  else
1843    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
1844            pc->reg2offset(reg));
1845  return buf+strlen(buf);
1846}
1847
1848//------------------------------dump_register----------------------------------
1849// Dump a register name into a buffer.  Be intelligent if we get called
1850// before allocation is complete.
1851char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
1852  if( !this ) {                 // Not got anything?
1853    sprintf(buf,"N%d",n->_idx); // Then use Node index
1854  } else if( _node_regs ) {
1855    // Post allocation, use direct mappings, no LRG info available
1856    print_reg( get_reg_first(n), this, buf );
1857  } else {
1858    uint lidx = Find_const(n); // Grab LRG number
1859    if( !_ifg ) {
1860      sprintf(buf,"L%d",lidx);  // No register binding yet
1861    } else if( !lidx ) {        // Special, not allocated value
1862      strcpy(buf,"Special");
1863    } else if( (lrgs(lidx).num_regs() == 1)
1864                ? !lrgs(lidx).mask().is_bound1()
1865                : !lrgs(lidx).mask().is_bound2() ) {
1866      sprintf(buf,"L%d",lidx); // No register binding yet
1867    } else {                    // Hah!  We have a bound machine register
1868      print_reg( lrgs(lidx).reg(), this, buf );
1869    }
1870  }
1871  return buf+strlen(buf);
1872}
1873
1874//----------------------dump_for_spill_split_recycle--------------------------
1875void PhaseChaitin::dump_for_spill_split_recycle() const {
1876  if( WizardMode && (PrintCompilation || PrintOpto) ) {
1877    // Display which live ranges need to be split and the allocator's state
1878    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
1879    for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
1880      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
1881        tty->print("L%d: ", bidx);
1882        lrgs(bidx).dump();
1883      }
1884    }
1885    tty->cr();
1886    dump();
1887  }
1888}
1889
1890//------------------------------dump_frame------------------------------------
1891void PhaseChaitin::dump_frame() const {
1892  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
1893  const TypeTuple *domain = C->tf()->domain();
1894  const int        argcnt = domain->cnt() - TypeFunc::Parms;
1895
1896  // Incoming arguments in registers dump
1897  for( int k = 0; k < argcnt; k++ ) {
1898    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
1899    if( OptoReg::is_reg(parmreg))  {
1900      const char *reg_name = OptoReg::regname(parmreg);
1901      tty->print("#r%3.3d %s", parmreg, reg_name);
1902      parmreg = _matcher._parm_regs[k].second();
1903      if( OptoReg::is_reg(parmreg))  {
1904        tty->print(":%s", OptoReg::regname(parmreg));
1905      }
1906      tty->print("   : parm %d: ", k);
1907      domain->field_at(k + TypeFunc::Parms)->dump();
1908      tty->print_cr("");
1909    }
1910  }
1911
1912  // Check for un-owned padding above incoming args
1913  OptoReg::Name reg = _matcher._new_SP;
1914  if( reg > _matcher._in_arg_limit ) {
1915    reg = OptoReg::add(reg, -1);
1916    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
1917  }
1918
1919  // Incoming argument area dump
1920  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
1921  while( reg > begin_in_arg ) {
1922    reg = OptoReg::add(reg, -1);
1923    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1924    int j;
1925    for( j = 0; j < argcnt; j++) {
1926      if( _matcher._parm_regs[j].first() == reg ||
1927          _matcher._parm_regs[j].second() == reg ) {
1928        tty->print("parm %d: ",j);
1929        domain->field_at(j + TypeFunc::Parms)->dump();
1930        tty->print_cr("");
1931        break;
1932      }
1933    }
1934    if( j >= argcnt )
1935      tty->print_cr("HOLE, owned by SELF");
1936  }
1937
1938  // Old outgoing preserve area
1939  while( reg > _matcher._old_SP ) {
1940    reg = OptoReg::add(reg, -1);
1941    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
1942  }
1943
1944  // Old SP
1945  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
1946    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
1947
1948  // Preserve area dump
1949  int fixed_slots = C->fixed_slots();
1950  OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
1951  OptoReg::Name return_addr = _matcher.return_addr();
1952
1953  reg = OptoReg::add(reg, -1);
1954  while (OptoReg::is_stack(reg)) {
1955    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1956    if (return_addr == reg) {
1957      tty->print_cr("return address");
1958    } else if (reg >= begin_in_preserve) {
1959      // Preserved slots are present on x86
1960      if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
1961        tty->print_cr("saved fp register");
1962      else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
1963               VerifyStackAtCalls)
1964        tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
1965      else
1966        tty->print_cr("in_preserve");
1967    } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
1968      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
1969    } else {
1970      tty->print_cr("pad2, stack alignment");
1971    }
1972    reg = OptoReg::add(reg, -1);
1973  }
1974
1975  // Spill area dump
1976  reg = OptoReg::add(_matcher._new_SP, _framesize );
1977  while( reg > _matcher._out_arg_limit ) {
1978    reg = OptoReg::add(reg, -1);
1979    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
1980  }
1981
1982  // Outgoing argument area dump
1983  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
1984    reg = OptoReg::add(reg, -1);
1985    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
1986  }
1987
1988  // Outgoing new preserve area
1989  while( reg > _matcher._new_SP ) {
1990    reg = OptoReg::add(reg, -1);
1991    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
1992  }
1993  tty->print_cr("#");
1994}
1995
1996//------------------------------dump_bb----------------------------------------
1997void PhaseChaitin::dump_bb( uint pre_order ) const {
1998  tty->print_cr("---dump of B%d---",pre_order);
1999  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
2000    Block *b = _cfg._blocks[i];
2001    if( b->_pre_order == pre_order )
2002      dump(b);
2003  }
2004}
2005
2006//------------------------------dump_lrg---------------------------------------
2007void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2008  tty->print_cr("---dump of L%d---",lidx);
2009
2010  if( _ifg ) {
2011    if( lidx >= _maxlrg ) {
2012      tty->print("Attempt to print live range index beyond max live range.\n");
2013      return;
2014    }
2015    tty->print("L%d: ",lidx);
2016    if( lidx < _ifg->_maxlrg ) lrgs(lidx).dump( );
2017    else tty->print_cr("new LRG");
2018  }
2019  if( _ifg && lidx < _ifg->_maxlrg) {
2020    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2021    _ifg->neighbors(lidx)->dump();
2022    tty->cr();
2023  }
2024  // For all blocks
2025  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
2026    Block *b = _cfg._blocks[i];
2027    int dump_once = 0;
2028
2029    // For all instructions
2030    for( uint j = 0; j < b->_nodes.size(); j++ ) {
2031      Node *n = b->_nodes[j];
2032      if( Find_const(n) == lidx ) {
2033        if( !dump_once++ ) {
2034          tty->cr();
2035          b->dump_head( &_cfg._bbs );
2036        }
2037        dump(n);
2038        continue;
2039      }
2040      if (!defs_only) {
2041        uint cnt = n->req();
2042        for( uint k = 1; k < cnt; k++ ) {
2043          Node *m = n->in(k);
2044          if (!m)  continue;  // be robust in the dumper
2045          if( Find_const(m) == lidx ) {
2046            if( !dump_once++ ) {
2047              tty->cr();
2048              b->dump_head( &_cfg._bbs );
2049            }
2050            dump(n);
2051          }
2052        }
2053      }
2054    }
2055  } // End of per-block dump
2056  tty->cr();
2057}
2058#endif // not PRODUCT
2059
2060//------------------------------print_chaitin_statistics-------------------------------
2061int PhaseChaitin::_final_loads  = 0;
2062int PhaseChaitin::_final_stores = 0;
2063int PhaseChaitin::_final_memoves= 0;
2064int PhaseChaitin::_final_copies = 0;
2065double PhaseChaitin::_final_load_cost  = 0;
2066double PhaseChaitin::_final_store_cost = 0;
2067double PhaseChaitin::_final_memove_cost= 0;
2068double PhaseChaitin::_final_copy_cost  = 0;
2069int PhaseChaitin::_conserv_coalesce = 0;
2070int PhaseChaitin::_conserv_coalesce_pair = 0;
2071int PhaseChaitin::_conserv_coalesce_trie = 0;
2072int PhaseChaitin::_conserv_coalesce_quad = 0;
2073int PhaseChaitin::_post_alloc = 0;
2074int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2075int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2076int PhaseChaitin::_used_cisc_instructions   = 0;
2077int PhaseChaitin::_unused_cisc_instructions = 0;
2078int PhaseChaitin::_allocator_attempts       = 0;
2079int PhaseChaitin::_allocator_successes      = 0;
2080
2081#ifndef PRODUCT
2082uint PhaseChaitin::_high_pressure           = 0;
2083uint PhaseChaitin::_low_pressure            = 0;
2084
2085void PhaseChaitin::print_chaitin_statistics() {
2086  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2087  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2088  tty->print_cr("Adjusted spill cost = %7.0f.",
2089                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2090                _final_copy_cost*1.0 + _final_memove_cost*12.0);
2091  tty->print("Conservatively coalesced %d copies, %d pairs",
2092                _conserv_coalesce, _conserv_coalesce_pair);
2093  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2094    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2095  tty->print_cr(", %d post alloc.", _post_alloc);
2096  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2097    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2098                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2099  if( _used_cisc_instructions || _unused_cisc_instructions )
2100    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2101                   _used_cisc_instructions, _unused_cisc_instructions);
2102  if( _allocator_successes != 0 )
2103    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2104  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2105}
2106#endif // not PRODUCT
2107