chaitin.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_chaitin.cpp.incl"
27
28//=============================================================================
29
30#ifndef PRODUCT
31void LRG::dump( ) const {
32  ttyLocker ttyl;
33  tty->print("%d ",num_regs());
34  _mask.dump();
35  if( _msize_valid ) {
36    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
37    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
38  } else {
39    tty->print(", #?(%d) ",_mask.Size());
40  }
41
42  tty->print("EffDeg: ");
43  if( _degree_valid ) tty->print( "%d ", _eff_degree );
44  else tty->print("? ");
45
46  if( _def == NodeSentinel ) {
47    tty->print("MultiDef ");
48    if (_defs != NULL) {
49      tty->print("(");
50      for (int i = 0; i < _defs->length(); i++) {
51        tty->print("N%d ", _defs->at(i)->_idx);
52      }
53      tty->print(") ");
54    }
55  }
56  else if( _def == 0 ) tty->print("Dead ");
57  else tty->print("Def: N%d ",_def->_idx);
58
59  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
60  // Flags
61  if( _is_oop ) tty->print("Oop ");
62  if( _is_float ) tty->print("Float ");
63  if( _was_spilled1 ) tty->print("Spilled ");
64  if( _was_spilled2 ) tty->print("Spilled2 ");
65  if( _direct_conflict ) tty->print("Direct_conflict ");
66  if( _fat_proj ) tty->print("Fat ");
67  if( _was_lo ) tty->print("Lo ");
68  if( _has_copy ) tty->print("Copy ");
69  if( _at_risk ) tty->print("Risk ");
70
71  if( _must_spill ) tty->print("Must_spill ");
72  if( _is_bound ) tty->print("Bound ");
73  if( _msize_valid ) {
74    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
75  }
76
77  tty->cr();
78}
79#endif
80
81//------------------------------score------------------------------------------
82// Compute score from cost and area.  Low score is best to spill.
83static double raw_score( double cost, double area ) {
84  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
85}
86
87double LRG::score() const {
88  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
89  // Bigger area lowers score, encourages spilling this live range.
90  // Bigger cost raise score, prevents spilling this live range.
91  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
92  // to turn a divide by a constant into a multiply by the reciprical).
93  double score = raw_score( _cost, _area);
94
95  // Account for area.  Basically, LRGs covering large areas are better
96  // to spill because more other LRGs get freed up.
97  if( _area == 0.0 )            // No area?  Then no progress to spill
98    return 1e35;
99
100  if( _was_spilled2 )           // If spilled once before, we are unlikely
101    return score + 1e30;        // to make progress again.
102
103  if( _cost >= _area*3.0 )      // Tiny area relative to cost
104    return score + 1e17;        // Probably no progress to spill
105
106  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
107    return score + 1e10;        // Likely no progress to spill
108
109  return score;
110}
111
112//------------------------------LRG_List---------------------------------------
113LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
114  memset( _lidxs, 0, sizeof(uint)*max );
115}
116
117void LRG_List::extend( uint nidx, uint lidx ) {
118  _nesting.check();
119  if( nidx >= _max ) {
120    uint size = 16;
121    while( size <= nidx ) size <<=1;
122    _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
123    _max = size;
124  }
125  while( _cnt <= nidx )
126    _lidxs[_cnt++] = 0;
127  _lidxs[nidx] = lidx;
128}
129
130#define NUMBUCKS 3
131
132//------------------------------Chaitin----------------------------------------
133PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
134  : PhaseRegAlloc(unique, cfg, matcher,
135#ifndef PRODUCT
136       print_chaitin_statistics
137#else
138       NULL
139#endif
140       ),
141    _names(unique), _uf_map(unique),
142    _maxlrg(0), _live(0),
143    _spilled_once(Thread::current()->resource_area()),
144    _spilled_twice(Thread::current()->resource_area()),
145    _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
146    _oldphi(unique)
147#ifndef PRODUCT
148  , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
149#endif
150{
151  NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
152  uint i,j;
153  // Build a list of basic blocks, sorted by frequency
154  _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
155  // Experiment with sorting strategies to speed compilation
156  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
157  Block **buckets[NUMBUCKS];             // Array of buckets
158  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
159  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
160  for( i = 0; i < NUMBUCKS; i++ ) {
161    buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
162    buckcnt[i] = 0;
163    // Bump by three orders of magnitude each time
164    cutoff *= 0.001;
165    buckval[i] = cutoff;
166    for( j = 0; j < _cfg._num_blocks; j++ ) {
167      buckets[i][j] = NULL;
168    }
169  }
170  // Sort blocks into buckets
171  for( i = 0; i < _cfg._num_blocks; i++ ) {
172    for( j = 0; j < NUMBUCKS; j++ ) {
173      if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
174        // Assign block to end of list for appropriate bucket
175        buckets[j][buckcnt[j]++] = _cfg._blocks[i];
176        break;                      // kick out of inner loop
177      }
178    }
179  }
180  // Dump buckets into final block array
181  uint blkcnt = 0;
182  for( i = 0; i < NUMBUCKS; i++ ) {
183    for( j = 0; j < buckcnt[i]; j++ ) {
184      _blks[blkcnt++] = buckets[i][j];
185    }
186  }
187
188  assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
189}
190
191void PhaseChaitin::Register_Allocate() {
192
193  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
194  // slots in this area are called "arg_slots".  Above the NEW FP (and in
195  // registers) is the outgoing argument area; above that is the spill/temp
196  // area.  These are all "frame_slots".  Arg_slots start at the zero
197  // stack_slots and count up to the known arg_size.  Frame_slots start at
198  // the stack_slot #arg_size and go up.  After allocation I map stack
199  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
200  // by the frame_size; stack-slots in the frame_slot area are biased by 0.
201
202  _trip_cnt = 0;
203  _alternate = 0;
204  _matcher._allocation_started = true;
205
206  ResourceArea live_arena;      // Arena for liveness & IFG info
207  ResourceMark rm(&live_arena);
208
209  // Need live-ness for the IFG; need the IFG for coalescing.  If the
210  // liveness is JUST for coalescing, then I can get some mileage by renaming
211  // all copy-related live ranges low and then using the max copy-related
212  // live range as a cut-off for LIVE and the IFG.  In other words, I can
213  // build a subset of LIVE and IFG just for copies.
214  PhaseLive live(_cfg,_names,&live_arena);
215
216  // Need IFG for coalescing and coloring
217  PhaseIFG ifg( &live_arena );
218  _ifg = &ifg;
219
220  if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
221
222  // Come out of SSA world to the Named world.  Assign (virtual) registers to
223  // Nodes.  Use the same register for all inputs and the output of PhiNodes
224  // - effectively ending SSA form.  This requires either coalescing live
225  // ranges or inserting copies.  For the moment, we insert "virtual copies"
226  // - we pretend there is a copy prior to each Phi in predecessor blocks.
227  // We will attempt to coalesce such "virtual copies" before we manifest
228  // them for real.
229  de_ssa();
230
231  {
232    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
233    _live = NULL;                 // Mark live as being not available
234    rm.reset_to_mark();           // Reclaim working storage
235    IndexSet::reset_memory(C, &live_arena);
236    ifg.init(_maxlrg);            // Empty IFG
237    gather_lrg_masks( false );    // Collect LRG masks
238    live.compute( _maxlrg );      // Compute liveness
239    _live = &live;                // Mark LIVE as being available
240  }
241
242  // Base pointers are currently "used" by instructions which define new
243  // derived pointers.  This makes base pointers live up to the where the
244  // derived pointer is made, but not beyond.  Really, they need to be live
245  // across any GC point where the derived value is live.  So this code looks
246  // at all the GC points, and "stretches" the live range of any base pointer
247  // to the GC point.
248  if( stretch_base_pointer_live_ranges(&live_arena) ) {
249    NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
250    // Since some live range stretched, I need to recompute live
251    _live = NULL;
252    rm.reset_to_mark();         // Reclaim working storage
253    IndexSet::reset_memory(C, &live_arena);
254    ifg.init(_maxlrg);
255    gather_lrg_masks( false );
256    live.compute( _maxlrg );
257    _live = &live;
258  }
259  // Create the interference graph using virtual copies
260  build_ifg_virtual( );  // Include stack slots this time
261
262  // Aggressive (but pessimistic) copy coalescing.
263  // This pass works on virtual copies.  Any virtual copies which are not
264  // coalesced get manifested as actual copies
265  {
266    // The IFG is/was triangular.  I am 'squaring it up' so Union can run
267    // faster.  Union requires a 'for all' operation which is slow on the
268    // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
269    // meaning I can visit all the Nodes neighbors less than a Node in time
270    // O(# of neighbors), but I have to visit all the Nodes greater than a
271    // given Node and search them for an instance, i.e., time O(#MaxLRG)).
272    _ifg->SquareUp();
273
274    PhaseAggressiveCoalesce coalesce( *this );
275    coalesce.coalesce_driver( );
276    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
277    // not match the Phi itself, insert a copy.
278    coalesce.insert_copies(_matcher);
279  }
280
281  // After aggressive coalesce, attempt a first cut at coloring.
282  // To color, we need the IFG and for that we need LIVE.
283  {
284    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
285    _live = NULL;
286    rm.reset_to_mark();           // Reclaim working storage
287    IndexSet::reset_memory(C, &live_arena);
288    ifg.init(_maxlrg);
289    gather_lrg_masks( true );
290    live.compute( _maxlrg );
291    _live = &live;
292  }
293
294  // Build physical interference graph
295  uint must_spill = 0;
296  must_spill = build_ifg_physical( &live_arena );
297  // If we have a guaranteed spill, might as well spill now
298  if( must_spill ) {
299    if( !_maxlrg ) return;
300    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
301    C->check_node_count(10*must_spill, "out of nodes before split");
302    if (C->failing())  return;
303    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
304    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
305    // or we failed to split
306    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
307    if (C->failing())  return;
308
309#ifdef ASSERT
310    if( VerifyOpto ) {
311      _cfg.verify();
312      verify_base_ptrs(&live_arena);
313    }
314#endif
315    NOT_PRODUCT( C->verify_graph_edges(); )
316
317    compact();                  // Compact LRGs; return new lower max lrg
318
319    {
320      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
321      _live = NULL;
322      rm.reset_to_mark();         // Reclaim working storage
323      IndexSet::reset_memory(C, &live_arena);
324      ifg.init(_maxlrg);          // Build a new interference graph
325      gather_lrg_masks( true );   // Collect intersect mask
326      live.compute( _maxlrg );    // Compute LIVE
327      _live = &live;
328    }
329    build_ifg_physical( &live_arena );
330    _ifg->SquareUp();
331    _ifg->Compute_Effective_Degree();
332    // Only do conservative coalescing if requested
333    if( OptoCoalesce ) {
334      // Conservative (and pessimistic) copy coalescing of those spills
335      PhaseConservativeCoalesce coalesce( *this );
336      // If max live ranges greater than cutoff, don't color the stack.
337      // This cutoff can be larger than below since it is only done once.
338      coalesce.coalesce_driver( );
339    }
340    compress_uf_map_for_nodes();
341
342#ifdef ASSERT
343    if( VerifyOpto ) _ifg->verify(this);
344#endif
345  } else {
346    ifg.SquareUp();
347    ifg.Compute_Effective_Degree();
348#ifdef ASSERT
349    set_was_low();
350#endif
351  }
352
353  // Prepare for Simplify & Select
354  cache_lrg_info();           // Count degree of LRGs
355
356  // Simplify the InterFerence Graph by removing LRGs of low degree.
357  // LRGs of low degree are trivially colorable.
358  Simplify();
359
360  // Select colors by re-inserting LRGs back into the IFG in reverse order.
361  // Return whether or not something spills.
362  uint spills = Select( );
363
364  // If we spill, split and recycle the entire thing
365  while( spills ) {
366    if( _trip_cnt++ > 24 ) {
367      DEBUG_ONLY( dump_for_spill_split_recycle(); )
368      if( _trip_cnt > 27 ) {
369        C->record_method_not_compilable("failed spill-split-recycle sanity check");
370        return;
371      }
372    }
373
374    if( !_maxlrg ) return;
375    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
376    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
377    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
378    if (C->failing())  return;
379#ifdef ASSERT
380    if( VerifyOpto ) {
381      _cfg.verify();
382      verify_base_ptrs(&live_arena);
383    }
384#endif
385
386    compact();                  // Compact LRGs; return new lower max lrg
387
388    // Nuke the live-ness and interference graph and LiveRanGe info
389    {
390      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
391      _live = NULL;
392      rm.reset_to_mark();         // Reclaim working storage
393      IndexSet::reset_memory(C, &live_arena);
394      ifg.init(_maxlrg);
395
396      // Create LiveRanGe array.
397      // Intersect register masks for all USEs and DEFs
398      gather_lrg_masks( true );
399      live.compute( _maxlrg );
400      _live = &live;
401    }
402    must_spill = build_ifg_physical( &live_arena );
403    _ifg->SquareUp();
404    _ifg->Compute_Effective_Degree();
405
406    // Only do conservative coalescing if requested
407    if( OptoCoalesce ) {
408      // Conservative (and pessimistic) copy coalescing
409      PhaseConservativeCoalesce coalesce( *this );
410      // Check for few live ranges determines how aggressive coalesce is.
411      coalesce.coalesce_driver( );
412    }
413    compress_uf_map_for_nodes();
414#ifdef ASSERT
415    if( VerifyOpto ) _ifg->verify(this);
416#endif
417    cache_lrg_info();           // Count degree of LRGs
418
419    // Simplify the InterFerence Graph by removing LRGs of low degree.
420    // LRGs of low degree are trivially colorable.
421    Simplify();
422
423    // Select colors by re-inserting LRGs back into the IFG in reverse order.
424    // Return whether or not something spills.
425    spills = Select( );
426  }
427
428  // Count number of Simplify-Select trips per coloring success.
429  _allocator_attempts += _trip_cnt + 1;
430  _allocator_successes += 1;
431
432  // Peephole remove copies
433  post_allocate_copy_removal();
434
435  // max_reg is past the largest *register* used.
436  // Convert that to a frame_slot number.
437  if( _max_reg <= _matcher._new_SP )
438    _framesize = C->out_preserve_stack_slots();
439  else _framesize = _max_reg -_matcher._new_SP;
440  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
441
442  // This frame must preserve the required fp alignment
443  const int stack_alignment_in_words = Matcher::stack_alignment_in_slots();
444  if (stack_alignment_in_words > 0)
445    _framesize = round_to(_framesize, Matcher::stack_alignment_in_bytes());
446  assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
447#ifndef PRODUCT
448  _total_framesize += _framesize;
449  if( (int)_framesize > _max_framesize )
450    _max_framesize = _framesize;
451#endif
452
453  // Convert CISC spills
454  fixup_spills();
455
456  // Log regalloc results
457  CompileLog* log = Compile::current()->log();
458  if (log != NULL) {
459    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
460  }
461
462  if (C->failing())  return;
463
464  NOT_PRODUCT( C->verify_graph_edges(); )
465
466  // Move important info out of the live_arena to longer lasting storage.
467  alloc_node_regs(_names.Size());
468  for( uint i=0; i < _names.Size(); i++ ) {
469    if( _names[i] ) {           // Live range associated with Node?
470      LRG &lrg = lrgs( _names[i] );
471      if( lrg.num_regs() == 1 ) {
472        _node_regs[i].set1( lrg.reg() );
473      } else {                  // Must be a register-pair
474        if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
475          // Live ranges record the highest register in their mask.
476          // We want the low register for the AD file writer's convenience.
477          _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
478        } else {                // Misaligned; extract 2 bits
479          OptoReg::Name hi = lrg.reg(); // Get hi register
480          lrg.Remove(hi);       // Yank from mask
481          int lo = lrg.mask().find_first_elem(); // Find lo
482          _node_regs[i].set_pair( hi, lo );
483        }
484      }
485      if( lrg._is_oop ) _node_oops.set(i);
486    } else {
487      _node_regs[i].set_bad();
488    }
489  }
490
491  // Done!
492  _live = NULL;
493  _ifg = NULL;
494  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
495}
496
497//------------------------------de_ssa-----------------------------------------
498void PhaseChaitin::de_ssa() {
499  // Set initial Names for all Nodes.  Most Nodes get the virtual register
500  // number.  A few get the ZERO live range number.  These do not
501  // get allocated, but instead rely on correct scheduling to ensure that
502  // only one instance is simultaneously live at a time.
503  uint lr_counter = 1;
504  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
505    Block *b = _cfg._blocks[i];
506    uint cnt = b->_nodes.size();
507
508    // Handle all the normal Nodes in the block
509    for( uint j = 0; j < cnt; j++ ) {
510      Node *n = b->_nodes[j];
511      // Pre-color to the zero live range, or pick virtual register
512      const RegMask &rm = n->out_RegMask();
513      _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
514    }
515  }
516  // Reset the Union-Find mapping to be identity
517  reset_uf_map(lr_counter);
518}
519
520
521//------------------------------gather_lrg_masks-------------------------------
522// Gather LiveRanGe information, including register masks.  Modification of
523// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
524void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
525
526  // Nail down the frame pointer live range
527  uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
528  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
529
530  // For all blocks
531  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
532    Block *b = _cfg._blocks[i];
533
534    // For all instructions
535    for( uint j = 1; j < b->_nodes.size(); j++ ) {
536      Node *n = b->_nodes[j];
537      uint input_edge_start =1; // Skip control most nodes
538      if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
539      uint idx = n->is_Copy();
540
541      // Get virtual register number, same as LiveRanGe index
542      uint vreg = n2lidx(n);
543      LRG &lrg = lrgs(vreg);
544      if( vreg ) {              // No vreg means un-allocable (e.g. memory)
545
546        // Collect has-copy bit
547        if( idx ) {
548          lrg._has_copy = 1;
549          uint clidx = n2lidx(n->in(idx));
550          LRG &copy_src = lrgs(clidx);
551          copy_src._has_copy = 1;
552        }
553
554        // Check for float-vs-int live range (used in register-pressure
555        // calculations)
556        const Type *n_type = n->bottom_type();
557        if( n_type->is_floatingpoint() )
558          lrg._is_float = 1;
559
560        // Check for twice prior spilling.  Once prior spilling might have
561        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
562        // further spilling is unlikely to make progress.
563        if( _spilled_once.test(n->_idx) ) {
564          lrg._was_spilled1 = 1;
565          if( _spilled_twice.test(n->_idx) )
566            lrg._was_spilled2 = 1;
567        }
568
569#ifndef PRODUCT
570        if (trace_spilling() && lrg._def != NULL) {
571          // collect defs for MultiDef printing
572          if (lrg._defs == NULL) {
573            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
574            lrg._defs->append(lrg._def);
575          }
576          lrg._defs->append(n);
577        }
578#endif
579
580        // Check for a single def LRG; these can spill nicely
581        // via rematerialization.  Flag as NULL for no def found
582        // yet, or 'n' for single def or -1 for many defs.
583        lrg._def = lrg._def ? NodeSentinel : n;
584
585        // Limit result register mask to acceptable registers
586        const RegMask &rm = n->out_RegMask();
587        lrg.AND( rm );
588        // Check for bound register masks
589        const RegMask &lrgmask = lrg.mask();
590        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
591          lrg._is_bound = 1;
592
593        // Check for maximum frequency value
594        if( lrg._maxfreq < b->_freq )
595          lrg._maxfreq = b->_freq;
596
597        int ireg = n->ideal_reg();
598        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
599                "oops must be in Op_RegP's" );
600        // Check for oop-iness, or long/double
601        // Check for multi-kill projection
602        switch( ireg ) {
603        case MachProjNode::fat_proj:
604          // Fat projections have size equal to number of registers killed
605          lrg.set_num_regs(rm.Size());
606          lrg.set_reg_pressure(lrg.num_regs());
607          lrg._fat_proj = 1;
608          lrg._is_bound = 1;
609          break;
610        case Op_RegP:
611#ifdef _LP64
612          lrg.set_num_regs(2);  // Size is 2 stack words
613#else
614          lrg.set_num_regs(1);  // Size is 1 stack word
615#endif
616          // Register pressure is tracked relative to the maximum values
617          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
618          // and relative to other types which compete for the same regs.
619          //
620          // The following table contains suggested values based on the
621          // architectures as defined in each .ad file.
622          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
623          // compile-speed or performance.
624          // Note1:
625          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
626          // since .ad registers are defined as high and low halves.
627          // These reg_pressure values remain compatible with the code
628          // in is_high_pressure() which relates get_invalid_mask_size(),
629          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
630          // Note2:
631          // SPARC -d32 has 24 registers available for integral values,
632          // but only 10 of these are safe for 64-bit longs.
633          // Using set_reg_pressure(2) for both int and long means
634          // the allocator will believe it can fit 26 longs into
635          // registers.  Using 2 for longs and 1 for ints means the
636          // allocator will attempt to put 52 integers into registers.
637          // The settings below limit this problem to methods with
638          // many long values which are being run on 32-bit SPARC.
639          //
640          // ------------------- reg_pressure --------------------
641          // Each entry is reg_pressure_per_value,number_of_regs
642          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
643          // IA32     2     1     1          1    1          6           6
644          // IA64     1     1     1          1    1         50          41
645          // SPARC    2     2     2          2    2         48 (24)     52 (26)
646          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
647          // AMD64    1     1     1          1    1         14          15
648          // -----------------------------------------------------
649#if defined(SPARC)
650          lrg.set_reg_pressure(2);  // use for v9 as well
651#else
652          lrg.set_reg_pressure(1);  // normally one value per register
653#endif
654          if( n_type->isa_oop_ptr() ) {
655            lrg._is_oop = 1;
656          }
657          break;
658        case Op_RegL:           // Check for long or double
659        case Op_RegD:
660          lrg.set_num_regs(2);
661          // Define platform specific register pressure
662#ifdef SPARC
663          lrg.set_reg_pressure(2);
664#elif defined(IA32)
665          if( ireg == Op_RegL ) {
666            lrg.set_reg_pressure(2);
667          } else {
668            lrg.set_reg_pressure(1);
669          }
670#else
671          lrg.set_reg_pressure(1);  // normally one value per register
672#endif
673          // If this def of a double forces a mis-aligned double,
674          // flag as '_fat_proj' - really flag as allowing misalignment
675          // AND changes how we count interferences.  A mis-aligned
676          // double can interfere with TWO aligned pairs, or effectively
677          // FOUR registers!
678          if( rm.is_misaligned_Pair() ) {
679            lrg._fat_proj = 1;
680            lrg._is_bound = 1;
681          }
682          break;
683        case Op_RegF:
684        case Op_RegI:
685        case Op_RegN:
686        case Op_RegFlags:
687        case 0:                 // not an ideal register
688          lrg.set_num_regs(1);
689#ifdef SPARC
690          lrg.set_reg_pressure(2);
691#else
692          lrg.set_reg_pressure(1);
693#endif
694          break;
695        default:
696          ShouldNotReachHere();
697        }
698      }
699
700      // Now do the same for inputs
701      uint cnt = n->req();
702      // Setup for CISC SPILLING
703      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
704      if( UseCISCSpill && after_aggressive ) {
705        inp = n->cisc_operand();
706        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
707          // Convert operand number to edge index number
708          inp = n->as_Mach()->operand_index(inp);
709      }
710      // Prepare register mask for each input
711      for( uint k = input_edge_start; k < cnt; k++ ) {
712        uint vreg = n2lidx(n->in(k));
713        if( !vreg ) continue;
714
715        // If this instruction is CISC Spillable, add the flags
716        // bit to its appropriate input
717        if( UseCISCSpill && after_aggressive && inp == k ) {
718#ifndef PRODUCT
719          if( TraceCISCSpill ) {
720            tty->print("  use_cisc_RegMask: ");
721            n->dump();
722          }
723#endif
724          n->as_Mach()->use_cisc_RegMask();
725        }
726
727        LRG &lrg = lrgs(vreg);
728        // // Testing for floating point code shape
729        // Node *test = n->in(k);
730        // if( test->is_Mach() ) {
731        //   MachNode *m = test->as_Mach();
732        //   int  op = m->ideal_Opcode();
733        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
734        //     int zzz = 1;
735        //   }
736        // }
737
738        // Limit result register mask to acceptable registers.
739        // Do not limit registers from uncommon uses before
740        // AggressiveCoalesce.  This effectively pre-virtual-splits
741        // around uncommon uses of common defs.
742        const RegMask &rm = n->in_RegMask(k);
743        if( !after_aggressive &&
744          _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
745          // Since we are BEFORE aggressive coalesce, leave the register
746          // mask untrimmed by the call.  This encourages more coalescing.
747          // Later, AFTER aggressive, this live range will have to spill
748          // but the spiller handles slow-path calls very nicely.
749        } else {
750          lrg.AND( rm );
751        }
752        // Check for bound register masks
753        const RegMask &lrgmask = lrg.mask();
754        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
755          lrg._is_bound = 1;
756        // If this use of a double forces a mis-aligned double,
757        // flag as '_fat_proj' - really flag as allowing misalignment
758        // AND changes how we count interferences.  A mis-aligned
759        // double can interfere with TWO aligned pairs, or effectively
760        // FOUR registers!
761        if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
762          lrg._fat_proj = 1;
763          lrg._is_bound = 1;
764        }
765        // if the LRG is an unaligned pair, we will have to spill
766        // so clear the LRG's register mask if it is not already spilled
767        if ( !n->is_SpillCopy() &&
768               (lrg._def == NULL || lrg._def == NodeSentinel || !lrg._def->is_SpillCopy()) &&
769               lrgmask.is_misaligned_Pair()) {
770          lrg.Clear();
771        }
772
773        // Check for maximum frequency value
774        if( lrg._maxfreq < b->_freq )
775          lrg._maxfreq = b->_freq;
776
777      } // End for all allocated inputs
778    } // end for all instructions
779  } // end for all blocks
780
781  // Final per-liverange setup
782  for( uint i2=0; i2<_maxlrg; i2++ ) {
783    LRG &lrg = lrgs(i2);
784    if( lrg.num_regs() == 2 && !lrg._fat_proj )
785      lrg.ClearToPairs();
786    lrg.compute_set_mask_size();
787    if( lrg.not_free() ) {      // Handle case where we lose from the start
788      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
789      lrg._direct_conflict = 1;
790    }
791    lrg.set_degree(0);          // no neighbors in IFG yet
792  }
793}
794
795//------------------------------set_was_low------------------------------------
796// Set the was-lo-degree bit.  Conservative coalescing should not change the
797// colorability of the graph.  If any live range was of low-degree before
798// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
799// The bit is checked in Simplify.
800void PhaseChaitin::set_was_low() {
801#ifdef ASSERT
802  for( uint i = 1; i < _maxlrg; i++ ) {
803    int size = lrgs(i).num_regs();
804    uint old_was_lo = lrgs(i)._was_lo;
805    lrgs(i)._was_lo = 0;
806    if( lrgs(i).lo_degree() ) {
807      lrgs(i)._was_lo = 1;      // Trivially of low degree
808    } else {                    // Else check the Brigg's assertion
809      // Brigg's observation is that the lo-degree neighbors of a
810      // hi-degree live range will not interfere with the color choices
811      // of said hi-degree live range.  The Simplify reverse-stack-coloring
812      // order takes care of the details.  Hence you do not have to count
813      // low-degree neighbors when determining if this guy colors.
814      int briggs_degree = 0;
815      IndexSet *s = _ifg->neighbors(i);
816      IndexSetIterator elements(s);
817      uint lidx;
818      while((lidx = elements.next()) != 0) {
819        if( !lrgs(lidx).lo_degree() )
820          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
821      }
822      if( briggs_degree < lrgs(i).degrees_of_freedom() )
823        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
824    }
825    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
826  }
827#endif
828}
829
830#define REGISTER_CONSTRAINED 16
831
832//------------------------------cache_lrg_info---------------------------------
833// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
834void PhaseChaitin::cache_lrg_info( ) {
835
836  for( uint i = 1; i < _maxlrg; i++ ) {
837    LRG &lrg = lrgs(i);
838
839    // Check for being of low degree: means we can be trivially colored.
840    // Low degree, dead or must-spill guys just get to simplify right away
841    if( lrg.lo_degree() ||
842       !lrg.alive() ||
843        lrg._must_spill ) {
844      // Split low degree list into those guys that must get a
845      // register and those that can go to register or stack.
846      // The idea is LRGs that can go register or stack color first when
847      // they have a good chance of getting a register.  The register-only
848      // lo-degree live ranges always get a register.
849      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
850      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
851        lrg._next = _lo_stk_degree;
852        _lo_stk_degree = i;
853      } else {
854        lrg._next = _lo_degree;
855        _lo_degree = i;
856      }
857    } else {                    // Else high degree
858      lrgs(_hi_degree)._prev = i;
859      lrg._next = _hi_degree;
860      lrg._prev = 0;
861      _hi_degree = i;
862    }
863  }
864}
865
866//------------------------------Pre-Simplify-----------------------------------
867// Simplify the IFG by removing LRGs of low degree that have NO copies
868void PhaseChaitin::Pre_Simplify( ) {
869
870  // Warm up the lo-degree no-copy list
871  int lo_no_copy = 0;
872  for( uint i = 1; i < _maxlrg; i++ ) {
873    if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
874        !lrgs(i).alive() ||
875        lrgs(i)._must_spill ) {
876      lrgs(i)._next = lo_no_copy;
877      lo_no_copy = i;
878    }
879  }
880
881  while( lo_no_copy ) {
882    uint lo = lo_no_copy;
883    lo_no_copy = lrgs(lo)._next;
884    int size = lrgs(lo).num_regs();
885
886    // Put the simplified guy on the simplified list.
887    lrgs(lo)._next = _simplified;
888    _simplified = lo;
889
890    // Yank this guy from the IFG.
891    IndexSet *adj = _ifg->remove_node( lo );
892
893    // If any neighbors' degrees fall below their number of
894    // allowed registers, then put that neighbor on the low degree
895    // list.  Note that 'degree' can only fall and 'numregs' is
896    // unchanged by this action.  Thus the two are equal at most once,
897    // so LRGs hit the lo-degree worklists at most once.
898    IndexSetIterator elements(adj);
899    uint neighbor;
900    while ((neighbor = elements.next()) != 0) {
901      LRG *n = &lrgs(neighbor);
902      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
903
904      // Check for just becoming of-low-degree
905      if( n->just_lo_degree() && !n->_has_copy ) {
906        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
907        // Put on lo-degree list
908        n->_next = lo_no_copy;
909        lo_no_copy = neighbor;
910      }
911    }
912  } // End of while lo-degree no_copy worklist not empty
913
914  // No more lo-degree no-copy live ranges to simplify
915}
916
917//------------------------------Simplify---------------------------------------
918// Simplify the IFG by removing LRGs of low degree.
919void PhaseChaitin::Simplify( ) {
920
921  while( 1 ) {                  // Repeat till simplified it all
922    // May want to explore simplifying lo_degree before _lo_stk_degree.
923    // This might result in more spills coloring into registers during
924    // Select().
925    while( _lo_degree || _lo_stk_degree ) {
926      // If possible, pull from lo_stk first
927      uint lo;
928      if( _lo_degree ) {
929        lo = _lo_degree;
930        _lo_degree = lrgs(lo)._next;
931      } else {
932        lo = _lo_stk_degree;
933        _lo_stk_degree = lrgs(lo)._next;
934      }
935
936      // Put the simplified guy on the simplified list.
937      lrgs(lo)._next = _simplified;
938      _simplified = lo;
939      // If this guy is "at risk" then mark his current neighbors
940      if( lrgs(lo)._at_risk ) {
941        IndexSetIterator elements(_ifg->neighbors(lo));
942        uint datum;
943        while ((datum = elements.next()) != 0) {
944          lrgs(datum)._risk_bias = lo;
945        }
946      }
947
948      // Yank this guy from the IFG.
949      IndexSet *adj = _ifg->remove_node( lo );
950
951      // If any neighbors' degrees fall below their number of
952      // allowed registers, then put that neighbor on the low degree
953      // list.  Note that 'degree' can only fall and 'numregs' is
954      // unchanged by this action.  Thus the two are equal at most once,
955      // so LRGs hit the lo-degree worklist at most once.
956      IndexSetIterator elements(adj);
957      uint neighbor;
958      while ((neighbor = elements.next()) != 0) {
959        LRG *n = &lrgs(neighbor);
960#ifdef ASSERT
961        if( VerifyOpto ) {
962          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
963        }
964#endif
965
966        // Check for just becoming of-low-degree just counting registers.
967        // _must_spill live ranges are already on the low degree list.
968        if( n->just_lo_degree() && !n->_must_spill ) {
969          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
970          // Pull from hi-degree list
971          uint prev = n->_prev;
972          uint next = n->_next;
973          if( prev ) lrgs(prev)._next = next;
974          else _hi_degree = next;
975          lrgs(next)._prev = prev;
976          n->_next = _lo_degree;
977          _lo_degree = neighbor;
978        }
979      }
980    } // End of while lo-degree/lo_stk_degree worklist not empty
981
982    // Check for got everything: is hi-degree list empty?
983    if( !_hi_degree ) break;
984
985    // Time to pick a potential spill guy
986    uint lo_score = _hi_degree;
987    double score = lrgs(lo_score).score();
988    double area = lrgs(lo_score)._area;
989
990    // Find cheapest guy
991    debug_only( int lo_no_simplify=0; );
992    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
993      assert( !(*_ifg->_yanked)[i], "" );
994      // It's just vaguely possible to move hi-degree to lo-degree without
995      // going through a just-lo-degree stage: If you remove a double from
996      // a float live range it's degree will drop by 2 and you can skip the
997      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
998      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
999      if( lrgs(i).lo_degree() ) {
1000        lo_score = i;
1001        break;
1002      }
1003      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1004      double iscore = lrgs(i).score();
1005      double iarea = lrgs(i)._area;
1006
1007      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1008      // wins.  Ties happen because all live ranges in question have spilled
1009      // a few times before and the spill-score adds a huge number which
1010      // washes out the low order bits.  We are choosing the lesser of 2
1011      // evils; in this case pick largest area to spill.
1012      if( iscore < score ||
1013          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
1014        lo_score = i;
1015        score = iscore;
1016        area = iarea;
1017      }
1018    }
1019    LRG *lo_lrg = &lrgs(lo_score);
1020    // The live range we choose for spilling is either hi-degree, or very
1021    // rarely it can be low-degree.  If we choose a hi-degree live range
1022    // there better not be any lo-degree choices.
1023    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1024
1025    // Pull from hi-degree list
1026    uint prev = lo_lrg->_prev;
1027    uint next = lo_lrg->_next;
1028    if( prev ) lrgs(prev)._next = next;
1029    else _hi_degree = next;
1030    lrgs(next)._prev = prev;
1031    // Jam him on the lo-degree list, despite his high degree.
1032    // Maybe he'll get a color, and maybe he'll spill.
1033    // Only Select() will know.
1034    lrgs(lo_score)._at_risk = true;
1035    _lo_degree = lo_score;
1036    lo_lrg->_next = 0;
1037
1038  } // End of while not simplified everything
1039
1040}
1041
1042//------------------------------bias_color-------------------------------------
1043// Choose a color using the biasing heuristic
1044OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1045
1046  // Check for "at_risk" LRG's
1047  uint risk_lrg = Find(lrg._risk_bias);
1048  if( risk_lrg != 0 ) {
1049    // Walk the colored neighbors of the "at_risk" candidate
1050    // Choose a color which is both legal and already taken by a neighbor
1051    // of the "at_risk" candidate in order to improve the chances of the
1052    // "at_risk" candidate of coloring
1053    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1054    uint datum;
1055    while ((datum = elements.next()) != 0) {
1056      OptoReg::Name reg = lrgs(datum).reg();
1057      // If this LRG's register is legal for us, choose it
1058      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1059          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1060          (lrg.num_regs()==1 || // either size 1
1061           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1062        return reg;
1063    }
1064  }
1065
1066  uint copy_lrg = Find(lrg._copy_bias);
1067  if( copy_lrg != 0 ) {
1068    // If he has a color,
1069    if( !(*(_ifg->_yanked))[copy_lrg] ) {
1070      OptoReg::Name reg = lrgs(copy_lrg).reg();
1071      //  And it is legal for you,
1072      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1073          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1074          (lrg.num_regs()==1 || // either size 1
1075           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1076        return reg;
1077    } else if( chunk == 0 ) {
1078      // Choose a color which is legal for him
1079      RegMask tempmask = lrg.mask();
1080      tempmask.AND(lrgs(copy_lrg).mask());
1081      OptoReg::Name reg;
1082      if( lrg.num_regs() == 1 ) {
1083        reg = tempmask.find_first_elem();
1084      } else {
1085        tempmask.ClearToPairs();
1086        reg = tempmask.find_first_pair();
1087      }
1088      if( OptoReg::is_valid(reg) )
1089        return reg;
1090    }
1091  }
1092
1093  // If no bias info exists, just go with the register selection ordering
1094  if( lrg.num_regs() == 2 ) {
1095    // Find an aligned pair
1096    return OptoReg::add(lrg.mask().find_first_pair(),chunk);
1097  }
1098
1099  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1100  // copy removal to remove many more copies, by preventing a just-assigned
1101  // register from being repeatedly assigned.
1102  OptoReg::Name reg = lrg.mask().find_first_elem();
1103  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1104    // This 'Remove; find; Insert' idiom is an expensive way to find the
1105    // SECOND element in the mask.
1106    lrg.Remove(reg);
1107    OptoReg::Name reg2 = lrg.mask().find_first_elem();
1108    lrg.Insert(reg);
1109    if( OptoReg::is_reg(reg2))
1110      reg = reg2;
1111  }
1112  return OptoReg::add( reg, chunk );
1113}
1114
1115//------------------------------choose_color-----------------------------------
1116// Choose a color in the current chunk
1117OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1118  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1119  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1120
1121  if( lrg.num_regs() == 1 ||    // Common Case
1122      !lrg._fat_proj )          // Aligned+adjacent pairs ok
1123    // Use a heuristic to "bias" the color choice
1124    return bias_color(lrg, chunk);
1125
1126  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1127
1128  // Fat-proj case or misaligned double argument.
1129  assert(lrg.compute_mask_size() == lrg.num_regs() ||
1130         lrg.num_regs() == 2,"fat projs exactly color" );
1131  assert( !chunk, "always color in 1st chunk" );
1132  // Return the highest element in the set.
1133  return lrg.mask().find_last_elem();
1134}
1135
1136//------------------------------Select-----------------------------------------
1137// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1138// in reverse order of removal.  As long as nothing of hi-degree was yanked,
1139// everything going back is guaranteed a color.  Select that color.  If some
1140// hi-degree LRG cannot get a color then we record that we must spill.
1141uint PhaseChaitin::Select( ) {
1142  uint spill_reg = LRG::SPILL_REG;
1143  _max_reg = OptoReg::Name(0);  // Past max register used
1144  while( _simplified ) {
1145    // Pull next LRG from the simplified list - in reverse order of removal
1146    uint lidx = _simplified;
1147    LRG *lrg = &lrgs(lidx);
1148    _simplified = lrg->_next;
1149
1150
1151#ifndef PRODUCT
1152    if (trace_spilling()) {
1153      ttyLocker ttyl;
1154      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1155                    lrg->degrees_of_freedom());
1156      lrg->dump();
1157    }
1158#endif
1159
1160    // Re-insert into the IFG
1161    _ifg->re_insert(lidx);
1162    if( !lrg->alive() ) continue;
1163    // capture allstackedness flag before mask is hacked
1164    const int is_allstack = lrg->mask().is_AllStack();
1165
1166    // Yeah, yeah, yeah, I know, I know.  I can refactor this
1167    // to avoid the GOTO, although the refactored code will not
1168    // be much clearer.  We arrive here IFF we have a stack-based
1169    // live range that cannot color in the current chunk, and it
1170    // has to move into the next free stack chunk.
1171    int chunk = 0;              // Current chunk is first chunk
1172    retry_next_chunk:
1173
1174    // Remove neighbor colors
1175    IndexSet *s = _ifg->neighbors(lidx);
1176
1177    debug_only(RegMask orig_mask = lrg->mask();)
1178    IndexSetIterator elements(s);
1179    uint neighbor;
1180    while ((neighbor = elements.next()) != 0) {
1181      // Note that neighbor might be a spill_reg.  In this case, exclusion
1182      // of its color will be a no-op, since the spill_reg chunk is in outer
1183      // space.  Also, if neighbor is in a different chunk, this exclusion
1184      // will be a no-op.  (Later on, if lrg runs out of possible colors in
1185      // its chunk, a new chunk of color may be tried, in which case
1186      // examination of neighbors is started again, at retry_next_chunk.)
1187      LRG &nlrg = lrgs(neighbor);
1188      OptoReg::Name nreg = nlrg.reg();
1189      // Only subtract masks in the same chunk
1190      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1191#ifndef PRODUCT
1192        uint size = lrg->mask().Size();
1193        RegMask rm = lrg->mask();
1194#endif
1195        lrg->SUBTRACT(nlrg.mask());
1196#ifndef PRODUCT
1197        if (trace_spilling() && lrg->mask().Size() != size) {
1198          ttyLocker ttyl;
1199          tty->print("L%d ", lidx);
1200          rm.dump();
1201          tty->print(" intersected L%d ", neighbor);
1202          nlrg.mask().dump();
1203          tty->print(" removed ");
1204          rm.SUBTRACT(lrg->mask());
1205          rm.dump();
1206          tty->print(" leaving ");
1207          lrg->mask().dump();
1208          tty->cr();
1209        }
1210#endif
1211      }
1212    }
1213    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1214    // Aligned pairs need aligned masks
1215    if( lrg->num_regs() == 2 && !lrg->_fat_proj )
1216      lrg->ClearToPairs();
1217
1218    // Check if a color is available and if so pick the color
1219    OptoReg::Name reg = choose_color( *lrg, chunk );
1220#ifdef SPARC
1221    debug_only(lrg->compute_set_mask_size());
1222    assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1223#endif
1224
1225    //---------------
1226    // If we fail to color and the AllStack flag is set, trigger
1227    // a chunk-rollover event
1228    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1229      // Bump register mask up to next stack chunk
1230      chunk += RegMask::CHUNK_SIZE;
1231      lrg->Set_All();
1232
1233      goto retry_next_chunk;
1234    }
1235
1236    //---------------
1237    // Did we get a color?
1238    else if( OptoReg::is_valid(reg)) {
1239#ifndef PRODUCT
1240      RegMask avail_rm = lrg->mask();
1241#endif
1242
1243      // Record selected register
1244      lrg->set_reg(reg);
1245
1246      if( reg >= _max_reg )     // Compute max register limit
1247        _max_reg = OptoReg::add(reg,1);
1248      // Fold reg back into normal space
1249      reg = OptoReg::add(reg,-chunk);
1250
1251      // If the live range is not bound, then we actually had some choices
1252      // to make.  In this case, the mask has more bits in it than the colors
1253      // choosen.  Restrict the mask to just what was picked.
1254      if( lrg->num_regs() == 1 ) { // Size 1 live range
1255        lrg->Clear();           // Clear the mask
1256        lrg->Insert(reg);       // Set regmask to match selected reg
1257        lrg->set_mask_size(1);
1258      } else if( !lrg->_fat_proj ) {
1259        // For pairs, also insert the low bit of the pair
1260        assert( lrg->num_regs() == 2, "unbound fatproj???" );
1261        lrg->Clear();           // Clear the mask
1262        lrg->Insert(reg);       // Set regmask to match selected reg
1263        lrg->Insert(OptoReg::add(reg,-1));
1264        lrg->set_mask_size(2);
1265      } else {                  // Else fatproj
1266        // mask must be equal to fatproj bits, by definition
1267      }
1268#ifndef PRODUCT
1269      if (trace_spilling()) {
1270        ttyLocker ttyl;
1271        tty->print("L%d selected ", lidx);
1272        lrg->mask().dump();
1273        tty->print(" from ");
1274        avail_rm.dump();
1275        tty->cr();
1276      }
1277#endif
1278      // Note that reg is the highest-numbered register in the newly-bound mask.
1279    } // end color available case
1280
1281    //---------------
1282    // Live range is live and no colors available
1283    else {
1284      assert( lrg->alive(), "" );
1285      assert( !lrg->_fat_proj || lrg->_def == NodeSentinel ||
1286              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1287      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1288
1289      // Assign the special spillreg register
1290      lrg->set_reg(OptoReg::Name(spill_reg++));
1291      // Do not empty the regmask; leave mask_size lying around
1292      // for use during Spilling
1293#ifndef PRODUCT
1294      if( trace_spilling() ) {
1295        ttyLocker ttyl;
1296        tty->print("L%d spilling with neighbors: ", lidx);
1297        s->dump();
1298        debug_only(tty->print(" original mask: "));
1299        debug_only(orig_mask.dump());
1300        dump_lrg(lidx);
1301      }
1302#endif
1303    } // end spill case
1304
1305  }
1306
1307  return spill_reg-LRG::SPILL_REG;      // Return number of spills
1308}
1309
1310
1311//------------------------------copy_was_spilled-------------------------------
1312// Copy 'was_spilled'-edness from the source Node to the dst Node.
1313void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1314  if( _spilled_once.test(src->_idx) ) {
1315    _spilled_once.set(dst->_idx);
1316    lrgs(Find(dst))._was_spilled1 = 1;
1317    if( _spilled_twice.test(src->_idx) ) {
1318      _spilled_twice.set(dst->_idx);
1319      lrgs(Find(dst))._was_spilled2 = 1;
1320    }
1321  }
1322}
1323
1324//------------------------------set_was_spilled--------------------------------
1325// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1326void PhaseChaitin::set_was_spilled( Node *n ) {
1327  if( _spilled_once.test_set(n->_idx) )
1328    _spilled_twice.set(n->_idx);
1329}
1330
1331//------------------------------fixup_spills-----------------------------------
1332// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1333// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1334void PhaseChaitin::fixup_spills() {
1335  // This function does only cisc spill work.
1336  if( !UseCISCSpill ) return;
1337
1338  NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1339
1340  // Grab the Frame Pointer
1341  Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
1342
1343  // For all blocks
1344  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1345    Block *b = _cfg._blocks[i];
1346
1347    // For all instructions in block
1348    uint last_inst = b->end_idx();
1349    for( uint j = 1; j <= last_inst; j++ ) {
1350      Node *n = b->_nodes[j];
1351
1352      // Dead instruction???
1353      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1354              C->top() == n ||  // Or the random TOP node
1355              n->is_Proj(),     // Or a fat-proj kill node
1356              "No dead instructions after post-alloc" );
1357
1358      int inp = n->cisc_operand();
1359      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1360        // Convert operand number to edge index number
1361        MachNode *mach = n->as_Mach();
1362        inp = mach->operand_index(inp);
1363        Node *src = n->in(inp);   // Value to load or store
1364        LRG &lrg_cisc = lrgs( Find_const(src) );
1365        OptoReg::Name src_reg = lrg_cisc.reg();
1366        // Doubles record the HIGH register of an adjacent pair.
1367        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1368        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1369          // This is a CISC Spill, get stack offset and construct new node
1370#ifndef PRODUCT
1371          if( TraceCISCSpill ) {
1372            tty->print("    reg-instr:  ");
1373            n->dump();
1374          }
1375#endif
1376          int stk_offset = reg2offset(src_reg);
1377          // Bailout if we might exceed node limit when spilling this instruction
1378          C->check_node_count(0, "out of nodes fixing spills");
1379          if (C->failing())  return;
1380          // Transform node
1381          MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1382          cisc->set_req(inp,fp);          // Base register is frame pointer
1383          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1384            assert( cisc->oper_input_base() == 2, "Only adding one edge");
1385            cisc->ins_req(1,src);         // Requires a memory edge
1386          }
1387          b->_nodes.map(j,cisc);          // Insert into basic block
1388          n->subsume_by(cisc); // Correct graph
1389          //
1390          ++_used_cisc_instructions;
1391#ifndef PRODUCT
1392          if( TraceCISCSpill ) {
1393            tty->print("    cisc-instr: ");
1394            cisc->dump();
1395          }
1396#endif
1397        } else {
1398#ifndef PRODUCT
1399          if( TraceCISCSpill ) {
1400            tty->print("    using reg-instr: ");
1401            n->dump();
1402          }
1403#endif
1404          ++_unused_cisc_instructions;    // input can be on stack
1405        }
1406      }
1407
1408    } // End of for all instructions
1409
1410  } // End of for all blocks
1411}
1412
1413//------------------------------find_base_for_derived--------------------------
1414// Helper to stretch above; recursively discover the base Node for a
1415// given derived Node.  Easy for AddP-related machine nodes, but needs
1416// to be recursive for derived Phis.
1417Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1418  // See if already computed; if so return it
1419  if( derived_base_map[derived->_idx] )
1420    return derived_base_map[derived->_idx];
1421
1422  // See if this happens to be a base.
1423  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1424  // pointers derived from NULL!  These are always along paths that
1425  // can't happen at run-time but the optimizer cannot deduce it so
1426  // we have to handle it gracefully.
1427  const TypePtr *tj = derived->bottom_type()->isa_ptr();
1428  // If its an OOP with a non-zero offset, then it is derived.
1429  if( tj->_offset == 0 ) {
1430    derived_base_map[derived->_idx] = derived;
1431    return derived;
1432  }
1433  // Derived is NULL+offset?  Base is NULL!
1434  if( derived->is_Con() ) {
1435    Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR );
1436    uint no_lidx = 0;  // an unmatched constant in debug info has no LRG
1437    _names.extend(base->_idx, no_lidx);
1438    derived_base_map[derived->_idx] = base;
1439    return base;
1440  }
1441
1442  // Check for AddP-related opcodes
1443  if( !derived->is_Phi() ) {
1444    assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
1445    Node *base = derived->in(AddPNode::Base);
1446    derived_base_map[derived->_idx] = base;
1447    return base;
1448  }
1449
1450  // Recursively find bases for Phis.
1451  // First check to see if we can avoid a base Phi here.
1452  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1453  uint i;
1454  for( i = 2; i < derived->req(); i++ )
1455    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1456      break;
1457  // Went to the end without finding any different bases?
1458  if( i == derived->req() ) {   // No need for a base Phi here
1459    derived_base_map[derived->_idx] = base;
1460    return base;
1461  }
1462
1463  // Now we see we need a base-Phi here to merge the bases
1464  base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() );
1465  for( i = 1; i < derived->req(); i++ )
1466    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1467
1468  // Search the current block for an existing base-Phi
1469  Block *b = _cfg._bbs[derived->_idx];
1470  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1471    Node *phi = b->_nodes[i];
1472    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1473      b->_nodes.insert( i, base ); // Must insert created Phi here as base
1474      _cfg._bbs.map( base->_idx, b );
1475      new_lrg(base,maxlrg++);
1476      break;
1477    }
1478    // See if Phi matches.
1479    uint j;
1480    for( j = 1; j < base->req(); j++ )
1481      if( phi->in(j) != base->in(j) &&
1482          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1483        break;
1484    if( j == base->req() ) {    // All inputs match?
1485      base = phi;               // Then use existing 'phi' and drop 'base'
1486      break;
1487    }
1488  }
1489
1490
1491  // Cache info for later passes
1492  derived_base_map[derived->_idx] = base;
1493  return base;
1494}
1495
1496
1497//------------------------------stretch_base_pointer_live_ranges---------------
1498// At each Safepoint, insert extra debug edges for each pair of derived value/
1499// base pointer that is live across the Safepoint for oopmap building.  The
1500// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1501// required edge set.
1502bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
1503  int must_recompute_live = false;
1504  uint maxlrg = _maxlrg;
1505  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1506  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1507
1508  // For all blocks in RPO do...
1509  for( uint i=0; i<_cfg._num_blocks; i++ ) {
1510    Block *b = _cfg._blocks[i];
1511    // Note use of deep-copy constructor.  I cannot hammer the original
1512    // liveout bits, because they are needed by the following coalesce pass.
1513    IndexSet liveout(_live->live(b));
1514
1515    for( uint j = b->end_idx() + 1; j > 1; j-- ) {
1516      Node *n = b->_nodes[j-1];
1517
1518      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1519      // like to see in the same register.  Compare uses the loop-phi and so
1520      // extends its live range BUT cannot be part of the cycle.  If this
1521      // extended live range overlaps with the update of the loop-phi value
1522      // we need both alive at the same time -- which requires at least 1
1523      // copy.  But because Intel has only 2-address registers we end up with
1524      // at least 2 copies, one before the loop-phi update instruction and
1525      // one after.  Instead we split the input to the compare just after the
1526      // phi.
1527      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1528        Node *phi = n->in(1);
1529        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1530          Block *phi_block = _cfg._bbs[phi->_idx];
1531          if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
1532            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1533            Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1534            insert_proj( phi_block, 1, spill, maxlrg++ );
1535            n->set_req(1,spill);
1536            must_recompute_live = true;
1537          }
1538        }
1539      }
1540
1541      // Get value being defined
1542      uint lidx = n2lidx(n);
1543      if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
1544        // Remove from live-out set
1545        liveout.remove(lidx);
1546
1547        // Copies do not define a new value and so do not interfere.
1548        // Remove the copies source from the liveout set before interfering.
1549        uint idx = n->is_Copy();
1550        if( idx ) liveout.remove( n2lidx(n->in(idx)) );
1551      }
1552
1553      // Found a safepoint?
1554      JVMState *jvms = n->jvms();
1555      if( jvms ) {
1556        // Now scan for a live derived pointer
1557        IndexSetIterator elements(&liveout);
1558        uint neighbor;
1559        while ((neighbor = elements.next()) != 0) {
1560          // Find reaching DEF for base and derived values
1561          // This works because we are still in SSA during this call.
1562          Node *derived = lrgs(neighbor)._def;
1563          const TypePtr *tj = derived->bottom_type()->isa_ptr();
1564          // If its an OOP with a non-zero offset, then it is derived.
1565          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1566            Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
1567            assert( base->_idx < _names.Size(), "" );
1568            // Add reaching DEFs of derived pointer and base pointer as a
1569            // pair of inputs
1570            n->add_req( derived );
1571            n->add_req( base );
1572
1573            // See if the base pointer is already live to this point.
1574            // Since I'm working on the SSA form, live-ness amounts to
1575            // reaching def's.  So if I find the base's live range then
1576            // I know the base's def reaches here.
1577            if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
1578                 !liveout.member( n2lidx(base) ) ) && // not live) AND
1579                 (n2lidx(base) > 0)                && // not a constant
1580                 _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
1581              // Base pointer is not currently live.  Since I stretched
1582              // the base pointer to here and it crosses basic-block
1583              // boundaries, the global live info is now incorrect.
1584              // Recompute live.
1585              must_recompute_live = true;
1586            } // End of if base pointer is not live to debug info
1587          }
1588        } // End of scan all live data for derived ptrs crossing GC point
1589      } // End of if found a GC point
1590
1591      // Make all inputs live
1592      if( !n->is_Phi() ) {      // Phi function uses come from prior block
1593        for( uint k = 1; k < n->req(); k++ ) {
1594          uint lidx = n2lidx(n->in(k));
1595          if( lidx < _maxlrg )
1596            liveout.insert( lidx );
1597        }
1598      }
1599
1600    } // End of forall instructions in block
1601    liveout.clear();  // Free the memory used by liveout.
1602
1603  } // End of forall blocks
1604  _maxlrg = maxlrg;
1605
1606  // If I created a new live range I need to recompute live
1607  if( maxlrg != _ifg->_maxlrg )
1608    must_recompute_live = true;
1609
1610  return must_recompute_live != 0;
1611}
1612
1613
1614//------------------------------add_reference----------------------------------
1615// Extend the node to LRG mapping
1616void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
1617  _names.extend( node->_idx, n2lidx(old_node) );
1618}
1619
1620//------------------------------dump-------------------------------------------
1621#ifndef PRODUCT
1622void PhaseChaitin::dump( const Node *n ) const {
1623  uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
1624  tty->print("L%d",r);
1625  if( r && n->Opcode() != Op_Phi ) {
1626    if( _node_regs ) {          // Got a post-allocation copy of allocation?
1627      tty->print("[");
1628      OptoReg::Name second = get_reg_second(n);
1629      if( OptoReg::is_valid(second) ) {
1630        if( OptoReg::is_reg(second) )
1631          tty->print("%s:",Matcher::regName[second]);
1632        else
1633          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1634      }
1635      OptoReg::Name first = get_reg_first(n);
1636      if( OptoReg::is_reg(first) )
1637        tty->print("%s]",Matcher::regName[first]);
1638      else
1639         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1640    } else
1641    n->out_RegMask().dump();
1642  }
1643  tty->print("/N%d\t",n->_idx);
1644  tty->print("%s === ", n->Name());
1645  uint k;
1646  for( k = 0; k < n->req(); k++) {
1647    Node *m = n->in(k);
1648    if( !m ) tty->print("_ ");
1649    else {
1650      uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1651      tty->print("L%d",r);
1652      // Data MultiNode's can have projections with no real registers.
1653      // Don't die while dumping them.
1654      int op = n->Opcode();
1655      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1656        if( _node_regs ) {
1657          tty->print("[");
1658          OptoReg::Name second = get_reg_second(n->in(k));
1659          if( OptoReg::is_valid(second) ) {
1660            if( OptoReg::is_reg(second) )
1661              tty->print("%s:",Matcher::regName[second]);
1662            else
1663              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1664                         reg2offset_unchecked(second));
1665          }
1666          OptoReg::Name first = get_reg_first(n->in(k));
1667          if( OptoReg::is_reg(first) )
1668            tty->print("%s]",Matcher::regName[first]);
1669          else
1670            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1671                       reg2offset_unchecked(first));
1672        } else
1673          n->in_RegMask(k).dump();
1674      }
1675      tty->print("/N%d ",m->_idx);
1676    }
1677  }
1678  if( k < n->len() && n->in(k) ) tty->print("| ");
1679  for( ; k < n->len(); k++ ) {
1680    Node *m = n->in(k);
1681    if( !m ) break;
1682    uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1683    tty->print("L%d",r);
1684    tty->print("/N%d ",m->_idx);
1685  }
1686  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1687  else n->dump_spec(tty);
1688  if( _spilled_once.test(n->_idx ) ) {
1689    tty->print(" Spill_1");
1690    if( _spilled_twice.test(n->_idx ) )
1691      tty->print(" Spill_2");
1692  }
1693  tty->print("\n");
1694}
1695
1696void PhaseChaitin::dump( const Block * b ) const {
1697  b->dump_head( &_cfg._bbs );
1698
1699  // For all instructions
1700  for( uint j = 0; j < b->_nodes.size(); j++ )
1701    dump(b->_nodes[j]);
1702  // Print live-out info at end of block
1703  if( _live ) {
1704    tty->print("Liveout: ");
1705    IndexSet *live = _live->live(b);
1706    IndexSetIterator elements(live);
1707    tty->print("{");
1708    uint i;
1709    while ((i = elements.next()) != 0) {
1710      tty->print("L%d ", Find_const(i));
1711    }
1712    tty->print_cr("}");
1713  }
1714  tty->print("\n");
1715}
1716
1717void PhaseChaitin::dump() const {
1718  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
1719              _matcher._new_SP, _framesize );
1720
1721  // For all blocks
1722  for( uint i = 0; i < _cfg._num_blocks; i++ )
1723    dump(_cfg._blocks[i]);
1724  // End of per-block dump
1725  tty->print("\n");
1726
1727  if (!_ifg) {
1728    tty->print("(No IFG.)\n");
1729    return;
1730  }
1731
1732  // Dump LRG array
1733  tty->print("--- Live RanGe Array ---\n");
1734  for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
1735    tty->print("L%d: ",i2);
1736    if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
1737    else tty->print("new LRG");
1738  }
1739  tty->print_cr("");
1740
1741  // Dump lo-degree list
1742  tty->print("Lo degree: ");
1743  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
1744    tty->print("L%d ",i3);
1745  tty->print_cr("");
1746
1747  // Dump lo-stk-degree list
1748  tty->print("Lo stk degree: ");
1749  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
1750    tty->print("L%d ",i4);
1751  tty->print_cr("");
1752
1753  // Dump lo-degree list
1754  tty->print("Hi degree: ");
1755  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
1756    tty->print("L%d ",i5);
1757  tty->print_cr("");
1758}
1759
1760//------------------------------dump_degree_lists------------------------------
1761void PhaseChaitin::dump_degree_lists() const {
1762  // Dump lo-degree list
1763  tty->print("Lo degree: ");
1764  for( uint i = _lo_degree; i; i = lrgs(i)._next )
1765    tty->print("L%d ",i);
1766  tty->print_cr("");
1767
1768  // Dump lo-stk-degree list
1769  tty->print("Lo stk degree: ");
1770  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
1771    tty->print("L%d ",i2);
1772  tty->print_cr("");
1773
1774  // Dump lo-degree list
1775  tty->print("Hi degree: ");
1776  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
1777    tty->print("L%d ",i3);
1778  tty->print_cr("");
1779}
1780
1781//------------------------------dump_simplified--------------------------------
1782void PhaseChaitin::dump_simplified() const {
1783  tty->print("Simplified: ");
1784  for( uint i = _simplified; i; i = lrgs(i)._next )
1785    tty->print("L%d ",i);
1786  tty->print_cr("");
1787}
1788
1789static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
1790  if ((int)reg < 0)
1791    sprintf(buf, "<OptoReg::%d>", (int)reg);
1792  else if (OptoReg::is_reg(reg))
1793    strcpy(buf, Matcher::regName[reg]);
1794  else
1795    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
1796            pc->reg2offset(reg));
1797  return buf+strlen(buf);
1798}
1799
1800//------------------------------dump_register----------------------------------
1801// Dump a register name into a buffer.  Be intelligent if we get called
1802// before allocation is complete.
1803char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
1804  if( !this ) {                 // Not got anything?
1805    sprintf(buf,"N%d",n->_idx); // Then use Node index
1806  } else if( _node_regs ) {
1807    // Post allocation, use direct mappings, no LRG info available
1808    print_reg( get_reg_first(n), this, buf );
1809  } else {
1810    uint lidx = Find_const(n); // Grab LRG number
1811    if( !_ifg ) {
1812      sprintf(buf,"L%d",lidx);  // No register binding yet
1813    } else if( !lidx ) {        // Special, not allocated value
1814      strcpy(buf,"Special");
1815    } else if( (lrgs(lidx).num_regs() == 1)
1816                ? !lrgs(lidx).mask().is_bound1()
1817                : !lrgs(lidx).mask().is_bound2() ) {
1818      sprintf(buf,"L%d",lidx); // No register binding yet
1819    } else {                    // Hah!  We have a bound machine register
1820      print_reg( lrgs(lidx).reg(), this, buf );
1821    }
1822  }
1823  return buf+strlen(buf);
1824}
1825
1826//----------------------dump_for_spill_split_recycle--------------------------
1827void PhaseChaitin::dump_for_spill_split_recycle() const {
1828  if( WizardMode && (PrintCompilation || PrintOpto) ) {
1829    // Display which live ranges need to be split and the allocator's state
1830    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
1831    for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
1832      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
1833        tty->print("L%d: ", bidx);
1834        lrgs(bidx).dump();
1835      }
1836    }
1837    tty->cr();
1838    dump();
1839  }
1840}
1841
1842//------------------------------dump_frame------------------------------------
1843void PhaseChaitin::dump_frame() const {
1844  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
1845  const TypeTuple *domain = C->tf()->domain();
1846  const int        argcnt = domain->cnt() - TypeFunc::Parms;
1847
1848  // Incoming arguments in registers dump
1849  for( int k = 0; k < argcnt; k++ ) {
1850    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
1851    if( OptoReg::is_reg(parmreg))  {
1852      const char *reg_name = OptoReg::regname(parmreg);
1853      tty->print("#r%3.3d %s", parmreg, reg_name);
1854      parmreg = _matcher._parm_regs[k].second();
1855      if( OptoReg::is_reg(parmreg))  {
1856        tty->print(":%s", OptoReg::regname(parmreg));
1857      }
1858      tty->print("   : parm %d: ", k);
1859      domain->field_at(k + TypeFunc::Parms)->dump();
1860      tty->print_cr("");
1861    }
1862  }
1863
1864  // Check for un-owned padding above incoming args
1865  OptoReg::Name reg = _matcher._new_SP;
1866  if( reg > _matcher._in_arg_limit ) {
1867    reg = OptoReg::add(reg, -1);
1868    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
1869  }
1870
1871  // Incoming argument area dump
1872  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
1873  while( reg > begin_in_arg ) {
1874    reg = OptoReg::add(reg, -1);
1875    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1876    int j;
1877    for( j = 0; j < argcnt; j++) {
1878      if( _matcher._parm_regs[j].first() == reg ||
1879          _matcher._parm_regs[j].second() == reg ) {
1880        tty->print("parm %d: ",j);
1881        domain->field_at(j + TypeFunc::Parms)->dump();
1882        tty->print_cr("");
1883        break;
1884      }
1885    }
1886    if( j >= argcnt )
1887      tty->print_cr("HOLE, owned by SELF");
1888  }
1889
1890  // Old outgoing preserve area
1891  while( reg > _matcher._old_SP ) {
1892    reg = OptoReg::add(reg, -1);
1893    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
1894  }
1895
1896  // Old SP
1897  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
1898    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
1899
1900  // Preserve area dump
1901  reg = OptoReg::add(reg, -1);
1902  while( OptoReg::is_stack(reg)) {
1903    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1904    if( _matcher.return_addr() == reg )
1905      tty->print_cr("return address");
1906    else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
1907             VerifyStackAtCalls )
1908      tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
1909    else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
1910      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
1911    else
1912      tty->print_cr("pad2, in_preserve");
1913    reg = OptoReg::add(reg, -1);
1914  }
1915
1916  // Spill area dump
1917  reg = OptoReg::add(_matcher._new_SP, _framesize );
1918  while( reg > _matcher._out_arg_limit ) {
1919    reg = OptoReg::add(reg, -1);
1920    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
1921  }
1922
1923  // Outgoing argument area dump
1924  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
1925    reg = OptoReg::add(reg, -1);
1926    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
1927  }
1928
1929  // Outgoing new preserve area
1930  while( reg > _matcher._new_SP ) {
1931    reg = OptoReg::add(reg, -1);
1932    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
1933  }
1934  tty->print_cr("#");
1935}
1936
1937//------------------------------dump_bb----------------------------------------
1938void PhaseChaitin::dump_bb( uint pre_order ) const {
1939  tty->print_cr("---dump of B%d---",pre_order);
1940  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1941    Block *b = _cfg._blocks[i];
1942    if( b->_pre_order == pre_order )
1943      dump(b);
1944  }
1945}
1946
1947//------------------------------dump_lrg---------------------------------------
1948void PhaseChaitin::dump_lrg( uint lidx ) const {
1949  tty->print_cr("---dump of L%d---",lidx);
1950
1951  if( _ifg ) {
1952    if( lidx >= _maxlrg ) {
1953      tty->print("Attempt to print live range index beyond max live range.\n");
1954      return;
1955    }
1956    tty->print("L%d: ",lidx);
1957    lrgs(lidx).dump( );
1958  }
1959  if( _ifg ) {    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
1960    _ifg->neighbors(lidx)->dump();
1961    tty->cr();
1962  }
1963  // For all blocks
1964  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1965    Block *b = _cfg._blocks[i];
1966    int dump_once = 0;
1967
1968    // For all instructions
1969    for( uint j = 0; j < b->_nodes.size(); j++ ) {
1970      Node *n = b->_nodes[j];
1971      if( Find_const(n) == lidx ) {
1972        if( !dump_once++ ) {
1973          tty->cr();
1974          b->dump_head( &_cfg._bbs );
1975        }
1976        dump(n);
1977        continue;
1978      }
1979      uint cnt = n->req();
1980      for( uint k = 1; k < cnt; k++ ) {
1981        Node *m = n->in(k);
1982        if (!m)  continue;  // be robust in the dumper
1983        if( Find_const(m) == lidx ) {
1984          if( !dump_once++ ) {
1985            tty->cr();
1986            b->dump_head( &_cfg._bbs );
1987          }
1988          dump(n);
1989        }
1990      }
1991    }
1992  } // End of per-block dump
1993  tty->cr();
1994}
1995#endif // not PRODUCT
1996
1997//------------------------------print_chaitin_statistics-------------------------------
1998int PhaseChaitin::_final_loads  = 0;
1999int PhaseChaitin::_final_stores = 0;
2000int PhaseChaitin::_final_memoves= 0;
2001int PhaseChaitin::_final_copies = 0;
2002double PhaseChaitin::_final_load_cost  = 0;
2003double PhaseChaitin::_final_store_cost = 0;
2004double PhaseChaitin::_final_memove_cost= 0;
2005double PhaseChaitin::_final_copy_cost  = 0;
2006int PhaseChaitin::_conserv_coalesce = 0;
2007int PhaseChaitin::_conserv_coalesce_pair = 0;
2008int PhaseChaitin::_conserv_coalesce_trie = 0;
2009int PhaseChaitin::_conserv_coalesce_quad = 0;
2010int PhaseChaitin::_post_alloc = 0;
2011int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2012int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2013int PhaseChaitin::_used_cisc_instructions   = 0;
2014int PhaseChaitin::_unused_cisc_instructions = 0;
2015int PhaseChaitin::_allocator_attempts       = 0;
2016int PhaseChaitin::_allocator_successes      = 0;
2017
2018#ifndef PRODUCT
2019uint PhaseChaitin::_high_pressure           = 0;
2020uint PhaseChaitin::_low_pressure            = 0;
2021
2022void PhaseChaitin::print_chaitin_statistics() {
2023  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2024  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2025  tty->print_cr("Adjusted spill cost = %7.0f.",
2026                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2027                _final_copy_cost*1.0 + _final_memove_cost*12.0);
2028  tty->print("Conservatively coalesced %d copies, %d pairs",
2029                _conserv_coalesce, _conserv_coalesce_pair);
2030  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2031    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2032  tty->print_cr(", %d post alloc.", _post_alloc);
2033  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2034    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2035                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2036  if( _used_cisc_instructions || _unused_cisc_instructions )
2037    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2038                   _used_cisc_instructions, _unused_cisc_instructions);
2039  if( _allocator_successes != 0 )
2040    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2041  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2042}
2043#endif // not PRODUCT
2044