chaitin.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 2000, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_chaitin.cpp.incl"
27
28//=============================================================================
29
30#ifndef PRODUCT
31void LRG::dump( ) const {
32  ttyLocker ttyl;
33  tty->print("%d ",num_regs());
34  _mask.dump();
35  if( _msize_valid ) {
36    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
37    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
38  } else {
39    tty->print(", #?(%d) ",_mask.Size());
40  }
41
42  tty->print("EffDeg: ");
43  if( _degree_valid ) tty->print( "%d ", _eff_degree );
44  else tty->print("? ");
45
46  if( is_multidef() ) {
47    tty->print("MultiDef ");
48    if (_defs != NULL) {
49      tty->print("(");
50      for (int i = 0; i < _defs->length(); i++) {
51        tty->print("N%d ", _defs->at(i)->_idx);
52      }
53      tty->print(") ");
54    }
55  }
56  else if( _def == 0 ) tty->print("Dead ");
57  else tty->print("Def: N%d ",_def->_idx);
58
59  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
60  // Flags
61  if( _is_oop ) tty->print("Oop ");
62  if( _is_float ) tty->print("Float ");
63  if( _was_spilled1 ) tty->print("Spilled ");
64  if( _was_spilled2 ) tty->print("Spilled2 ");
65  if( _direct_conflict ) tty->print("Direct_conflict ");
66  if( _fat_proj ) tty->print("Fat ");
67  if( _was_lo ) tty->print("Lo ");
68  if( _has_copy ) tty->print("Copy ");
69  if( _at_risk ) tty->print("Risk ");
70
71  if( _must_spill ) tty->print("Must_spill ");
72  if( _is_bound ) tty->print("Bound ");
73  if( _msize_valid ) {
74    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
75  }
76
77  tty->cr();
78}
79#endif
80
81//------------------------------score------------------------------------------
82// Compute score from cost and area.  Low score is best to spill.
83static double raw_score( double cost, double area ) {
84  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
85}
86
87double LRG::score() const {
88  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
89  // Bigger area lowers score, encourages spilling this live range.
90  // Bigger cost raise score, prevents spilling this live range.
91  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
92  // to turn a divide by a constant into a multiply by the reciprical).
93  double score = raw_score( _cost, _area);
94
95  // Account for area.  Basically, LRGs covering large areas are better
96  // to spill because more other LRGs get freed up.
97  if( _area == 0.0 )            // No area?  Then no progress to spill
98    return 1e35;
99
100  if( _was_spilled2 )           // If spilled once before, we are unlikely
101    return score + 1e30;        // to make progress again.
102
103  if( _cost >= _area*3.0 )      // Tiny area relative to cost
104    return score + 1e17;        // Probably no progress to spill
105
106  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
107    return score + 1e10;        // Likely no progress to spill
108
109  return score;
110}
111
112//------------------------------LRG_List---------------------------------------
113LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
114  memset( _lidxs, 0, sizeof(uint)*max );
115}
116
117void LRG_List::extend( uint nidx, uint lidx ) {
118  _nesting.check();
119  if( nidx >= _max ) {
120    uint size = 16;
121    while( size <= nidx ) size <<=1;
122    _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
123    _max = size;
124  }
125  while( _cnt <= nidx )
126    _lidxs[_cnt++] = 0;
127  _lidxs[nidx] = lidx;
128}
129
130#define NUMBUCKS 3
131
132//------------------------------Chaitin----------------------------------------
133PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
134  : PhaseRegAlloc(unique, cfg, matcher,
135#ifndef PRODUCT
136       print_chaitin_statistics
137#else
138       NULL
139#endif
140       ),
141    _names(unique), _uf_map(unique),
142    _maxlrg(0), _live(0),
143    _spilled_once(Thread::current()->resource_area()),
144    _spilled_twice(Thread::current()->resource_area()),
145    _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
146    _oldphi(unique)
147#ifndef PRODUCT
148  , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
149#endif
150{
151  NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
152
153  _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
154
155  uint i,j;
156  // Build a list of basic blocks, sorted by frequency
157  _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
158  // Experiment with sorting strategies to speed compilation
159  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
160  Block **buckets[NUMBUCKS];             // Array of buckets
161  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
162  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
163  for( i = 0; i < NUMBUCKS; i++ ) {
164    buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
165    buckcnt[i] = 0;
166    // Bump by three orders of magnitude each time
167    cutoff *= 0.001;
168    buckval[i] = cutoff;
169    for( j = 0; j < _cfg._num_blocks; j++ ) {
170      buckets[i][j] = NULL;
171    }
172  }
173  // Sort blocks into buckets
174  for( i = 0; i < _cfg._num_blocks; i++ ) {
175    for( j = 0; j < NUMBUCKS; j++ ) {
176      if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
177        // Assign block to end of list for appropriate bucket
178        buckets[j][buckcnt[j]++] = _cfg._blocks[i];
179        break;                      // kick out of inner loop
180      }
181    }
182  }
183  // Dump buckets into final block array
184  uint blkcnt = 0;
185  for( i = 0; i < NUMBUCKS; i++ ) {
186    for( j = 0; j < buckcnt[i]; j++ ) {
187      _blks[blkcnt++] = buckets[i][j];
188    }
189  }
190
191  assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
192}
193
194void PhaseChaitin::Register_Allocate() {
195
196  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
197  // slots in this area are called "arg_slots".  Above the NEW FP (and in
198  // registers) is the outgoing argument area; above that is the spill/temp
199  // area.  These are all "frame_slots".  Arg_slots start at the zero
200  // stack_slots and count up to the known arg_size.  Frame_slots start at
201  // the stack_slot #arg_size and go up.  After allocation I map stack
202  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
203  // by the frame_size; stack-slots in the frame_slot area are biased by 0.
204
205  _trip_cnt = 0;
206  _alternate = 0;
207  _matcher._allocation_started = true;
208
209  ResourceArea live_arena;      // Arena for liveness & IFG info
210  ResourceMark rm(&live_arena);
211
212  // Need live-ness for the IFG; need the IFG for coalescing.  If the
213  // liveness is JUST for coalescing, then I can get some mileage by renaming
214  // all copy-related live ranges low and then using the max copy-related
215  // live range as a cut-off for LIVE and the IFG.  In other words, I can
216  // build a subset of LIVE and IFG just for copies.
217  PhaseLive live(_cfg,_names,&live_arena);
218
219  // Need IFG for coalescing and coloring
220  PhaseIFG ifg( &live_arena );
221  _ifg = &ifg;
222
223  if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
224
225  // Come out of SSA world to the Named world.  Assign (virtual) registers to
226  // Nodes.  Use the same register for all inputs and the output of PhiNodes
227  // - effectively ending SSA form.  This requires either coalescing live
228  // ranges or inserting copies.  For the moment, we insert "virtual copies"
229  // - we pretend there is a copy prior to each Phi in predecessor blocks.
230  // We will attempt to coalesce such "virtual copies" before we manifest
231  // them for real.
232  de_ssa();
233
234#ifdef ASSERT
235  // Veify the graph before RA.
236  verify(&live_arena);
237#endif
238
239  {
240    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
241    _live = NULL;                 // Mark live as being not available
242    rm.reset_to_mark();           // Reclaim working storage
243    IndexSet::reset_memory(C, &live_arena);
244    ifg.init(_maxlrg);            // Empty IFG
245    gather_lrg_masks( false );    // Collect LRG masks
246    live.compute( _maxlrg );      // Compute liveness
247    _live = &live;                // Mark LIVE as being available
248  }
249
250  // Base pointers are currently "used" by instructions which define new
251  // derived pointers.  This makes base pointers live up to the where the
252  // derived pointer is made, but not beyond.  Really, they need to be live
253  // across any GC point where the derived value is live.  So this code looks
254  // at all the GC points, and "stretches" the live range of any base pointer
255  // to the GC point.
256  if( stretch_base_pointer_live_ranges(&live_arena) ) {
257    NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
258    // Since some live range stretched, I need to recompute live
259    _live = NULL;
260    rm.reset_to_mark();         // Reclaim working storage
261    IndexSet::reset_memory(C, &live_arena);
262    ifg.init(_maxlrg);
263    gather_lrg_masks( false );
264    live.compute( _maxlrg );
265    _live = &live;
266  }
267  // Create the interference graph using virtual copies
268  build_ifg_virtual( );  // Include stack slots this time
269
270  // Aggressive (but pessimistic) copy coalescing.
271  // This pass works on virtual copies.  Any virtual copies which are not
272  // coalesced get manifested as actual copies
273  {
274    // The IFG is/was triangular.  I am 'squaring it up' so Union can run
275    // faster.  Union requires a 'for all' operation which is slow on the
276    // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
277    // meaning I can visit all the Nodes neighbors less than a Node in time
278    // O(# of neighbors), but I have to visit all the Nodes greater than a
279    // given Node and search them for an instance, i.e., time O(#MaxLRG)).
280    _ifg->SquareUp();
281
282    PhaseAggressiveCoalesce coalesce( *this );
283    coalesce.coalesce_driver( );
284    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
285    // not match the Phi itself, insert a copy.
286    coalesce.insert_copies(_matcher);
287  }
288
289  // After aggressive coalesce, attempt a first cut at coloring.
290  // To color, we need the IFG and for that we need LIVE.
291  {
292    NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
293    _live = NULL;
294    rm.reset_to_mark();           // Reclaim working storage
295    IndexSet::reset_memory(C, &live_arena);
296    ifg.init(_maxlrg);
297    gather_lrg_masks( true );
298    live.compute( _maxlrg );
299    _live = &live;
300  }
301
302  // Build physical interference graph
303  uint must_spill = 0;
304  must_spill = build_ifg_physical( &live_arena );
305  // If we have a guaranteed spill, might as well spill now
306  if( must_spill ) {
307    if( !_maxlrg ) return;
308    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
309    C->check_node_count(10*must_spill, "out of nodes before split");
310    if (C->failing())  return;
311    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
312    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
313    // or we failed to split
314    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
315    if (C->failing())  return;
316
317    NOT_PRODUCT( C->verify_graph_edges(); )
318
319    compact();                  // Compact LRGs; return new lower max lrg
320
321    {
322      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
323      _live = NULL;
324      rm.reset_to_mark();         // Reclaim working storage
325      IndexSet::reset_memory(C, &live_arena);
326      ifg.init(_maxlrg);          // Build a new interference graph
327      gather_lrg_masks( true );   // Collect intersect mask
328      live.compute( _maxlrg );    // Compute LIVE
329      _live = &live;
330    }
331    build_ifg_physical( &live_arena );
332    _ifg->SquareUp();
333    _ifg->Compute_Effective_Degree();
334    // Only do conservative coalescing if requested
335    if( OptoCoalesce ) {
336      // Conservative (and pessimistic) copy coalescing of those spills
337      PhaseConservativeCoalesce coalesce( *this );
338      // If max live ranges greater than cutoff, don't color the stack.
339      // This cutoff can be larger than below since it is only done once.
340      coalesce.coalesce_driver( );
341    }
342    compress_uf_map_for_nodes();
343
344#ifdef ASSERT
345    verify(&live_arena, true);
346#endif
347  } else {
348    ifg.SquareUp();
349    ifg.Compute_Effective_Degree();
350#ifdef ASSERT
351    set_was_low();
352#endif
353  }
354
355  // Prepare for Simplify & Select
356  cache_lrg_info();           // Count degree of LRGs
357
358  // Simplify the InterFerence Graph by removing LRGs of low degree.
359  // LRGs of low degree are trivially colorable.
360  Simplify();
361
362  // Select colors by re-inserting LRGs back into the IFG in reverse order.
363  // Return whether or not something spills.
364  uint spills = Select( );
365
366  // If we spill, split and recycle the entire thing
367  while( spills ) {
368    if( _trip_cnt++ > 24 ) {
369      DEBUG_ONLY( dump_for_spill_split_recycle(); )
370      if( _trip_cnt > 27 ) {
371        C->record_method_not_compilable("failed spill-split-recycle sanity check");
372        return;
373      }
374    }
375
376    if( !_maxlrg ) return;
377    _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
378    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
379    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
380    if (C->failing())  return;
381
382    compact();                  // Compact LRGs; return new lower max lrg
383
384    // Nuke the live-ness and interference graph and LiveRanGe info
385    {
386      NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
387      _live = NULL;
388      rm.reset_to_mark();         // Reclaim working storage
389      IndexSet::reset_memory(C, &live_arena);
390      ifg.init(_maxlrg);
391
392      // Create LiveRanGe array.
393      // Intersect register masks for all USEs and DEFs
394      gather_lrg_masks( true );
395      live.compute( _maxlrg );
396      _live = &live;
397    }
398    must_spill = build_ifg_physical( &live_arena );
399    _ifg->SquareUp();
400    _ifg->Compute_Effective_Degree();
401
402    // Only do conservative coalescing if requested
403    if( OptoCoalesce ) {
404      // Conservative (and pessimistic) copy coalescing
405      PhaseConservativeCoalesce coalesce( *this );
406      // Check for few live ranges determines how aggressive coalesce is.
407      coalesce.coalesce_driver( );
408    }
409    compress_uf_map_for_nodes();
410#ifdef ASSERT
411    verify(&live_arena, true);
412#endif
413    cache_lrg_info();           // Count degree of LRGs
414
415    // Simplify the InterFerence Graph by removing LRGs of low degree.
416    // LRGs of low degree are trivially colorable.
417    Simplify();
418
419    // Select colors by re-inserting LRGs back into the IFG in reverse order.
420    // Return whether or not something spills.
421    spills = Select( );
422  }
423
424  // Count number of Simplify-Select trips per coloring success.
425  _allocator_attempts += _trip_cnt + 1;
426  _allocator_successes += 1;
427
428  // Peephole remove copies
429  post_allocate_copy_removal();
430
431#ifdef ASSERT
432  // Veify the graph after RA.
433  verify(&live_arena);
434#endif
435
436  // max_reg is past the largest *register* used.
437  // Convert that to a frame_slot number.
438  if( _max_reg <= _matcher._new_SP )
439    _framesize = C->out_preserve_stack_slots();
440  else _framesize = _max_reg -_matcher._new_SP;
441  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
442
443  // This frame must preserve the required fp alignment
444  _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
445  assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
446#ifndef PRODUCT
447  _total_framesize += _framesize;
448  if( (int)_framesize > _max_framesize )
449    _max_framesize = _framesize;
450#endif
451
452  // Convert CISC spills
453  fixup_spills();
454
455  // Log regalloc results
456  CompileLog* log = Compile::current()->log();
457  if (log != NULL) {
458    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
459  }
460
461  if (C->failing())  return;
462
463  NOT_PRODUCT( C->verify_graph_edges(); )
464
465  // Move important info out of the live_arena to longer lasting storage.
466  alloc_node_regs(_names.Size());
467  for( uint i=0; i < _names.Size(); i++ ) {
468    if( _names[i] ) {           // Live range associated with Node?
469      LRG &lrg = lrgs( _names[i] );
470      if( lrg.num_regs() == 1 ) {
471        _node_regs[i].set1( lrg.reg() );
472      } else {                  // Must be a register-pair
473        if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
474          // Live ranges record the highest register in their mask.
475          // We want the low register for the AD file writer's convenience.
476          _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
477        } else {                // Misaligned; extract 2 bits
478          OptoReg::Name hi = lrg.reg(); // Get hi register
479          lrg.Remove(hi);       // Yank from mask
480          int lo = lrg.mask().find_first_elem(); // Find lo
481          _node_regs[i].set_pair( hi, lo );
482        }
483      }
484      if( lrg._is_oop ) _node_oops.set(i);
485    } else {
486      _node_regs[i].set_bad();
487    }
488  }
489
490  // Done!
491  _live = NULL;
492  _ifg = NULL;
493  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
494}
495
496//------------------------------de_ssa-----------------------------------------
497void PhaseChaitin::de_ssa() {
498  // Set initial Names for all Nodes.  Most Nodes get the virtual register
499  // number.  A few get the ZERO live range number.  These do not
500  // get allocated, but instead rely on correct scheduling to ensure that
501  // only one instance is simultaneously live at a time.
502  uint lr_counter = 1;
503  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
504    Block *b = _cfg._blocks[i];
505    uint cnt = b->_nodes.size();
506
507    // Handle all the normal Nodes in the block
508    for( uint j = 0; j < cnt; j++ ) {
509      Node *n = b->_nodes[j];
510      // Pre-color to the zero live range, or pick virtual register
511      const RegMask &rm = n->out_RegMask();
512      _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
513    }
514  }
515  // Reset the Union-Find mapping to be identity
516  reset_uf_map(lr_counter);
517}
518
519
520//------------------------------gather_lrg_masks-------------------------------
521// Gather LiveRanGe information, including register masks.  Modification of
522// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
523void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
524
525  // Nail down the frame pointer live range
526  uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
527  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
528
529  // For all blocks
530  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
531    Block *b = _cfg._blocks[i];
532
533    // For all instructions
534    for( uint j = 1; j < b->_nodes.size(); j++ ) {
535      Node *n = b->_nodes[j];
536      uint input_edge_start =1; // Skip control most nodes
537      if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
538      uint idx = n->is_Copy();
539
540      // Get virtual register number, same as LiveRanGe index
541      uint vreg = n2lidx(n);
542      LRG &lrg = lrgs(vreg);
543      if( vreg ) {              // No vreg means un-allocable (e.g. memory)
544
545        // Collect has-copy bit
546        if( idx ) {
547          lrg._has_copy = 1;
548          uint clidx = n2lidx(n->in(idx));
549          LRG &copy_src = lrgs(clidx);
550          copy_src._has_copy = 1;
551        }
552
553        // Check for float-vs-int live range (used in register-pressure
554        // calculations)
555        const Type *n_type = n->bottom_type();
556        if( n_type->is_floatingpoint() )
557          lrg._is_float = 1;
558
559        // Check for twice prior spilling.  Once prior spilling might have
560        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
561        // further spilling is unlikely to make progress.
562        if( _spilled_once.test(n->_idx) ) {
563          lrg._was_spilled1 = 1;
564          if( _spilled_twice.test(n->_idx) )
565            lrg._was_spilled2 = 1;
566        }
567
568#ifndef PRODUCT
569        if (trace_spilling() && lrg._def != NULL) {
570          // collect defs for MultiDef printing
571          if (lrg._defs == NULL) {
572            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
573            lrg._defs->append(lrg._def);
574          }
575          lrg._defs->append(n);
576        }
577#endif
578
579        // Check for a single def LRG; these can spill nicely
580        // via rematerialization.  Flag as NULL for no def found
581        // yet, or 'n' for single def or -1 for many defs.
582        lrg._def = lrg._def ? NodeSentinel : n;
583
584        // Limit result register mask to acceptable registers
585        const RegMask &rm = n->out_RegMask();
586        lrg.AND( rm );
587        // Check for bound register masks
588        const RegMask &lrgmask = lrg.mask();
589        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
590          lrg._is_bound = 1;
591
592        // Check for maximum frequency value
593        if( lrg._maxfreq < b->_freq )
594          lrg._maxfreq = b->_freq;
595
596        int ireg = n->ideal_reg();
597        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
598                "oops must be in Op_RegP's" );
599        // Check for oop-iness, or long/double
600        // Check for multi-kill projection
601        switch( ireg ) {
602        case MachProjNode::fat_proj:
603          // Fat projections have size equal to number of registers killed
604          lrg.set_num_regs(rm.Size());
605          lrg.set_reg_pressure(lrg.num_regs());
606          lrg._fat_proj = 1;
607          lrg._is_bound = 1;
608          break;
609        case Op_RegP:
610#ifdef _LP64
611          lrg.set_num_regs(2);  // Size is 2 stack words
612#else
613          lrg.set_num_regs(1);  // Size is 1 stack word
614#endif
615          // Register pressure is tracked relative to the maximum values
616          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
617          // and relative to other types which compete for the same regs.
618          //
619          // The following table contains suggested values based on the
620          // architectures as defined in each .ad file.
621          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
622          // compile-speed or performance.
623          // Note1:
624          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
625          // since .ad registers are defined as high and low halves.
626          // These reg_pressure values remain compatible with the code
627          // in is_high_pressure() which relates get_invalid_mask_size(),
628          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
629          // Note2:
630          // SPARC -d32 has 24 registers available for integral values,
631          // but only 10 of these are safe for 64-bit longs.
632          // Using set_reg_pressure(2) for both int and long means
633          // the allocator will believe it can fit 26 longs into
634          // registers.  Using 2 for longs and 1 for ints means the
635          // allocator will attempt to put 52 integers into registers.
636          // The settings below limit this problem to methods with
637          // many long values which are being run on 32-bit SPARC.
638          //
639          // ------------------- reg_pressure --------------------
640          // Each entry is reg_pressure_per_value,number_of_regs
641          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
642          // IA32     2     1     1          1    1          6           6
643          // IA64     1     1     1          1    1         50          41
644          // SPARC    2     2     2          2    2         48 (24)     52 (26)
645          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
646          // AMD64    1     1     1          1    1         14          15
647          // -----------------------------------------------------
648#if defined(SPARC)
649          lrg.set_reg_pressure(2);  // use for v9 as well
650#else
651          lrg.set_reg_pressure(1);  // normally one value per register
652#endif
653          if( n_type->isa_oop_ptr() ) {
654            lrg._is_oop = 1;
655          }
656          break;
657        case Op_RegL:           // Check for long or double
658        case Op_RegD:
659          lrg.set_num_regs(2);
660          // Define platform specific register pressure
661#ifdef SPARC
662          lrg.set_reg_pressure(2);
663#elif defined(IA32)
664          if( ireg == Op_RegL ) {
665            lrg.set_reg_pressure(2);
666          } else {
667            lrg.set_reg_pressure(1);
668          }
669#else
670          lrg.set_reg_pressure(1);  // normally one value per register
671#endif
672          // If this def of a double forces a mis-aligned double,
673          // flag as '_fat_proj' - really flag as allowing misalignment
674          // AND changes how we count interferences.  A mis-aligned
675          // double can interfere with TWO aligned pairs, or effectively
676          // FOUR registers!
677          if( rm.is_misaligned_Pair() ) {
678            lrg._fat_proj = 1;
679            lrg._is_bound = 1;
680          }
681          break;
682        case Op_RegF:
683        case Op_RegI:
684        case Op_RegN:
685        case Op_RegFlags:
686        case 0:                 // not an ideal register
687          lrg.set_num_regs(1);
688#ifdef SPARC
689          lrg.set_reg_pressure(2);
690#else
691          lrg.set_reg_pressure(1);
692#endif
693          break;
694        default:
695          ShouldNotReachHere();
696        }
697      }
698
699      // Now do the same for inputs
700      uint cnt = n->req();
701      // Setup for CISC SPILLING
702      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
703      if( UseCISCSpill && after_aggressive ) {
704        inp = n->cisc_operand();
705        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
706          // Convert operand number to edge index number
707          inp = n->as_Mach()->operand_index(inp);
708      }
709      // Prepare register mask for each input
710      for( uint k = input_edge_start; k < cnt; k++ ) {
711        uint vreg = n2lidx(n->in(k));
712        if( !vreg ) continue;
713
714        // If this instruction is CISC Spillable, add the flags
715        // bit to its appropriate input
716        if( UseCISCSpill && after_aggressive && inp == k ) {
717#ifndef PRODUCT
718          if( TraceCISCSpill ) {
719            tty->print("  use_cisc_RegMask: ");
720            n->dump();
721          }
722#endif
723          n->as_Mach()->use_cisc_RegMask();
724        }
725
726        LRG &lrg = lrgs(vreg);
727        // // Testing for floating point code shape
728        // Node *test = n->in(k);
729        // if( test->is_Mach() ) {
730        //   MachNode *m = test->as_Mach();
731        //   int  op = m->ideal_Opcode();
732        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
733        //     int zzz = 1;
734        //   }
735        // }
736
737        // Limit result register mask to acceptable registers.
738        // Do not limit registers from uncommon uses before
739        // AggressiveCoalesce.  This effectively pre-virtual-splits
740        // around uncommon uses of common defs.
741        const RegMask &rm = n->in_RegMask(k);
742        if( !after_aggressive &&
743          _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
744          // Since we are BEFORE aggressive coalesce, leave the register
745          // mask untrimmed by the call.  This encourages more coalescing.
746          // Later, AFTER aggressive, this live range will have to spill
747          // but the spiller handles slow-path calls very nicely.
748        } else {
749          lrg.AND( rm );
750        }
751        // Check for bound register masks
752        const RegMask &lrgmask = lrg.mask();
753        if( lrgmask.is_bound1() || lrgmask.is_bound2() )
754          lrg._is_bound = 1;
755        // If this use of a double forces a mis-aligned double,
756        // flag as '_fat_proj' - really flag as allowing misalignment
757        // AND changes how we count interferences.  A mis-aligned
758        // double can interfere with TWO aligned pairs, or effectively
759        // FOUR registers!
760        if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
761          lrg._fat_proj = 1;
762          lrg._is_bound = 1;
763        }
764        // if the LRG is an unaligned pair, we will have to spill
765        // so clear the LRG's register mask if it is not already spilled
766        if ( !n->is_SpillCopy() &&
767               (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
768               lrgmask.is_misaligned_Pair()) {
769          lrg.Clear();
770        }
771
772        // Check for maximum frequency value
773        if( lrg._maxfreq < b->_freq )
774          lrg._maxfreq = b->_freq;
775
776      } // End for all allocated inputs
777    } // end for all instructions
778  } // end for all blocks
779
780  // Final per-liverange setup
781  for( uint i2=0; i2<_maxlrg; i2++ ) {
782    LRG &lrg = lrgs(i2);
783    if( lrg.num_regs() == 2 && !lrg._fat_proj )
784      lrg.ClearToPairs();
785    lrg.compute_set_mask_size();
786    if( lrg.not_free() ) {      // Handle case where we lose from the start
787      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
788      lrg._direct_conflict = 1;
789    }
790    lrg.set_degree(0);          // no neighbors in IFG yet
791  }
792}
793
794//------------------------------set_was_low------------------------------------
795// Set the was-lo-degree bit.  Conservative coalescing should not change the
796// colorability of the graph.  If any live range was of low-degree before
797// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
798// The bit is checked in Simplify.
799void PhaseChaitin::set_was_low() {
800#ifdef ASSERT
801  for( uint i = 1; i < _maxlrg; i++ ) {
802    int size = lrgs(i).num_regs();
803    uint old_was_lo = lrgs(i)._was_lo;
804    lrgs(i)._was_lo = 0;
805    if( lrgs(i).lo_degree() ) {
806      lrgs(i)._was_lo = 1;      // Trivially of low degree
807    } else {                    // Else check the Brigg's assertion
808      // Brigg's observation is that the lo-degree neighbors of a
809      // hi-degree live range will not interfere with the color choices
810      // of said hi-degree live range.  The Simplify reverse-stack-coloring
811      // order takes care of the details.  Hence you do not have to count
812      // low-degree neighbors when determining if this guy colors.
813      int briggs_degree = 0;
814      IndexSet *s = _ifg->neighbors(i);
815      IndexSetIterator elements(s);
816      uint lidx;
817      while((lidx = elements.next()) != 0) {
818        if( !lrgs(lidx).lo_degree() )
819          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
820      }
821      if( briggs_degree < lrgs(i).degrees_of_freedom() )
822        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
823    }
824    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
825  }
826#endif
827}
828
829#define REGISTER_CONSTRAINED 16
830
831//------------------------------cache_lrg_info---------------------------------
832// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
833void PhaseChaitin::cache_lrg_info( ) {
834
835  for( uint i = 1; i < _maxlrg; i++ ) {
836    LRG &lrg = lrgs(i);
837
838    // Check for being of low degree: means we can be trivially colored.
839    // Low degree, dead or must-spill guys just get to simplify right away
840    if( lrg.lo_degree() ||
841       !lrg.alive() ||
842        lrg._must_spill ) {
843      // Split low degree list into those guys that must get a
844      // register and those that can go to register or stack.
845      // The idea is LRGs that can go register or stack color first when
846      // they have a good chance of getting a register.  The register-only
847      // lo-degree live ranges always get a register.
848      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
849      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
850        lrg._next = _lo_stk_degree;
851        _lo_stk_degree = i;
852      } else {
853        lrg._next = _lo_degree;
854        _lo_degree = i;
855      }
856    } else {                    // Else high degree
857      lrgs(_hi_degree)._prev = i;
858      lrg._next = _hi_degree;
859      lrg._prev = 0;
860      _hi_degree = i;
861    }
862  }
863}
864
865//------------------------------Pre-Simplify-----------------------------------
866// Simplify the IFG by removing LRGs of low degree that have NO copies
867void PhaseChaitin::Pre_Simplify( ) {
868
869  // Warm up the lo-degree no-copy list
870  int lo_no_copy = 0;
871  for( uint i = 1; i < _maxlrg; i++ ) {
872    if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
873        !lrgs(i).alive() ||
874        lrgs(i)._must_spill ) {
875      lrgs(i)._next = lo_no_copy;
876      lo_no_copy = i;
877    }
878  }
879
880  while( lo_no_copy ) {
881    uint lo = lo_no_copy;
882    lo_no_copy = lrgs(lo)._next;
883    int size = lrgs(lo).num_regs();
884
885    // Put the simplified guy on the simplified list.
886    lrgs(lo)._next = _simplified;
887    _simplified = lo;
888
889    // Yank this guy from the IFG.
890    IndexSet *adj = _ifg->remove_node( lo );
891
892    // If any neighbors' degrees fall below their number of
893    // allowed registers, then put that neighbor on the low degree
894    // list.  Note that 'degree' can only fall and 'numregs' is
895    // unchanged by this action.  Thus the two are equal at most once,
896    // so LRGs hit the lo-degree worklists at most once.
897    IndexSetIterator elements(adj);
898    uint neighbor;
899    while ((neighbor = elements.next()) != 0) {
900      LRG *n = &lrgs(neighbor);
901      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
902
903      // Check for just becoming of-low-degree
904      if( n->just_lo_degree() && !n->_has_copy ) {
905        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
906        // Put on lo-degree list
907        n->_next = lo_no_copy;
908        lo_no_copy = neighbor;
909      }
910    }
911  } // End of while lo-degree no_copy worklist not empty
912
913  // No more lo-degree no-copy live ranges to simplify
914}
915
916//------------------------------Simplify---------------------------------------
917// Simplify the IFG by removing LRGs of low degree.
918void PhaseChaitin::Simplify( ) {
919
920  while( 1 ) {                  // Repeat till simplified it all
921    // May want to explore simplifying lo_degree before _lo_stk_degree.
922    // This might result in more spills coloring into registers during
923    // Select().
924    while( _lo_degree || _lo_stk_degree ) {
925      // If possible, pull from lo_stk first
926      uint lo;
927      if( _lo_degree ) {
928        lo = _lo_degree;
929        _lo_degree = lrgs(lo)._next;
930      } else {
931        lo = _lo_stk_degree;
932        _lo_stk_degree = lrgs(lo)._next;
933      }
934
935      // Put the simplified guy on the simplified list.
936      lrgs(lo)._next = _simplified;
937      _simplified = lo;
938      // If this guy is "at risk" then mark his current neighbors
939      if( lrgs(lo)._at_risk ) {
940        IndexSetIterator elements(_ifg->neighbors(lo));
941        uint datum;
942        while ((datum = elements.next()) != 0) {
943          lrgs(datum)._risk_bias = lo;
944        }
945      }
946
947      // Yank this guy from the IFG.
948      IndexSet *adj = _ifg->remove_node( lo );
949
950      // If any neighbors' degrees fall below their number of
951      // allowed registers, then put that neighbor on the low degree
952      // list.  Note that 'degree' can only fall and 'numregs' is
953      // unchanged by this action.  Thus the two are equal at most once,
954      // so LRGs hit the lo-degree worklist at most once.
955      IndexSetIterator elements(adj);
956      uint neighbor;
957      while ((neighbor = elements.next()) != 0) {
958        LRG *n = &lrgs(neighbor);
959#ifdef ASSERT
960        if( VerifyOpto || VerifyRegisterAllocator ) {
961          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
962        }
963#endif
964
965        // Check for just becoming of-low-degree just counting registers.
966        // _must_spill live ranges are already on the low degree list.
967        if( n->just_lo_degree() && !n->_must_spill ) {
968          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
969          // Pull from hi-degree list
970          uint prev = n->_prev;
971          uint next = n->_next;
972          if( prev ) lrgs(prev)._next = next;
973          else _hi_degree = next;
974          lrgs(next)._prev = prev;
975          n->_next = _lo_degree;
976          _lo_degree = neighbor;
977        }
978      }
979    } // End of while lo-degree/lo_stk_degree worklist not empty
980
981    // Check for got everything: is hi-degree list empty?
982    if( !_hi_degree ) break;
983
984    // Time to pick a potential spill guy
985    uint lo_score = _hi_degree;
986    double score = lrgs(lo_score).score();
987    double area = lrgs(lo_score)._area;
988    double cost = lrgs(lo_score)._cost;
989    bool bound = lrgs(lo_score)._is_bound;
990
991    // Find cheapest guy
992    debug_only( int lo_no_simplify=0; );
993    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
994      assert( !(*_ifg->_yanked)[i], "" );
995      // It's just vaguely possible to move hi-degree to lo-degree without
996      // going through a just-lo-degree stage: If you remove a double from
997      // a float live range it's degree will drop by 2 and you can skip the
998      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
999      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1000      if( lrgs(i).lo_degree() ) {
1001        lo_score = i;
1002        break;
1003      }
1004      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1005      double iscore = lrgs(i).score();
1006      double iarea = lrgs(i)._area;
1007      double icost = lrgs(i)._cost;
1008      bool ibound = lrgs(i)._is_bound;
1009
1010      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1011      // wins.  Ties happen because all live ranges in question have spilled
1012      // a few times before and the spill-score adds a huge number which
1013      // washes out the low order bits.  We are choosing the lesser of 2
1014      // evils; in this case pick largest area to spill.
1015      // Ties also happen when live ranges are defined and used only inside
1016      // one block. In which case their area is 0 and score set to max.
1017      // In such case choose bound live range over unbound to free registers
1018      // or with smaller cost to spill.
1019      if( iscore < score ||
1020          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1021          (iscore == score && iarea == area &&
1022           ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1023        lo_score = i;
1024        score = iscore;
1025        area = iarea;
1026        cost = icost;
1027        bound = ibound;
1028      }
1029    }
1030    LRG *lo_lrg = &lrgs(lo_score);
1031    // The live range we choose for spilling is either hi-degree, or very
1032    // rarely it can be low-degree.  If we choose a hi-degree live range
1033    // there better not be any lo-degree choices.
1034    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1035
1036    // Pull from hi-degree list
1037    uint prev = lo_lrg->_prev;
1038    uint next = lo_lrg->_next;
1039    if( prev ) lrgs(prev)._next = next;
1040    else _hi_degree = next;
1041    lrgs(next)._prev = prev;
1042    // Jam him on the lo-degree list, despite his high degree.
1043    // Maybe he'll get a color, and maybe he'll spill.
1044    // Only Select() will know.
1045    lrgs(lo_score)._at_risk = true;
1046    _lo_degree = lo_score;
1047    lo_lrg->_next = 0;
1048
1049  } // End of while not simplified everything
1050
1051}
1052
1053//------------------------------bias_color-------------------------------------
1054// Choose a color using the biasing heuristic
1055OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1056
1057  // Check for "at_risk" LRG's
1058  uint risk_lrg = Find(lrg._risk_bias);
1059  if( risk_lrg != 0 ) {
1060    // Walk the colored neighbors of the "at_risk" candidate
1061    // Choose a color which is both legal and already taken by a neighbor
1062    // of the "at_risk" candidate in order to improve the chances of the
1063    // "at_risk" candidate of coloring
1064    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1065    uint datum;
1066    while ((datum = elements.next()) != 0) {
1067      OptoReg::Name reg = lrgs(datum).reg();
1068      // If this LRG's register is legal for us, choose it
1069      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1070          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1071          (lrg.num_regs()==1 || // either size 1
1072           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1073        return reg;
1074    }
1075  }
1076
1077  uint copy_lrg = Find(lrg._copy_bias);
1078  if( copy_lrg != 0 ) {
1079    // If he has a color,
1080    if( !(*(_ifg->_yanked))[copy_lrg] ) {
1081      OptoReg::Name reg = lrgs(copy_lrg).reg();
1082      //  And it is legal for you,
1083      if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1084          lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1085          (lrg.num_regs()==1 || // either size 1
1086           (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1087        return reg;
1088    } else if( chunk == 0 ) {
1089      // Choose a color which is legal for him
1090      RegMask tempmask = lrg.mask();
1091      tempmask.AND(lrgs(copy_lrg).mask());
1092      OptoReg::Name reg;
1093      if( lrg.num_regs() == 1 ) {
1094        reg = tempmask.find_first_elem();
1095      } else {
1096        tempmask.ClearToPairs();
1097        reg = tempmask.find_first_pair();
1098      }
1099      if( OptoReg::is_valid(reg) )
1100        return reg;
1101    }
1102  }
1103
1104  // If no bias info exists, just go with the register selection ordering
1105  if( lrg.num_regs() == 2 ) {
1106    // Find an aligned pair
1107    return OptoReg::add(lrg.mask().find_first_pair(),chunk);
1108  }
1109
1110  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1111  // copy removal to remove many more copies, by preventing a just-assigned
1112  // register from being repeatedly assigned.
1113  OptoReg::Name reg = lrg.mask().find_first_elem();
1114  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1115    // This 'Remove; find; Insert' idiom is an expensive way to find the
1116    // SECOND element in the mask.
1117    lrg.Remove(reg);
1118    OptoReg::Name reg2 = lrg.mask().find_first_elem();
1119    lrg.Insert(reg);
1120    if( OptoReg::is_reg(reg2))
1121      reg = reg2;
1122  }
1123  return OptoReg::add( reg, chunk );
1124}
1125
1126//------------------------------choose_color-----------------------------------
1127// Choose a color in the current chunk
1128OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1129  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1130  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1131
1132  if( lrg.num_regs() == 1 ||    // Common Case
1133      !lrg._fat_proj )          // Aligned+adjacent pairs ok
1134    // Use a heuristic to "bias" the color choice
1135    return bias_color(lrg, chunk);
1136
1137  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1138
1139  // Fat-proj case or misaligned double argument.
1140  assert(lrg.compute_mask_size() == lrg.num_regs() ||
1141         lrg.num_regs() == 2,"fat projs exactly color" );
1142  assert( !chunk, "always color in 1st chunk" );
1143  // Return the highest element in the set.
1144  return lrg.mask().find_last_elem();
1145}
1146
1147//------------------------------Select-----------------------------------------
1148// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1149// in reverse order of removal.  As long as nothing of hi-degree was yanked,
1150// everything going back is guaranteed a color.  Select that color.  If some
1151// hi-degree LRG cannot get a color then we record that we must spill.
1152uint PhaseChaitin::Select( ) {
1153  uint spill_reg = LRG::SPILL_REG;
1154  _max_reg = OptoReg::Name(0);  // Past max register used
1155  while( _simplified ) {
1156    // Pull next LRG from the simplified list - in reverse order of removal
1157    uint lidx = _simplified;
1158    LRG *lrg = &lrgs(lidx);
1159    _simplified = lrg->_next;
1160
1161
1162#ifndef PRODUCT
1163    if (trace_spilling()) {
1164      ttyLocker ttyl;
1165      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1166                    lrg->degrees_of_freedom());
1167      lrg->dump();
1168    }
1169#endif
1170
1171    // Re-insert into the IFG
1172    _ifg->re_insert(lidx);
1173    if( !lrg->alive() ) continue;
1174    // capture allstackedness flag before mask is hacked
1175    const int is_allstack = lrg->mask().is_AllStack();
1176
1177    // Yeah, yeah, yeah, I know, I know.  I can refactor this
1178    // to avoid the GOTO, although the refactored code will not
1179    // be much clearer.  We arrive here IFF we have a stack-based
1180    // live range that cannot color in the current chunk, and it
1181    // has to move into the next free stack chunk.
1182    int chunk = 0;              // Current chunk is first chunk
1183    retry_next_chunk:
1184
1185    // Remove neighbor colors
1186    IndexSet *s = _ifg->neighbors(lidx);
1187
1188    debug_only(RegMask orig_mask = lrg->mask();)
1189    IndexSetIterator elements(s);
1190    uint neighbor;
1191    while ((neighbor = elements.next()) != 0) {
1192      // Note that neighbor might be a spill_reg.  In this case, exclusion
1193      // of its color will be a no-op, since the spill_reg chunk is in outer
1194      // space.  Also, if neighbor is in a different chunk, this exclusion
1195      // will be a no-op.  (Later on, if lrg runs out of possible colors in
1196      // its chunk, a new chunk of color may be tried, in which case
1197      // examination of neighbors is started again, at retry_next_chunk.)
1198      LRG &nlrg = lrgs(neighbor);
1199      OptoReg::Name nreg = nlrg.reg();
1200      // Only subtract masks in the same chunk
1201      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1202#ifndef PRODUCT
1203        uint size = lrg->mask().Size();
1204        RegMask rm = lrg->mask();
1205#endif
1206        lrg->SUBTRACT(nlrg.mask());
1207#ifndef PRODUCT
1208        if (trace_spilling() && lrg->mask().Size() != size) {
1209          ttyLocker ttyl;
1210          tty->print("L%d ", lidx);
1211          rm.dump();
1212          tty->print(" intersected L%d ", neighbor);
1213          nlrg.mask().dump();
1214          tty->print(" removed ");
1215          rm.SUBTRACT(lrg->mask());
1216          rm.dump();
1217          tty->print(" leaving ");
1218          lrg->mask().dump();
1219          tty->cr();
1220        }
1221#endif
1222      }
1223    }
1224    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1225    // Aligned pairs need aligned masks
1226    if( lrg->num_regs() == 2 && !lrg->_fat_proj )
1227      lrg->ClearToPairs();
1228
1229    // Check if a color is available and if so pick the color
1230    OptoReg::Name reg = choose_color( *lrg, chunk );
1231#ifdef SPARC
1232    debug_only(lrg->compute_set_mask_size());
1233    assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1234#endif
1235
1236    //---------------
1237    // If we fail to color and the AllStack flag is set, trigger
1238    // a chunk-rollover event
1239    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1240      // Bump register mask up to next stack chunk
1241      chunk += RegMask::CHUNK_SIZE;
1242      lrg->Set_All();
1243
1244      goto retry_next_chunk;
1245    }
1246
1247    //---------------
1248    // Did we get a color?
1249    else if( OptoReg::is_valid(reg)) {
1250#ifndef PRODUCT
1251      RegMask avail_rm = lrg->mask();
1252#endif
1253
1254      // Record selected register
1255      lrg->set_reg(reg);
1256
1257      if( reg >= _max_reg )     // Compute max register limit
1258        _max_reg = OptoReg::add(reg,1);
1259      // Fold reg back into normal space
1260      reg = OptoReg::add(reg,-chunk);
1261
1262      // If the live range is not bound, then we actually had some choices
1263      // to make.  In this case, the mask has more bits in it than the colors
1264      // chosen.  Restrict the mask to just what was picked.
1265      if( lrg->num_regs() == 1 ) { // Size 1 live range
1266        lrg->Clear();           // Clear the mask
1267        lrg->Insert(reg);       // Set regmask to match selected reg
1268        lrg->set_mask_size(1);
1269      } else if( !lrg->_fat_proj ) {
1270        // For pairs, also insert the low bit of the pair
1271        assert( lrg->num_regs() == 2, "unbound fatproj???" );
1272        lrg->Clear();           // Clear the mask
1273        lrg->Insert(reg);       // Set regmask to match selected reg
1274        lrg->Insert(OptoReg::add(reg,-1));
1275        lrg->set_mask_size(2);
1276      } else {                  // Else fatproj
1277        // mask must be equal to fatproj bits, by definition
1278      }
1279#ifndef PRODUCT
1280      if (trace_spilling()) {
1281        ttyLocker ttyl;
1282        tty->print("L%d selected ", lidx);
1283        lrg->mask().dump();
1284        tty->print(" from ");
1285        avail_rm.dump();
1286        tty->cr();
1287      }
1288#endif
1289      // Note that reg is the highest-numbered register in the newly-bound mask.
1290    } // end color available case
1291
1292    //---------------
1293    // Live range is live and no colors available
1294    else {
1295      assert( lrg->alive(), "" );
1296      assert( !lrg->_fat_proj || lrg->is_multidef() ||
1297              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1298      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1299
1300      // Assign the special spillreg register
1301      lrg->set_reg(OptoReg::Name(spill_reg++));
1302      // Do not empty the regmask; leave mask_size lying around
1303      // for use during Spilling
1304#ifndef PRODUCT
1305      if( trace_spilling() ) {
1306        ttyLocker ttyl;
1307        tty->print("L%d spilling with neighbors: ", lidx);
1308        s->dump();
1309        debug_only(tty->print(" original mask: "));
1310        debug_only(orig_mask.dump());
1311        dump_lrg(lidx);
1312      }
1313#endif
1314    } // end spill case
1315
1316  }
1317
1318  return spill_reg-LRG::SPILL_REG;      // Return number of spills
1319}
1320
1321
1322//------------------------------copy_was_spilled-------------------------------
1323// Copy 'was_spilled'-edness from the source Node to the dst Node.
1324void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1325  if( _spilled_once.test(src->_idx) ) {
1326    _spilled_once.set(dst->_idx);
1327    lrgs(Find(dst))._was_spilled1 = 1;
1328    if( _spilled_twice.test(src->_idx) ) {
1329      _spilled_twice.set(dst->_idx);
1330      lrgs(Find(dst))._was_spilled2 = 1;
1331    }
1332  }
1333}
1334
1335//------------------------------set_was_spilled--------------------------------
1336// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1337void PhaseChaitin::set_was_spilled( Node *n ) {
1338  if( _spilled_once.test_set(n->_idx) )
1339    _spilled_twice.set(n->_idx);
1340}
1341
1342//------------------------------fixup_spills-----------------------------------
1343// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1344// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1345void PhaseChaitin::fixup_spills() {
1346  // This function does only cisc spill work.
1347  if( !UseCISCSpill ) return;
1348
1349  NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1350
1351  // Grab the Frame Pointer
1352  Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
1353
1354  // For all blocks
1355  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1356    Block *b = _cfg._blocks[i];
1357
1358    // For all instructions in block
1359    uint last_inst = b->end_idx();
1360    for( uint j = 1; j <= last_inst; j++ ) {
1361      Node *n = b->_nodes[j];
1362
1363      // Dead instruction???
1364      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1365              C->top() == n ||  // Or the random TOP node
1366              n->is_Proj(),     // Or a fat-proj kill node
1367              "No dead instructions after post-alloc" );
1368
1369      int inp = n->cisc_operand();
1370      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1371        // Convert operand number to edge index number
1372        MachNode *mach = n->as_Mach();
1373        inp = mach->operand_index(inp);
1374        Node *src = n->in(inp);   // Value to load or store
1375        LRG &lrg_cisc = lrgs( Find_const(src) );
1376        OptoReg::Name src_reg = lrg_cisc.reg();
1377        // Doubles record the HIGH register of an adjacent pair.
1378        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1379        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1380          // This is a CISC Spill, get stack offset and construct new node
1381#ifndef PRODUCT
1382          if( TraceCISCSpill ) {
1383            tty->print("    reg-instr:  ");
1384            n->dump();
1385          }
1386#endif
1387          int stk_offset = reg2offset(src_reg);
1388          // Bailout if we might exceed node limit when spilling this instruction
1389          C->check_node_count(0, "out of nodes fixing spills");
1390          if (C->failing())  return;
1391          // Transform node
1392          MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1393          cisc->set_req(inp,fp);          // Base register is frame pointer
1394          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1395            assert( cisc->oper_input_base() == 2, "Only adding one edge");
1396            cisc->ins_req(1,src);         // Requires a memory edge
1397          }
1398          b->_nodes.map(j,cisc);          // Insert into basic block
1399          n->subsume_by(cisc); // Correct graph
1400          //
1401          ++_used_cisc_instructions;
1402#ifndef PRODUCT
1403          if( TraceCISCSpill ) {
1404            tty->print("    cisc-instr: ");
1405            cisc->dump();
1406          }
1407#endif
1408        } else {
1409#ifndef PRODUCT
1410          if( TraceCISCSpill ) {
1411            tty->print("    using reg-instr: ");
1412            n->dump();
1413          }
1414#endif
1415          ++_unused_cisc_instructions;    // input can be on stack
1416        }
1417      }
1418
1419    } // End of for all instructions
1420
1421  } // End of for all blocks
1422}
1423
1424//------------------------------find_base_for_derived--------------------------
1425// Helper to stretch above; recursively discover the base Node for a
1426// given derived Node.  Easy for AddP-related machine nodes, but needs
1427// to be recursive for derived Phis.
1428Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1429  // See if already computed; if so return it
1430  if( derived_base_map[derived->_idx] )
1431    return derived_base_map[derived->_idx];
1432
1433  // See if this happens to be a base.
1434  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1435  // pointers derived from NULL!  These are always along paths that
1436  // can't happen at run-time but the optimizer cannot deduce it so
1437  // we have to handle it gracefully.
1438  assert(!derived->bottom_type()->isa_narrowoop() ||
1439          derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1440  const TypePtr *tj = derived->bottom_type()->isa_ptr();
1441  // If its an OOP with a non-zero offset, then it is derived.
1442  if( tj == NULL || tj->_offset == 0 ) {
1443    derived_base_map[derived->_idx] = derived;
1444    return derived;
1445  }
1446  // Derived is NULL+offset?  Base is NULL!
1447  if( derived->is_Con() ) {
1448    Node *base = _matcher.mach_null();
1449    assert(base != NULL, "sanity");
1450    if (base->in(0) == NULL) {
1451      // Initialize it once and make it shared:
1452      // set control to _root and place it into Start block
1453      // (where top() node is placed).
1454      base->init_req(0, _cfg._root);
1455      Block *startb = _cfg._bbs[C->top()->_idx];
1456      startb->_nodes.insert(startb->find_node(C->top()), base );
1457      _cfg._bbs.map( base->_idx, startb );
1458      assert (n2lidx(base) == 0, "should not have LRG yet");
1459    }
1460    if (n2lidx(base) == 0) {
1461      new_lrg(base, maxlrg++);
1462    }
1463    assert(base->in(0) == _cfg._root &&
1464           _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
1465    derived_base_map[derived->_idx] = base;
1466    return base;
1467  }
1468
1469  // Check for AddP-related opcodes
1470  if( !derived->is_Phi() ) {
1471    assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
1472    Node *base = derived->in(AddPNode::Base);
1473    derived_base_map[derived->_idx] = base;
1474    return base;
1475  }
1476
1477  // Recursively find bases for Phis.
1478  // First check to see if we can avoid a base Phi here.
1479  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1480  uint i;
1481  for( i = 2; i < derived->req(); i++ )
1482    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1483      break;
1484  // Went to the end without finding any different bases?
1485  if( i == derived->req() ) {   // No need for a base Phi here
1486    derived_base_map[derived->_idx] = base;
1487    return base;
1488  }
1489
1490  // Now we see we need a base-Phi here to merge the bases
1491  const Type *t = base->bottom_type();
1492  base = new (C, derived->req()) PhiNode( derived->in(0), t );
1493  for( i = 1; i < derived->req(); i++ ) {
1494    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1495    t = t->meet(base->in(i)->bottom_type());
1496  }
1497  base->as_Phi()->set_type(t);
1498
1499  // Search the current block for an existing base-Phi
1500  Block *b = _cfg._bbs[derived->_idx];
1501  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1502    Node *phi = b->_nodes[i];
1503    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1504      b->_nodes.insert( i, base ); // Must insert created Phi here as base
1505      _cfg._bbs.map( base->_idx, b );
1506      new_lrg(base,maxlrg++);
1507      break;
1508    }
1509    // See if Phi matches.
1510    uint j;
1511    for( j = 1; j < base->req(); j++ )
1512      if( phi->in(j) != base->in(j) &&
1513          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1514        break;
1515    if( j == base->req() ) {    // All inputs match?
1516      base = phi;               // Then use existing 'phi' and drop 'base'
1517      break;
1518    }
1519  }
1520
1521
1522  // Cache info for later passes
1523  derived_base_map[derived->_idx] = base;
1524  return base;
1525}
1526
1527
1528//------------------------------stretch_base_pointer_live_ranges---------------
1529// At each Safepoint, insert extra debug edges for each pair of derived value/
1530// base pointer that is live across the Safepoint for oopmap building.  The
1531// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1532// required edge set.
1533bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
1534  int must_recompute_live = false;
1535  uint maxlrg = _maxlrg;
1536  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1537  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1538
1539  // For all blocks in RPO do...
1540  for( uint i=0; i<_cfg._num_blocks; i++ ) {
1541    Block *b = _cfg._blocks[i];
1542    // Note use of deep-copy constructor.  I cannot hammer the original
1543    // liveout bits, because they are needed by the following coalesce pass.
1544    IndexSet liveout(_live->live(b));
1545
1546    for( uint j = b->end_idx() + 1; j > 1; j-- ) {
1547      Node *n = b->_nodes[j-1];
1548
1549      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1550      // like to see in the same register.  Compare uses the loop-phi and so
1551      // extends its live range BUT cannot be part of the cycle.  If this
1552      // extended live range overlaps with the update of the loop-phi value
1553      // we need both alive at the same time -- which requires at least 1
1554      // copy.  But because Intel has only 2-address registers we end up with
1555      // at least 2 copies, one before the loop-phi update instruction and
1556      // one after.  Instead we split the input to the compare just after the
1557      // phi.
1558      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1559        Node *phi = n->in(1);
1560        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1561          Block *phi_block = _cfg._bbs[phi->_idx];
1562          if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
1563            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1564            Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1565            insert_proj( phi_block, 1, spill, maxlrg++ );
1566            n->set_req(1,spill);
1567            must_recompute_live = true;
1568          }
1569        }
1570      }
1571
1572      // Get value being defined
1573      uint lidx = n2lidx(n);
1574      if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
1575        // Remove from live-out set
1576        liveout.remove(lidx);
1577
1578        // Copies do not define a new value and so do not interfere.
1579        // Remove the copies source from the liveout set before interfering.
1580        uint idx = n->is_Copy();
1581        if( idx ) liveout.remove( n2lidx(n->in(idx)) );
1582      }
1583
1584      // Found a safepoint?
1585      JVMState *jvms = n->jvms();
1586      if( jvms ) {
1587        // Now scan for a live derived pointer
1588        IndexSetIterator elements(&liveout);
1589        uint neighbor;
1590        while ((neighbor = elements.next()) != 0) {
1591          // Find reaching DEF for base and derived values
1592          // This works because we are still in SSA during this call.
1593          Node *derived = lrgs(neighbor)._def;
1594          const TypePtr *tj = derived->bottom_type()->isa_ptr();
1595          assert(!derived->bottom_type()->isa_narrowoop() ||
1596                  derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1597          // If its an OOP with a non-zero offset, then it is derived.
1598          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1599            Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
1600            assert( base->_idx < _names.Size(), "" );
1601            // Add reaching DEFs of derived pointer and base pointer as a
1602            // pair of inputs
1603            n->add_req( derived );
1604            n->add_req( base );
1605
1606            // See if the base pointer is already live to this point.
1607            // Since I'm working on the SSA form, live-ness amounts to
1608            // reaching def's.  So if I find the base's live range then
1609            // I know the base's def reaches here.
1610            if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
1611                 !liveout.member( n2lidx(base) ) ) && // not live) AND
1612                 (n2lidx(base) > 0)                && // not a constant
1613                 _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
1614              // Base pointer is not currently live.  Since I stretched
1615              // the base pointer to here and it crosses basic-block
1616              // boundaries, the global live info is now incorrect.
1617              // Recompute live.
1618              must_recompute_live = true;
1619            } // End of if base pointer is not live to debug info
1620          }
1621        } // End of scan all live data for derived ptrs crossing GC point
1622      } // End of if found a GC point
1623
1624      // Make all inputs live
1625      if( !n->is_Phi() ) {      // Phi function uses come from prior block
1626        for( uint k = 1; k < n->req(); k++ ) {
1627          uint lidx = n2lidx(n->in(k));
1628          if( lidx < _maxlrg )
1629            liveout.insert( lidx );
1630        }
1631      }
1632
1633    } // End of forall instructions in block
1634    liveout.clear();  // Free the memory used by liveout.
1635
1636  } // End of forall blocks
1637  _maxlrg = maxlrg;
1638
1639  // If I created a new live range I need to recompute live
1640  if( maxlrg != _ifg->_maxlrg )
1641    must_recompute_live = true;
1642
1643  return must_recompute_live != 0;
1644}
1645
1646
1647//------------------------------add_reference----------------------------------
1648// Extend the node to LRG mapping
1649void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
1650  _names.extend( node->_idx, n2lidx(old_node) );
1651}
1652
1653//------------------------------dump-------------------------------------------
1654#ifndef PRODUCT
1655void PhaseChaitin::dump( const Node *n ) const {
1656  uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
1657  tty->print("L%d",r);
1658  if( r && n->Opcode() != Op_Phi ) {
1659    if( _node_regs ) {          // Got a post-allocation copy of allocation?
1660      tty->print("[");
1661      OptoReg::Name second = get_reg_second(n);
1662      if( OptoReg::is_valid(second) ) {
1663        if( OptoReg::is_reg(second) )
1664          tty->print("%s:",Matcher::regName[second]);
1665        else
1666          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1667      }
1668      OptoReg::Name first = get_reg_first(n);
1669      if( OptoReg::is_reg(first) )
1670        tty->print("%s]",Matcher::regName[first]);
1671      else
1672         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1673    } else
1674    n->out_RegMask().dump();
1675  }
1676  tty->print("/N%d\t",n->_idx);
1677  tty->print("%s === ", n->Name());
1678  uint k;
1679  for( k = 0; k < n->req(); k++) {
1680    Node *m = n->in(k);
1681    if( !m ) tty->print("_ ");
1682    else {
1683      uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1684      tty->print("L%d",r);
1685      // Data MultiNode's can have projections with no real registers.
1686      // Don't die while dumping them.
1687      int op = n->Opcode();
1688      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1689        if( _node_regs ) {
1690          tty->print("[");
1691          OptoReg::Name second = get_reg_second(n->in(k));
1692          if( OptoReg::is_valid(second) ) {
1693            if( OptoReg::is_reg(second) )
1694              tty->print("%s:",Matcher::regName[second]);
1695            else
1696              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1697                         reg2offset_unchecked(second));
1698          }
1699          OptoReg::Name first = get_reg_first(n->in(k));
1700          if( OptoReg::is_reg(first) )
1701            tty->print("%s]",Matcher::regName[first]);
1702          else
1703            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1704                       reg2offset_unchecked(first));
1705        } else
1706          n->in_RegMask(k).dump();
1707      }
1708      tty->print("/N%d ",m->_idx);
1709    }
1710  }
1711  if( k < n->len() && n->in(k) ) tty->print("| ");
1712  for( ; k < n->len(); k++ ) {
1713    Node *m = n->in(k);
1714    if( !m ) break;
1715    uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1716    tty->print("L%d",r);
1717    tty->print("/N%d ",m->_idx);
1718  }
1719  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1720  else n->dump_spec(tty);
1721  if( _spilled_once.test(n->_idx ) ) {
1722    tty->print(" Spill_1");
1723    if( _spilled_twice.test(n->_idx ) )
1724      tty->print(" Spill_2");
1725  }
1726  tty->print("\n");
1727}
1728
1729void PhaseChaitin::dump( const Block * b ) const {
1730  b->dump_head( &_cfg._bbs );
1731
1732  // For all instructions
1733  for( uint j = 0; j < b->_nodes.size(); j++ )
1734    dump(b->_nodes[j]);
1735  // Print live-out info at end of block
1736  if( _live ) {
1737    tty->print("Liveout: ");
1738    IndexSet *live = _live->live(b);
1739    IndexSetIterator elements(live);
1740    tty->print("{");
1741    uint i;
1742    while ((i = elements.next()) != 0) {
1743      tty->print("L%d ", Find_const(i));
1744    }
1745    tty->print_cr("}");
1746  }
1747  tty->print("\n");
1748}
1749
1750void PhaseChaitin::dump() const {
1751  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
1752              _matcher._new_SP, _framesize );
1753
1754  // For all blocks
1755  for( uint i = 0; i < _cfg._num_blocks; i++ )
1756    dump(_cfg._blocks[i]);
1757  // End of per-block dump
1758  tty->print("\n");
1759
1760  if (!_ifg) {
1761    tty->print("(No IFG.)\n");
1762    return;
1763  }
1764
1765  // Dump LRG array
1766  tty->print("--- Live RanGe Array ---\n");
1767  for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
1768    tty->print("L%d: ",i2);
1769    if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
1770    else tty->print("new LRG");
1771  }
1772  tty->print_cr("");
1773
1774  // Dump lo-degree list
1775  tty->print("Lo degree: ");
1776  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
1777    tty->print("L%d ",i3);
1778  tty->print_cr("");
1779
1780  // Dump lo-stk-degree list
1781  tty->print("Lo stk degree: ");
1782  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
1783    tty->print("L%d ",i4);
1784  tty->print_cr("");
1785
1786  // Dump lo-degree list
1787  tty->print("Hi degree: ");
1788  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
1789    tty->print("L%d ",i5);
1790  tty->print_cr("");
1791}
1792
1793//------------------------------dump_degree_lists------------------------------
1794void PhaseChaitin::dump_degree_lists() const {
1795  // Dump lo-degree list
1796  tty->print("Lo degree: ");
1797  for( uint i = _lo_degree; i; i = lrgs(i)._next )
1798    tty->print("L%d ",i);
1799  tty->print_cr("");
1800
1801  // Dump lo-stk-degree list
1802  tty->print("Lo stk degree: ");
1803  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
1804    tty->print("L%d ",i2);
1805  tty->print_cr("");
1806
1807  // Dump lo-degree list
1808  tty->print("Hi degree: ");
1809  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
1810    tty->print("L%d ",i3);
1811  tty->print_cr("");
1812}
1813
1814//------------------------------dump_simplified--------------------------------
1815void PhaseChaitin::dump_simplified() const {
1816  tty->print("Simplified: ");
1817  for( uint i = _simplified; i; i = lrgs(i)._next )
1818    tty->print("L%d ",i);
1819  tty->print_cr("");
1820}
1821
1822static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
1823  if ((int)reg < 0)
1824    sprintf(buf, "<OptoReg::%d>", (int)reg);
1825  else if (OptoReg::is_reg(reg))
1826    strcpy(buf, Matcher::regName[reg]);
1827  else
1828    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
1829            pc->reg2offset(reg));
1830  return buf+strlen(buf);
1831}
1832
1833//------------------------------dump_register----------------------------------
1834// Dump a register name into a buffer.  Be intelligent if we get called
1835// before allocation is complete.
1836char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
1837  if( !this ) {                 // Not got anything?
1838    sprintf(buf,"N%d",n->_idx); // Then use Node index
1839  } else if( _node_regs ) {
1840    // Post allocation, use direct mappings, no LRG info available
1841    print_reg( get_reg_first(n), this, buf );
1842  } else {
1843    uint lidx = Find_const(n); // Grab LRG number
1844    if( !_ifg ) {
1845      sprintf(buf,"L%d",lidx);  // No register binding yet
1846    } else if( !lidx ) {        // Special, not allocated value
1847      strcpy(buf,"Special");
1848    } else if( (lrgs(lidx).num_regs() == 1)
1849                ? !lrgs(lidx).mask().is_bound1()
1850                : !lrgs(lidx).mask().is_bound2() ) {
1851      sprintf(buf,"L%d",lidx); // No register binding yet
1852    } else {                    // Hah!  We have a bound machine register
1853      print_reg( lrgs(lidx).reg(), this, buf );
1854    }
1855  }
1856  return buf+strlen(buf);
1857}
1858
1859//----------------------dump_for_spill_split_recycle--------------------------
1860void PhaseChaitin::dump_for_spill_split_recycle() const {
1861  if( WizardMode && (PrintCompilation || PrintOpto) ) {
1862    // Display which live ranges need to be split and the allocator's state
1863    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
1864    for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
1865      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
1866        tty->print("L%d: ", bidx);
1867        lrgs(bidx).dump();
1868      }
1869    }
1870    tty->cr();
1871    dump();
1872  }
1873}
1874
1875//------------------------------dump_frame------------------------------------
1876void PhaseChaitin::dump_frame() const {
1877  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
1878  const TypeTuple *domain = C->tf()->domain();
1879  const int        argcnt = domain->cnt() - TypeFunc::Parms;
1880
1881  // Incoming arguments in registers dump
1882  for( int k = 0; k < argcnt; k++ ) {
1883    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
1884    if( OptoReg::is_reg(parmreg))  {
1885      const char *reg_name = OptoReg::regname(parmreg);
1886      tty->print("#r%3.3d %s", parmreg, reg_name);
1887      parmreg = _matcher._parm_regs[k].second();
1888      if( OptoReg::is_reg(parmreg))  {
1889        tty->print(":%s", OptoReg::regname(parmreg));
1890      }
1891      tty->print("   : parm %d: ", k);
1892      domain->field_at(k + TypeFunc::Parms)->dump();
1893      tty->print_cr("");
1894    }
1895  }
1896
1897  // Check for un-owned padding above incoming args
1898  OptoReg::Name reg = _matcher._new_SP;
1899  if( reg > _matcher._in_arg_limit ) {
1900    reg = OptoReg::add(reg, -1);
1901    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
1902  }
1903
1904  // Incoming argument area dump
1905  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
1906  while( reg > begin_in_arg ) {
1907    reg = OptoReg::add(reg, -1);
1908    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1909    int j;
1910    for( j = 0; j < argcnt; j++) {
1911      if( _matcher._parm_regs[j].first() == reg ||
1912          _matcher._parm_regs[j].second() == reg ) {
1913        tty->print("parm %d: ",j);
1914        domain->field_at(j + TypeFunc::Parms)->dump();
1915        tty->print_cr("");
1916        break;
1917      }
1918    }
1919    if( j >= argcnt )
1920      tty->print_cr("HOLE, owned by SELF");
1921  }
1922
1923  // Old outgoing preserve area
1924  while( reg > _matcher._old_SP ) {
1925    reg = OptoReg::add(reg, -1);
1926    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
1927  }
1928
1929  // Old SP
1930  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
1931    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
1932
1933  // Preserve area dump
1934  reg = OptoReg::add(reg, -1);
1935  while( OptoReg::is_stack(reg)) {
1936    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1937    if( _matcher.return_addr() == reg )
1938      tty->print_cr("return address");
1939    else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
1940             VerifyStackAtCalls )
1941      tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
1942    else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
1943      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
1944    else
1945      tty->print_cr("pad2, in_preserve");
1946    reg = OptoReg::add(reg, -1);
1947  }
1948
1949  // Spill area dump
1950  reg = OptoReg::add(_matcher._new_SP, _framesize );
1951  while( reg > _matcher._out_arg_limit ) {
1952    reg = OptoReg::add(reg, -1);
1953    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
1954  }
1955
1956  // Outgoing argument area dump
1957  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
1958    reg = OptoReg::add(reg, -1);
1959    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
1960  }
1961
1962  // Outgoing new preserve area
1963  while( reg > _matcher._new_SP ) {
1964    reg = OptoReg::add(reg, -1);
1965    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
1966  }
1967  tty->print_cr("#");
1968}
1969
1970//------------------------------dump_bb----------------------------------------
1971void PhaseChaitin::dump_bb( uint pre_order ) const {
1972  tty->print_cr("---dump of B%d---",pre_order);
1973  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1974    Block *b = _cfg._blocks[i];
1975    if( b->_pre_order == pre_order )
1976      dump(b);
1977  }
1978}
1979
1980//------------------------------dump_lrg---------------------------------------
1981void PhaseChaitin::dump_lrg( uint lidx ) const {
1982  tty->print_cr("---dump of L%d---",lidx);
1983
1984  if( _ifg ) {
1985    if( lidx >= _maxlrg ) {
1986      tty->print("Attempt to print live range index beyond max live range.\n");
1987      return;
1988    }
1989    tty->print("L%d: ",lidx);
1990    lrgs(lidx).dump( );
1991  }
1992  if( _ifg ) {    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
1993    _ifg->neighbors(lidx)->dump();
1994    tty->cr();
1995  }
1996  // For all blocks
1997  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1998    Block *b = _cfg._blocks[i];
1999    int dump_once = 0;
2000
2001    // For all instructions
2002    for( uint j = 0; j < b->_nodes.size(); j++ ) {
2003      Node *n = b->_nodes[j];
2004      if( Find_const(n) == lidx ) {
2005        if( !dump_once++ ) {
2006          tty->cr();
2007          b->dump_head( &_cfg._bbs );
2008        }
2009        dump(n);
2010        continue;
2011      }
2012      uint cnt = n->req();
2013      for( uint k = 1; k < cnt; k++ ) {
2014        Node *m = n->in(k);
2015        if (!m)  continue;  // be robust in the dumper
2016        if( Find_const(m) == lidx ) {
2017          if( !dump_once++ ) {
2018            tty->cr();
2019            b->dump_head( &_cfg._bbs );
2020          }
2021          dump(n);
2022        }
2023      }
2024    }
2025  } // End of per-block dump
2026  tty->cr();
2027}
2028#endif // not PRODUCT
2029
2030//------------------------------print_chaitin_statistics-------------------------------
2031int PhaseChaitin::_final_loads  = 0;
2032int PhaseChaitin::_final_stores = 0;
2033int PhaseChaitin::_final_memoves= 0;
2034int PhaseChaitin::_final_copies = 0;
2035double PhaseChaitin::_final_load_cost  = 0;
2036double PhaseChaitin::_final_store_cost = 0;
2037double PhaseChaitin::_final_memove_cost= 0;
2038double PhaseChaitin::_final_copy_cost  = 0;
2039int PhaseChaitin::_conserv_coalesce = 0;
2040int PhaseChaitin::_conserv_coalesce_pair = 0;
2041int PhaseChaitin::_conserv_coalesce_trie = 0;
2042int PhaseChaitin::_conserv_coalesce_quad = 0;
2043int PhaseChaitin::_post_alloc = 0;
2044int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2045int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2046int PhaseChaitin::_used_cisc_instructions   = 0;
2047int PhaseChaitin::_unused_cisc_instructions = 0;
2048int PhaseChaitin::_allocator_attempts       = 0;
2049int PhaseChaitin::_allocator_successes      = 0;
2050
2051#ifndef PRODUCT
2052uint PhaseChaitin::_high_pressure           = 0;
2053uint PhaseChaitin::_low_pressure            = 0;
2054
2055void PhaseChaitin::print_chaitin_statistics() {
2056  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2057  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2058  tty->print_cr("Adjusted spill cost = %7.0f.",
2059                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2060                _final_copy_cost*1.0 + _final_memove_cost*12.0);
2061  tty->print("Conservatively coalesced %d copies, %d pairs",
2062                _conserv_coalesce, _conserv_coalesce_pair);
2063  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2064    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2065  tty->print_cr(", %d post alloc.", _post_alloc);
2066  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2067    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2068                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2069  if( _used_cisc_instructions || _unused_cisc_instructions )
2070    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2071                   _used_cisc_instructions, _unused_cisc_instructions);
2072  if( _allocator_successes != 0 )
2073    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2074  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2075}
2076#endif // not PRODUCT
2077