callnode.cpp revision 6010:abec000618bf
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/bcEscapeAnalyzer.hpp"
27#include "compiler/oopMap.hpp"
28#include "opto/callGenerator.hpp"
29#include "opto/callnode.hpp"
30#include "opto/escape.hpp"
31#include "opto/locknode.hpp"
32#include "opto/machnode.hpp"
33#include "opto/matcher.hpp"
34#include "opto/parse.hpp"
35#include "opto/regalloc.hpp"
36#include "opto/regmask.hpp"
37#include "opto/rootnode.hpp"
38#include "opto/runtime.hpp"
39
40// Portions of code courtesy of Clifford Click
41
42// Optimization - Graph Style
43
44//=============================================================================
45uint StartNode::size_of() const { return sizeof(*this); }
46uint StartNode::cmp( const Node &n ) const
47{ return _domain == ((StartNode&)n)._domain; }
48const Type *StartNode::bottom_type() const { return _domain; }
49const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
50#ifndef PRODUCT
51void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
52#endif
53
54//------------------------------Ideal------------------------------------------
55Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
56  return remove_dead_region(phase, can_reshape) ? this : NULL;
57}
58
59//------------------------------calling_convention-----------------------------
60void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
61  Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
62}
63
64//------------------------------Registers--------------------------------------
65const RegMask &StartNode::in_RegMask(uint) const {
66  return RegMask::Empty;
67}
68
69//------------------------------match------------------------------------------
70// Construct projections for incoming parameters, and their RegMask info
71Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
72  switch (proj->_con) {
73  case TypeFunc::Control:
74  case TypeFunc::I_O:
75  case TypeFunc::Memory:
76    return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
77  case TypeFunc::FramePtr:
78    return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
79  case TypeFunc::ReturnAdr:
80    return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
81  case TypeFunc::Parms:
82  default: {
83      uint parm_num = proj->_con - TypeFunc::Parms;
84      const Type *t = _domain->field_at(proj->_con);
85      if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
86        return new (match->C) ConNode(Type::TOP);
87      uint ideal_reg = t->ideal_reg();
88      RegMask &rm = match->_calling_convention_mask[parm_num];
89      return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
90    }
91  }
92  return NULL;
93}
94
95//------------------------------StartOSRNode----------------------------------
96// The method start node for an on stack replacement adapter
97
98//------------------------------osr_domain-----------------------------
99const TypeTuple *StartOSRNode::osr_domain() {
100  const Type **fields = TypeTuple::fields(2);
101  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
102
103  return TypeTuple::make(TypeFunc::Parms+1, fields);
104}
105
106//=============================================================================
107const char * const ParmNode::names[TypeFunc::Parms+1] = {
108  "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
109};
110
111#ifndef PRODUCT
112void ParmNode::dump_spec(outputStream *st) const {
113  if( _con < TypeFunc::Parms ) {
114    st->print(names[_con]);
115  } else {
116    st->print("Parm%d: ",_con-TypeFunc::Parms);
117    // Verbose and WizardMode dump bottom_type for all nodes
118    if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
119  }
120}
121#endif
122
123uint ParmNode::ideal_reg() const {
124  switch( _con ) {
125  case TypeFunc::Control  : // fall through
126  case TypeFunc::I_O      : // fall through
127  case TypeFunc::Memory   : return 0;
128  case TypeFunc::FramePtr : // fall through
129  case TypeFunc::ReturnAdr: return Op_RegP;
130  default                 : assert( _con > TypeFunc::Parms, "" );
131    // fall through
132  case TypeFunc::Parms    : {
133    // Type of argument being passed
134    const Type *t = in(0)->as_Start()->_domain->field_at(_con);
135    return t->ideal_reg();
136  }
137  }
138  ShouldNotReachHere();
139  return 0;
140}
141
142//=============================================================================
143ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
144  init_req(TypeFunc::Control,cntrl);
145  init_req(TypeFunc::I_O,i_o);
146  init_req(TypeFunc::Memory,memory);
147  init_req(TypeFunc::FramePtr,frameptr);
148  init_req(TypeFunc::ReturnAdr,retadr);
149}
150
151Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
152  return remove_dead_region(phase, can_reshape) ? this : NULL;
153}
154
155const Type *ReturnNode::Value( PhaseTransform *phase ) const {
156  return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
157    ? Type::TOP
158    : Type::BOTTOM;
159}
160
161// Do we Match on this edge index or not?  No edges on return nodes
162uint ReturnNode::match_edge(uint idx) const {
163  return 0;
164}
165
166
167#ifndef PRODUCT
168void ReturnNode::dump_req(outputStream *st) const {
169  // Dump the required inputs, enclosed in '(' and ')'
170  uint i;                       // Exit value of loop
171  for (i = 0; i < req(); i++) {    // For all required inputs
172    if (i == TypeFunc::Parms) st->print("returns");
173    if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
174    else st->print("_ ");
175  }
176}
177#endif
178
179//=============================================================================
180RethrowNode::RethrowNode(
181  Node* cntrl,
182  Node* i_o,
183  Node* memory,
184  Node* frameptr,
185  Node* ret_adr,
186  Node* exception
187) : Node(TypeFunc::Parms + 1) {
188  init_req(TypeFunc::Control  , cntrl    );
189  init_req(TypeFunc::I_O      , i_o      );
190  init_req(TypeFunc::Memory   , memory   );
191  init_req(TypeFunc::FramePtr , frameptr );
192  init_req(TypeFunc::ReturnAdr, ret_adr);
193  init_req(TypeFunc::Parms    , exception);
194}
195
196Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
197  return remove_dead_region(phase, can_reshape) ? this : NULL;
198}
199
200const Type *RethrowNode::Value( PhaseTransform *phase ) const {
201  return (phase->type(in(TypeFunc::Control)) == Type::TOP)
202    ? Type::TOP
203    : Type::BOTTOM;
204}
205
206uint RethrowNode::match_edge(uint idx) const {
207  return 0;
208}
209
210#ifndef PRODUCT
211void RethrowNode::dump_req(outputStream *st) const {
212  // Dump the required inputs, enclosed in '(' and ')'
213  uint i;                       // Exit value of loop
214  for (i = 0; i < req(); i++) {    // For all required inputs
215    if (i == TypeFunc::Parms) st->print("exception");
216    if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
217    else st->print("_ ");
218  }
219}
220#endif
221
222//=============================================================================
223// Do we Match on this edge index or not?  Match only target address & method
224uint TailCallNode::match_edge(uint idx) const {
225  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
226}
227
228//=============================================================================
229// Do we Match on this edge index or not?  Match only target address & oop
230uint TailJumpNode::match_edge(uint idx) const {
231  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
232}
233
234//=============================================================================
235JVMState::JVMState(ciMethod* method, JVMState* caller) :
236  _method(method) {
237  assert(method != NULL, "must be valid call site");
238  _reexecute = Reexecute_Undefined;
239  debug_only(_bci = -99);  // random garbage value
240  debug_only(_map = (SafePointNode*)-1);
241  _caller = caller;
242  _depth  = 1 + (caller == NULL ? 0 : caller->depth());
243  _locoff = TypeFunc::Parms;
244  _stkoff = _locoff + _method->max_locals();
245  _monoff = _stkoff + _method->max_stack();
246  _scloff = _monoff;
247  _endoff = _monoff;
248  _sp = 0;
249}
250JVMState::JVMState(int stack_size) :
251  _method(NULL) {
252  _bci = InvocationEntryBci;
253  _reexecute = Reexecute_Undefined;
254  debug_only(_map = (SafePointNode*)-1);
255  _caller = NULL;
256  _depth  = 1;
257  _locoff = TypeFunc::Parms;
258  _stkoff = _locoff;
259  _monoff = _stkoff + stack_size;
260  _scloff = _monoff;
261  _endoff = _monoff;
262  _sp = 0;
263}
264
265//--------------------------------of_depth-------------------------------------
266JVMState* JVMState::of_depth(int d) const {
267  const JVMState* jvmp = this;
268  assert(0 < d && (uint)d <= depth(), "oob");
269  for (int skip = depth() - d; skip > 0; skip--) {
270    jvmp = jvmp->caller();
271  }
272  assert(jvmp->depth() == (uint)d, "found the right one");
273  return (JVMState*)jvmp;
274}
275
276//-----------------------------same_calls_as-----------------------------------
277bool JVMState::same_calls_as(const JVMState* that) const {
278  if (this == that)                    return true;
279  if (this->depth() != that->depth())  return false;
280  const JVMState* p = this;
281  const JVMState* q = that;
282  for (;;) {
283    if (p->_method != q->_method)    return false;
284    if (p->_method == NULL)          return true;   // bci is irrelevant
285    if (p->_bci    != q->_bci)       return false;
286    if (p->_reexecute != q->_reexecute)  return false;
287    p = p->caller();
288    q = q->caller();
289    if (p == q)                      return true;
290    assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
291  }
292}
293
294//------------------------------debug_start------------------------------------
295uint JVMState::debug_start()  const {
296  debug_only(JVMState* jvmroot = of_depth(1));
297  assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
298  return of_depth(1)->locoff();
299}
300
301//-------------------------------debug_end-------------------------------------
302uint JVMState::debug_end() const {
303  debug_only(JVMState* jvmroot = of_depth(1));
304  assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
305  return endoff();
306}
307
308//------------------------------debug_depth------------------------------------
309uint JVMState::debug_depth() const {
310  uint total = 0;
311  for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
312    total += jvmp->debug_size();
313  }
314  return total;
315}
316
317#ifndef PRODUCT
318
319//------------------------------format_helper----------------------------------
320// Given an allocation (a Chaitin object) and a Node decide if the Node carries
321// any defined value or not.  If it does, print out the register or constant.
322static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
323  if (n == NULL) { st->print(" NULL"); return; }
324  if (n->is_SafePointScalarObject()) {
325    // Scalar replacement.
326    SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
327    scobjs->append_if_missing(spobj);
328    int sco_n = scobjs->find(spobj);
329    assert(sco_n >= 0, "");
330    st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
331    return;
332  }
333  if (regalloc->node_regs_max_index() > 0 &&
334      OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
335    char buf[50];
336    regalloc->dump_register(n,buf);
337    st->print(" %s%d]=%s",msg,i,buf);
338  } else {                      // No register, but might be constant
339    const Type *t = n->bottom_type();
340    switch (t->base()) {
341    case Type::Int:
342      st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
343      break;
344    case Type::AnyPtr:
345      assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
346      st->print(" %s%d]=#NULL",msg,i);
347      break;
348    case Type::AryPtr:
349    case Type::InstPtr:
350      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
351      break;
352    case Type::KlassPtr:
353      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_klassptr()->klass());
354      break;
355    case Type::MetadataPtr:
356      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_metadataptr()->metadata());
357      break;
358    case Type::NarrowOop:
359      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
360      break;
361    case Type::RawPtr:
362      st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
363      break;
364    case Type::DoubleCon:
365      st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
366      break;
367    case Type::FloatCon:
368      st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
369      break;
370    case Type::Long:
371      st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
372      break;
373    case Type::Half:
374    case Type::Top:
375      st->print(" %s%d]=_",msg,i);
376      break;
377    default: ShouldNotReachHere();
378    }
379  }
380}
381
382//------------------------------format-----------------------------------------
383void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
384  st->print("        #");
385  if (_method) {
386    _method->print_short_name(st);
387    st->print(" @ bci:%d ",_bci);
388  } else {
389    st->print_cr(" runtime stub ");
390    return;
391  }
392  if (n->is_MachSafePoint()) {
393    GrowableArray<SafePointScalarObjectNode*> scobjs;
394    MachSafePointNode *mcall = n->as_MachSafePoint();
395    uint i;
396    // Print locals
397    for (i = 0; i < (uint)loc_size(); i++)
398      format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
399    // Print stack
400    for (i = 0; i < (uint)stk_size(); i++) {
401      if ((uint)(_stkoff + i) >= mcall->len())
402        st->print(" oob ");
403      else
404       format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
405    }
406    for (i = 0; (int)i < nof_monitors(); i++) {
407      Node *box = mcall->monitor_box(this, i);
408      Node *obj = mcall->monitor_obj(this, i);
409      if (regalloc->node_regs_max_index() > 0 &&
410          OptoReg::is_valid(regalloc->get_reg_first(box))) {
411        box = BoxLockNode::box_node(box);
412        format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
413      } else {
414        OptoReg::Name box_reg = BoxLockNode::reg(box);
415        st->print(" MON-BOX%d=%s+%d",
416                   i,
417                   OptoReg::regname(OptoReg::c_frame_pointer),
418                   regalloc->reg2offset(box_reg));
419      }
420      const char* obj_msg = "MON-OBJ[";
421      if (EliminateLocks) {
422        if (BoxLockNode::box_node(box)->is_eliminated())
423          obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
424      }
425      format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
426    }
427
428    for (i = 0; i < (uint)scobjs.length(); i++) {
429      // Scalar replaced objects.
430      st->print_cr("");
431      st->print("        # ScObj" INT32_FORMAT " ", i);
432      SafePointScalarObjectNode* spobj = scobjs.at(i);
433      ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
434      assert(cik->is_instance_klass() ||
435             cik->is_array_klass(), "Not supported allocation.");
436      ciInstanceKlass *iklass = NULL;
437      if (cik->is_instance_klass()) {
438        cik->print_name_on(st);
439        iklass = cik->as_instance_klass();
440      } else if (cik->is_type_array_klass()) {
441        cik->as_array_klass()->base_element_type()->print_name_on(st);
442        st->print("[%d]", spobj->n_fields());
443      } else if (cik->is_obj_array_klass()) {
444        ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
445        if (cie->is_instance_klass()) {
446          cie->print_name_on(st);
447        } else if (cie->is_type_array_klass()) {
448          cie->as_array_klass()->base_element_type()->print_name_on(st);
449        } else {
450          ShouldNotReachHere();
451        }
452        st->print("[%d]", spobj->n_fields());
453        int ndim = cik->as_array_klass()->dimension() - 1;
454        while (ndim-- > 0) {
455          st->print("[]");
456        }
457      }
458      st->print("={");
459      uint nf = spobj->n_fields();
460      if (nf > 0) {
461        uint first_ind = spobj->first_index(mcall->jvms());
462        Node* fld_node = mcall->in(first_ind);
463        ciField* cifield;
464        if (iklass != NULL) {
465          st->print(" [");
466          cifield = iklass->nonstatic_field_at(0);
467          cifield->print_name_on(st);
468          format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
469        } else {
470          format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
471        }
472        for (uint j = 1; j < nf; j++) {
473          fld_node = mcall->in(first_ind+j);
474          if (iklass != NULL) {
475            st->print(", [");
476            cifield = iklass->nonstatic_field_at(j);
477            cifield->print_name_on(st);
478            format_helper(regalloc, st, fld_node, ":", j, &scobjs);
479          } else {
480            format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
481          }
482        }
483      }
484      st->print(" }");
485    }
486  }
487  st->print_cr("");
488  if (caller() != NULL) caller()->format(regalloc, n, st);
489}
490
491
492void JVMState::dump_spec(outputStream *st) const {
493  if (_method != NULL) {
494    bool printed = false;
495    if (!Verbose) {
496      // The JVMS dumps make really, really long lines.
497      // Take out the most boring parts, which are the package prefixes.
498      char buf[500];
499      stringStream namest(buf, sizeof(buf));
500      _method->print_short_name(&namest);
501      if (namest.count() < sizeof(buf)) {
502        const char* name = namest.base();
503        if (name[0] == ' ')  ++name;
504        const char* endcn = strchr(name, ':');  // end of class name
505        if (endcn == NULL)  endcn = strchr(name, '(');
506        if (endcn == NULL)  endcn = name + strlen(name);
507        while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
508          --endcn;
509        st->print(" %s", endcn);
510        printed = true;
511      }
512    }
513    if (!printed)
514      _method->print_short_name(st);
515    st->print(" @ bci:%d",_bci);
516    if(_reexecute == Reexecute_True)
517      st->print(" reexecute");
518  } else {
519    st->print(" runtime stub");
520  }
521  if (caller() != NULL)  caller()->dump_spec(st);
522}
523
524
525void JVMState::dump_on(outputStream* st) const {
526  bool print_map = _map && !((uintptr_t)_map & 1) &&
527                  ((caller() == NULL) || (caller()->map() != _map));
528  if (print_map) {
529    if (_map->len() > _map->req()) {  // _map->has_exceptions()
530      Node* ex = _map->in(_map->req());  // _map->next_exception()
531      // skip the first one; it's already being printed
532      while (ex != NULL && ex->len() > ex->req()) {
533        ex = ex->in(ex->req());  // ex->next_exception()
534        ex->dump(1);
535      }
536    }
537    _map->dump(Verbose ? 2 : 1);
538  }
539  if (caller() != NULL) {
540    caller()->dump_on(st);
541  }
542  st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
543             depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
544  if (_method == NULL) {
545    st->print_cr("(none)");
546  } else {
547    _method->print_name(st);
548    st->cr();
549    if (bci() >= 0 && bci() < _method->code_size()) {
550      st->print("    bc: ");
551      _method->print_codes_on(bci(), bci()+1, st);
552    }
553  }
554}
555
556// Extra way to dump a jvms from the debugger,
557// to avoid a bug with C++ member function calls.
558void dump_jvms(JVMState* jvms) {
559  jvms->dump();
560}
561#endif
562
563//--------------------------clone_shallow--------------------------------------
564JVMState* JVMState::clone_shallow(Compile* C) const {
565  JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
566  n->set_bci(_bci);
567  n->_reexecute = _reexecute;
568  n->set_locoff(_locoff);
569  n->set_stkoff(_stkoff);
570  n->set_monoff(_monoff);
571  n->set_scloff(_scloff);
572  n->set_endoff(_endoff);
573  n->set_sp(_sp);
574  n->set_map(_map);
575  return n;
576}
577
578//---------------------------clone_deep----------------------------------------
579JVMState* JVMState::clone_deep(Compile* C) const {
580  JVMState* n = clone_shallow(C);
581  for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
582    p->_caller = p->_caller->clone_shallow(C);
583  }
584  assert(n->depth() == depth(), "sanity");
585  assert(n->debug_depth() == debug_depth(), "sanity");
586  return n;
587}
588
589/**
590 * Reset map for all callers
591 */
592void JVMState::set_map_deep(SafePointNode* map) {
593  for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
594    p->set_map(map);
595  }
596}
597
598// Adapt offsets in in-array after adding or removing an edge.
599// Prerequisite is that the JVMState is used by only one node.
600void JVMState::adapt_position(int delta) {
601  for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
602    jvms->set_locoff(jvms->locoff() + delta);
603    jvms->set_stkoff(jvms->stkoff() + delta);
604    jvms->set_monoff(jvms->monoff() + delta);
605    jvms->set_scloff(jvms->scloff() + delta);
606    jvms->set_endoff(jvms->endoff() + delta);
607  }
608}
609
610//=============================================================================
611uint CallNode::cmp( const Node &n ) const
612{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
613#ifndef PRODUCT
614void CallNode::dump_req(outputStream *st) const {
615  // Dump the required inputs, enclosed in '(' and ')'
616  uint i;                       // Exit value of loop
617  for (i = 0; i < req(); i++) {    // For all required inputs
618    if (i == TypeFunc::Parms) st->print("(");
619    if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
620    else st->print("_ ");
621  }
622  st->print(")");
623}
624
625void CallNode::dump_spec(outputStream *st) const {
626  st->print(" ");
627  tf()->dump_on(st);
628  if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
629  if (jvms() != NULL)  jvms()->dump_spec(st);
630}
631#endif
632
633const Type *CallNode::bottom_type() const { return tf()->range(); }
634const Type *CallNode::Value(PhaseTransform *phase) const {
635  if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
636  return tf()->range();
637}
638
639//------------------------------calling_convention-----------------------------
640void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
641  // Use the standard compiler calling convention
642  Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
643}
644
645
646//------------------------------match------------------------------------------
647// Construct projections for control, I/O, memory-fields, ..., and
648// return result(s) along with their RegMask info
649Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
650  switch (proj->_con) {
651  case TypeFunc::Control:
652  case TypeFunc::I_O:
653  case TypeFunc::Memory:
654    return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
655
656  case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
657    assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
658    // 2nd half of doubles and longs
659    return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
660
661  case TypeFunc::Parms: {       // Normal returns
662    uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
663    OptoRegPair regs = is_CallRuntime()
664      ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
665      : match->  return_value(ideal_reg,true); // Calls into compiled Java code
666    RegMask rm = RegMask(regs.first());
667    if( OptoReg::is_valid(regs.second()) )
668      rm.Insert( regs.second() );
669    return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
670  }
671
672  case TypeFunc::ReturnAdr:
673  case TypeFunc::FramePtr:
674  default:
675    ShouldNotReachHere();
676  }
677  return NULL;
678}
679
680// Do we Match on this edge index or not?  Match no edges
681uint CallNode::match_edge(uint idx) const {
682  return 0;
683}
684
685//
686// Determine whether the call could modify the field of the specified
687// instance at the specified offset.
688//
689bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
690  assert((t_oop != NULL), "sanity");
691  if (t_oop->is_known_instance()) {
692    // The instance_id is set only for scalar-replaceable allocations which
693    // are not passed as arguments according to Escape Analysis.
694    return false;
695  }
696  if (t_oop->is_ptr_to_boxed_value()) {
697    ciKlass* boxing_klass = t_oop->klass();
698    if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
699      // Skip unrelated boxing methods.
700      Node* proj = proj_out(TypeFunc::Parms);
701      if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
702        return false;
703      }
704    }
705    if (is_CallJava() && as_CallJava()->method() != NULL) {
706      ciMethod* meth = as_CallJava()->method();
707      if (meth->is_accessor()) {
708        return false;
709      }
710      // May modify (by reflection) if an boxing object is passed
711      // as argument or returned.
712      if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) {
713        Node* proj = proj_out(TypeFunc::Parms);
714        const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
715        if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
716                                 (inst_t->klass() == boxing_klass))) {
717          return true;
718        }
719      }
720      const TypeTuple* d = tf()->domain();
721      for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
722        const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
723        if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
724                                 (inst_t->klass() == boxing_klass))) {
725          return true;
726        }
727      }
728      return false;
729    }
730  }
731  return true;
732}
733
734// Does this call have a direct reference to n other than debug information?
735bool CallNode::has_non_debug_use(Node *n) {
736  const TypeTuple * d = tf()->domain();
737  for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
738    Node *arg = in(i);
739    if (arg == n) {
740      return true;
741    }
742  }
743  return false;
744}
745
746// Returns the unique CheckCastPP of a call
747// or 'this' if there are several CheckCastPP
748// or returns NULL if there is no one.
749Node *CallNode::result_cast() {
750  Node *cast = NULL;
751
752  Node *p = proj_out(TypeFunc::Parms);
753  if (p == NULL)
754    return NULL;
755
756  for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
757    Node *use = p->fast_out(i);
758    if (use->is_CheckCastPP()) {
759      if (cast != NULL) {
760        return this;  // more than 1 CheckCastPP
761      }
762      cast = use;
763    }
764  }
765  return cast;
766}
767
768
769void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
770  projs->fallthrough_proj      = NULL;
771  projs->fallthrough_catchproj = NULL;
772  projs->fallthrough_ioproj    = NULL;
773  projs->catchall_ioproj       = NULL;
774  projs->catchall_catchproj    = NULL;
775  projs->fallthrough_memproj   = NULL;
776  projs->catchall_memproj      = NULL;
777  projs->resproj               = NULL;
778  projs->exobj                 = NULL;
779
780  for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
781    ProjNode *pn = fast_out(i)->as_Proj();
782    if (pn->outcnt() == 0) continue;
783    switch (pn->_con) {
784    case TypeFunc::Control:
785      {
786        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
787        projs->fallthrough_proj = pn;
788        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
789        const Node *cn = pn->fast_out(j);
790        if (cn->is_Catch()) {
791          ProjNode *cpn = NULL;
792          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
793            cpn = cn->fast_out(k)->as_Proj();
794            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
795            if (cpn->_con == CatchProjNode::fall_through_index)
796              projs->fallthrough_catchproj = cpn;
797            else {
798              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
799              projs->catchall_catchproj = cpn;
800            }
801          }
802        }
803        break;
804      }
805    case TypeFunc::I_O:
806      if (pn->_is_io_use)
807        projs->catchall_ioproj = pn;
808      else
809        projs->fallthrough_ioproj = pn;
810      for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
811        Node* e = pn->out(j);
812        if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
813          assert(projs->exobj == NULL, "only one");
814          projs->exobj = e;
815        }
816      }
817      break;
818    case TypeFunc::Memory:
819      if (pn->_is_io_use)
820        projs->catchall_memproj = pn;
821      else
822        projs->fallthrough_memproj = pn;
823      break;
824    case TypeFunc::Parms:
825      projs->resproj = pn;
826      break;
827    default:
828      assert(false, "unexpected projection from allocation node.");
829    }
830  }
831
832  // The resproj may not exist because the result couuld be ignored
833  // and the exception object may not exist if an exception handler
834  // swallows the exception but all the other must exist and be found.
835  assert(projs->fallthrough_proj      != NULL, "must be found");
836  assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
837  assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
838  assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
839  assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
840  if (separate_io_proj) {
841    assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
842    assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
843  }
844}
845
846Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
847  CallGenerator* cg = generator();
848  if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
849    // Check whether this MH handle call becomes a candidate for inlining
850    ciMethod* callee = cg->method();
851    vmIntrinsics::ID iid = callee->intrinsic_id();
852    if (iid == vmIntrinsics::_invokeBasic) {
853      if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
854        phase->C->prepend_late_inline(cg);
855        set_generator(NULL);
856      }
857    } else {
858      assert(callee->has_member_arg(), "wrong type of call?");
859      if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
860        phase->C->prepend_late_inline(cg);
861        set_generator(NULL);
862      }
863    }
864  }
865  return SafePointNode::Ideal(phase, can_reshape);
866}
867
868
869//=============================================================================
870uint CallJavaNode::size_of() const { return sizeof(*this); }
871uint CallJavaNode::cmp( const Node &n ) const {
872  CallJavaNode &call = (CallJavaNode&)n;
873  return CallNode::cmp(call) && _method == call._method;
874}
875#ifndef PRODUCT
876void CallJavaNode::dump_spec(outputStream *st) const {
877  if( _method ) _method->print_short_name(st);
878  CallNode::dump_spec(st);
879}
880#endif
881
882//=============================================================================
883uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
884uint CallStaticJavaNode::cmp( const Node &n ) const {
885  CallStaticJavaNode &call = (CallStaticJavaNode&)n;
886  return CallJavaNode::cmp(call);
887}
888
889//----------------------------uncommon_trap_request----------------------------
890// If this is an uncommon trap, return the request code, else zero.
891int CallStaticJavaNode::uncommon_trap_request() const {
892  if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
893    return extract_uncommon_trap_request(this);
894  }
895  return 0;
896}
897int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
898#ifndef PRODUCT
899  if (!(call->req() > TypeFunc::Parms &&
900        call->in(TypeFunc::Parms) != NULL &&
901        call->in(TypeFunc::Parms)->is_Con())) {
902    assert(in_dump() != 0, "OK if dumping");
903    tty->print("[bad uncommon trap]");
904    return 0;
905  }
906#endif
907  return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
908}
909
910#ifndef PRODUCT
911void CallStaticJavaNode::dump_spec(outputStream *st) const {
912  st->print("# Static ");
913  if (_name != NULL) {
914    st->print("%s", _name);
915    int trap_req = uncommon_trap_request();
916    if (trap_req != 0) {
917      char buf[100];
918      st->print("(%s)",
919                 Deoptimization::format_trap_request(buf, sizeof(buf),
920                                                     trap_req));
921    }
922    st->print(" ");
923  }
924  CallJavaNode::dump_spec(st);
925}
926#endif
927
928//=============================================================================
929uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
930uint CallDynamicJavaNode::cmp( const Node &n ) const {
931  CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
932  return CallJavaNode::cmp(call);
933}
934#ifndef PRODUCT
935void CallDynamicJavaNode::dump_spec(outputStream *st) const {
936  st->print("# Dynamic ");
937  CallJavaNode::dump_spec(st);
938}
939#endif
940
941//=============================================================================
942uint CallRuntimeNode::size_of() const { return sizeof(*this); }
943uint CallRuntimeNode::cmp( const Node &n ) const {
944  CallRuntimeNode &call = (CallRuntimeNode&)n;
945  return CallNode::cmp(call) && !strcmp(_name,call._name);
946}
947#ifndef PRODUCT
948void CallRuntimeNode::dump_spec(outputStream *st) const {
949  st->print("# ");
950  st->print(_name);
951  CallNode::dump_spec(st);
952}
953#endif
954
955//------------------------------calling_convention-----------------------------
956void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
957  Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
958}
959
960//=============================================================================
961//------------------------------calling_convention-----------------------------
962
963
964//=============================================================================
965#ifndef PRODUCT
966void CallLeafNode::dump_spec(outputStream *st) const {
967  st->print("# ");
968  st->print(_name);
969  CallNode::dump_spec(st);
970}
971#endif
972
973//=============================================================================
974
975void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
976  assert(verify_jvms(jvms), "jvms must match");
977  int loc = jvms->locoff() + idx;
978  if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
979    // If current local idx is top then local idx - 1 could
980    // be a long/double that needs to be killed since top could
981    // represent the 2nd half ofthe long/double.
982    uint ideal = in(loc -1)->ideal_reg();
983    if (ideal == Op_RegD || ideal == Op_RegL) {
984      // set other (low index) half to top
985      set_req(loc - 1, in(loc));
986    }
987  }
988  set_req(loc, c);
989}
990
991uint SafePointNode::size_of() const { return sizeof(*this); }
992uint SafePointNode::cmp( const Node &n ) const {
993  return (&n == this);          // Always fail except on self
994}
995
996//-------------------------set_next_exception----------------------------------
997void SafePointNode::set_next_exception(SafePointNode* n) {
998  assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
999  if (len() == req()) {
1000    if (n != NULL)  add_prec(n);
1001  } else {
1002    set_prec(req(), n);
1003  }
1004}
1005
1006
1007//----------------------------next_exception-----------------------------------
1008SafePointNode* SafePointNode::next_exception() const {
1009  if (len() == req()) {
1010    return NULL;
1011  } else {
1012    Node* n = in(req());
1013    assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1014    return (SafePointNode*) n;
1015  }
1016}
1017
1018
1019//------------------------------Ideal------------------------------------------
1020// Skip over any collapsed Regions
1021Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1022  return remove_dead_region(phase, can_reshape) ? this : NULL;
1023}
1024
1025//------------------------------Identity---------------------------------------
1026// Remove obviously duplicate safepoints
1027Node *SafePointNode::Identity( PhaseTransform *phase ) {
1028
1029  // If you have back to back safepoints, remove one
1030  if( in(TypeFunc::Control)->is_SafePoint() )
1031    return in(TypeFunc::Control);
1032
1033  if( in(0)->is_Proj() ) {
1034    Node *n0 = in(0)->in(0);
1035    // Check if he is a call projection (except Leaf Call)
1036    if( n0->is_Catch() ) {
1037      n0 = n0->in(0)->in(0);
1038      assert( n0->is_Call(), "expect a call here" );
1039    }
1040    if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1041      // Useless Safepoint, so remove it
1042      return in(TypeFunc::Control);
1043    }
1044  }
1045
1046  return this;
1047}
1048
1049//------------------------------Value------------------------------------------
1050const Type *SafePointNode::Value( PhaseTransform *phase ) const {
1051  if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1052  if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
1053  return Type::CONTROL;
1054}
1055
1056#ifndef PRODUCT
1057void SafePointNode::dump_spec(outputStream *st) const {
1058  st->print(" SafePoint ");
1059}
1060#endif
1061
1062const RegMask &SafePointNode::in_RegMask(uint idx) const {
1063  if( idx < TypeFunc::Parms ) return RegMask::Empty;
1064  // Values outside the domain represent debug info
1065  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1066}
1067const RegMask &SafePointNode::out_RegMask() const {
1068  return RegMask::Empty;
1069}
1070
1071
1072void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1073  assert((int)grow_by > 0, "sanity");
1074  int monoff = jvms->monoff();
1075  int scloff = jvms->scloff();
1076  int endoff = jvms->endoff();
1077  assert(endoff == (int)req(), "no other states or debug info after me");
1078  Node* top = Compile::current()->top();
1079  for (uint i = 0; i < grow_by; i++) {
1080    ins_req(monoff, top);
1081  }
1082  jvms->set_monoff(monoff + grow_by);
1083  jvms->set_scloff(scloff + grow_by);
1084  jvms->set_endoff(endoff + grow_by);
1085}
1086
1087void SafePointNode::push_monitor(const FastLockNode *lock) {
1088  // Add a LockNode, which points to both the original BoxLockNode (the
1089  // stack space for the monitor) and the Object being locked.
1090  const int MonitorEdges = 2;
1091  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1092  assert(req() == jvms()->endoff(), "correct sizing");
1093  int nextmon = jvms()->scloff();
1094  if (GenerateSynchronizationCode) {
1095    ins_req(nextmon,   lock->box_node());
1096    ins_req(nextmon+1, lock->obj_node());
1097  } else {
1098    Node* top = Compile::current()->top();
1099    ins_req(nextmon, top);
1100    ins_req(nextmon, top);
1101  }
1102  jvms()->set_scloff(nextmon + MonitorEdges);
1103  jvms()->set_endoff(req());
1104}
1105
1106void SafePointNode::pop_monitor() {
1107  // Delete last monitor from debug info
1108  debug_only(int num_before_pop = jvms()->nof_monitors());
1109  const int MonitorEdges = 2;
1110  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1111  int scloff = jvms()->scloff();
1112  int endoff = jvms()->endoff();
1113  int new_scloff = scloff - MonitorEdges;
1114  int new_endoff = endoff - MonitorEdges;
1115  jvms()->set_scloff(new_scloff);
1116  jvms()->set_endoff(new_endoff);
1117  while (scloff > new_scloff)  del_req_ordered(--scloff);
1118  assert(jvms()->nof_monitors() == num_before_pop-1, "");
1119}
1120
1121Node *SafePointNode::peek_monitor_box() const {
1122  int mon = jvms()->nof_monitors() - 1;
1123  assert(mon >= 0, "most have a monitor");
1124  return monitor_box(jvms(), mon);
1125}
1126
1127Node *SafePointNode::peek_monitor_obj() const {
1128  int mon = jvms()->nof_monitors() - 1;
1129  assert(mon >= 0, "most have a monitor");
1130  return monitor_obj(jvms(), mon);
1131}
1132
1133// Do we Match on this edge index or not?  Match no edges
1134uint SafePointNode::match_edge(uint idx) const {
1135  if( !needs_polling_address_input() )
1136    return 0;
1137
1138  return (TypeFunc::Parms == idx);
1139}
1140
1141//==============  SafePointScalarObjectNode  ==============
1142
1143SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1144#ifdef ASSERT
1145                                                     AllocateNode* alloc,
1146#endif
1147                                                     uint first_index,
1148                                                     uint n_fields) :
1149  TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1150#ifdef ASSERT
1151  _alloc(alloc),
1152#endif
1153  _first_index(first_index),
1154  _n_fields(n_fields)
1155{
1156  init_class_id(Class_SafePointScalarObject);
1157}
1158
1159// Do not allow value-numbering for SafePointScalarObject node.
1160uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1161uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1162  return (&n == this); // Always fail except on self
1163}
1164
1165uint SafePointScalarObjectNode::ideal_reg() const {
1166  return 0; // No matching to machine instruction
1167}
1168
1169const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1170  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1171}
1172
1173const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1174  return RegMask::Empty;
1175}
1176
1177uint SafePointScalarObjectNode::match_edge(uint idx) const {
1178  return 0;
1179}
1180
1181SafePointScalarObjectNode*
1182SafePointScalarObjectNode::clone(Dict* sosn_map) const {
1183  void* cached = (*sosn_map)[(void*)this];
1184  if (cached != NULL) {
1185    return (SafePointScalarObjectNode*)cached;
1186  }
1187  SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1188  sosn_map->Insert((void*)this, (void*)res);
1189  return res;
1190}
1191
1192
1193#ifndef PRODUCT
1194void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1195  st->print(" # fields@[%d..%d]", first_index(),
1196             first_index() + n_fields() - 1);
1197}
1198
1199#endif
1200
1201//=============================================================================
1202uint AllocateNode::size_of() const { return sizeof(*this); }
1203
1204AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1205                           Node *ctrl, Node *mem, Node *abio,
1206                           Node *size, Node *klass_node, Node *initial_test)
1207  : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1208{
1209  init_class_id(Class_Allocate);
1210  init_flags(Flag_is_macro);
1211  _is_scalar_replaceable = false;
1212  _is_non_escaping = false;
1213  Node *topnode = C->top();
1214
1215  init_req( TypeFunc::Control  , ctrl );
1216  init_req( TypeFunc::I_O      , abio );
1217  init_req( TypeFunc::Memory   , mem );
1218  init_req( TypeFunc::ReturnAdr, topnode );
1219  init_req( TypeFunc::FramePtr , topnode );
1220  init_req( AllocSize          , size);
1221  init_req( KlassNode          , klass_node);
1222  init_req( InitialTest        , initial_test);
1223  init_req( ALength            , topnode);
1224  C->add_macro_node(this);
1225}
1226
1227//=============================================================================
1228Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1229  if (remove_dead_region(phase, can_reshape))  return this;
1230  // Don't bother trying to transform a dead node
1231  if (in(0) && in(0)->is_top())  return NULL;
1232
1233  const Type* type = phase->type(Ideal_length());
1234  if (type->isa_int() && type->is_int()->_hi < 0) {
1235    if (can_reshape) {
1236      PhaseIterGVN *igvn = phase->is_IterGVN();
1237      // Unreachable fall through path (negative array length),
1238      // the allocation can only throw so disconnect it.
1239      Node* proj = proj_out(TypeFunc::Control);
1240      Node* catchproj = NULL;
1241      if (proj != NULL) {
1242        for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1243          Node *cn = proj->fast_out(i);
1244          if (cn->is_Catch()) {
1245            catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1246            break;
1247          }
1248        }
1249      }
1250      if (catchproj != NULL && catchproj->outcnt() > 0 &&
1251          (catchproj->outcnt() > 1 ||
1252           catchproj->unique_out()->Opcode() != Op_Halt)) {
1253        assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1254        Node* nproj = catchproj->clone();
1255        igvn->register_new_node_with_optimizer(nproj);
1256
1257        Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1258        frame = phase->transform(frame);
1259        // Halt & Catch Fire
1260        Node *halt = new (phase->C) HaltNode( nproj, frame );
1261        phase->C->root()->add_req(halt);
1262        phase->transform(halt);
1263
1264        igvn->replace_node(catchproj, phase->C->top());
1265        return this;
1266      }
1267    } else {
1268      // Can't correct it during regular GVN so register for IGVN
1269      phase->C->record_for_igvn(this);
1270    }
1271  }
1272  return NULL;
1273}
1274
1275// Retrieve the length from the AllocateArrayNode. Narrow the type with a
1276// CastII, if appropriate.  If we are not allowed to create new nodes, and
1277// a CastII is appropriate, return NULL.
1278Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1279  Node *length = in(AllocateNode::ALength);
1280  assert(length != NULL, "length is not null");
1281
1282  const TypeInt* length_type = phase->find_int_type(length);
1283  const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1284
1285  if (ary_type != NULL && length_type != NULL) {
1286    const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1287    if (narrow_length_type != length_type) {
1288      // Assert one of:
1289      //   - the narrow_length is 0
1290      //   - the narrow_length is not wider than length
1291      assert(narrow_length_type == TypeInt::ZERO ||
1292             length_type->is_con() && narrow_length_type->is_con() &&
1293                (narrow_length_type->_hi <= length_type->_lo) ||
1294             (narrow_length_type->_hi <= length_type->_hi &&
1295              narrow_length_type->_lo >= length_type->_lo),
1296             "narrow type must be narrower than length type");
1297
1298      // Return NULL if new nodes are not allowed
1299      if (!allow_new_nodes) return NULL;
1300      // Create a cast which is control dependent on the initialization to
1301      // propagate the fact that the array length must be positive.
1302      length = new (phase->C) CastIINode(length, narrow_length_type);
1303      length->set_req(0, initialization()->proj_out(0));
1304    }
1305  }
1306
1307  return length;
1308}
1309
1310//=============================================================================
1311uint LockNode::size_of() const { return sizeof(*this); }
1312
1313// Redundant lock elimination
1314//
1315// There are various patterns of locking where we release and
1316// immediately reacquire a lock in a piece of code where no operations
1317// occur in between that would be observable.  In those cases we can
1318// skip releasing and reacquiring the lock without violating any
1319// fairness requirements.  Doing this around a loop could cause a lock
1320// to be held for a very long time so we concentrate on non-looping
1321// control flow.  We also require that the operations are fully
1322// redundant meaning that we don't introduce new lock operations on
1323// some paths so to be able to eliminate it on others ala PRE.  This
1324// would probably require some more extensive graph manipulation to
1325// guarantee that the memory edges were all handled correctly.
1326//
1327// Assuming p is a simple predicate which can't trap in any way and s
1328// is a synchronized method consider this code:
1329//
1330//   s();
1331//   if (p)
1332//     s();
1333//   else
1334//     s();
1335//   s();
1336//
1337// 1. The unlocks of the first call to s can be eliminated if the
1338// locks inside the then and else branches are eliminated.
1339//
1340// 2. The unlocks of the then and else branches can be eliminated if
1341// the lock of the final call to s is eliminated.
1342//
1343// Either of these cases subsumes the simple case of sequential control flow
1344//
1345// Addtionally we can eliminate versions without the else case:
1346//
1347//   s();
1348//   if (p)
1349//     s();
1350//   s();
1351//
1352// 3. In this case we eliminate the unlock of the first s, the lock
1353// and unlock in the then case and the lock in the final s.
1354//
1355// Note also that in all these cases the then/else pieces don't have
1356// to be trivial as long as they begin and end with synchronization
1357// operations.
1358//
1359//   s();
1360//   if (p)
1361//     s();
1362//     f();
1363//     s();
1364//   s();
1365//
1366// The code will work properly for this case, leaving in the unlock
1367// before the call to f and the relock after it.
1368//
1369// A potentially interesting case which isn't handled here is when the
1370// locking is partially redundant.
1371//
1372//   s();
1373//   if (p)
1374//     s();
1375//
1376// This could be eliminated putting unlocking on the else case and
1377// eliminating the first unlock and the lock in the then side.
1378// Alternatively the unlock could be moved out of the then side so it
1379// was after the merge and the first unlock and second lock
1380// eliminated.  This might require less manipulation of the memory
1381// state to get correct.
1382//
1383// Additionally we might allow work between a unlock and lock before
1384// giving up eliminating the locks.  The current code disallows any
1385// conditional control flow between these operations.  A formulation
1386// similar to partial redundancy elimination computing the
1387// availability of unlocking and the anticipatability of locking at a
1388// program point would allow detection of fully redundant locking with
1389// some amount of work in between.  I'm not sure how often I really
1390// think that would occur though.  Most of the cases I've seen
1391// indicate it's likely non-trivial work would occur in between.
1392// There may be other more complicated constructs where we could
1393// eliminate locking but I haven't seen any others appear as hot or
1394// interesting.
1395//
1396// Locking and unlocking have a canonical form in ideal that looks
1397// roughly like this:
1398//
1399//              <obj>
1400//                | \\------+
1401//                |  \       \
1402//                | BoxLock   \
1403//                |  |   |     \
1404//                |  |    \     \
1405//                |  |   FastLock
1406//                |  |   /
1407//                |  |  /
1408//                |  |  |
1409//
1410//               Lock
1411//                |
1412//            Proj #0
1413//                |
1414//            MembarAcquire
1415//                |
1416//            Proj #0
1417//
1418//            MembarRelease
1419//                |
1420//            Proj #0
1421//                |
1422//              Unlock
1423//                |
1424//            Proj #0
1425//
1426//
1427// This code proceeds by processing Lock nodes during PhaseIterGVN
1428// and searching back through its control for the proper code
1429// patterns.  Once it finds a set of lock and unlock operations to
1430// eliminate they are marked as eliminatable which causes the
1431// expansion of the Lock and Unlock macro nodes to make the operation a NOP
1432//
1433//=============================================================================
1434
1435//
1436// Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1437//   - copy regions.  (These may not have been optimized away yet.)
1438//   - eliminated locking nodes
1439//
1440static Node *next_control(Node *ctrl) {
1441  if (ctrl == NULL)
1442    return NULL;
1443  while (1) {
1444    if (ctrl->is_Region()) {
1445      RegionNode *r = ctrl->as_Region();
1446      Node *n = r->is_copy();
1447      if (n == NULL)
1448        break;  // hit a region, return it
1449      else
1450        ctrl = n;
1451    } else if (ctrl->is_Proj()) {
1452      Node *in0 = ctrl->in(0);
1453      if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1454        ctrl = in0->in(0);
1455      } else {
1456        break;
1457      }
1458    } else {
1459      break; // found an interesting control
1460    }
1461  }
1462  return ctrl;
1463}
1464//
1465// Given a control, see if it's the control projection of an Unlock which
1466// operating on the same object as lock.
1467//
1468bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1469                                            GrowableArray<AbstractLockNode*> &lock_ops) {
1470  ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1471  if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1472    Node *n = ctrl_proj->in(0);
1473    if (n != NULL && n->is_Unlock()) {
1474      UnlockNode *unlock = n->as_Unlock();
1475      if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1476          BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1477          !unlock->is_eliminated()) {
1478        lock_ops.append(unlock);
1479        return true;
1480      }
1481    }
1482  }
1483  return false;
1484}
1485
1486//
1487// Find the lock matching an unlock.  Returns null if a safepoint
1488// or complicated control is encountered first.
1489LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1490  LockNode *lock_result = NULL;
1491  // find the matching lock, or an intervening safepoint
1492  Node *ctrl = next_control(unlock->in(0));
1493  while (1) {
1494    assert(ctrl != NULL, "invalid control graph");
1495    assert(!ctrl->is_Start(), "missing lock for unlock");
1496    if (ctrl->is_top()) break;  // dead control path
1497    if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1498    if (ctrl->is_SafePoint()) {
1499        break;  // found a safepoint (may be the lock we are searching for)
1500    } else if (ctrl->is_Region()) {
1501      // Check for a simple diamond pattern.  Punt on anything more complicated
1502      if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1503        Node *in1 = next_control(ctrl->in(1));
1504        Node *in2 = next_control(ctrl->in(2));
1505        if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1506             (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1507          ctrl = next_control(in1->in(0)->in(0));
1508        } else {
1509          break;
1510        }
1511      } else {
1512        break;
1513      }
1514    } else {
1515      ctrl = next_control(ctrl->in(0));  // keep searching
1516    }
1517  }
1518  if (ctrl->is_Lock()) {
1519    LockNode *lock = ctrl->as_Lock();
1520    if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1521        BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1522      lock_result = lock;
1523    }
1524  }
1525  return lock_result;
1526}
1527
1528// This code corresponds to case 3 above.
1529
1530bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1531                                                       GrowableArray<AbstractLockNode*> &lock_ops) {
1532  Node* if_node = node->in(0);
1533  bool  if_true = node->is_IfTrue();
1534
1535  if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1536    Node *lock_ctrl = next_control(if_node->in(0));
1537    if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1538      Node* lock1_node = NULL;
1539      ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1540      if (if_true) {
1541        if (proj->is_IfFalse() && proj->outcnt() == 1) {
1542          lock1_node = proj->unique_out();
1543        }
1544      } else {
1545        if (proj->is_IfTrue() && proj->outcnt() == 1) {
1546          lock1_node = proj->unique_out();
1547        }
1548      }
1549      if (lock1_node != NULL && lock1_node->is_Lock()) {
1550        LockNode *lock1 = lock1_node->as_Lock();
1551        if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1552            BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1553            !lock1->is_eliminated()) {
1554          lock_ops.append(lock1);
1555          return true;
1556        }
1557      }
1558    }
1559  }
1560
1561  lock_ops.trunc_to(0);
1562  return false;
1563}
1564
1565bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1566                               GrowableArray<AbstractLockNode*> &lock_ops) {
1567  // check each control merging at this point for a matching unlock.
1568  // in(0) should be self edge so skip it.
1569  for (int i = 1; i < (int)region->req(); i++) {
1570    Node *in_node = next_control(region->in(i));
1571    if (in_node != NULL) {
1572      if (find_matching_unlock(in_node, lock, lock_ops)) {
1573        // found a match so keep on checking.
1574        continue;
1575      } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1576        continue;
1577      }
1578
1579      // If we fall through to here then it was some kind of node we
1580      // don't understand or there wasn't a matching unlock, so give
1581      // up trying to merge locks.
1582      lock_ops.trunc_to(0);
1583      return false;
1584    }
1585  }
1586  return true;
1587
1588}
1589
1590#ifndef PRODUCT
1591//
1592// Create a counter which counts the number of times this lock is acquired
1593//
1594void AbstractLockNode::create_lock_counter(JVMState* state) {
1595  _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1596}
1597
1598void AbstractLockNode::set_eliminated_lock_counter() {
1599  if (_counter) {
1600    // Update the counter to indicate that this lock was eliminated.
1601    // The counter update code will stay around even though the
1602    // optimizer will eliminate the lock operation itself.
1603    _counter->set_tag(NamedCounter::EliminatedLockCounter);
1604  }
1605}
1606#endif
1607
1608//=============================================================================
1609Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1610
1611  // perform any generic optimizations first (returns 'this' or NULL)
1612  Node *result = SafePointNode::Ideal(phase, can_reshape);
1613  if (result != NULL)  return result;
1614  // Don't bother trying to transform a dead node
1615  if (in(0) && in(0)->is_top())  return NULL;
1616
1617  // Now see if we can optimize away this lock.  We don't actually
1618  // remove the locking here, we simply set the _eliminate flag which
1619  // prevents macro expansion from expanding the lock.  Since we don't
1620  // modify the graph, the value returned from this function is the
1621  // one computed above.
1622  if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1623    //
1624    // If we are locking an unescaped object, the lock/unlock is unnecessary
1625    //
1626    ConnectionGraph *cgr = phase->C->congraph();
1627    if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1628      assert(!is_eliminated() || is_coarsened(), "sanity");
1629      // The lock could be marked eliminated by lock coarsening
1630      // code during first IGVN before EA. Replace coarsened flag
1631      // to eliminate all associated locks/unlocks.
1632      this->set_non_esc_obj();
1633      return result;
1634    }
1635
1636    //
1637    // Try lock coarsening
1638    //
1639    PhaseIterGVN* iter = phase->is_IterGVN();
1640    if (iter != NULL && !is_eliminated()) {
1641
1642      GrowableArray<AbstractLockNode*>   lock_ops;
1643
1644      Node *ctrl = next_control(in(0));
1645
1646      // now search back for a matching Unlock
1647      if (find_matching_unlock(ctrl, this, lock_ops)) {
1648        // found an unlock directly preceding this lock.  This is the
1649        // case of single unlock directly control dependent on a
1650        // single lock which is the trivial version of case 1 or 2.
1651      } else if (ctrl->is_Region() ) {
1652        if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1653        // found lock preceded by multiple unlocks along all paths
1654        // joining at this point which is case 3 in description above.
1655        }
1656      } else {
1657        // see if this lock comes from either half of an if and the
1658        // predecessors merges unlocks and the other half of the if
1659        // performs a lock.
1660        if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1661          // found unlock splitting to an if with locks on both branches.
1662        }
1663      }
1664
1665      if (lock_ops.length() > 0) {
1666        // add ourselves to the list of locks to be eliminated.
1667        lock_ops.append(this);
1668
1669  #ifndef PRODUCT
1670        if (PrintEliminateLocks) {
1671          int locks = 0;
1672          int unlocks = 0;
1673          for (int i = 0; i < lock_ops.length(); i++) {
1674            AbstractLockNode* lock = lock_ops.at(i);
1675            if (lock->Opcode() == Op_Lock)
1676              locks++;
1677            else
1678              unlocks++;
1679            if (Verbose) {
1680              lock->dump(1);
1681            }
1682          }
1683          tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1684        }
1685  #endif
1686
1687        // for each of the identified locks, mark them
1688        // as eliminatable
1689        for (int i = 0; i < lock_ops.length(); i++) {
1690          AbstractLockNode* lock = lock_ops.at(i);
1691
1692          // Mark it eliminated by coarsening and update any counters
1693          lock->set_coarsened();
1694        }
1695      } else if (ctrl->is_Region() &&
1696                 iter->_worklist.member(ctrl)) {
1697        // We weren't able to find any opportunities but the region this
1698        // lock is control dependent on hasn't been processed yet so put
1699        // this lock back on the worklist so we can check again once any
1700        // region simplification has occurred.
1701        iter->_worklist.push(this);
1702      }
1703    }
1704  }
1705
1706  return result;
1707}
1708
1709//=============================================================================
1710bool LockNode::is_nested_lock_region() {
1711  BoxLockNode* box = box_node()->as_BoxLock();
1712  int stk_slot = box->stack_slot();
1713  if (stk_slot <= 0)
1714    return false; // External lock or it is not Box (Phi node).
1715
1716  // Ignore complex cases: merged locks or multiple locks.
1717  Node* obj = obj_node();
1718  LockNode* unique_lock = NULL;
1719  if (!box->is_simple_lock_region(&unique_lock, obj) ||
1720      (unique_lock != this)) {
1721    return false;
1722  }
1723
1724  // Look for external lock for the same object.
1725  SafePointNode* sfn = this->as_SafePoint();
1726  JVMState* youngest_jvms = sfn->jvms();
1727  int max_depth = youngest_jvms->depth();
1728  for (int depth = 1; depth <= max_depth; depth++) {
1729    JVMState* jvms = youngest_jvms->of_depth(depth);
1730    int num_mon  = jvms->nof_monitors();
1731    // Loop over monitors
1732    for (int idx = 0; idx < num_mon; idx++) {
1733      Node* obj_node = sfn->monitor_obj(jvms, idx);
1734      BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1735      if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1736        return true;
1737      }
1738    }
1739  }
1740  return false;
1741}
1742
1743//=============================================================================
1744uint UnlockNode::size_of() const { return sizeof(*this); }
1745
1746//=============================================================================
1747Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1748
1749  // perform any generic optimizations first (returns 'this' or NULL)
1750  Node *result = SafePointNode::Ideal(phase, can_reshape);
1751  if (result != NULL)  return result;
1752  // Don't bother trying to transform a dead node
1753  if (in(0) && in(0)->is_top())  return NULL;
1754
1755  // Now see if we can optimize away this unlock.  We don't actually
1756  // remove the unlocking here, we simply set the _eliminate flag which
1757  // prevents macro expansion from expanding the unlock.  Since we don't
1758  // modify the graph, the value returned from this function is the
1759  // one computed above.
1760  // Escape state is defined after Parse phase.
1761  if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1762    //
1763    // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1764    //
1765    ConnectionGraph *cgr = phase->C->congraph();
1766    if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1767      assert(!is_eliminated() || is_coarsened(), "sanity");
1768      // The lock could be marked eliminated by lock coarsening
1769      // code during first IGVN before EA. Replace coarsened flag
1770      // to eliminate all associated locks/unlocks.
1771      this->set_non_esc_obj();
1772    }
1773  }
1774  return result;
1775}
1776