callnode.cpp revision 420:a1980da045cc
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_callnode.cpp.incl"
31
32//=============================================================================
33uint StartNode::size_of() const { return sizeof(*this); }
34uint StartNode::cmp( const Node &n ) const
35{ return _domain == ((StartNode&)n)._domain; }
36const Type *StartNode::bottom_type() const { return _domain; }
37const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
38#ifndef PRODUCT
39void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
40#endif
41
42//------------------------------Ideal------------------------------------------
43Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
44  return remove_dead_region(phase, can_reshape) ? this : NULL;
45}
46
47//------------------------------calling_convention-----------------------------
48void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
49  Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
50}
51
52//------------------------------Registers--------------------------------------
53const RegMask &StartNode::in_RegMask(uint) const {
54  return RegMask::Empty;
55}
56
57//------------------------------match------------------------------------------
58// Construct projections for incoming parameters, and their RegMask info
59Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
60  switch (proj->_con) {
61  case TypeFunc::Control:
62  case TypeFunc::I_O:
63  case TypeFunc::Memory:
64    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
65  case TypeFunc::FramePtr:
66    return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
67  case TypeFunc::ReturnAdr:
68    return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
69  case TypeFunc::Parms:
70  default: {
71      uint parm_num = proj->_con - TypeFunc::Parms;
72      const Type *t = _domain->field_at(proj->_con);
73      if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
74        return new (match->C, 1) ConNode(Type::TOP);
75      uint ideal_reg = Matcher::base2reg[t->base()];
76      RegMask &rm = match->_calling_convention_mask[parm_num];
77      return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
78    }
79  }
80  return NULL;
81}
82
83//------------------------------StartOSRNode----------------------------------
84// The method start node for an on stack replacement adapter
85
86//------------------------------osr_domain-----------------------------
87const TypeTuple *StartOSRNode::osr_domain() {
88  const Type **fields = TypeTuple::fields(2);
89  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
90
91  return TypeTuple::make(TypeFunc::Parms+1, fields);
92}
93
94//=============================================================================
95const char * const ParmNode::names[TypeFunc::Parms+1] = {
96  "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
97};
98
99#ifndef PRODUCT
100void ParmNode::dump_spec(outputStream *st) const {
101  if( _con < TypeFunc::Parms ) {
102    st->print(names[_con]);
103  } else {
104    st->print("Parm%d: ",_con-TypeFunc::Parms);
105    // Verbose and WizardMode dump bottom_type for all nodes
106    if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
107  }
108}
109#endif
110
111uint ParmNode::ideal_reg() const {
112  switch( _con ) {
113  case TypeFunc::Control  : // fall through
114  case TypeFunc::I_O      : // fall through
115  case TypeFunc::Memory   : return 0;
116  case TypeFunc::FramePtr : // fall through
117  case TypeFunc::ReturnAdr: return Op_RegP;
118  default                 : assert( _con > TypeFunc::Parms, "" );
119    // fall through
120  case TypeFunc::Parms    : {
121    // Type of argument being passed
122    const Type *t = in(0)->as_Start()->_domain->field_at(_con);
123    return Matcher::base2reg[t->base()];
124  }
125  }
126  ShouldNotReachHere();
127  return 0;
128}
129
130//=============================================================================
131ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
132  init_req(TypeFunc::Control,cntrl);
133  init_req(TypeFunc::I_O,i_o);
134  init_req(TypeFunc::Memory,memory);
135  init_req(TypeFunc::FramePtr,frameptr);
136  init_req(TypeFunc::ReturnAdr,retadr);
137}
138
139Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
140  return remove_dead_region(phase, can_reshape) ? this : NULL;
141}
142
143const Type *ReturnNode::Value( PhaseTransform *phase ) const {
144  return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
145    ? Type::TOP
146    : Type::BOTTOM;
147}
148
149// Do we Match on this edge index or not?  No edges on return nodes
150uint ReturnNode::match_edge(uint idx) const {
151  return 0;
152}
153
154
155#ifndef PRODUCT
156void ReturnNode::dump_req() const {
157  // Dump the required inputs, enclosed in '(' and ')'
158  uint i;                       // Exit value of loop
159  for( i=0; i<req(); i++ ) {    // For all required inputs
160    if( i == TypeFunc::Parms ) tty->print("returns");
161    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
162    else tty->print("_ ");
163  }
164}
165#endif
166
167//=============================================================================
168RethrowNode::RethrowNode(
169  Node* cntrl,
170  Node* i_o,
171  Node* memory,
172  Node* frameptr,
173  Node* ret_adr,
174  Node* exception
175) : Node(TypeFunc::Parms + 1) {
176  init_req(TypeFunc::Control  , cntrl    );
177  init_req(TypeFunc::I_O      , i_o      );
178  init_req(TypeFunc::Memory   , memory   );
179  init_req(TypeFunc::FramePtr , frameptr );
180  init_req(TypeFunc::ReturnAdr, ret_adr);
181  init_req(TypeFunc::Parms    , exception);
182}
183
184Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
185  return remove_dead_region(phase, can_reshape) ? this : NULL;
186}
187
188const Type *RethrowNode::Value( PhaseTransform *phase ) const {
189  return (phase->type(in(TypeFunc::Control)) == Type::TOP)
190    ? Type::TOP
191    : Type::BOTTOM;
192}
193
194uint RethrowNode::match_edge(uint idx) const {
195  return 0;
196}
197
198#ifndef PRODUCT
199void RethrowNode::dump_req() const {
200  // Dump the required inputs, enclosed in '(' and ')'
201  uint i;                       // Exit value of loop
202  for( i=0; i<req(); i++ ) {    // For all required inputs
203    if( i == TypeFunc::Parms ) tty->print("exception");
204    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
205    else tty->print("_ ");
206  }
207}
208#endif
209
210//=============================================================================
211// Do we Match on this edge index or not?  Match only target address & method
212uint TailCallNode::match_edge(uint idx) const {
213  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
214}
215
216//=============================================================================
217// Do we Match on this edge index or not?  Match only target address & oop
218uint TailJumpNode::match_edge(uint idx) const {
219  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
220}
221
222//=============================================================================
223JVMState::JVMState(ciMethod* method, JVMState* caller) {
224  assert(method != NULL, "must be valid call site");
225  _method = method;
226  debug_only(_bci = -99);  // random garbage value
227  debug_only(_map = (SafePointNode*)-1);
228  _caller = caller;
229  _depth  = 1 + (caller == NULL ? 0 : caller->depth());
230  _locoff = TypeFunc::Parms;
231  _stkoff = _locoff + _method->max_locals();
232  _monoff = _stkoff + _method->max_stack();
233  _scloff = _monoff;
234  _endoff = _monoff;
235  _sp = 0;
236}
237JVMState::JVMState(int stack_size) {
238  _method = NULL;
239  _bci = InvocationEntryBci;
240  debug_only(_map = (SafePointNode*)-1);
241  _caller = NULL;
242  _depth  = 1;
243  _locoff = TypeFunc::Parms;
244  _stkoff = _locoff;
245  _monoff = _stkoff + stack_size;
246  _scloff = _monoff;
247  _endoff = _monoff;
248  _sp = 0;
249}
250
251//--------------------------------of_depth-------------------------------------
252JVMState* JVMState::of_depth(int d) const {
253  const JVMState* jvmp = this;
254  assert(0 < d && (uint)d <= depth(), "oob");
255  for (int skip = depth() - d; skip > 0; skip--) {
256    jvmp = jvmp->caller();
257  }
258  assert(jvmp->depth() == (uint)d, "found the right one");
259  return (JVMState*)jvmp;
260}
261
262//-----------------------------same_calls_as-----------------------------------
263bool JVMState::same_calls_as(const JVMState* that) const {
264  if (this == that)                    return true;
265  if (this->depth() != that->depth())  return false;
266  const JVMState* p = this;
267  const JVMState* q = that;
268  for (;;) {
269    if (p->_method != q->_method)    return false;
270    if (p->_method == NULL)          return true;   // bci is irrelevant
271    if (p->_bci    != q->_bci)       return false;
272    p = p->caller();
273    q = q->caller();
274    if (p == q)                      return true;
275    assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
276  }
277}
278
279//------------------------------debug_start------------------------------------
280uint JVMState::debug_start()  const {
281  debug_only(JVMState* jvmroot = of_depth(1));
282  assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
283  return of_depth(1)->locoff();
284}
285
286//-------------------------------debug_end-------------------------------------
287uint JVMState::debug_end() const {
288  debug_only(JVMState* jvmroot = of_depth(1));
289  assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
290  return endoff();
291}
292
293//------------------------------debug_depth------------------------------------
294uint JVMState::debug_depth() const {
295  uint total = 0;
296  for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
297    total += jvmp->debug_size();
298  }
299  return total;
300}
301
302#ifndef PRODUCT
303
304//------------------------------format_helper----------------------------------
305// Given an allocation (a Chaitin object) and a Node decide if the Node carries
306// any defined value or not.  If it does, print out the register or constant.
307static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
308  if (n == NULL) { st->print(" NULL"); return; }
309  if (n->is_SafePointScalarObject()) {
310    // Scalar replacement.
311    SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
312    scobjs->append_if_missing(spobj);
313    int sco_n = scobjs->find(spobj);
314    assert(sco_n >= 0, "");
315    st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
316    return;
317  }
318  if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
319    char buf[50];
320    regalloc->dump_register(n,buf);
321    st->print(" %s%d]=%s",msg,i,buf);
322  } else {                      // No register, but might be constant
323    const Type *t = n->bottom_type();
324    switch (t->base()) {
325    case Type::Int:
326      st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
327      break;
328    case Type::AnyPtr:
329      assert( t == TypePtr::NULL_PTR, "" );
330      st->print(" %s%d]=#NULL",msg,i);
331      break;
332    case Type::AryPtr:
333    case Type::KlassPtr:
334    case Type::InstPtr:
335      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
336      break;
337    case Type::NarrowOop:
338      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
339      break;
340    case Type::RawPtr:
341      st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
342      break;
343    case Type::DoubleCon:
344      st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
345      break;
346    case Type::FloatCon:
347      st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
348      break;
349    case Type::Long:
350      st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
351      break;
352    case Type::Half:
353    case Type::Top:
354      st->print(" %s%d]=_",msg,i);
355      break;
356    default: ShouldNotReachHere();
357    }
358  }
359}
360
361//------------------------------format-----------------------------------------
362void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
363  st->print("        #");
364  if( _method ) {
365    _method->print_short_name(st);
366    st->print(" @ bci:%d ",_bci);
367  } else {
368    st->print_cr(" runtime stub ");
369    return;
370  }
371  if (n->is_MachSafePoint()) {
372    GrowableArray<SafePointScalarObjectNode*> scobjs;
373    MachSafePointNode *mcall = n->as_MachSafePoint();
374    uint i;
375    // Print locals
376    for( i = 0; i < (uint)loc_size(); i++ )
377      format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
378    // Print stack
379    for (i = 0; i < (uint)stk_size(); i++) {
380      if ((uint)(_stkoff + i) >= mcall->len())
381        st->print(" oob ");
382      else
383       format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
384    }
385    for (i = 0; (int)i < nof_monitors(); i++) {
386      Node *box = mcall->monitor_box(this, i);
387      Node *obj = mcall->monitor_obj(this, i);
388      if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
389        while( !box->is_BoxLock() )  box = box->in(1);
390        format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
391      } else {
392        OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
393        st->print(" MON-BOX%d=%s+%d",
394                   i,
395                   OptoReg::regname(OptoReg::c_frame_pointer),
396                   regalloc->reg2offset(box_reg));
397      }
398      format_helper( regalloc, st, obj, "MON-OBJ[", i, &scobjs );
399    }
400
401    for (i = 0; i < (uint)scobjs.length(); i++) {
402      // Scalar replaced objects.
403      st->print_cr("");
404      st->print("        # ScObj" INT32_FORMAT " ", i);
405      SafePointScalarObjectNode* spobj = scobjs.at(i);
406      ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
407      assert(cik->is_instance_klass() ||
408             cik->is_array_klass(), "Not supported allocation.");
409      ciInstanceKlass *iklass = NULL;
410      if (cik->is_instance_klass()) {
411        cik->print_name_on(st);
412        iklass = cik->as_instance_klass();
413      } else if (cik->is_type_array_klass()) {
414        cik->as_array_klass()->base_element_type()->print_name_on(st);
415        st->print("[%d]=", spobj->n_fields());
416      } else if (cik->is_obj_array_klass()) {
417        ciType* cie = cik->as_array_klass()->base_element_type();
418        int ndim = 1;
419        while (cie->is_obj_array_klass()) {
420          ndim += 1;
421          cie = cie->as_array_klass()->base_element_type();
422        }
423        cie->print_name_on(st);
424        while (ndim-- > 0) {
425          st->print("[]");
426        }
427        st->print("[%d]=", spobj->n_fields());
428      }
429      st->print("{");
430      uint nf = spobj->n_fields();
431      if (nf > 0) {
432        uint first_ind = spobj->first_index();
433        Node* fld_node = mcall->in(first_ind);
434        ciField* cifield;
435        if (iklass != NULL) {
436          st->print(" [");
437          cifield = iklass->nonstatic_field_at(0);
438          cifield->print_name_on(st);
439          format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
440        } else {
441          format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
442        }
443        for (uint j = 1; j < nf; j++) {
444          fld_node = mcall->in(first_ind+j);
445          if (iklass != NULL) {
446            st->print(", [");
447            cifield = iklass->nonstatic_field_at(j);
448            cifield->print_name_on(st);
449            format_helper( regalloc, st, fld_node, ":", j, &scobjs );
450          } else {
451            format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
452          }
453        }
454      }
455      st->print(" }");
456    }
457  }
458  st->print_cr("");
459  if (caller() != NULL)  caller()->format(regalloc, n, st);
460}
461
462
463void JVMState::dump_spec(outputStream *st) const {
464  if (_method != NULL) {
465    bool printed = false;
466    if (!Verbose) {
467      // The JVMS dumps make really, really long lines.
468      // Take out the most boring parts, which are the package prefixes.
469      char buf[500];
470      stringStream namest(buf, sizeof(buf));
471      _method->print_short_name(&namest);
472      if (namest.count() < sizeof(buf)) {
473        const char* name = namest.base();
474        if (name[0] == ' ')  ++name;
475        const char* endcn = strchr(name, ':');  // end of class name
476        if (endcn == NULL)  endcn = strchr(name, '(');
477        if (endcn == NULL)  endcn = name + strlen(name);
478        while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
479          --endcn;
480        st->print(" %s", endcn);
481        printed = true;
482      }
483    }
484    if (!printed)
485      _method->print_short_name(st);
486    st->print(" @ bci:%d",_bci);
487  } else {
488    st->print(" runtime stub");
489  }
490  if (caller() != NULL)  caller()->dump_spec(st);
491}
492
493
494void JVMState::dump_on(outputStream* st) const {
495  if (_map && !((uintptr_t)_map & 1)) {
496    if (_map->len() > _map->req()) {  // _map->has_exceptions()
497      Node* ex = _map->in(_map->req());  // _map->next_exception()
498      // skip the first one; it's already being printed
499      while (ex != NULL && ex->len() > ex->req()) {
500        ex = ex->in(ex->req());  // ex->next_exception()
501        ex->dump(1);
502      }
503    }
504    _map->dump(2);
505  }
506  st->print("JVMS depth=%d loc=%d stk=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d method=",
507             depth(), locoff(), stkoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci());
508  if (_method == NULL) {
509    st->print_cr("(none)");
510  } else {
511    _method->print_name(st);
512    st->cr();
513    if (bci() >= 0 && bci() < _method->code_size()) {
514      st->print("    bc: ");
515      _method->print_codes_on(bci(), bci()+1, st);
516    }
517  }
518  if (caller() != NULL) {
519    caller()->dump_on(st);
520  }
521}
522
523// Extra way to dump a jvms from the debugger,
524// to avoid a bug with C++ member function calls.
525void dump_jvms(JVMState* jvms) {
526  jvms->dump();
527}
528#endif
529
530//--------------------------clone_shallow--------------------------------------
531JVMState* JVMState::clone_shallow(Compile* C) const {
532  JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
533  n->set_bci(_bci);
534  n->set_locoff(_locoff);
535  n->set_stkoff(_stkoff);
536  n->set_monoff(_monoff);
537  n->set_scloff(_scloff);
538  n->set_endoff(_endoff);
539  n->set_sp(_sp);
540  n->set_map(_map);
541  return n;
542}
543
544//---------------------------clone_deep----------------------------------------
545JVMState* JVMState::clone_deep(Compile* C) const {
546  JVMState* n = clone_shallow(C);
547  for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
548    p->_caller = p->_caller->clone_shallow(C);
549  }
550  assert(n->depth() == depth(), "sanity");
551  assert(n->debug_depth() == debug_depth(), "sanity");
552  return n;
553}
554
555//=============================================================================
556uint CallNode::cmp( const Node &n ) const
557{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
558#ifndef PRODUCT
559void CallNode::dump_req() const {
560  // Dump the required inputs, enclosed in '(' and ')'
561  uint i;                       // Exit value of loop
562  for( i=0; i<req(); i++ ) {    // For all required inputs
563    if( i == TypeFunc::Parms ) tty->print("(");
564    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
565    else tty->print("_ ");
566  }
567  tty->print(")");
568}
569
570void CallNode::dump_spec(outputStream *st) const {
571  st->print(" ");
572  tf()->dump_on(st);
573  if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
574  if (jvms() != NULL)  jvms()->dump_spec(st);
575}
576#endif
577
578const Type *CallNode::bottom_type() const { return tf()->range(); }
579const Type *CallNode::Value(PhaseTransform *phase) const {
580  if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
581  return tf()->range();
582}
583
584//------------------------------calling_convention-----------------------------
585void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
586  // Use the standard compiler calling convention
587  Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
588}
589
590
591//------------------------------match------------------------------------------
592// Construct projections for control, I/O, memory-fields, ..., and
593// return result(s) along with their RegMask info
594Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
595  switch (proj->_con) {
596  case TypeFunc::Control:
597  case TypeFunc::I_O:
598  case TypeFunc::Memory:
599    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
600
601  case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
602    assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
603    // 2nd half of doubles and longs
604    return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
605
606  case TypeFunc::Parms: {       // Normal returns
607    uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
608    OptoRegPair regs = is_CallRuntime()
609      ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
610      : match->  return_value(ideal_reg,true); // Calls into compiled Java code
611    RegMask rm = RegMask(regs.first());
612    if( OptoReg::is_valid(regs.second()) )
613      rm.Insert( regs.second() );
614    return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
615  }
616
617  case TypeFunc::ReturnAdr:
618  case TypeFunc::FramePtr:
619  default:
620    ShouldNotReachHere();
621  }
622  return NULL;
623}
624
625// Do we Match on this edge index or not?  Match no edges
626uint CallNode::match_edge(uint idx) const {
627  return 0;
628}
629
630//
631// Determine whether the call could modify the field of the specified
632// instance at the specified offset.
633//
634bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
635  const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
636
637  // If not an OopPtr or not an instance type, assume the worst.
638  // Note: currently this method is called only for instance types.
639  if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
640    return true;
641  }
642  // The instance_id is set only for scalar-replaceable allocations which
643  // are not passed as arguments according to Escape Analysis.
644  return false;
645}
646
647// Does this call have a direct reference to n other than debug information?
648bool CallNode::has_non_debug_use(Node *n) {
649  const TypeTuple * d = tf()->domain();
650  for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
651    Node *arg = in(i);
652    if (arg == n) {
653      return true;
654    }
655  }
656  return false;
657}
658
659// Returns the unique CheckCastPP of a call
660// or 'this' if there are several CheckCastPP
661// or returns NULL if there is no one.
662Node *CallNode::result_cast() {
663  Node *cast = NULL;
664
665  Node *p = proj_out(TypeFunc::Parms);
666  if (p == NULL)
667    return NULL;
668
669  for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
670    Node *use = p->fast_out(i);
671    if (use->is_CheckCastPP()) {
672      if (cast != NULL) {
673        return this;  // more than 1 CheckCastPP
674      }
675      cast = use;
676    }
677  }
678  return cast;
679}
680
681
682//=============================================================================
683uint CallJavaNode::size_of() const { return sizeof(*this); }
684uint CallJavaNode::cmp( const Node &n ) const {
685  CallJavaNode &call = (CallJavaNode&)n;
686  return CallNode::cmp(call) && _method == call._method;
687}
688#ifndef PRODUCT
689void CallJavaNode::dump_spec(outputStream *st) const {
690  if( _method ) _method->print_short_name(st);
691  CallNode::dump_spec(st);
692}
693#endif
694
695//=============================================================================
696uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
697uint CallStaticJavaNode::cmp( const Node &n ) const {
698  CallStaticJavaNode &call = (CallStaticJavaNode&)n;
699  return CallJavaNode::cmp(call);
700}
701
702//----------------------------uncommon_trap_request----------------------------
703// If this is an uncommon trap, return the request code, else zero.
704int CallStaticJavaNode::uncommon_trap_request() const {
705  if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
706    return extract_uncommon_trap_request(this);
707  }
708  return 0;
709}
710int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
711#ifndef PRODUCT
712  if (!(call->req() > TypeFunc::Parms &&
713        call->in(TypeFunc::Parms) != NULL &&
714        call->in(TypeFunc::Parms)->is_Con())) {
715    assert(_in_dump_cnt != 0, "OK if dumping");
716    tty->print("[bad uncommon trap]");
717    return 0;
718  }
719#endif
720  return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
721}
722
723#ifndef PRODUCT
724void CallStaticJavaNode::dump_spec(outputStream *st) const {
725  st->print("# Static ");
726  if (_name != NULL) {
727    st->print("%s", _name);
728    int trap_req = uncommon_trap_request();
729    if (trap_req != 0) {
730      char buf[100];
731      st->print("(%s)",
732                 Deoptimization::format_trap_request(buf, sizeof(buf),
733                                                     trap_req));
734    }
735    st->print(" ");
736  }
737  CallJavaNode::dump_spec(st);
738}
739#endif
740
741//=============================================================================
742uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
743uint CallDynamicJavaNode::cmp( const Node &n ) const {
744  CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
745  return CallJavaNode::cmp(call);
746}
747#ifndef PRODUCT
748void CallDynamicJavaNode::dump_spec(outputStream *st) const {
749  st->print("# Dynamic ");
750  CallJavaNode::dump_spec(st);
751}
752#endif
753
754//=============================================================================
755uint CallRuntimeNode::size_of() const { return sizeof(*this); }
756uint CallRuntimeNode::cmp( const Node &n ) const {
757  CallRuntimeNode &call = (CallRuntimeNode&)n;
758  return CallNode::cmp(call) && !strcmp(_name,call._name);
759}
760#ifndef PRODUCT
761void CallRuntimeNode::dump_spec(outputStream *st) const {
762  st->print("# ");
763  st->print(_name);
764  CallNode::dump_spec(st);
765}
766#endif
767
768//------------------------------calling_convention-----------------------------
769void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
770  Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
771}
772
773//=============================================================================
774//------------------------------calling_convention-----------------------------
775
776
777//=============================================================================
778#ifndef PRODUCT
779void CallLeafNode::dump_spec(outputStream *st) const {
780  st->print("# ");
781  st->print(_name);
782  CallNode::dump_spec(st);
783}
784#endif
785
786//=============================================================================
787
788void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
789  assert(verify_jvms(jvms), "jvms must match");
790  int loc = jvms->locoff() + idx;
791  if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
792    // If current local idx is top then local idx - 1 could
793    // be a long/double that needs to be killed since top could
794    // represent the 2nd half ofthe long/double.
795    uint ideal = in(loc -1)->ideal_reg();
796    if (ideal == Op_RegD || ideal == Op_RegL) {
797      // set other (low index) half to top
798      set_req(loc - 1, in(loc));
799    }
800  }
801  set_req(loc, c);
802}
803
804uint SafePointNode::size_of() const { return sizeof(*this); }
805uint SafePointNode::cmp( const Node &n ) const {
806  return (&n == this);          // Always fail except on self
807}
808
809//-------------------------set_next_exception----------------------------------
810void SafePointNode::set_next_exception(SafePointNode* n) {
811  assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
812  if (len() == req()) {
813    if (n != NULL)  add_prec(n);
814  } else {
815    set_prec(req(), n);
816  }
817}
818
819
820//----------------------------next_exception-----------------------------------
821SafePointNode* SafePointNode::next_exception() const {
822  if (len() == req()) {
823    return NULL;
824  } else {
825    Node* n = in(req());
826    assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
827    return (SafePointNode*) n;
828  }
829}
830
831
832//------------------------------Ideal------------------------------------------
833// Skip over any collapsed Regions
834Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
835  return remove_dead_region(phase, can_reshape) ? this : NULL;
836}
837
838//------------------------------Identity---------------------------------------
839// Remove obviously duplicate safepoints
840Node *SafePointNode::Identity( PhaseTransform *phase ) {
841
842  // If you have back to back safepoints, remove one
843  if( in(TypeFunc::Control)->is_SafePoint() )
844    return in(TypeFunc::Control);
845
846  if( in(0)->is_Proj() ) {
847    Node *n0 = in(0)->in(0);
848    // Check if he is a call projection (except Leaf Call)
849    if( n0->is_Catch() ) {
850      n0 = n0->in(0)->in(0);
851      assert( n0->is_Call(), "expect a call here" );
852    }
853    if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
854      // Useless Safepoint, so remove it
855      return in(TypeFunc::Control);
856    }
857  }
858
859  return this;
860}
861
862//------------------------------Value------------------------------------------
863const Type *SafePointNode::Value( PhaseTransform *phase ) const {
864  if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
865  if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
866  return Type::CONTROL;
867}
868
869#ifndef PRODUCT
870void SafePointNode::dump_spec(outputStream *st) const {
871  st->print(" SafePoint ");
872}
873#endif
874
875const RegMask &SafePointNode::in_RegMask(uint idx) const {
876  if( idx < TypeFunc::Parms ) return RegMask::Empty;
877  // Values outside the domain represent debug info
878  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
879}
880const RegMask &SafePointNode::out_RegMask() const {
881  return RegMask::Empty;
882}
883
884
885void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
886  assert((int)grow_by > 0, "sanity");
887  int monoff = jvms->monoff();
888  int scloff = jvms->scloff();
889  int endoff = jvms->endoff();
890  assert(endoff == (int)req(), "no other states or debug info after me");
891  Node* top = Compile::current()->top();
892  for (uint i = 0; i < grow_by; i++) {
893    ins_req(monoff, top);
894  }
895  jvms->set_monoff(monoff + grow_by);
896  jvms->set_scloff(scloff + grow_by);
897  jvms->set_endoff(endoff + grow_by);
898}
899
900void SafePointNode::push_monitor(const FastLockNode *lock) {
901  // Add a LockNode, which points to both the original BoxLockNode (the
902  // stack space for the monitor) and the Object being locked.
903  const int MonitorEdges = 2;
904  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
905  assert(req() == jvms()->endoff(), "correct sizing");
906  int nextmon = jvms()->scloff();
907  if (GenerateSynchronizationCode) {
908    add_req(lock->box_node());
909    add_req(lock->obj_node());
910  } else {
911    add_req(NULL);
912    add_req(NULL);
913  }
914  jvms()->set_scloff(nextmon+MonitorEdges);
915  jvms()->set_endoff(req());
916}
917
918void SafePointNode::pop_monitor() {
919  // Delete last monitor from debug info
920  debug_only(int num_before_pop = jvms()->nof_monitors());
921  const int MonitorEdges = (1<<JVMState::logMonitorEdges);
922  int scloff = jvms()->scloff();
923  int endoff = jvms()->endoff();
924  int new_scloff = scloff - MonitorEdges;
925  int new_endoff = endoff - MonitorEdges;
926  jvms()->set_scloff(new_scloff);
927  jvms()->set_endoff(new_endoff);
928  while (scloff > new_scloff)  del_req(--scloff);
929  assert(jvms()->nof_monitors() == num_before_pop-1, "");
930}
931
932Node *SafePointNode::peek_monitor_box() const {
933  int mon = jvms()->nof_monitors() - 1;
934  assert(mon >= 0, "most have a monitor");
935  return monitor_box(jvms(), mon);
936}
937
938Node *SafePointNode::peek_monitor_obj() const {
939  int mon = jvms()->nof_monitors() - 1;
940  assert(mon >= 0, "most have a monitor");
941  return monitor_obj(jvms(), mon);
942}
943
944// Do we Match on this edge index or not?  Match no edges
945uint SafePointNode::match_edge(uint idx) const {
946  if( !needs_polling_address_input() )
947    return 0;
948
949  return (TypeFunc::Parms == idx);
950}
951
952//==============  SafePointScalarObjectNode  ==============
953
954SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
955#ifdef ASSERT
956                                                     AllocateNode* alloc,
957#endif
958                                                     uint first_index,
959                                                     uint n_fields) :
960  TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
961#ifdef ASSERT
962  _alloc(alloc),
963#endif
964  _first_index(first_index),
965  _n_fields(n_fields)
966{
967  init_class_id(Class_SafePointScalarObject);
968}
969
970bool SafePointScalarObjectNode::pinned() const { return true; }
971
972uint SafePointScalarObjectNode::ideal_reg() const {
973  return 0; // No matching to machine instruction
974}
975
976const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
977  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
978}
979
980const RegMask &SafePointScalarObjectNode::out_RegMask() const {
981  return RegMask::Empty;
982}
983
984uint SafePointScalarObjectNode::match_edge(uint idx) const {
985  return 0;
986}
987
988SafePointScalarObjectNode*
989SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
990  void* cached = (*sosn_map)[(void*)this];
991  if (cached != NULL) {
992    return (SafePointScalarObjectNode*)cached;
993  }
994  Compile* C = Compile::current();
995  SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
996  res->_first_index += jvms_adj;
997  sosn_map->Insert((void*)this, (void*)res);
998  return res;
999}
1000
1001
1002#ifndef PRODUCT
1003void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1004  st->print(" # fields@[%d..%d]", first_index(),
1005             first_index() + n_fields() - 1);
1006}
1007
1008#endif
1009
1010//=============================================================================
1011uint AllocateNode::size_of() const { return sizeof(*this); }
1012
1013AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1014                           Node *ctrl, Node *mem, Node *abio,
1015                           Node *size, Node *klass_node, Node *initial_test)
1016  : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1017{
1018  init_class_id(Class_Allocate);
1019  init_flags(Flag_is_macro);
1020  _is_scalar_replaceable = false;
1021  Node *topnode = C->top();
1022
1023  init_req( TypeFunc::Control  , ctrl );
1024  init_req( TypeFunc::I_O      , abio );
1025  init_req( TypeFunc::Memory   , mem );
1026  init_req( TypeFunc::ReturnAdr, topnode );
1027  init_req( TypeFunc::FramePtr , topnode );
1028  init_req( AllocSize          , size);
1029  init_req( KlassNode          , klass_node);
1030  init_req( InitialTest        , initial_test);
1031  init_req( ALength            , topnode);
1032  C->add_macro_node(this);
1033}
1034
1035//=============================================================================
1036uint AllocateArrayNode::size_of() const { return sizeof(*this); }
1037
1038// Retrieve the length from the AllocateArrayNode. Narrow the type with a
1039// CastII, if appropriate.  If we are not allowed to create new nodes, and
1040// a CastII is appropriate, return NULL.
1041Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1042  Node *length = in(AllocateNode::ALength);
1043  assert(length != NULL, "length is not null");
1044
1045  const TypeInt* length_type = phase->find_int_type(length);
1046  const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1047
1048  if (ary_type != NULL && length_type != NULL) {
1049    const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1050    if (narrow_length_type != length_type) {
1051      // Assert one of:
1052      //   - the narrow_length is 0
1053      //   - the narrow_length is not wider than length
1054      assert(narrow_length_type == TypeInt::ZERO ||
1055             (narrow_length_type->_hi <= length_type->_hi &&
1056              narrow_length_type->_lo >= length_type->_lo),
1057             "narrow type must be narrower than length type");
1058
1059      // Return NULL if new nodes are not allowed
1060      if (!allow_new_nodes) return NULL;
1061      // Create a cast which is control dependent on the initialization to
1062      // propagate the fact that the array length must be positive.
1063      length = new (phase->C, 2) CastIINode(length, narrow_length_type);
1064      length->set_req(0, initialization()->proj_out(0));
1065    }
1066  }
1067
1068  return length;
1069}
1070
1071//=============================================================================
1072uint LockNode::size_of() const { return sizeof(*this); }
1073
1074// Redundant lock elimination
1075//
1076// There are various patterns of locking where we release and
1077// immediately reacquire a lock in a piece of code where no operations
1078// occur in between that would be observable.  In those cases we can
1079// skip releasing and reacquiring the lock without violating any
1080// fairness requirements.  Doing this around a loop could cause a lock
1081// to be held for a very long time so we concentrate on non-looping
1082// control flow.  We also require that the operations are fully
1083// redundant meaning that we don't introduce new lock operations on
1084// some paths so to be able to eliminate it on others ala PRE.  This
1085// would probably require some more extensive graph manipulation to
1086// guarantee that the memory edges were all handled correctly.
1087//
1088// Assuming p is a simple predicate which can't trap in any way and s
1089// is a synchronized method consider this code:
1090//
1091//   s();
1092//   if (p)
1093//     s();
1094//   else
1095//     s();
1096//   s();
1097//
1098// 1. The unlocks of the first call to s can be eliminated if the
1099// locks inside the then and else branches are eliminated.
1100//
1101// 2. The unlocks of the then and else branches can be eliminated if
1102// the lock of the final call to s is eliminated.
1103//
1104// Either of these cases subsumes the simple case of sequential control flow
1105//
1106// Addtionally we can eliminate versions without the else case:
1107//
1108//   s();
1109//   if (p)
1110//     s();
1111//   s();
1112//
1113// 3. In this case we eliminate the unlock of the first s, the lock
1114// and unlock in the then case and the lock in the final s.
1115//
1116// Note also that in all these cases the then/else pieces don't have
1117// to be trivial as long as they begin and end with synchronization
1118// operations.
1119//
1120//   s();
1121//   if (p)
1122//     s();
1123//     f();
1124//     s();
1125//   s();
1126//
1127// The code will work properly for this case, leaving in the unlock
1128// before the call to f and the relock after it.
1129//
1130// A potentially interesting case which isn't handled here is when the
1131// locking is partially redundant.
1132//
1133//   s();
1134//   if (p)
1135//     s();
1136//
1137// This could be eliminated putting unlocking on the else case and
1138// eliminating the first unlock and the lock in the then side.
1139// Alternatively the unlock could be moved out of the then side so it
1140// was after the merge and the first unlock and second lock
1141// eliminated.  This might require less manipulation of the memory
1142// state to get correct.
1143//
1144// Additionally we might allow work between a unlock and lock before
1145// giving up eliminating the locks.  The current code disallows any
1146// conditional control flow between these operations.  A formulation
1147// similar to partial redundancy elimination computing the
1148// availability of unlocking and the anticipatability of locking at a
1149// program point would allow detection of fully redundant locking with
1150// some amount of work in between.  I'm not sure how often I really
1151// think that would occur though.  Most of the cases I've seen
1152// indicate it's likely non-trivial work would occur in between.
1153// There may be other more complicated constructs where we could
1154// eliminate locking but I haven't seen any others appear as hot or
1155// interesting.
1156//
1157// Locking and unlocking have a canonical form in ideal that looks
1158// roughly like this:
1159//
1160//              <obj>
1161//                | \\------+
1162//                |  \       \
1163//                | BoxLock   \
1164//                |  |   |     \
1165//                |  |    \     \
1166//                |  |   FastLock
1167//                |  |   /
1168//                |  |  /
1169//                |  |  |
1170//
1171//               Lock
1172//                |
1173//            Proj #0
1174//                |
1175//            MembarAcquire
1176//                |
1177//            Proj #0
1178//
1179//            MembarRelease
1180//                |
1181//            Proj #0
1182//                |
1183//              Unlock
1184//                |
1185//            Proj #0
1186//
1187//
1188// This code proceeds by processing Lock nodes during PhaseIterGVN
1189// and searching back through its control for the proper code
1190// patterns.  Once it finds a set of lock and unlock operations to
1191// eliminate they are marked as eliminatable which causes the
1192// expansion of the Lock and Unlock macro nodes to make the operation a NOP
1193//
1194//=============================================================================
1195
1196//
1197// Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1198//   - copy regions.  (These may not have been optimized away yet.)
1199//   - eliminated locking nodes
1200//
1201static Node *next_control(Node *ctrl) {
1202  if (ctrl == NULL)
1203    return NULL;
1204  while (1) {
1205    if (ctrl->is_Region()) {
1206      RegionNode *r = ctrl->as_Region();
1207      Node *n = r->is_copy();
1208      if (n == NULL)
1209        break;  // hit a region, return it
1210      else
1211        ctrl = n;
1212    } else if (ctrl->is_Proj()) {
1213      Node *in0 = ctrl->in(0);
1214      if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1215        ctrl = in0->in(0);
1216      } else {
1217        break;
1218      }
1219    } else {
1220      break; // found an interesting control
1221    }
1222  }
1223  return ctrl;
1224}
1225//
1226// Given a control, see if it's the control projection of an Unlock which
1227// operating on the same object as lock.
1228//
1229bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1230                                            GrowableArray<AbstractLockNode*> &lock_ops) {
1231  ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1232  if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1233    Node *n = ctrl_proj->in(0);
1234    if (n != NULL && n->is_Unlock()) {
1235      UnlockNode *unlock = n->as_Unlock();
1236      if ((lock->obj_node() == unlock->obj_node()) &&
1237          (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
1238        lock_ops.append(unlock);
1239        return true;
1240      }
1241    }
1242  }
1243  return false;
1244}
1245
1246//
1247// Find the lock matching an unlock.  Returns null if a safepoint
1248// or complicated control is encountered first.
1249LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1250  LockNode *lock_result = NULL;
1251  // find the matching lock, or an intervening safepoint
1252  Node *ctrl = next_control(unlock->in(0));
1253  while (1) {
1254    assert(ctrl != NULL, "invalid control graph");
1255    assert(!ctrl->is_Start(), "missing lock for unlock");
1256    if (ctrl->is_top()) break;  // dead control path
1257    if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1258    if (ctrl->is_SafePoint()) {
1259        break;  // found a safepoint (may be the lock we are searching for)
1260    } else if (ctrl->is_Region()) {
1261      // Check for a simple diamond pattern.  Punt on anything more complicated
1262      if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1263        Node *in1 = next_control(ctrl->in(1));
1264        Node *in2 = next_control(ctrl->in(2));
1265        if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1266             (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1267          ctrl = next_control(in1->in(0)->in(0));
1268        } else {
1269          break;
1270        }
1271      } else {
1272        break;
1273      }
1274    } else {
1275      ctrl = next_control(ctrl->in(0));  // keep searching
1276    }
1277  }
1278  if (ctrl->is_Lock()) {
1279    LockNode *lock = ctrl->as_Lock();
1280    if ((lock->obj_node() == unlock->obj_node()) &&
1281            (lock->box_node() == unlock->box_node())) {
1282      lock_result = lock;
1283    }
1284  }
1285  return lock_result;
1286}
1287
1288// This code corresponds to case 3 above.
1289
1290bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1291                                                       GrowableArray<AbstractLockNode*> &lock_ops) {
1292  Node* if_node = node->in(0);
1293  bool  if_true = node->is_IfTrue();
1294
1295  if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1296    Node *lock_ctrl = next_control(if_node->in(0));
1297    if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1298      Node* lock1_node = NULL;
1299      ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1300      if (if_true) {
1301        if (proj->is_IfFalse() && proj->outcnt() == 1) {
1302          lock1_node = proj->unique_out();
1303        }
1304      } else {
1305        if (proj->is_IfTrue() && proj->outcnt() == 1) {
1306          lock1_node = proj->unique_out();
1307        }
1308      }
1309      if (lock1_node != NULL && lock1_node->is_Lock()) {
1310        LockNode *lock1 = lock1_node->as_Lock();
1311        if ((lock->obj_node() == lock1->obj_node()) &&
1312            (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
1313          lock_ops.append(lock1);
1314          return true;
1315        }
1316      }
1317    }
1318  }
1319
1320  lock_ops.trunc_to(0);
1321  return false;
1322}
1323
1324bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1325                               GrowableArray<AbstractLockNode*> &lock_ops) {
1326  // check each control merging at this point for a matching unlock.
1327  // in(0) should be self edge so skip it.
1328  for (int i = 1; i < (int)region->req(); i++) {
1329    Node *in_node = next_control(region->in(i));
1330    if (in_node != NULL) {
1331      if (find_matching_unlock(in_node, lock, lock_ops)) {
1332        // found a match so keep on checking.
1333        continue;
1334      } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1335        continue;
1336      }
1337
1338      // If we fall through to here then it was some kind of node we
1339      // don't understand or there wasn't a matching unlock, so give
1340      // up trying to merge locks.
1341      lock_ops.trunc_to(0);
1342      return false;
1343    }
1344  }
1345  return true;
1346
1347}
1348
1349#ifndef PRODUCT
1350//
1351// Create a counter which counts the number of times this lock is acquired
1352//
1353void AbstractLockNode::create_lock_counter(JVMState* state) {
1354  _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1355}
1356#endif
1357
1358void AbstractLockNode::set_eliminated() {
1359  _eliminate = true;
1360#ifndef PRODUCT
1361  if (_counter) {
1362    // Update the counter to indicate that this lock was eliminated.
1363    // The counter update code will stay around even though the
1364    // optimizer will eliminate the lock operation itself.
1365    _counter->set_tag(NamedCounter::EliminatedLockCounter);
1366  }
1367#endif
1368}
1369
1370//=============================================================================
1371Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1372
1373  // perform any generic optimizations first (returns 'this' or NULL)
1374  Node *result = SafePointNode::Ideal(phase, can_reshape);
1375
1376  // Now see if we can optimize away this lock.  We don't actually
1377  // remove the locking here, we simply set the _eliminate flag which
1378  // prevents macro expansion from expanding the lock.  Since we don't
1379  // modify the graph, the value returned from this function is the
1380  // one computed above.
1381  if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
1382    //
1383    // If we are locking an unescaped object, the lock/unlock is unnecessary
1384    //
1385    ConnectionGraph *cgr = Compile::current()->congraph();
1386    PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
1387    if (cgr != NULL)
1388      es = cgr->escape_state(obj_node(), phase);
1389    if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1390      // Mark it eliminated to update any counters
1391      this->set_eliminated();
1392      return result;
1393    }
1394
1395    //
1396    // Try lock coarsening
1397    //
1398    PhaseIterGVN* iter = phase->is_IterGVN();
1399    if (iter != NULL) {
1400
1401      GrowableArray<AbstractLockNode*>   lock_ops;
1402
1403      Node *ctrl = next_control(in(0));
1404
1405      // now search back for a matching Unlock
1406      if (find_matching_unlock(ctrl, this, lock_ops)) {
1407        // found an unlock directly preceding this lock.  This is the
1408        // case of single unlock directly control dependent on a
1409        // single lock which is the trivial version of case 1 or 2.
1410      } else if (ctrl->is_Region() ) {
1411        if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1412        // found lock preceded by multiple unlocks along all paths
1413        // joining at this point which is case 3 in description above.
1414        }
1415      } else {
1416        // see if this lock comes from either half of an if and the
1417        // predecessors merges unlocks and the other half of the if
1418        // performs a lock.
1419        if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1420          // found unlock splitting to an if with locks on both branches.
1421        }
1422      }
1423
1424      if (lock_ops.length() > 0) {
1425        // add ourselves to the list of locks to be eliminated.
1426        lock_ops.append(this);
1427
1428  #ifndef PRODUCT
1429        if (PrintEliminateLocks) {
1430          int locks = 0;
1431          int unlocks = 0;
1432          for (int i = 0; i < lock_ops.length(); i++) {
1433            AbstractLockNode* lock = lock_ops.at(i);
1434            if (lock->Opcode() == Op_Lock)
1435              locks++;
1436            else
1437              unlocks++;
1438            if (Verbose) {
1439              lock->dump(1);
1440            }
1441          }
1442          tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1443        }
1444  #endif
1445
1446        // for each of the identified locks, mark them
1447        // as eliminatable
1448        for (int i = 0; i < lock_ops.length(); i++) {
1449          AbstractLockNode* lock = lock_ops.at(i);
1450
1451          // Mark it eliminated to update any counters
1452          lock->set_eliminated();
1453        }
1454      } else if (result != NULL && ctrl->is_Region() &&
1455                 iter->_worklist.member(ctrl)) {
1456        // We weren't able to find any opportunities but the region this
1457        // lock is control dependent on hasn't been processed yet so put
1458        // this lock back on the worklist so we can check again once any
1459        // region simplification has occurred.
1460        iter->_worklist.push(this);
1461      }
1462    }
1463  }
1464
1465  return result;
1466}
1467
1468//=============================================================================
1469uint UnlockNode::size_of() const { return sizeof(*this); }
1470
1471//=============================================================================
1472Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1473
1474  // perform any generic optimizations first (returns 'this' or NULL)
1475  Node * result = SafePointNode::Ideal(phase, can_reshape);
1476
1477  // Now see if we can optimize away this unlock.  We don't actually
1478  // remove the unlocking here, we simply set the _eliminate flag which
1479  // prevents macro expansion from expanding the unlock.  Since we don't
1480  // modify the graph, the value returned from this function is the
1481  // one computed above.
1482  // Escape state is defined after Parse phase.
1483  if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
1484    //
1485    // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1486    //
1487    ConnectionGraph *cgr = Compile::current()->congraph();
1488    PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
1489    if (cgr != NULL)
1490      es = cgr->escape_state(obj_node(), phase);
1491    if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1492      // Mark it eliminated to update any counters
1493      this->set_eliminated();
1494    }
1495  }
1496  return result;
1497}
1498