callnode.cpp revision 3602:da91efe96a93
1241851Seadler/*
2270114Sse * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3241851Seadler * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4241851Seadler *
5241851Seadler * This code is free software; you can redistribute it and/or modify it
6241851Seadler * under the terms of the GNU General Public License version 2 only, as
7241851Seadler * published by the Free Software Foundation.
8241851Seadler *
9241851Seadler * This code is distributed in the hope that it will be useful, but WITHOUT
10241851Seadler * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11270114Sse * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12241851Seadler * version 2 for more details (a copy is included in the LICENSE file that
13270114Sse * accompanied this code).
14270114Sse *
15241851Seadler * You should have received a copy of the GNU General Public License version
16241851Seadler * 2 along with this work; if not, write to the Free Software Foundation,
17270114Sse * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18241851Seadler *
19241851Seadler * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20241851Seadler * or visit www.oracle.com if you need additional information or have any
21270114Sse * questions.
22241851Seadler *
23241851Seadler */
24241851Seadler
25270114Sse#include "precompiled.hpp"
26270114Sse#include "ci/bcEscapeAnalyzer.hpp"
27270114Sse#include "compiler/oopMap.hpp"
28270114Sse#include "opto/callnode.hpp"
29241851Seadler#include "opto/escape.hpp"
30270114Sse#include "opto/locknode.hpp"
31270114Sse#include "opto/machnode.hpp"
32241851Seadler#include "opto/matcher.hpp"
33241851Seadler#include "opto/parse.hpp"
34241851Seadler#include "opto/regalloc.hpp"
35270114Sse#include "opto/regmask.hpp"
36270310Sse#include "opto/rootnode.hpp"
37241851Seadler#include "opto/runtime.hpp"
38241851Seadler
39270114Sse// Portions of code courtesy of Clifford Click
40241851Seadler
41270114Sse// Optimization - Graph Style
42241851Seadler
43270114Sse//=============================================================================
44270114Sseuint StartNode::size_of() const { return sizeof(*this); }
45241851Seadleruint StartNode::cmp( const Node &n ) const
46241851Seadler{ return _domain == ((StartNode&)n)._domain; }
47270114Sseconst Type *StartNode::bottom_type() const { return _domain; }
48270114Sseconst Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
49270114Sse#ifndef PRODUCT
50270114Ssevoid StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
51241851Seadler#endif
52241851Seadler
53270310Sse//------------------------------Ideal------------------------------------------
54241851SeadlerNode *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
55270114Sse  return remove_dead_region(phase, can_reshape) ? this : NULL;
56241851Seadler}
57241851Seadler
58270114Sse//------------------------------calling_convention-----------------------------
59270114Ssevoid StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
60241851Seadler  Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
61270114Sse}
62241851Seadler
63241851Seadler//------------------------------Registers--------------------------------------
64241851Seadlerconst RegMask &StartNode::in_RegMask(uint) const {
65241851Seadler  return RegMask::Empty;
66241851Seadler}
67241851Seadler
68241851Seadler//------------------------------match------------------------------------------
69241851Seadler// Construct projections for incoming parameters, and their RegMask info
70241851SeadlerNode *StartNode::match( const ProjNode *proj, const Matcher *match ) {
71241851Seadler  switch (proj->_con) {
72241851Seadler  case TypeFunc::Control:
73241851Seadler  case TypeFunc::I_O:
74241851Seadler  case TypeFunc::Memory:
75241851Seadler    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
76241851Seadler  case TypeFunc::FramePtr:
77241851Seadler    return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
78241851Seadler  case TypeFunc::ReturnAdr:
79241851Seadler    return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
80241851Seadler  case TypeFunc::Parms:
81241851Seadler  default: {
82241851Seadler      uint parm_num = proj->_con - TypeFunc::Parms;
83241851Seadler      const Type *t = _domain->field_at(proj->_con);
84241851Seadler      if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
85241851Seadler        return new (match->C, 1) ConNode(Type::TOP);
86241851Seadler      uint ideal_reg = t->ideal_reg();
87241851Seadler      RegMask &rm = match->_calling_convention_mask[parm_num];
88241851Seadler      return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
89241851Seadler    }
90241851Seadler  }
91241851Seadler  return NULL;
92241851Seadler}
93241851Seadler
94241851Seadler//------------------------------StartOSRNode----------------------------------
95241851Seadler// The method start node for an on stack replacement adapter
96241851Seadler
97241851Seadler//------------------------------osr_domain-----------------------------
98241851Seadlerconst TypeTuple *StartOSRNode::osr_domain() {
99241851Seadler  const Type **fields = TypeTuple::fields(2);
100241851Seadler  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
101241851Seadler
102241851Seadler  return TypeTuple::make(TypeFunc::Parms+1, fields);
103270114Sse}
104241851Seadler
105270114Sse//=============================================================================
106241851Seadlerconst char * const ParmNode::names[TypeFunc::Parms+1] = {
107241851Seadler  "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
108270114Sse};
109241851Seadler
110270114Sse#ifndef PRODUCT
111241851Seadlervoid ParmNode::dump_spec(outputStream *st) const {
112241851Seadler  if( _con < TypeFunc::Parms ) {
113241851Seadler    st->print(names[_con]);
114241851Seadler  } else {
115241851Seadler    st->print("Parm%d: ",_con-TypeFunc::Parms);
116241851Seadler    // Verbose and WizardMode dump bottom_type for all nodes
117241851Seadler    if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
118  }
119}
120#endif
121
122uint ParmNode::ideal_reg() const {
123  switch( _con ) {
124  case TypeFunc::Control  : // fall through
125  case TypeFunc::I_O      : // fall through
126  case TypeFunc::Memory   : return 0;
127  case TypeFunc::FramePtr : // fall through
128  case TypeFunc::ReturnAdr: return Op_RegP;
129  default                 : assert( _con > TypeFunc::Parms, "" );
130    // fall through
131  case TypeFunc::Parms    : {
132    // Type of argument being passed
133    const Type *t = in(0)->as_Start()->_domain->field_at(_con);
134    return t->ideal_reg();
135  }
136  }
137  ShouldNotReachHere();
138  return 0;
139}
140
141//=============================================================================
142ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
143  init_req(TypeFunc::Control,cntrl);
144  init_req(TypeFunc::I_O,i_o);
145  init_req(TypeFunc::Memory,memory);
146  init_req(TypeFunc::FramePtr,frameptr);
147  init_req(TypeFunc::ReturnAdr,retadr);
148}
149
150Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
151  return remove_dead_region(phase, can_reshape) ? this : NULL;
152}
153
154const Type *ReturnNode::Value( PhaseTransform *phase ) const {
155  return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
156    ? Type::TOP
157    : Type::BOTTOM;
158}
159
160// Do we Match on this edge index or not?  No edges on return nodes
161uint ReturnNode::match_edge(uint idx) const {
162  return 0;
163}
164
165
166#ifndef PRODUCT
167void ReturnNode::dump_req() const {
168  // Dump the required inputs, enclosed in '(' and ')'
169  uint i;                       // Exit value of loop
170  for( i=0; i<req(); i++ ) {    // For all required inputs
171    if( i == TypeFunc::Parms ) tty->print("returns");
172    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
173    else tty->print("_ ");
174  }
175}
176#endif
177
178//=============================================================================
179RethrowNode::RethrowNode(
180  Node* cntrl,
181  Node* i_o,
182  Node* memory,
183  Node* frameptr,
184  Node* ret_adr,
185  Node* exception
186) : Node(TypeFunc::Parms + 1) {
187  init_req(TypeFunc::Control  , cntrl    );
188  init_req(TypeFunc::I_O      , i_o      );
189  init_req(TypeFunc::Memory   , memory   );
190  init_req(TypeFunc::FramePtr , frameptr );
191  init_req(TypeFunc::ReturnAdr, ret_adr);
192  init_req(TypeFunc::Parms    , exception);
193}
194
195Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
196  return remove_dead_region(phase, can_reshape) ? this : NULL;
197}
198
199const Type *RethrowNode::Value( PhaseTransform *phase ) const {
200  return (phase->type(in(TypeFunc::Control)) == Type::TOP)
201    ? Type::TOP
202    : Type::BOTTOM;
203}
204
205uint RethrowNode::match_edge(uint idx) const {
206  return 0;
207}
208
209#ifndef PRODUCT
210void RethrowNode::dump_req() const {
211  // Dump the required inputs, enclosed in '(' and ')'
212  uint i;                       // Exit value of loop
213  for( i=0; i<req(); i++ ) {    // For all required inputs
214    if( i == TypeFunc::Parms ) tty->print("exception");
215    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
216    else tty->print("_ ");
217  }
218}
219#endif
220
221//=============================================================================
222// Do we Match on this edge index or not?  Match only target address & method
223uint TailCallNode::match_edge(uint idx) const {
224  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
225}
226
227//=============================================================================
228// Do we Match on this edge index or not?  Match only target address & oop
229uint TailJumpNode::match_edge(uint idx) const {
230  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
231}
232
233//=============================================================================
234JVMState::JVMState(ciMethod* method, JVMState* caller) :
235  _method(method) {
236  assert(method != NULL, "must be valid call site");
237  _reexecute = Reexecute_Undefined;
238  debug_only(_bci = -99);  // random garbage value
239  debug_only(_map = (SafePointNode*)-1);
240  _caller = caller;
241  _depth  = 1 + (caller == NULL ? 0 : caller->depth());
242  _locoff = TypeFunc::Parms;
243  _stkoff = _locoff + _method->max_locals();
244  _monoff = _stkoff + _method->max_stack();
245  _scloff = _monoff;
246  _endoff = _monoff;
247  _sp = 0;
248}
249JVMState::JVMState(int stack_size) :
250  _method(NULL) {
251  _bci = InvocationEntryBci;
252  _reexecute = Reexecute_Undefined;
253  debug_only(_map = (SafePointNode*)-1);
254  _caller = NULL;
255  _depth  = 1;
256  _locoff = TypeFunc::Parms;
257  _stkoff = _locoff;
258  _monoff = _stkoff + stack_size;
259  _scloff = _monoff;
260  _endoff = _monoff;
261  _sp = 0;
262}
263
264//--------------------------------of_depth-------------------------------------
265JVMState* JVMState::of_depth(int d) const {
266  const JVMState* jvmp = this;
267  assert(0 < d && (uint)d <= depth(), "oob");
268  for (int skip = depth() - d; skip > 0; skip--) {
269    jvmp = jvmp->caller();
270  }
271  assert(jvmp->depth() == (uint)d, "found the right one");
272  return (JVMState*)jvmp;
273}
274
275//-----------------------------same_calls_as-----------------------------------
276bool JVMState::same_calls_as(const JVMState* that) const {
277  if (this == that)                    return true;
278  if (this->depth() != that->depth())  return false;
279  const JVMState* p = this;
280  const JVMState* q = that;
281  for (;;) {
282    if (p->_method != q->_method)    return false;
283    if (p->_method == NULL)          return true;   // bci is irrelevant
284    if (p->_bci    != q->_bci)       return false;
285    if (p->_reexecute != q->_reexecute)  return false;
286    p = p->caller();
287    q = q->caller();
288    if (p == q)                      return true;
289    assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
290  }
291}
292
293//------------------------------debug_start------------------------------------
294uint JVMState::debug_start()  const {
295  debug_only(JVMState* jvmroot = of_depth(1));
296  assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
297  return of_depth(1)->locoff();
298}
299
300//-------------------------------debug_end-------------------------------------
301uint JVMState::debug_end() const {
302  debug_only(JVMState* jvmroot = of_depth(1));
303  assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
304  return endoff();
305}
306
307//------------------------------debug_depth------------------------------------
308uint JVMState::debug_depth() const {
309  uint total = 0;
310  for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
311    total += jvmp->debug_size();
312  }
313  return total;
314}
315
316#ifndef PRODUCT
317
318//------------------------------format_helper----------------------------------
319// Given an allocation (a Chaitin object) and a Node decide if the Node carries
320// any defined value or not.  If it does, print out the register or constant.
321static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
322  if (n == NULL) { st->print(" NULL"); return; }
323  if (n->is_SafePointScalarObject()) {
324    // Scalar replacement.
325    SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
326    scobjs->append_if_missing(spobj);
327    int sco_n = scobjs->find(spobj);
328    assert(sco_n >= 0, "");
329    st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
330    return;
331  }
332  if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
333    char buf[50];
334    regalloc->dump_register(n,buf);
335    st->print(" %s%d]=%s",msg,i,buf);
336  } else {                      // No register, but might be constant
337    const Type *t = n->bottom_type();
338    switch (t->base()) {
339    case Type::Int:
340      st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
341      break;
342    case Type::AnyPtr:
343      assert( t == TypePtr::NULL_PTR, "" );
344      st->print(" %s%d]=#NULL",msg,i);
345      break;
346    case Type::AryPtr:
347    case Type::InstPtr:
348      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
349      break;
350    case Type::KlassPtr:
351      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_klassptr()->klass());
352      break;
353    case Type::MetadataPtr:
354      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_metadataptr()->metadata());
355      break;
356    case Type::NarrowOop:
357      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
358      break;
359    case Type::RawPtr:
360      st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
361      break;
362    case Type::DoubleCon:
363      st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
364      break;
365    case Type::FloatCon:
366      st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
367      break;
368    case Type::Long:
369      st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
370      break;
371    case Type::Half:
372    case Type::Top:
373      st->print(" %s%d]=_",msg,i);
374      break;
375    default: ShouldNotReachHere();
376    }
377  }
378}
379
380//------------------------------format-----------------------------------------
381void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
382  st->print("        #");
383  if( _method ) {
384    _method->print_short_name(st);
385    st->print(" @ bci:%d ",_bci);
386  } else {
387    st->print_cr(" runtime stub ");
388    return;
389  }
390  if (n->is_MachSafePoint()) {
391    GrowableArray<SafePointScalarObjectNode*> scobjs;
392    MachSafePointNode *mcall = n->as_MachSafePoint();
393    uint i;
394    // Print locals
395    for( i = 0; i < (uint)loc_size(); i++ )
396      format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
397    // Print stack
398    for (i = 0; i < (uint)stk_size(); i++) {
399      if ((uint)(_stkoff + i) >= mcall->len())
400        st->print(" oob ");
401      else
402       format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
403    }
404    for (i = 0; (int)i < nof_monitors(); i++) {
405      Node *box = mcall->monitor_box(this, i);
406      Node *obj = mcall->monitor_obj(this, i);
407      if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
408        box = BoxLockNode::box_node(box);
409        format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
410      } else {
411        OptoReg::Name box_reg = BoxLockNode::reg(box);
412        st->print(" MON-BOX%d=%s+%d",
413                   i,
414                   OptoReg::regname(OptoReg::c_frame_pointer),
415                   regalloc->reg2offset(box_reg));
416      }
417      const char* obj_msg = "MON-OBJ[";
418      if (EliminateLocks) {
419        if (BoxLockNode::box_node(box)->is_eliminated())
420          obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
421      }
422      format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
423    }
424
425    for (i = 0; i < (uint)scobjs.length(); i++) {
426      // Scalar replaced objects.
427      st->print_cr("");
428      st->print("        # ScObj" INT32_FORMAT " ", i);
429      SafePointScalarObjectNode* spobj = scobjs.at(i);
430      ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
431      assert(cik->is_instance_klass() ||
432             cik->is_array_klass(), "Not supported allocation.");
433      ciInstanceKlass *iklass = NULL;
434      if (cik->is_instance_klass()) {
435        cik->print_name_on(st);
436        iklass = cik->as_instance_klass();
437      } else if (cik->is_type_array_klass()) {
438        cik->as_array_klass()->base_element_type()->print_name_on(st);
439        st->print("[%d]", spobj->n_fields());
440      } else if (cik->is_obj_array_klass()) {
441        ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
442        if (cie->is_instance_klass()) {
443          cie->print_name_on(st);
444        } else if (cie->is_type_array_klass()) {
445          cie->as_array_klass()->base_element_type()->print_name_on(st);
446        } else {
447          ShouldNotReachHere();
448        }
449        st->print("[%d]", spobj->n_fields());
450        int ndim = cik->as_array_klass()->dimension() - 1;
451        while (ndim-- > 0) {
452          st->print("[]");
453        }
454      }
455      st->print("={");
456      uint nf = spobj->n_fields();
457      if (nf > 0) {
458        uint first_ind = spobj->first_index();
459        Node* fld_node = mcall->in(first_ind);
460        ciField* cifield;
461        if (iklass != NULL) {
462          st->print(" [");
463          cifield = iklass->nonstatic_field_at(0);
464          cifield->print_name_on(st);
465          format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
466        } else {
467          format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
468        }
469        for (uint j = 1; j < nf; j++) {
470          fld_node = mcall->in(first_ind+j);
471          if (iklass != NULL) {
472            st->print(", [");
473            cifield = iklass->nonstatic_field_at(j);
474            cifield->print_name_on(st);
475            format_helper( regalloc, st, fld_node, ":", j, &scobjs );
476          } else {
477            format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
478          }
479        }
480      }
481      st->print(" }");
482    }
483  }
484  st->print_cr("");
485  if (caller() != NULL)  caller()->format(regalloc, n, st);
486}
487
488
489void JVMState::dump_spec(outputStream *st) const {
490  if (_method != NULL) {
491    bool printed = false;
492    if (!Verbose) {
493      // The JVMS dumps make really, really long lines.
494      // Take out the most boring parts, which are the package prefixes.
495      char buf[500];
496      stringStream namest(buf, sizeof(buf));
497      _method->print_short_name(&namest);
498      if (namest.count() < sizeof(buf)) {
499        const char* name = namest.base();
500        if (name[0] == ' ')  ++name;
501        const char* endcn = strchr(name, ':');  // end of class name
502        if (endcn == NULL)  endcn = strchr(name, '(');
503        if (endcn == NULL)  endcn = name + strlen(name);
504        while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
505          --endcn;
506        st->print(" %s", endcn);
507        printed = true;
508      }
509    }
510    if (!printed)
511      _method->print_short_name(st);
512    st->print(" @ bci:%d",_bci);
513    if(_reexecute == Reexecute_True)
514      st->print(" reexecute");
515  } else {
516    st->print(" runtime stub");
517  }
518  if (caller() != NULL)  caller()->dump_spec(st);
519}
520
521
522void JVMState::dump_on(outputStream* st) const {
523  if (_map && !((uintptr_t)_map & 1)) {
524    if (_map->len() > _map->req()) {  // _map->has_exceptions()
525      Node* ex = _map->in(_map->req());  // _map->next_exception()
526      // skip the first one; it's already being printed
527      while (ex != NULL && ex->len() > ex->req()) {
528        ex = ex->in(ex->req());  // ex->next_exception()
529        ex->dump(1);
530      }
531    }
532    _map->dump(2);
533  }
534  st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
535             depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
536  if (_method == NULL) {
537    st->print_cr("(none)");
538  } else {
539    _method->print_name(st);
540    st->cr();
541    if (bci() >= 0 && bci() < _method->code_size()) {
542      st->print("    bc: ");
543      _method->print_codes_on(bci(), bci()+1, st);
544    }
545  }
546  if (caller() != NULL) {
547    caller()->dump_on(st);
548  }
549}
550
551// Extra way to dump a jvms from the debugger,
552// to avoid a bug with C++ member function calls.
553void dump_jvms(JVMState* jvms) {
554  jvms->dump();
555}
556#endif
557
558//--------------------------clone_shallow--------------------------------------
559JVMState* JVMState::clone_shallow(Compile* C) const {
560  JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
561  n->set_bci(_bci);
562  n->_reexecute = _reexecute;
563  n->set_locoff(_locoff);
564  n->set_stkoff(_stkoff);
565  n->set_monoff(_monoff);
566  n->set_scloff(_scloff);
567  n->set_endoff(_endoff);
568  n->set_sp(_sp);
569  n->set_map(_map);
570  return n;
571}
572
573//---------------------------clone_deep----------------------------------------
574JVMState* JVMState::clone_deep(Compile* C) const {
575  JVMState* n = clone_shallow(C);
576  for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
577    p->_caller = p->_caller->clone_shallow(C);
578  }
579  assert(n->depth() == depth(), "sanity");
580  assert(n->debug_depth() == debug_depth(), "sanity");
581  return n;
582}
583
584//=============================================================================
585uint CallNode::cmp( const Node &n ) const
586{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
587#ifndef PRODUCT
588void CallNode::dump_req() const {
589  // Dump the required inputs, enclosed in '(' and ')'
590  uint i;                       // Exit value of loop
591  for( i=0; i<req(); i++ ) {    // For all required inputs
592    if( i == TypeFunc::Parms ) tty->print("(");
593    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
594    else tty->print("_ ");
595  }
596  tty->print(")");
597}
598
599void CallNode::dump_spec(outputStream *st) const {
600  st->print(" ");
601  tf()->dump_on(st);
602  if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
603  if (jvms() != NULL)  jvms()->dump_spec(st);
604}
605#endif
606
607const Type *CallNode::bottom_type() const { return tf()->range(); }
608const Type *CallNode::Value(PhaseTransform *phase) const {
609  if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
610  return tf()->range();
611}
612
613//------------------------------calling_convention-----------------------------
614void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
615  // Use the standard compiler calling convention
616  Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
617}
618
619
620//------------------------------match------------------------------------------
621// Construct projections for control, I/O, memory-fields, ..., and
622// return result(s) along with their RegMask info
623Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
624  switch (proj->_con) {
625  case TypeFunc::Control:
626  case TypeFunc::I_O:
627  case TypeFunc::Memory:
628    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
629
630  case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
631    assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
632    // 2nd half of doubles and longs
633    return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
634
635  case TypeFunc::Parms: {       // Normal returns
636    uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
637    OptoRegPair regs = is_CallRuntime()
638      ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
639      : match->  return_value(ideal_reg,true); // Calls into compiled Java code
640    RegMask rm = RegMask(regs.first());
641    if( OptoReg::is_valid(regs.second()) )
642      rm.Insert( regs.second() );
643    return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
644  }
645
646  case TypeFunc::ReturnAdr:
647  case TypeFunc::FramePtr:
648  default:
649    ShouldNotReachHere();
650  }
651  return NULL;
652}
653
654// Do we Match on this edge index or not?  Match no edges
655uint CallNode::match_edge(uint idx) const {
656  return 0;
657}
658
659//
660// Determine whether the call could modify the field of the specified
661// instance at the specified offset.
662//
663bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
664  const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
665
666  // If not an OopPtr or not an instance type, assume the worst.
667  // Note: currently this method is called only for instance types.
668  if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
669    return true;
670  }
671  // The instance_id is set only for scalar-replaceable allocations which
672  // are not passed as arguments according to Escape Analysis.
673  return false;
674}
675
676// Does this call have a direct reference to n other than debug information?
677bool CallNode::has_non_debug_use(Node *n) {
678  const TypeTuple * d = tf()->domain();
679  for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
680    Node *arg = in(i);
681    if (arg == n) {
682      return true;
683    }
684  }
685  return false;
686}
687
688// Returns the unique CheckCastPP of a call
689// or 'this' if there are several CheckCastPP
690// or returns NULL if there is no one.
691Node *CallNode::result_cast() {
692  Node *cast = NULL;
693
694  Node *p = proj_out(TypeFunc::Parms);
695  if (p == NULL)
696    return NULL;
697
698  for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
699    Node *use = p->fast_out(i);
700    if (use->is_CheckCastPP()) {
701      if (cast != NULL) {
702        return this;  // more than 1 CheckCastPP
703      }
704      cast = use;
705    }
706  }
707  return cast;
708}
709
710
711void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
712  projs->fallthrough_proj      = NULL;
713  projs->fallthrough_catchproj = NULL;
714  projs->fallthrough_ioproj    = NULL;
715  projs->catchall_ioproj       = NULL;
716  projs->catchall_catchproj    = NULL;
717  projs->fallthrough_memproj   = NULL;
718  projs->catchall_memproj      = NULL;
719  projs->resproj               = NULL;
720  projs->exobj                 = NULL;
721
722  for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
723    ProjNode *pn = fast_out(i)->as_Proj();
724    if (pn->outcnt() == 0) continue;
725    switch (pn->_con) {
726    case TypeFunc::Control:
727      {
728        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
729        projs->fallthrough_proj = pn;
730        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
731        const Node *cn = pn->fast_out(j);
732        if (cn->is_Catch()) {
733          ProjNode *cpn = NULL;
734          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
735            cpn = cn->fast_out(k)->as_Proj();
736            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
737            if (cpn->_con == CatchProjNode::fall_through_index)
738              projs->fallthrough_catchproj = cpn;
739            else {
740              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
741              projs->catchall_catchproj = cpn;
742            }
743          }
744        }
745        break;
746      }
747    case TypeFunc::I_O:
748      if (pn->_is_io_use)
749        projs->catchall_ioproj = pn;
750      else
751        projs->fallthrough_ioproj = pn;
752      for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
753        Node* e = pn->out(j);
754        if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj()) {
755          assert(projs->exobj == NULL, "only one");
756          projs->exobj = e;
757        }
758      }
759      break;
760    case TypeFunc::Memory:
761      if (pn->_is_io_use)
762        projs->catchall_memproj = pn;
763      else
764        projs->fallthrough_memproj = pn;
765      break;
766    case TypeFunc::Parms:
767      projs->resproj = pn;
768      break;
769    default:
770      assert(false, "unexpected projection from allocation node.");
771    }
772  }
773
774  // The resproj may not exist because the result couuld be ignored
775  // and the exception object may not exist if an exception handler
776  // swallows the exception but all the other must exist and be found.
777  assert(projs->fallthrough_proj      != NULL, "must be found");
778  assert(projs->fallthrough_catchproj != NULL, "must be found");
779  assert(projs->fallthrough_memproj   != NULL, "must be found");
780  assert(projs->fallthrough_ioproj    != NULL, "must be found");
781  assert(projs->catchall_catchproj    != NULL, "must be found");
782  if (separate_io_proj) {
783    assert(projs->catchall_memproj      != NULL, "must be found");
784    assert(projs->catchall_ioproj       != NULL, "must be found");
785  }
786}
787
788
789//=============================================================================
790uint CallJavaNode::size_of() const { return sizeof(*this); }
791uint CallJavaNode::cmp( const Node &n ) const {
792  CallJavaNode &call = (CallJavaNode&)n;
793  return CallNode::cmp(call) && _method == call._method;
794}
795#ifndef PRODUCT
796void CallJavaNode::dump_spec(outputStream *st) const {
797  if( _method ) _method->print_short_name(st);
798  CallNode::dump_spec(st);
799}
800#endif
801
802//=============================================================================
803uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
804uint CallStaticJavaNode::cmp( const Node &n ) const {
805  CallStaticJavaNode &call = (CallStaticJavaNode&)n;
806  return CallJavaNode::cmp(call);
807}
808
809//----------------------------uncommon_trap_request----------------------------
810// If this is an uncommon trap, return the request code, else zero.
811int CallStaticJavaNode::uncommon_trap_request() const {
812  if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
813    return extract_uncommon_trap_request(this);
814  }
815  return 0;
816}
817int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
818#ifndef PRODUCT
819  if (!(call->req() > TypeFunc::Parms &&
820        call->in(TypeFunc::Parms) != NULL &&
821        call->in(TypeFunc::Parms)->is_Con())) {
822    assert(_in_dump_cnt != 0, "OK if dumping");
823    tty->print("[bad uncommon trap]");
824    return 0;
825  }
826#endif
827  return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
828}
829
830#ifndef PRODUCT
831void CallStaticJavaNode::dump_spec(outputStream *st) const {
832  st->print("# Static ");
833  if (_name != NULL) {
834    st->print("%s", _name);
835    int trap_req = uncommon_trap_request();
836    if (trap_req != 0) {
837      char buf[100];
838      st->print("(%s)",
839                 Deoptimization::format_trap_request(buf, sizeof(buf),
840                                                     trap_req));
841    }
842    st->print(" ");
843  }
844  CallJavaNode::dump_spec(st);
845}
846#endif
847
848//=============================================================================
849uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
850uint CallDynamicJavaNode::cmp( const Node &n ) const {
851  CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
852  return CallJavaNode::cmp(call);
853}
854#ifndef PRODUCT
855void CallDynamicJavaNode::dump_spec(outputStream *st) const {
856  st->print("# Dynamic ");
857  CallJavaNode::dump_spec(st);
858}
859#endif
860
861//=============================================================================
862uint CallRuntimeNode::size_of() const { return sizeof(*this); }
863uint CallRuntimeNode::cmp( const Node &n ) const {
864  CallRuntimeNode &call = (CallRuntimeNode&)n;
865  return CallNode::cmp(call) && !strcmp(_name,call._name);
866}
867#ifndef PRODUCT
868void CallRuntimeNode::dump_spec(outputStream *st) const {
869  st->print("# ");
870  st->print(_name);
871  CallNode::dump_spec(st);
872}
873#endif
874
875//------------------------------calling_convention-----------------------------
876void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
877  Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
878}
879
880//=============================================================================
881//------------------------------calling_convention-----------------------------
882
883
884//=============================================================================
885#ifndef PRODUCT
886void CallLeafNode::dump_spec(outputStream *st) const {
887  st->print("# ");
888  st->print(_name);
889  CallNode::dump_spec(st);
890}
891#endif
892
893//=============================================================================
894
895void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
896  assert(verify_jvms(jvms), "jvms must match");
897  int loc = jvms->locoff() + idx;
898  if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
899    // If current local idx is top then local idx - 1 could
900    // be a long/double that needs to be killed since top could
901    // represent the 2nd half ofthe long/double.
902    uint ideal = in(loc -1)->ideal_reg();
903    if (ideal == Op_RegD || ideal == Op_RegL) {
904      // set other (low index) half to top
905      set_req(loc - 1, in(loc));
906    }
907  }
908  set_req(loc, c);
909}
910
911uint SafePointNode::size_of() const { return sizeof(*this); }
912uint SafePointNode::cmp( const Node &n ) const {
913  return (&n == this);          // Always fail except on self
914}
915
916//-------------------------set_next_exception----------------------------------
917void SafePointNode::set_next_exception(SafePointNode* n) {
918  assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
919  if (len() == req()) {
920    if (n != NULL)  add_prec(n);
921  } else {
922    set_prec(req(), n);
923  }
924}
925
926
927//----------------------------next_exception-----------------------------------
928SafePointNode* SafePointNode::next_exception() const {
929  if (len() == req()) {
930    return NULL;
931  } else {
932    Node* n = in(req());
933    assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
934    return (SafePointNode*) n;
935  }
936}
937
938
939//------------------------------Ideal------------------------------------------
940// Skip over any collapsed Regions
941Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
942  return remove_dead_region(phase, can_reshape) ? this : NULL;
943}
944
945//------------------------------Identity---------------------------------------
946// Remove obviously duplicate safepoints
947Node *SafePointNode::Identity( PhaseTransform *phase ) {
948
949  // If you have back to back safepoints, remove one
950  if( in(TypeFunc::Control)->is_SafePoint() )
951    return in(TypeFunc::Control);
952
953  if( in(0)->is_Proj() ) {
954    Node *n0 = in(0)->in(0);
955    // Check if he is a call projection (except Leaf Call)
956    if( n0->is_Catch() ) {
957      n0 = n0->in(0)->in(0);
958      assert( n0->is_Call(), "expect a call here" );
959    }
960    if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
961      // Useless Safepoint, so remove it
962      return in(TypeFunc::Control);
963    }
964  }
965
966  return this;
967}
968
969//------------------------------Value------------------------------------------
970const Type *SafePointNode::Value( PhaseTransform *phase ) const {
971  if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
972  if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
973  return Type::CONTROL;
974}
975
976#ifndef PRODUCT
977void SafePointNode::dump_spec(outputStream *st) const {
978  st->print(" SafePoint ");
979}
980#endif
981
982const RegMask &SafePointNode::in_RegMask(uint idx) const {
983  if( idx < TypeFunc::Parms ) return RegMask::Empty;
984  // Values outside the domain represent debug info
985  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
986}
987const RegMask &SafePointNode::out_RegMask() const {
988  return RegMask::Empty;
989}
990
991
992void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
993  assert((int)grow_by > 0, "sanity");
994  int monoff = jvms->monoff();
995  int scloff = jvms->scloff();
996  int endoff = jvms->endoff();
997  assert(endoff == (int)req(), "no other states or debug info after me");
998  Node* top = Compile::current()->top();
999  for (uint i = 0; i < grow_by; i++) {
1000    ins_req(monoff, top);
1001  }
1002  jvms->set_monoff(monoff + grow_by);
1003  jvms->set_scloff(scloff + grow_by);
1004  jvms->set_endoff(endoff + grow_by);
1005}
1006
1007void SafePointNode::push_monitor(const FastLockNode *lock) {
1008  // Add a LockNode, which points to both the original BoxLockNode (the
1009  // stack space for the monitor) and the Object being locked.
1010  const int MonitorEdges = 2;
1011  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1012  assert(req() == jvms()->endoff(), "correct sizing");
1013  int nextmon = jvms()->scloff();
1014  if (GenerateSynchronizationCode) {
1015    add_req(lock->box_node());
1016    add_req(lock->obj_node());
1017  } else {
1018    Node* top = Compile::current()->top();
1019    add_req(top);
1020    add_req(top);
1021  }
1022  jvms()->set_scloff(nextmon+MonitorEdges);
1023  jvms()->set_endoff(req());
1024}
1025
1026void SafePointNode::pop_monitor() {
1027  // Delete last monitor from debug info
1028  debug_only(int num_before_pop = jvms()->nof_monitors());
1029  const int MonitorEdges = (1<<JVMState::logMonitorEdges);
1030  int scloff = jvms()->scloff();
1031  int endoff = jvms()->endoff();
1032  int new_scloff = scloff - MonitorEdges;
1033  int new_endoff = endoff - MonitorEdges;
1034  jvms()->set_scloff(new_scloff);
1035  jvms()->set_endoff(new_endoff);
1036  while (scloff > new_scloff)  del_req(--scloff);
1037  assert(jvms()->nof_monitors() == num_before_pop-1, "");
1038}
1039
1040Node *SafePointNode::peek_monitor_box() const {
1041  int mon = jvms()->nof_monitors() - 1;
1042  assert(mon >= 0, "most have a monitor");
1043  return monitor_box(jvms(), mon);
1044}
1045
1046Node *SafePointNode::peek_monitor_obj() const {
1047  int mon = jvms()->nof_monitors() - 1;
1048  assert(mon >= 0, "most have a monitor");
1049  return monitor_obj(jvms(), mon);
1050}
1051
1052// Do we Match on this edge index or not?  Match no edges
1053uint SafePointNode::match_edge(uint idx) const {
1054  if( !needs_polling_address_input() )
1055    return 0;
1056
1057  return (TypeFunc::Parms == idx);
1058}
1059
1060//==============  SafePointScalarObjectNode  ==============
1061
1062SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1063#ifdef ASSERT
1064                                                     AllocateNode* alloc,
1065#endif
1066                                                     uint first_index,
1067                                                     uint n_fields) :
1068  TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1069#ifdef ASSERT
1070  _alloc(alloc),
1071#endif
1072  _first_index(first_index),
1073  _n_fields(n_fields)
1074{
1075  init_class_id(Class_SafePointScalarObject);
1076}
1077
1078// Do not allow value-numbering for SafePointScalarObject node.
1079uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1080uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1081  return (&n == this); // Always fail except on self
1082}
1083
1084uint SafePointScalarObjectNode::ideal_reg() const {
1085  return 0; // No matching to machine instruction
1086}
1087
1088const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1089  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1090}
1091
1092const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1093  return RegMask::Empty;
1094}
1095
1096uint SafePointScalarObjectNode::match_edge(uint idx) const {
1097  return 0;
1098}
1099
1100SafePointScalarObjectNode*
1101SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
1102  void* cached = (*sosn_map)[(void*)this];
1103  if (cached != NULL) {
1104    return (SafePointScalarObjectNode*)cached;
1105  }
1106  SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1107  res->_first_index += jvms_adj;
1108  sosn_map->Insert((void*)this, (void*)res);
1109  return res;
1110}
1111
1112
1113#ifndef PRODUCT
1114void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1115  st->print(" # fields@[%d..%d]", first_index(),
1116             first_index() + n_fields() - 1);
1117}
1118
1119#endif
1120
1121//=============================================================================
1122uint AllocateNode::size_of() const { return sizeof(*this); }
1123
1124AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1125                           Node *ctrl, Node *mem, Node *abio,
1126                           Node *size, Node *klass_node, Node *initial_test)
1127  : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1128{
1129  init_class_id(Class_Allocate);
1130  init_flags(Flag_is_macro);
1131  _is_scalar_replaceable = false;
1132  Node *topnode = C->top();
1133
1134  init_req( TypeFunc::Control  , ctrl );
1135  init_req( TypeFunc::I_O      , abio );
1136  init_req( TypeFunc::Memory   , mem );
1137  init_req( TypeFunc::ReturnAdr, topnode );
1138  init_req( TypeFunc::FramePtr , topnode );
1139  init_req( AllocSize          , size);
1140  init_req( KlassNode          , klass_node);
1141  init_req( InitialTest        , initial_test);
1142  init_req( ALength            , topnode);
1143  C->add_macro_node(this);
1144}
1145
1146//=============================================================================
1147uint AllocateArrayNode::size_of() const { return sizeof(*this); }
1148
1149Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1150  if (remove_dead_region(phase, can_reshape))  return this;
1151  // Don't bother trying to transform a dead node
1152  if (in(0) && in(0)->is_top())  return NULL;
1153
1154  const Type* type = phase->type(Ideal_length());
1155  if (type->isa_int() && type->is_int()->_hi < 0) {
1156    if (can_reshape) {
1157      PhaseIterGVN *igvn = phase->is_IterGVN();
1158      // Unreachable fall through path (negative array length),
1159      // the allocation can only throw so disconnect it.
1160      Node* proj = proj_out(TypeFunc::Control);
1161      Node* catchproj = NULL;
1162      if (proj != NULL) {
1163        for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1164          Node *cn = proj->fast_out(i);
1165          if (cn->is_Catch()) {
1166            catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1167            break;
1168          }
1169        }
1170      }
1171      if (catchproj != NULL && catchproj->outcnt() > 0 &&
1172          (catchproj->outcnt() > 1 ||
1173           catchproj->unique_out()->Opcode() != Op_Halt)) {
1174        assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1175        Node* nproj = catchproj->clone();
1176        igvn->register_new_node_with_optimizer(nproj);
1177
1178        Node *frame = new (phase->C, 1) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1179        frame = phase->transform(frame);
1180        // Halt & Catch Fire
1181        Node *halt = new (phase->C, TypeFunc::Parms) HaltNode( nproj, frame );
1182        phase->C->root()->add_req(halt);
1183        phase->transform(halt);
1184
1185        igvn->replace_node(catchproj, phase->C->top());
1186        return this;
1187      }
1188    } else {
1189      // Can't correct it during regular GVN so register for IGVN
1190      phase->C->record_for_igvn(this);
1191    }
1192  }
1193  return NULL;
1194}
1195
1196// Retrieve the length from the AllocateArrayNode. Narrow the type with a
1197// CastII, if appropriate.  If we are not allowed to create new nodes, and
1198// a CastII is appropriate, return NULL.
1199Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1200  Node *length = in(AllocateNode::ALength);
1201  assert(length != NULL, "length is not null");
1202
1203  const TypeInt* length_type = phase->find_int_type(length);
1204  const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1205
1206  if (ary_type != NULL && length_type != NULL) {
1207    const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1208    if (narrow_length_type != length_type) {
1209      // Assert one of:
1210      //   - the narrow_length is 0
1211      //   - the narrow_length is not wider than length
1212      assert(narrow_length_type == TypeInt::ZERO ||
1213             (narrow_length_type->_hi <= length_type->_hi &&
1214              narrow_length_type->_lo >= length_type->_lo),
1215             "narrow type must be narrower than length type");
1216
1217      // Return NULL if new nodes are not allowed
1218      if (!allow_new_nodes) return NULL;
1219      // Create a cast which is control dependent on the initialization to
1220      // propagate the fact that the array length must be positive.
1221      length = new (phase->C, 2) CastIINode(length, narrow_length_type);
1222      length->set_req(0, initialization()->proj_out(0));
1223    }
1224  }
1225
1226  return length;
1227}
1228
1229//=============================================================================
1230uint LockNode::size_of() const { return sizeof(*this); }
1231
1232// Redundant lock elimination
1233//
1234// There are various patterns of locking where we release and
1235// immediately reacquire a lock in a piece of code where no operations
1236// occur in between that would be observable.  In those cases we can
1237// skip releasing and reacquiring the lock without violating any
1238// fairness requirements.  Doing this around a loop could cause a lock
1239// to be held for a very long time so we concentrate on non-looping
1240// control flow.  We also require that the operations are fully
1241// redundant meaning that we don't introduce new lock operations on
1242// some paths so to be able to eliminate it on others ala PRE.  This
1243// would probably require some more extensive graph manipulation to
1244// guarantee that the memory edges were all handled correctly.
1245//
1246// Assuming p is a simple predicate which can't trap in any way and s
1247// is a synchronized method consider this code:
1248//
1249//   s();
1250//   if (p)
1251//     s();
1252//   else
1253//     s();
1254//   s();
1255//
1256// 1. The unlocks of the first call to s can be eliminated if the
1257// locks inside the then and else branches are eliminated.
1258//
1259// 2. The unlocks of the then and else branches can be eliminated if
1260// the lock of the final call to s is eliminated.
1261//
1262// Either of these cases subsumes the simple case of sequential control flow
1263//
1264// Addtionally we can eliminate versions without the else case:
1265//
1266//   s();
1267//   if (p)
1268//     s();
1269//   s();
1270//
1271// 3. In this case we eliminate the unlock of the first s, the lock
1272// and unlock in the then case and the lock in the final s.
1273//
1274// Note also that in all these cases the then/else pieces don't have
1275// to be trivial as long as they begin and end with synchronization
1276// operations.
1277//
1278//   s();
1279//   if (p)
1280//     s();
1281//     f();
1282//     s();
1283//   s();
1284//
1285// The code will work properly for this case, leaving in the unlock
1286// before the call to f and the relock after it.
1287//
1288// A potentially interesting case which isn't handled here is when the
1289// locking is partially redundant.
1290//
1291//   s();
1292//   if (p)
1293//     s();
1294//
1295// This could be eliminated putting unlocking on the else case and
1296// eliminating the first unlock and the lock in the then side.
1297// Alternatively the unlock could be moved out of the then side so it
1298// was after the merge and the first unlock and second lock
1299// eliminated.  This might require less manipulation of the memory
1300// state to get correct.
1301//
1302// Additionally we might allow work between a unlock and lock before
1303// giving up eliminating the locks.  The current code disallows any
1304// conditional control flow between these operations.  A formulation
1305// similar to partial redundancy elimination computing the
1306// availability of unlocking and the anticipatability of locking at a
1307// program point would allow detection of fully redundant locking with
1308// some amount of work in between.  I'm not sure how often I really
1309// think that would occur though.  Most of the cases I've seen
1310// indicate it's likely non-trivial work would occur in between.
1311// There may be other more complicated constructs where we could
1312// eliminate locking but I haven't seen any others appear as hot or
1313// interesting.
1314//
1315// Locking and unlocking have a canonical form in ideal that looks
1316// roughly like this:
1317//
1318//              <obj>
1319//                | \\------+
1320//                |  \       \
1321//                | BoxLock   \
1322//                |  |   |     \
1323//                |  |    \     \
1324//                |  |   FastLock
1325//                |  |   /
1326//                |  |  /
1327//                |  |  |
1328//
1329//               Lock
1330//                |
1331//            Proj #0
1332//                |
1333//            MembarAcquire
1334//                |
1335//            Proj #0
1336//
1337//            MembarRelease
1338//                |
1339//            Proj #0
1340//                |
1341//              Unlock
1342//                |
1343//            Proj #0
1344//
1345//
1346// This code proceeds by processing Lock nodes during PhaseIterGVN
1347// and searching back through its control for the proper code
1348// patterns.  Once it finds a set of lock and unlock operations to
1349// eliminate they are marked as eliminatable which causes the
1350// expansion of the Lock and Unlock macro nodes to make the operation a NOP
1351//
1352//=============================================================================
1353
1354//
1355// Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1356//   - copy regions.  (These may not have been optimized away yet.)
1357//   - eliminated locking nodes
1358//
1359static Node *next_control(Node *ctrl) {
1360  if (ctrl == NULL)
1361    return NULL;
1362  while (1) {
1363    if (ctrl->is_Region()) {
1364      RegionNode *r = ctrl->as_Region();
1365      Node *n = r->is_copy();
1366      if (n == NULL)
1367        break;  // hit a region, return it
1368      else
1369        ctrl = n;
1370    } else if (ctrl->is_Proj()) {
1371      Node *in0 = ctrl->in(0);
1372      if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1373        ctrl = in0->in(0);
1374      } else {
1375        break;
1376      }
1377    } else {
1378      break; // found an interesting control
1379    }
1380  }
1381  return ctrl;
1382}
1383//
1384// Given a control, see if it's the control projection of an Unlock which
1385// operating on the same object as lock.
1386//
1387bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1388                                            GrowableArray<AbstractLockNode*> &lock_ops) {
1389  ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1390  if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1391    Node *n = ctrl_proj->in(0);
1392    if (n != NULL && n->is_Unlock()) {
1393      UnlockNode *unlock = n->as_Unlock();
1394      if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1395          BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1396          !unlock->is_eliminated()) {
1397        lock_ops.append(unlock);
1398        return true;
1399      }
1400    }
1401  }
1402  return false;
1403}
1404
1405//
1406// Find the lock matching an unlock.  Returns null if a safepoint
1407// or complicated control is encountered first.
1408LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1409  LockNode *lock_result = NULL;
1410  // find the matching lock, or an intervening safepoint
1411  Node *ctrl = next_control(unlock->in(0));
1412  while (1) {
1413    assert(ctrl != NULL, "invalid control graph");
1414    assert(!ctrl->is_Start(), "missing lock for unlock");
1415    if (ctrl->is_top()) break;  // dead control path
1416    if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1417    if (ctrl->is_SafePoint()) {
1418        break;  // found a safepoint (may be the lock we are searching for)
1419    } else if (ctrl->is_Region()) {
1420      // Check for a simple diamond pattern.  Punt on anything more complicated
1421      if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1422        Node *in1 = next_control(ctrl->in(1));
1423        Node *in2 = next_control(ctrl->in(2));
1424        if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1425             (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1426          ctrl = next_control(in1->in(0)->in(0));
1427        } else {
1428          break;
1429        }
1430      } else {
1431        break;
1432      }
1433    } else {
1434      ctrl = next_control(ctrl->in(0));  // keep searching
1435    }
1436  }
1437  if (ctrl->is_Lock()) {
1438    LockNode *lock = ctrl->as_Lock();
1439    if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1440        BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1441      lock_result = lock;
1442    }
1443  }
1444  return lock_result;
1445}
1446
1447// This code corresponds to case 3 above.
1448
1449bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1450                                                       GrowableArray<AbstractLockNode*> &lock_ops) {
1451  Node* if_node = node->in(0);
1452  bool  if_true = node->is_IfTrue();
1453
1454  if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1455    Node *lock_ctrl = next_control(if_node->in(0));
1456    if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1457      Node* lock1_node = NULL;
1458      ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1459      if (if_true) {
1460        if (proj->is_IfFalse() && proj->outcnt() == 1) {
1461          lock1_node = proj->unique_out();
1462        }
1463      } else {
1464        if (proj->is_IfTrue() && proj->outcnt() == 1) {
1465          lock1_node = proj->unique_out();
1466        }
1467      }
1468      if (lock1_node != NULL && lock1_node->is_Lock()) {
1469        LockNode *lock1 = lock1_node->as_Lock();
1470        if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1471            BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1472            !lock1->is_eliminated()) {
1473          lock_ops.append(lock1);
1474          return true;
1475        }
1476      }
1477    }
1478  }
1479
1480  lock_ops.trunc_to(0);
1481  return false;
1482}
1483
1484bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1485                               GrowableArray<AbstractLockNode*> &lock_ops) {
1486  // check each control merging at this point for a matching unlock.
1487  // in(0) should be self edge so skip it.
1488  for (int i = 1; i < (int)region->req(); i++) {
1489    Node *in_node = next_control(region->in(i));
1490    if (in_node != NULL) {
1491      if (find_matching_unlock(in_node, lock, lock_ops)) {
1492        // found a match so keep on checking.
1493        continue;
1494      } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1495        continue;
1496      }
1497
1498      // If we fall through to here then it was some kind of node we
1499      // don't understand or there wasn't a matching unlock, so give
1500      // up trying to merge locks.
1501      lock_ops.trunc_to(0);
1502      return false;
1503    }
1504  }
1505  return true;
1506
1507}
1508
1509#ifndef PRODUCT
1510//
1511// Create a counter which counts the number of times this lock is acquired
1512//
1513void AbstractLockNode::create_lock_counter(JVMState* state) {
1514  _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1515}
1516
1517void AbstractLockNode::set_eliminated_lock_counter() {
1518  if (_counter) {
1519    // Update the counter to indicate that this lock was eliminated.
1520    // The counter update code will stay around even though the
1521    // optimizer will eliminate the lock operation itself.
1522    _counter->set_tag(NamedCounter::EliminatedLockCounter);
1523  }
1524}
1525#endif
1526
1527//=============================================================================
1528Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1529
1530  // perform any generic optimizations first (returns 'this' or NULL)
1531  Node *result = SafePointNode::Ideal(phase, can_reshape);
1532  if (result != NULL)  return result;
1533  // Don't bother trying to transform a dead node
1534  if (in(0) && in(0)->is_top())  return NULL;
1535
1536  // Now see if we can optimize away this lock.  We don't actually
1537  // remove the locking here, we simply set the _eliminate flag which
1538  // prevents macro expansion from expanding the lock.  Since we don't
1539  // modify the graph, the value returned from this function is the
1540  // one computed above.
1541  if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1542    //
1543    // If we are locking an unescaped object, the lock/unlock is unnecessary
1544    //
1545    ConnectionGraph *cgr = phase->C->congraph();
1546    if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1547      assert(!is_eliminated() || is_coarsened(), "sanity");
1548      // The lock could be marked eliminated by lock coarsening
1549      // code during first IGVN before EA. Replace coarsened flag
1550      // to eliminate all associated locks/unlocks.
1551      this->set_non_esc_obj();
1552      return result;
1553    }
1554
1555    //
1556    // Try lock coarsening
1557    //
1558    PhaseIterGVN* iter = phase->is_IterGVN();
1559    if (iter != NULL && !is_eliminated()) {
1560
1561      GrowableArray<AbstractLockNode*>   lock_ops;
1562
1563      Node *ctrl = next_control(in(0));
1564
1565      // now search back for a matching Unlock
1566      if (find_matching_unlock(ctrl, this, lock_ops)) {
1567        // found an unlock directly preceding this lock.  This is the
1568        // case of single unlock directly control dependent on a
1569        // single lock which is the trivial version of case 1 or 2.
1570      } else if (ctrl->is_Region() ) {
1571        if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1572        // found lock preceded by multiple unlocks along all paths
1573        // joining at this point which is case 3 in description above.
1574        }
1575      } else {
1576        // see if this lock comes from either half of an if and the
1577        // predecessors merges unlocks and the other half of the if
1578        // performs a lock.
1579        if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1580          // found unlock splitting to an if with locks on both branches.
1581        }
1582      }
1583
1584      if (lock_ops.length() > 0) {
1585        // add ourselves to the list of locks to be eliminated.
1586        lock_ops.append(this);
1587
1588  #ifndef PRODUCT
1589        if (PrintEliminateLocks) {
1590          int locks = 0;
1591          int unlocks = 0;
1592          for (int i = 0; i < lock_ops.length(); i++) {
1593            AbstractLockNode* lock = lock_ops.at(i);
1594            if (lock->Opcode() == Op_Lock)
1595              locks++;
1596            else
1597              unlocks++;
1598            if (Verbose) {
1599              lock->dump(1);
1600            }
1601          }
1602          tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1603        }
1604  #endif
1605
1606        // for each of the identified locks, mark them
1607        // as eliminatable
1608        for (int i = 0; i < lock_ops.length(); i++) {
1609          AbstractLockNode* lock = lock_ops.at(i);
1610
1611          // Mark it eliminated by coarsening and update any counters
1612          lock->set_coarsened();
1613        }
1614      } else if (ctrl->is_Region() &&
1615                 iter->_worklist.member(ctrl)) {
1616        // We weren't able to find any opportunities but the region this
1617        // lock is control dependent on hasn't been processed yet so put
1618        // this lock back on the worklist so we can check again once any
1619        // region simplification has occurred.
1620        iter->_worklist.push(this);
1621      }
1622    }
1623  }
1624
1625  return result;
1626}
1627
1628//=============================================================================
1629bool LockNode::is_nested_lock_region() {
1630  BoxLockNode* box = box_node()->as_BoxLock();
1631  int stk_slot = box->stack_slot();
1632  if (stk_slot <= 0)
1633    return false; // External lock or it is not Box (Phi node).
1634
1635  // Ignore complex cases: merged locks or multiple locks.
1636  Node* obj = obj_node();
1637  LockNode* unique_lock = NULL;
1638  if (!box->is_simple_lock_region(&unique_lock, obj) ||
1639      (unique_lock != this)) {
1640    return false;
1641  }
1642
1643  // Look for external lock for the same object.
1644  SafePointNode* sfn = this->as_SafePoint();
1645  JVMState* youngest_jvms = sfn->jvms();
1646  int max_depth = youngest_jvms->depth();
1647  for (int depth = 1; depth <= max_depth; depth++) {
1648    JVMState* jvms = youngest_jvms->of_depth(depth);
1649    int num_mon  = jvms->nof_monitors();
1650    // Loop over monitors
1651    for (int idx = 0; idx < num_mon; idx++) {
1652      Node* obj_node = sfn->monitor_obj(jvms, idx);
1653      BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1654      if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1655        return true;
1656      }
1657    }
1658  }
1659  return false;
1660}
1661
1662//=============================================================================
1663uint UnlockNode::size_of() const { return sizeof(*this); }
1664
1665//=============================================================================
1666Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1667
1668  // perform any generic optimizations first (returns 'this' or NULL)
1669  Node *result = SafePointNode::Ideal(phase, can_reshape);
1670  if (result != NULL)  return result;
1671  // Don't bother trying to transform a dead node
1672  if (in(0) && in(0)->is_top())  return NULL;
1673
1674  // Now see if we can optimize away this unlock.  We don't actually
1675  // remove the unlocking here, we simply set the _eliminate flag which
1676  // prevents macro expansion from expanding the unlock.  Since we don't
1677  // modify the graph, the value returned from this function is the
1678  // one computed above.
1679  // Escape state is defined after Parse phase.
1680  if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1681    //
1682    // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1683    //
1684    ConnectionGraph *cgr = phase->C->congraph();
1685    if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1686      assert(!is_eliminated() || is_coarsened(), "sanity");
1687      // The lock could be marked eliminated by lock coarsening
1688      // code during first IGVN before EA. Replace coarsened flag
1689      // to eliminate all associated locks/unlocks.
1690      this->set_non_esc_obj();
1691    }
1692  }
1693  return result;
1694}
1695