callnode.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_callnode.cpp.incl"
31
32//=============================================================================
33uint StartNode::size_of() const { return sizeof(*this); }
34uint StartNode::cmp( const Node &n ) const
35{ return _domain == ((StartNode&)n)._domain; }
36const Type *StartNode::bottom_type() const { return _domain; }
37const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
38#ifndef PRODUCT
39void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
40#endif
41
42//------------------------------Ideal------------------------------------------
43Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
44  return remove_dead_region(phase, can_reshape) ? this : NULL;
45}
46
47//------------------------------calling_convention-----------------------------
48void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
49  Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
50}
51
52//------------------------------Registers--------------------------------------
53const RegMask &StartNode::in_RegMask(uint) const {
54  return RegMask::Empty;
55}
56
57//------------------------------match------------------------------------------
58// Construct projections for incoming parameters, and their RegMask info
59Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
60  switch (proj->_con) {
61  case TypeFunc::Control:
62  case TypeFunc::I_O:
63  case TypeFunc::Memory:
64    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
65  case TypeFunc::FramePtr:
66    return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
67  case TypeFunc::ReturnAdr:
68    return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
69  case TypeFunc::Parms:
70  default: {
71      uint parm_num = proj->_con - TypeFunc::Parms;
72      const Type *t = _domain->field_at(proj->_con);
73      if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
74        return new (match->C, 1) ConNode(Type::TOP);
75      uint ideal_reg = Matcher::base2reg[t->base()];
76      RegMask &rm = match->_calling_convention_mask[parm_num];
77      return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
78    }
79  }
80  return NULL;
81}
82
83//------------------------------StartOSRNode----------------------------------
84// The method start node for an on stack replacement adapter
85
86//------------------------------osr_domain-----------------------------
87const TypeTuple *StartOSRNode::osr_domain() {
88  const Type **fields = TypeTuple::fields(2);
89  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
90
91  return TypeTuple::make(TypeFunc::Parms+1, fields);
92}
93
94//=============================================================================
95const char * const ParmNode::names[TypeFunc::Parms+1] = {
96  "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
97};
98
99#ifndef PRODUCT
100void ParmNode::dump_spec(outputStream *st) const {
101  if( _con < TypeFunc::Parms ) {
102    st->print(names[_con]);
103  } else {
104    st->print("Parm%d: ",_con-TypeFunc::Parms);
105    // Verbose and WizardMode dump bottom_type for all nodes
106    if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
107  }
108}
109#endif
110
111uint ParmNode::ideal_reg() const {
112  switch( _con ) {
113  case TypeFunc::Control  : // fall through
114  case TypeFunc::I_O      : // fall through
115  case TypeFunc::Memory   : return 0;
116  case TypeFunc::FramePtr : // fall through
117  case TypeFunc::ReturnAdr: return Op_RegP;
118  default                 : assert( _con > TypeFunc::Parms, "" );
119    // fall through
120  case TypeFunc::Parms    : {
121    // Type of argument being passed
122    const Type *t = in(0)->as_Start()->_domain->field_at(_con);
123    return Matcher::base2reg[t->base()];
124  }
125  }
126  ShouldNotReachHere();
127  return 0;
128}
129
130//=============================================================================
131ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
132  init_req(TypeFunc::Control,cntrl);
133  init_req(TypeFunc::I_O,i_o);
134  init_req(TypeFunc::Memory,memory);
135  init_req(TypeFunc::FramePtr,frameptr);
136  init_req(TypeFunc::ReturnAdr,retadr);
137}
138
139Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
140  return remove_dead_region(phase, can_reshape) ? this : NULL;
141}
142
143const Type *ReturnNode::Value( PhaseTransform *phase ) const {
144  return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
145    ? Type::TOP
146    : Type::BOTTOM;
147}
148
149// Do we Match on this edge index or not?  No edges on return nodes
150uint ReturnNode::match_edge(uint idx) const {
151  return 0;
152}
153
154
155#ifndef PRODUCT
156void ReturnNode::dump_req() const {
157  // Dump the required inputs, enclosed in '(' and ')'
158  uint i;                       // Exit value of loop
159  for( i=0; i<req(); i++ ) {    // For all required inputs
160    if( i == TypeFunc::Parms ) tty->print("returns");
161    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
162    else tty->print("_ ");
163  }
164}
165#endif
166
167//=============================================================================
168RethrowNode::RethrowNode(
169  Node* cntrl,
170  Node* i_o,
171  Node* memory,
172  Node* frameptr,
173  Node* ret_adr,
174  Node* exception
175) : Node(TypeFunc::Parms + 1) {
176  init_req(TypeFunc::Control  , cntrl    );
177  init_req(TypeFunc::I_O      , i_o      );
178  init_req(TypeFunc::Memory   , memory   );
179  init_req(TypeFunc::FramePtr , frameptr );
180  init_req(TypeFunc::ReturnAdr, ret_adr);
181  init_req(TypeFunc::Parms    , exception);
182}
183
184Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
185  return remove_dead_region(phase, can_reshape) ? this : NULL;
186}
187
188const Type *RethrowNode::Value( PhaseTransform *phase ) const {
189  return (phase->type(in(TypeFunc::Control)) == Type::TOP)
190    ? Type::TOP
191    : Type::BOTTOM;
192}
193
194uint RethrowNode::match_edge(uint idx) const {
195  return 0;
196}
197
198#ifndef PRODUCT
199void RethrowNode::dump_req() const {
200  // Dump the required inputs, enclosed in '(' and ')'
201  uint i;                       // Exit value of loop
202  for( i=0; i<req(); i++ ) {    // For all required inputs
203    if( i == TypeFunc::Parms ) tty->print("exception");
204    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
205    else tty->print("_ ");
206  }
207}
208#endif
209
210//=============================================================================
211// Do we Match on this edge index or not?  Match only target address & method
212uint TailCallNode::match_edge(uint idx) const {
213  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
214}
215
216//=============================================================================
217// Do we Match on this edge index or not?  Match only target address & oop
218uint TailJumpNode::match_edge(uint idx) const {
219  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
220}
221
222//=============================================================================
223JVMState::JVMState(ciMethod* method, JVMState* caller) {
224  assert(method != NULL, "must be valid call site");
225  _method = method;
226  debug_only(_bci = -99);  // random garbage value
227  debug_only(_map = (SafePointNode*)-1);
228  _caller = caller;
229  _depth  = 1 + (caller == NULL ? 0 : caller->depth());
230  _locoff = TypeFunc::Parms;
231  _stkoff = _locoff + _method->max_locals();
232  _monoff = _stkoff + _method->max_stack();
233  _scloff = _monoff;
234  _endoff = _monoff;
235  _sp = 0;
236}
237JVMState::JVMState(int stack_size) {
238  _method = NULL;
239  _bci = InvocationEntryBci;
240  debug_only(_map = (SafePointNode*)-1);
241  _caller = NULL;
242  _depth  = 1;
243  _locoff = TypeFunc::Parms;
244  _stkoff = _locoff;
245  _monoff = _stkoff + stack_size;
246  _scloff = _monoff;
247  _endoff = _monoff;
248  _sp = 0;
249}
250
251//--------------------------------of_depth-------------------------------------
252JVMState* JVMState::of_depth(int d) const {
253  const JVMState* jvmp = this;
254  assert(0 < d && (uint)d <= depth(), "oob");
255  for (int skip = depth() - d; skip > 0; skip--) {
256    jvmp = jvmp->caller();
257  }
258  assert(jvmp->depth() == (uint)d, "found the right one");
259  return (JVMState*)jvmp;
260}
261
262//-----------------------------same_calls_as-----------------------------------
263bool JVMState::same_calls_as(const JVMState* that) const {
264  if (this == that)                    return true;
265  if (this->depth() != that->depth())  return false;
266  const JVMState* p = this;
267  const JVMState* q = that;
268  for (;;) {
269    if (p->_method != q->_method)    return false;
270    if (p->_method == NULL)          return true;   // bci is irrelevant
271    if (p->_bci    != q->_bci)       return false;
272    p = p->caller();
273    q = q->caller();
274    if (p == q)                      return true;
275    assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
276  }
277}
278
279//------------------------------debug_start------------------------------------
280uint JVMState::debug_start()  const {
281  debug_only(JVMState* jvmroot = of_depth(1));
282  assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
283  return of_depth(1)->locoff();
284}
285
286//-------------------------------debug_end-------------------------------------
287uint JVMState::debug_end() const {
288  debug_only(JVMState* jvmroot = of_depth(1));
289  assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
290  return endoff();
291}
292
293//------------------------------debug_depth------------------------------------
294uint JVMState::debug_depth() const {
295  uint total = 0;
296  for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
297    total += jvmp->debug_size();
298  }
299  return total;
300}
301
302#ifndef PRODUCT
303
304//------------------------------format_helper----------------------------------
305// Given an allocation (a Chaitin object) and a Node decide if the Node carries
306// any defined value or not.  If it does, print out the register or constant.
307static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
308  if (n == NULL) { st->print(" NULL"); return; }
309  if (n->is_SafePointScalarObject()) {
310    // Scalar replacement.
311    SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
312    scobjs->append_if_missing(spobj);
313    int sco_n = scobjs->find(spobj);
314    assert(sco_n >= 0, "");
315    st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
316    return;
317  }
318  if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
319    char buf[50];
320    regalloc->dump_register(n,buf);
321    st->print(" %s%d]=%s",msg,i,buf);
322  } else {                      // No register, but might be constant
323    const Type *t = n->bottom_type();
324    switch (t->base()) {
325    case Type::Int:
326      st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
327      break;
328    case Type::AnyPtr:
329      assert( t == TypePtr::NULL_PTR, "" );
330      st->print(" %s%d]=#NULL",msg,i);
331      break;
332    case Type::AryPtr:
333    case Type::KlassPtr:
334    case Type::InstPtr:
335      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
336      break;
337    case Type::RawPtr:
338      st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
339      break;
340    case Type::DoubleCon:
341      st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
342      break;
343    case Type::FloatCon:
344      st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
345      break;
346    case Type::Long:
347      st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
348      break;
349    case Type::Half:
350    case Type::Top:
351      st->print(" %s%d]=_",msg,i);
352      break;
353    default: ShouldNotReachHere();
354    }
355  }
356}
357
358//------------------------------format-----------------------------------------
359void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
360  st->print("        #");
361  if( _method ) {
362    _method->print_short_name(st);
363    st->print(" @ bci:%d ",_bci);
364  } else {
365    st->print_cr(" runtime stub ");
366    return;
367  }
368  if (n->is_MachSafePoint()) {
369    GrowableArray<SafePointScalarObjectNode*> scobjs;
370    MachSafePointNode *mcall = n->as_MachSafePoint();
371    uint i;
372    // Print locals
373    for( i = 0; i < (uint)loc_size(); i++ )
374      format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
375    // Print stack
376    for (i = 0; i < (uint)stk_size(); i++) {
377      if ((uint)(_stkoff + i) >= mcall->len())
378        st->print(" oob ");
379      else
380       format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
381    }
382    for (i = 0; (int)i < nof_monitors(); i++) {
383      Node *box = mcall->monitor_box(this, i);
384      Node *obj = mcall->monitor_obj(this, i);
385      if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
386        while( !box->is_BoxLock() )  box = box->in(1);
387        format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
388      } else {
389        OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
390        st->print(" MON-BOX%d=%s+%d",
391                   i,
392                   OptoReg::regname(OptoReg::c_frame_pointer),
393                   regalloc->reg2offset(box_reg));
394      }
395      format_helper( regalloc, st, obj, "MON-OBJ[", i, &scobjs );
396    }
397
398    for (i = 0; i < (uint)scobjs.length(); i++) {
399      // Scalar replaced objects.
400      st->print_cr("");
401      st->print("        # ScObj" INT32_FORMAT " ", i);
402      SafePointScalarObjectNode* spobj = scobjs.at(i);
403      ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
404      assert(cik->is_instance_klass() ||
405             cik->is_array_klass(), "Not supported allocation.");
406      ciInstanceKlass *iklass = NULL;
407      if (cik->is_instance_klass()) {
408        cik->print_name_on(st);
409        iklass = cik->as_instance_klass();
410      } else if (cik->is_type_array_klass()) {
411        cik->as_array_klass()->base_element_type()->print_name_on(st);
412        st->print("[%d]=", spobj->n_fields());
413      } else if (cik->is_obj_array_klass()) {
414        ciType* cie = cik->as_array_klass()->base_element_type();
415        int ndim = 1;
416        while (cie->is_obj_array_klass()) {
417          ndim += 1;
418          cie = cie->as_array_klass()->base_element_type();
419        }
420        cie->print_name_on(st);
421        while (ndim-- > 0) {
422          st->print("[]");
423        }
424        st->print("[%d]=", spobj->n_fields());
425      }
426      st->print("{");
427      uint nf = spobj->n_fields();
428      if (nf > 0) {
429        uint first_ind = spobj->first_index();
430        Node* fld_node = mcall->in(first_ind);
431        ciField* cifield;
432        if (iklass != NULL) {
433          st->print(" [");
434          cifield = iklass->nonstatic_field_at(0);
435          cifield->print_name_on(st);
436          format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
437        } else {
438          format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
439        }
440        for (uint j = 1; j < nf; j++) {
441          fld_node = mcall->in(first_ind+j);
442          if (iklass != NULL) {
443            st->print(", [");
444            cifield = iklass->nonstatic_field_at(j);
445            cifield->print_name_on(st);
446            format_helper( regalloc, st, fld_node, ":", j, &scobjs );
447          } else {
448            format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
449          }
450        }
451      }
452      st->print(" }");
453    }
454  }
455  st->print_cr("");
456  if (caller() != NULL)  caller()->format(regalloc, n, st);
457}
458
459
460void JVMState::dump_spec(outputStream *st) const {
461  if (_method != NULL) {
462    bool printed = false;
463    if (!Verbose) {
464      // The JVMS dumps make really, really long lines.
465      // Take out the most boring parts, which are the package prefixes.
466      char buf[500];
467      stringStream namest(buf, sizeof(buf));
468      _method->print_short_name(&namest);
469      if (namest.count() < sizeof(buf)) {
470        const char* name = namest.base();
471        if (name[0] == ' ')  ++name;
472        const char* endcn = strchr(name, ':');  // end of class name
473        if (endcn == NULL)  endcn = strchr(name, '(');
474        if (endcn == NULL)  endcn = name + strlen(name);
475        while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
476          --endcn;
477        st->print(" %s", endcn);
478        printed = true;
479      }
480    }
481    if (!printed)
482      _method->print_short_name(st);
483    st->print(" @ bci:%d",_bci);
484  } else {
485    st->print(" runtime stub");
486  }
487  if (caller() != NULL)  caller()->dump_spec(st);
488}
489
490
491void JVMState::dump_on(outputStream* st) const {
492  if (_map && !((uintptr_t)_map & 1)) {
493    if (_map->len() > _map->req()) {  // _map->has_exceptions()
494      Node* ex = _map->in(_map->req());  // _map->next_exception()
495      // skip the first one; it's already being printed
496      while (ex != NULL && ex->len() > ex->req()) {
497        ex = ex->in(ex->req());  // ex->next_exception()
498        ex->dump(1);
499      }
500    }
501    _map->dump(2);
502  }
503  st->print("JVMS depth=%d loc=%d stk=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d method=",
504             depth(), locoff(), stkoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci());
505  if (_method == NULL) {
506    st->print_cr("(none)");
507  } else {
508    _method->print_name(st);
509    st->cr();
510    if (bci() >= 0 && bci() < _method->code_size()) {
511      st->print("    bc: ");
512      _method->print_codes_on(bci(), bci()+1, st);
513    }
514  }
515  if (caller() != NULL) {
516    caller()->dump_on(st);
517  }
518}
519
520// Extra way to dump a jvms from the debugger,
521// to avoid a bug with C++ member function calls.
522void dump_jvms(JVMState* jvms) {
523  jvms->dump();
524}
525#endif
526
527//--------------------------clone_shallow--------------------------------------
528JVMState* JVMState::clone_shallow(Compile* C) const {
529  JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
530  n->set_bci(_bci);
531  n->set_locoff(_locoff);
532  n->set_stkoff(_stkoff);
533  n->set_monoff(_monoff);
534  n->set_scloff(_scloff);
535  n->set_endoff(_endoff);
536  n->set_sp(_sp);
537  n->set_map(_map);
538  return n;
539}
540
541//---------------------------clone_deep----------------------------------------
542JVMState* JVMState::clone_deep(Compile* C) const {
543  JVMState* n = clone_shallow(C);
544  for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
545    p->_caller = p->_caller->clone_shallow(C);
546  }
547  assert(n->depth() == depth(), "sanity");
548  assert(n->debug_depth() == debug_depth(), "sanity");
549  return n;
550}
551
552//=============================================================================
553uint CallNode::cmp( const Node &n ) const
554{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
555#ifndef PRODUCT
556void CallNode::dump_req() const {
557  // Dump the required inputs, enclosed in '(' and ')'
558  uint i;                       // Exit value of loop
559  for( i=0; i<req(); i++ ) {    // For all required inputs
560    if( i == TypeFunc::Parms ) tty->print("(");
561    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
562    else tty->print("_ ");
563  }
564  tty->print(")");
565}
566
567void CallNode::dump_spec(outputStream *st) const {
568  st->print(" ");
569  tf()->dump_on(st);
570  if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
571  if (jvms() != NULL)  jvms()->dump_spec(st);
572}
573#endif
574
575const Type *CallNode::bottom_type() const { return tf()->range(); }
576const Type *CallNode::Value(PhaseTransform *phase) const {
577  if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
578  return tf()->range();
579}
580
581//------------------------------calling_convention-----------------------------
582void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
583  // Use the standard compiler calling convention
584  Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
585}
586
587
588//------------------------------match------------------------------------------
589// Construct projections for control, I/O, memory-fields, ..., and
590// return result(s) along with their RegMask info
591Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
592  switch (proj->_con) {
593  case TypeFunc::Control:
594  case TypeFunc::I_O:
595  case TypeFunc::Memory:
596    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
597
598  case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
599    assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
600    // 2nd half of doubles and longs
601    return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
602
603  case TypeFunc::Parms: {       // Normal returns
604    uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
605    OptoRegPair regs = is_CallRuntime()
606      ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
607      : match->  return_value(ideal_reg,true); // Calls into compiled Java code
608    RegMask rm = RegMask(regs.first());
609    if( OptoReg::is_valid(regs.second()) )
610      rm.Insert( regs.second() );
611    return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
612  }
613
614  case TypeFunc::ReturnAdr:
615  case TypeFunc::FramePtr:
616  default:
617    ShouldNotReachHere();
618  }
619  return NULL;
620}
621
622// Do we Match on this edge index or not?  Match no edges
623uint CallNode::match_edge(uint idx) const {
624  return 0;
625}
626
627//
628// Determine whether the call could modify the field of the specified
629// instance at the specified offset.
630//
631bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
632  const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
633
634  // if not an InstPtr or not an instance type, assume the worst
635  if (adrInst_t == NULL || !adrInst_t->is_instance_field()) {
636    return true;
637  }
638  Compile *C = phase->C;
639  int offset = adrInst_t->offset();
640  assert(adrInst_t->klass_is_exact() && offset >= 0, "should be valid offset");
641  ciKlass* adr_k = adrInst_t->klass();
642  assert(adr_k->is_loaded() &&
643         adr_k->is_java_klass() &&
644         !adr_k->is_interface(),
645         "only non-abstract classes are expected");
646
647  int base_idx = C->get_alias_index(adrInst_t);
648  int size = BytesPerLong; // If we don't know the size, assume largest.
649  if (adrInst_t->isa_instptr()) {
650    ciField* field = C->alias_type(base_idx)->field();
651    if (field != NULL) {
652      size = field->size_in_bytes();
653    }
654  } else {
655    assert(adrInst_t->isa_aryptr(), "only arrays are expected");
656    size = type2aelembytes(adr_k->as_array_klass()->element_type()->basic_type());
657  }
658
659  ciMethod * meth = is_CallStaticJava() ?  as_CallStaticJava()->method() : NULL;
660  BCEscapeAnalyzer *bcea = (meth != NULL) ? meth->get_bcea() : NULL;
661
662  const TypeTuple * d = tf()->domain();
663  for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
664    const Type* t = d->field_at(i);
665    Node *arg = in(i);
666    const Type *at = phase->type(arg);
667    if (at == TypePtr::NULL_PTR || at == Type::TOP)
668      continue;  // null can't affect anything
669
670    const TypeOopPtr *at_ptr = at->isa_oopptr();
671    if (!arg->is_top() && (t->isa_oopptr() != NULL ||
672                           t->isa_ptr() && at_ptr != NULL)) {
673      assert(at_ptr != NULL, "expecting an OopPtr");
674      ciKlass* at_k = at_ptr->klass();
675      if ((adrInst_t->base() == at_ptr->base()) &&
676          at_k->is_loaded() &&
677          at_k->is_java_klass()) {
678        // If we have found an argument matching addr_t, check if the field
679        // at the specified offset is modified.
680        if ((at_k->is_interface() || adr_k == at_k ||
681             adr_k->is_subclass_of(at_k) && !at_ptr->klass_is_exact()) &&
682            (bcea == NULL ||
683             bcea->is_arg_modified(i - TypeFunc::Parms, offset, size))) {
684          return true;
685        }
686      }
687    }
688  }
689  return false;
690}
691
692// Does this call have a direct reference to n other than debug information?
693bool CallNode::has_non_debug_use(Node *n) {
694  const TypeTuple * d = tf()->domain();
695  for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
696    Node *arg = in(i);
697    if (arg == n) {
698      return true;
699    }
700  }
701  return false;
702}
703
704// Returns the unique CheckCastPP of a call
705// or 'this' if there are several CheckCastPP
706// or returns NULL if there is no one.
707Node *CallNode::result_cast() {
708  Node *cast = NULL;
709
710  Node *p = proj_out(TypeFunc::Parms);
711  if (p == NULL)
712    return NULL;
713
714  for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
715    Node *use = p->fast_out(i);
716    if (use->is_CheckCastPP()) {
717      if (cast != NULL) {
718        return this;  // more than 1 CheckCastPP
719      }
720      cast = use;
721    }
722  }
723  return cast;
724}
725
726
727//=============================================================================
728uint CallJavaNode::size_of() const { return sizeof(*this); }
729uint CallJavaNode::cmp( const Node &n ) const {
730  CallJavaNode &call = (CallJavaNode&)n;
731  return CallNode::cmp(call) && _method == call._method;
732}
733#ifndef PRODUCT
734void CallJavaNode::dump_spec(outputStream *st) const {
735  if( _method ) _method->print_short_name(st);
736  CallNode::dump_spec(st);
737}
738#endif
739
740//=============================================================================
741uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
742uint CallStaticJavaNode::cmp( const Node &n ) const {
743  CallStaticJavaNode &call = (CallStaticJavaNode&)n;
744  return CallJavaNode::cmp(call);
745}
746
747//----------------------------uncommon_trap_request----------------------------
748// If this is an uncommon trap, return the request code, else zero.
749int CallStaticJavaNode::uncommon_trap_request() const {
750  if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
751    return extract_uncommon_trap_request(this);
752  }
753  return 0;
754}
755int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
756#ifndef PRODUCT
757  if (!(call->req() > TypeFunc::Parms &&
758        call->in(TypeFunc::Parms) != NULL &&
759        call->in(TypeFunc::Parms)->is_Con())) {
760    assert(_in_dump_cnt != 0, "OK if dumping");
761    tty->print("[bad uncommon trap]");
762    return 0;
763  }
764#endif
765  return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
766}
767
768#ifndef PRODUCT
769void CallStaticJavaNode::dump_spec(outputStream *st) const {
770  st->print("# Static ");
771  if (_name != NULL) {
772    st->print("%s", _name);
773    int trap_req = uncommon_trap_request();
774    if (trap_req != 0) {
775      char buf[100];
776      st->print("(%s)",
777                 Deoptimization::format_trap_request(buf, sizeof(buf),
778                                                     trap_req));
779    }
780    st->print(" ");
781  }
782  CallJavaNode::dump_spec(st);
783}
784#endif
785
786//=============================================================================
787uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
788uint CallDynamicJavaNode::cmp( const Node &n ) const {
789  CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
790  return CallJavaNode::cmp(call);
791}
792#ifndef PRODUCT
793void CallDynamicJavaNode::dump_spec(outputStream *st) const {
794  st->print("# Dynamic ");
795  CallJavaNode::dump_spec(st);
796}
797#endif
798
799//=============================================================================
800uint CallRuntimeNode::size_of() const { return sizeof(*this); }
801uint CallRuntimeNode::cmp( const Node &n ) const {
802  CallRuntimeNode &call = (CallRuntimeNode&)n;
803  return CallNode::cmp(call) && !strcmp(_name,call._name);
804}
805#ifndef PRODUCT
806void CallRuntimeNode::dump_spec(outputStream *st) const {
807  st->print("# ");
808  st->print(_name);
809  CallNode::dump_spec(st);
810}
811#endif
812
813//------------------------------calling_convention-----------------------------
814void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
815  Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
816}
817
818//=============================================================================
819//------------------------------calling_convention-----------------------------
820
821
822//=============================================================================
823#ifndef PRODUCT
824void CallLeafNode::dump_spec(outputStream *st) const {
825  st->print("# ");
826  st->print(_name);
827  CallNode::dump_spec(st);
828}
829#endif
830
831//=============================================================================
832
833void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
834  assert(verify_jvms(jvms), "jvms must match");
835  int loc = jvms->locoff() + idx;
836  if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
837    // If current local idx is top then local idx - 1 could
838    // be a long/double that needs to be killed since top could
839    // represent the 2nd half ofthe long/double.
840    uint ideal = in(loc -1)->ideal_reg();
841    if (ideal == Op_RegD || ideal == Op_RegL) {
842      // set other (low index) half to top
843      set_req(loc - 1, in(loc));
844    }
845  }
846  set_req(loc, c);
847}
848
849uint SafePointNode::size_of() const { return sizeof(*this); }
850uint SafePointNode::cmp( const Node &n ) const {
851  return (&n == this);          // Always fail except on self
852}
853
854//-------------------------set_next_exception----------------------------------
855void SafePointNode::set_next_exception(SafePointNode* n) {
856  assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
857  if (len() == req()) {
858    if (n != NULL)  add_prec(n);
859  } else {
860    set_prec(req(), n);
861  }
862}
863
864
865//----------------------------next_exception-----------------------------------
866SafePointNode* SafePointNode::next_exception() const {
867  if (len() == req()) {
868    return NULL;
869  } else {
870    Node* n = in(req());
871    assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
872    return (SafePointNode*) n;
873  }
874}
875
876
877//------------------------------Ideal------------------------------------------
878// Skip over any collapsed Regions
879Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
880  if (remove_dead_region(phase, can_reshape))  return this;
881
882  return NULL;
883}
884
885//------------------------------Identity---------------------------------------
886// Remove obviously duplicate safepoints
887Node *SafePointNode::Identity( PhaseTransform *phase ) {
888
889  // If you have back to back safepoints, remove one
890  if( in(TypeFunc::Control)->is_SafePoint() )
891    return in(TypeFunc::Control);
892
893  if( in(0)->is_Proj() ) {
894    Node *n0 = in(0)->in(0);
895    // Check if he is a call projection (except Leaf Call)
896    if( n0->is_Catch() ) {
897      n0 = n0->in(0)->in(0);
898      assert( n0->is_Call(), "expect a call here" );
899    }
900    if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
901      // Useless Safepoint, so remove it
902      return in(TypeFunc::Control);
903    }
904  }
905
906  return this;
907}
908
909//------------------------------Value------------------------------------------
910const Type *SafePointNode::Value( PhaseTransform *phase ) const {
911  if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
912  if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
913  return Type::CONTROL;
914}
915
916#ifndef PRODUCT
917void SafePointNode::dump_spec(outputStream *st) const {
918  st->print(" SafePoint ");
919}
920#endif
921
922const RegMask &SafePointNode::in_RegMask(uint idx) const {
923  if( idx < TypeFunc::Parms ) return RegMask::Empty;
924  // Values outside the domain represent debug info
925  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
926}
927const RegMask &SafePointNode::out_RegMask() const {
928  return RegMask::Empty;
929}
930
931
932void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
933  assert((int)grow_by > 0, "sanity");
934  int monoff = jvms->monoff();
935  int scloff = jvms->scloff();
936  int endoff = jvms->endoff();
937  assert(endoff == (int)req(), "no other states or debug info after me");
938  Node* top = Compile::current()->top();
939  for (uint i = 0; i < grow_by; i++) {
940    ins_req(monoff, top);
941  }
942  jvms->set_monoff(monoff + grow_by);
943  jvms->set_scloff(scloff + grow_by);
944  jvms->set_endoff(endoff + grow_by);
945}
946
947void SafePointNode::push_monitor(const FastLockNode *lock) {
948  // Add a LockNode, which points to both the original BoxLockNode (the
949  // stack space for the monitor) and the Object being locked.
950  const int MonitorEdges = 2;
951  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
952  assert(req() == jvms()->endoff(), "correct sizing");
953  int nextmon = jvms()->scloff();
954  if (GenerateSynchronizationCode) {
955    add_req(lock->box_node());
956    add_req(lock->obj_node());
957  } else {
958    add_req(NULL);
959    add_req(NULL);
960  }
961  jvms()->set_scloff(nextmon+MonitorEdges);
962  jvms()->set_endoff(req());
963}
964
965void SafePointNode::pop_monitor() {
966  // Delete last monitor from debug info
967  debug_only(int num_before_pop = jvms()->nof_monitors());
968  const int MonitorEdges = (1<<JVMState::logMonitorEdges);
969  int scloff = jvms()->scloff();
970  int endoff = jvms()->endoff();
971  int new_scloff = scloff - MonitorEdges;
972  int new_endoff = endoff - MonitorEdges;
973  jvms()->set_scloff(new_scloff);
974  jvms()->set_endoff(new_endoff);
975  while (scloff > new_scloff)  del_req(--scloff);
976  assert(jvms()->nof_monitors() == num_before_pop-1, "");
977}
978
979Node *SafePointNode::peek_monitor_box() const {
980  int mon = jvms()->nof_monitors() - 1;
981  assert(mon >= 0, "most have a monitor");
982  return monitor_box(jvms(), mon);
983}
984
985Node *SafePointNode::peek_monitor_obj() const {
986  int mon = jvms()->nof_monitors() - 1;
987  assert(mon >= 0, "most have a monitor");
988  return monitor_obj(jvms(), mon);
989}
990
991// Do we Match on this edge index or not?  Match no edges
992uint SafePointNode::match_edge(uint idx) const {
993  if( !needs_polling_address_input() )
994    return 0;
995
996  return (TypeFunc::Parms == idx);
997}
998
999//==============  SafePointScalarObjectNode  ==============
1000
1001SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1002#ifdef ASSERT
1003                                                     AllocateNode* alloc,
1004#endif
1005                                                     uint first_index,
1006                                                     uint n_fields) :
1007  TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1008#ifdef ASSERT
1009  _alloc(alloc),
1010#endif
1011  _first_index(first_index),
1012  _n_fields(n_fields)
1013{
1014  init_class_id(Class_SafePointScalarObject);
1015}
1016
1017
1018uint SafePointScalarObjectNode::ideal_reg() const {
1019  return 0; // No matching to machine instruction
1020}
1021
1022const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1023  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1024}
1025
1026const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1027  return RegMask::Empty;
1028}
1029
1030uint SafePointScalarObjectNode::match_edge(uint idx) const {
1031  return 0;
1032}
1033
1034SafePointScalarObjectNode*
1035SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
1036  void* cached = (*sosn_map)[(void*)this];
1037  if (cached != NULL) {
1038    return (SafePointScalarObjectNode*)cached;
1039  }
1040  Compile* C = Compile::current();
1041  SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1042  res->_first_index += jvms_adj;
1043  sosn_map->Insert((void*)this, (void*)res);
1044  return res;
1045}
1046
1047
1048#ifndef PRODUCT
1049void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1050  st->print(" # fields@[%d..%d]", first_index(),
1051             first_index() + n_fields() - 1);
1052}
1053
1054#endif
1055
1056//=============================================================================
1057uint AllocateNode::size_of() const { return sizeof(*this); }
1058
1059AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1060                           Node *ctrl, Node *mem, Node *abio,
1061                           Node *size, Node *klass_node, Node *initial_test)
1062  : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1063{
1064  init_class_id(Class_Allocate);
1065  init_flags(Flag_is_macro);
1066  _is_scalar_replaceable = false;
1067  Node *topnode = C->top();
1068
1069  init_req( TypeFunc::Control  , ctrl );
1070  init_req( TypeFunc::I_O      , abio );
1071  init_req( TypeFunc::Memory   , mem );
1072  init_req( TypeFunc::ReturnAdr, topnode );
1073  init_req( TypeFunc::FramePtr , topnode );
1074  init_req( AllocSize          , size);
1075  init_req( KlassNode          , klass_node);
1076  init_req( InitialTest        , initial_test);
1077  init_req( ALength            , topnode);
1078  C->add_macro_node(this);
1079}
1080
1081//=============================================================================
1082uint AllocateArrayNode::size_of() const { return sizeof(*this); }
1083
1084//=============================================================================
1085uint LockNode::size_of() const { return sizeof(*this); }
1086
1087// Redundant lock elimination
1088//
1089// There are various patterns of locking where we release and
1090// immediately reacquire a lock in a piece of code where no operations
1091// occur in between that would be observable.  In those cases we can
1092// skip releasing and reacquiring the lock without violating any
1093// fairness requirements.  Doing this around a loop could cause a lock
1094// to be held for a very long time so we concentrate on non-looping
1095// control flow.  We also require that the operations are fully
1096// redundant meaning that we don't introduce new lock operations on
1097// some paths so to be able to eliminate it on others ala PRE.  This
1098// would probably require some more extensive graph manipulation to
1099// guarantee that the memory edges were all handled correctly.
1100//
1101// Assuming p is a simple predicate which can't trap in any way and s
1102// is a synchronized method consider this code:
1103//
1104//   s();
1105//   if (p)
1106//     s();
1107//   else
1108//     s();
1109//   s();
1110//
1111// 1. The unlocks of the first call to s can be eliminated if the
1112// locks inside the then and else branches are eliminated.
1113//
1114// 2. The unlocks of the then and else branches can be eliminated if
1115// the lock of the final call to s is eliminated.
1116//
1117// Either of these cases subsumes the simple case of sequential control flow
1118//
1119// Addtionally we can eliminate versions without the else case:
1120//
1121//   s();
1122//   if (p)
1123//     s();
1124//   s();
1125//
1126// 3. In this case we eliminate the unlock of the first s, the lock
1127// and unlock in the then case and the lock in the final s.
1128//
1129// Note also that in all these cases the then/else pieces don't have
1130// to be trivial as long as they begin and end with synchronization
1131// operations.
1132//
1133//   s();
1134//   if (p)
1135//     s();
1136//     f();
1137//     s();
1138//   s();
1139//
1140// The code will work properly for this case, leaving in the unlock
1141// before the call to f and the relock after it.
1142//
1143// A potentially interesting case which isn't handled here is when the
1144// locking is partially redundant.
1145//
1146//   s();
1147//   if (p)
1148//     s();
1149//
1150// This could be eliminated putting unlocking on the else case and
1151// eliminating the first unlock and the lock in the then side.
1152// Alternatively the unlock could be moved out of the then side so it
1153// was after the merge and the first unlock and second lock
1154// eliminated.  This might require less manipulation of the memory
1155// state to get correct.
1156//
1157// Additionally we might allow work between a unlock and lock before
1158// giving up eliminating the locks.  The current code disallows any
1159// conditional control flow between these operations.  A formulation
1160// similar to partial redundancy elimination computing the
1161// availability of unlocking and the anticipatability of locking at a
1162// program point would allow detection of fully redundant locking with
1163// some amount of work in between.  I'm not sure how often I really
1164// think that would occur though.  Most of the cases I've seen
1165// indicate it's likely non-trivial work would occur in between.
1166// There may be other more complicated constructs where we could
1167// eliminate locking but I haven't seen any others appear as hot or
1168// interesting.
1169//
1170// Locking and unlocking have a canonical form in ideal that looks
1171// roughly like this:
1172//
1173//              <obj>
1174//                | \\------+
1175//                |  \       \
1176//                | BoxLock   \
1177//                |  |   |     \
1178//                |  |    \     \
1179//                |  |   FastLock
1180//                |  |   /
1181//                |  |  /
1182//                |  |  |
1183//
1184//               Lock
1185//                |
1186//            Proj #0
1187//                |
1188//            MembarAcquire
1189//                |
1190//            Proj #0
1191//
1192//            MembarRelease
1193//                |
1194//            Proj #0
1195//                |
1196//              Unlock
1197//                |
1198//            Proj #0
1199//
1200//
1201// This code proceeds by processing Lock nodes during PhaseIterGVN
1202// and searching back through its control for the proper code
1203// patterns.  Once it finds a set of lock and unlock operations to
1204// eliminate they are marked as eliminatable which causes the
1205// expansion of the Lock and Unlock macro nodes to make the operation a NOP
1206//
1207//=============================================================================
1208
1209//
1210// Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1211//   - copy regions.  (These may not have been optimized away yet.)
1212//   - eliminated locking nodes
1213//
1214static Node *next_control(Node *ctrl) {
1215  if (ctrl == NULL)
1216    return NULL;
1217  while (1) {
1218    if (ctrl->is_Region()) {
1219      RegionNode *r = ctrl->as_Region();
1220      Node *n = r->is_copy();
1221      if (n == NULL)
1222        break;  // hit a region, return it
1223      else
1224        ctrl = n;
1225    } else if (ctrl->is_Proj()) {
1226      Node *in0 = ctrl->in(0);
1227      if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1228        ctrl = in0->in(0);
1229      } else {
1230        break;
1231      }
1232    } else {
1233      break; // found an interesting control
1234    }
1235  }
1236  return ctrl;
1237}
1238//
1239// Given a control, see if it's the control projection of an Unlock which
1240// operating on the same object as lock.
1241//
1242bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1243                                            GrowableArray<AbstractLockNode*> &lock_ops) {
1244  ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1245  if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1246    Node *n = ctrl_proj->in(0);
1247    if (n != NULL && n->is_Unlock()) {
1248      UnlockNode *unlock = n->as_Unlock();
1249      if ((lock->obj_node() == unlock->obj_node()) &&
1250          (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
1251        lock_ops.append(unlock);
1252        return true;
1253      }
1254    }
1255  }
1256  return false;
1257}
1258
1259//
1260// Find the lock matching an unlock.  Returns null if a safepoint
1261// or complicated control is encountered first.
1262LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1263  LockNode *lock_result = NULL;
1264  // find the matching lock, or an intervening safepoint
1265  Node *ctrl = next_control(unlock->in(0));
1266  while (1) {
1267    assert(ctrl != NULL, "invalid control graph");
1268    assert(!ctrl->is_Start(), "missing lock for unlock");
1269    if (ctrl->is_top()) break;  // dead control path
1270    if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1271    if (ctrl->is_SafePoint()) {
1272        break;  // found a safepoint (may be the lock we are searching for)
1273    } else if (ctrl->is_Region()) {
1274      // Check for a simple diamond pattern.  Punt on anything more complicated
1275      if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1276        Node *in1 = next_control(ctrl->in(1));
1277        Node *in2 = next_control(ctrl->in(2));
1278        if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1279             (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1280          ctrl = next_control(in1->in(0)->in(0));
1281        } else {
1282          break;
1283        }
1284      } else {
1285        break;
1286      }
1287    } else {
1288      ctrl = next_control(ctrl->in(0));  // keep searching
1289    }
1290  }
1291  if (ctrl->is_Lock()) {
1292    LockNode *lock = ctrl->as_Lock();
1293    if ((lock->obj_node() == unlock->obj_node()) &&
1294            (lock->box_node() == unlock->box_node())) {
1295      lock_result = lock;
1296    }
1297  }
1298  return lock_result;
1299}
1300
1301// This code corresponds to case 3 above.
1302
1303bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1304                                                       GrowableArray<AbstractLockNode*> &lock_ops) {
1305  Node* if_node = node->in(0);
1306  bool  if_true = node->is_IfTrue();
1307
1308  if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1309    Node *lock_ctrl = next_control(if_node->in(0));
1310    if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1311      Node* lock1_node = NULL;
1312      ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1313      if (if_true) {
1314        if (proj->is_IfFalse() && proj->outcnt() == 1) {
1315          lock1_node = proj->unique_out();
1316        }
1317      } else {
1318        if (proj->is_IfTrue() && proj->outcnt() == 1) {
1319          lock1_node = proj->unique_out();
1320        }
1321      }
1322      if (lock1_node != NULL && lock1_node->is_Lock()) {
1323        LockNode *lock1 = lock1_node->as_Lock();
1324        if ((lock->obj_node() == lock1->obj_node()) &&
1325            (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
1326          lock_ops.append(lock1);
1327          return true;
1328        }
1329      }
1330    }
1331  }
1332
1333  lock_ops.trunc_to(0);
1334  return false;
1335}
1336
1337bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1338                               GrowableArray<AbstractLockNode*> &lock_ops) {
1339  // check each control merging at this point for a matching unlock.
1340  // in(0) should be self edge so skip it.
1341  for (int i = 1; i < (int)region->req(); i++) {
1342    Node *in_node = next_control(region->in(i));
1343    if (in_node != NULL) {
1344      if (find_matching_unlock(in_node, lock, lock_ops)) {
1345        // found a match so keep on checking.
1346        continue;
1347      } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1348        continue;
1349      }
1350
1351      // If we fall through to here then it was some kind of node we
1352      // don't understand or there wasn't a matching unlock, so give
1353      // up trying to merge locks.
1354      lock_ops.trunc_to(0);
1355      return false;
1356    }
1357  }
1358  return true;
1359
1360}
1361
1362#ifndef PRODUCT
1363//
1364// Create a counter which counts the number of times this lock is acquired
1365//
1366void AbstractLockNode::create_lock_counter(JVMState* state) {
1367  _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1368}
1369#endif
1370
1371void AbstractLockNode::set_eliminated() {
1372  _eliminate = true;
1373#ifndef PRODUCT
1374  if (_counter) {
1375    // Update the counter to indicate that this lock was eliminated.
1376    // The counter update code will stay around even though the
1377    // optimizer will eliminate the lock operation itself.
1378    _counter->set_tag(NamedCounter::EliminatedLockCounter);
1379  }
1380#endif
1381}
1382
1383//=============================================================================
1384Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1385
1386  // perform any generic optimizations first (returns 'this' or NULL)
1387  Node *result = SafePointNode::Ideal(phase, can_reshape);
1388
1389  // Now see if we can optimize away this lock.  We don't actually
1390  // remove the locking here, we simply set the _eliminate flag which
1391  // prevents macro expansion from expanding the lock.  Since we don't
1392  // modify the graph, the value returned from this function is the
1393  // one computed above.
1394  if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
1395    //
1396    // If we are locking an unescaped object, the lock/unlock is unnecessary
1397    //
1398    ConnectionGraph *cgr = Compile::current()->congraph();
1399    PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
1400    if (cgr != NULL)
1401      es = cgr->escape_state(obj_node(), phase);
1402    if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1403      // Mark it eliminated to update any counters
1404      this->set_eliminated();
1405      return result;
1406    }
1407
1408    //
1409    // Try lock coarsening
1410    //
1411    PhaseIterGVN* iter = phase->is_IterGVN();
1412    if (iter != NULL) {
1413
1414      GrowableArray<AbstractLockNode*>   lock_ops;
1415
1416      Node *ctrl = next_control(in(0));
1417
1418      // now search back for a matching Unlock
1419      if (find_matching_unlock(ctrl, this, lock_ops)) {
1420        // found an unlock directly preceding this lock.  This is the
1421        // case of single unlock directly control dependent on a
1422        // single lock which is the trivial version of case 1 or 2.
1423      } else if (ctrl->is_Region() ) {
1424        if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1425        // found lock preceded by multiple unlocks along all paths
1426        // joining at this point which is case 3 in description above.
1427        }
1428      } else {
1429        // see if this lock comes from either half of an if and the
1430        // predecessors merges unlocks and the other half of the if
1431        // performs a lock.
1432        if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1433          // found unlock splitting to an if with locks on both branches.
1434        }
1435      }
1436
1437      if (lock_ops.length() > 0) {
1438        // add ourselves to the list of locks to be eliminated.
1439        lock_ops.append(this);
1440
1441  #ifndef PRODUCT
1442        if (PrintEliminateLocks) {
1443          int locks = 0;
1444          int unlocks = 0;
1445          for (int i = 0; i < lock_ops.length(); i++) {
1446            AbstractLockNode* lock = lock_ops.at(i);
1447            if (lock->Opcode() == Op_Lock)
1448              locks++;
1449            else
1450              unlocks++;
1451            if (Verbose) {
1452              lock->dump(1);
1453            }
1454          }
1455          tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1456        }
1457  #endif
1458
1459        // for each of the identified locks, mark them
1460        // as eliminatable
1461        for (int i = 0; i < lock_ops.length(); i++) {
1462          AbstractLockNode* lock = lock_ops.at(i);
1463
1464          // Mark it eliminated to update any counters
1465          lock->set_eliminated();
1466        }
1467      } else if (result != NULL && ctrl->is_Region() &&
1468                 iter->_worklist.member(ctrl)) {
1469        // We weren't able to find any opportunities but the region this
1470        // lock is control dependent on hasn't been processed yet so put
1471        // this lock back on the worklist so we can check again once any
1472        // region simplification has occurred.
1473        iter->_worklist.push(this);
1474      }
1475    }
1476  }
1477
1478  return result;
1479}
1480
1481//=============================================================================
1482uint UnlockNode::size_of() const { return sizeof(*this); }
1483
1484//=============================================================================
1485Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1486
1487  // perform any generic optimizations first (returns 'this' or NULL)
1488  Node * result = SafePointNode::Ideal(phase, can_reshape);
1489
1490  // Now see if we can optimize away this unlock.  We don't actually
1491  // remove the unlocking here, we simply set the _eliminate flag which
1492  // prevents macro expansion from expanding the unlock.  Since we don't
1493  // modify the graph, the value returned from this function is the
1494  // one computed above.
1495  // Escape state is defined after Parse phase.
1496  if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
1497    //
1498    // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1499    //
1500    ConnectionGraph *cgr = Compile::current()->congraph();
1501    PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
1502    if (cgr != NULL)
1503      es = cgr->escape_state(obj_node(), phase);
1504    if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1505      // Mark it eliminated to update any counters
1506      this->set_eliminated();
1507    }
1508  }
1509  return result;
1510}
1511