callnode.cpp revision 0:a61af66fc99e
1256949Sganbold/*
2256949Sganbold * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
3256949Sganbold * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4256949Sganbold *
5256949Sganbold * This code is free software; you can redistribute it and/or modify it
6278601Sian * under the terms of the GNU General Public License version 2 only, as
7256949Sganbold * published by the Free Software Foundation.
8256949Sganbold *
9256949Sganbold * This code is distributed in the hope that it will be useful, but WITHOUT
10256949Sganbold * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11256949Sganbold * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12256949Sganbold * version 2 for more details (a copy is included in the LICENSE file that
13256949Sganbold * accompanied this code).
14256949Sganbold *
15256949Sganbold * You should have received a copy of the GNU General Public License version
16256949Sganbold * 2 along with this work; if not, write to the Free Software Foundation,
17256949Sganbold * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18256949Sganbold *
19256949Sganbold * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20256949Sganbold * CA 95054 USA or visit www.sun.com if you need additional information or
21256949Sganbold * have any questions.
22256949Sganbold *
23256949Sganbold */
24256949Sganbold
25256949Sganbold// Portions of code courtesy of Clifford Click
26256949Sganbold
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_callnode.cpp.incl"
31
32//=============================================================================
33uint StartNode::size_of() const { return sizeof(*this); }
34uint StartNode::cmp( const Node &n ) const
35{ return _domain == ((StartNode&)n)._domain; }
36const Type *StartNode::bottom_type() const { return _domain; }
37const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
38#ifndef PRODUCT
39void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
40#endif
41
42//------------------------------Ideal------------------------------------------
43Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
44  return remove_dead_region(phase, can_reshape) ? this : NULL;
45}
46
47//------------------------------calling_convention-----------------------------
48void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
49  Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
50}
51
52//------------------------------Registers--------------------------------------
53const RegMask &StartNode::in_RegMask(uint) const {
54  return RegMask::Empty;
55}
56
57//------------------------------match------------------------------------------
58// Construct projections for incoming parameters, and their RegMask info
59Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
60  switch (proj->_con) {
61  case TypeFunc::Control:
62  case TypeFunc::I_O:
63  case TypeFunc::Memory:
64    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
65  case TypeFunc::FramePtr:
66    return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
67  case TypeFunc::ReturnAdr:
68    return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
69  case TypeFunc::Parms:
70  default: {
71      uint parm_num = proj->_con - TypeFunc::Parms;
72      const Type *t = _domain->field_at(proj->_con);
73      if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
74        return new (match->C, 1) ConNode(Type::TOP);
75      uint ideal_reg = Matcher::base2reg[t->base()];
76      RegMask &rm = match->_calling_convention_mask[parm_num];
77      return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
78    }
79  }
80  return NULL;
81}
82
83//------------------------------StartOSRNode----------------------------------
84// The method start node for an on stack replacement adapter
85
86//------------------------------osr_domain-----------------------------
87const TypeTuple *StartOSRNode::osr_domain() {
88  const Type **fields = TypeTuple::fields(2);
89  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
90
91  return TypeTuple::make(TypeFunc::Parms+1, fields);
92}
93
94//=============================================================================
95const char * const ParmNode::names[TypeFunc::Parms+1] = {
96  "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
97};
98
99#ifndef PRODUCT
100void ParmNode::dump_spec(outputStream *st) const {
101  if( _con < TypeFunc::Parms ) {
102    st->print(names[_con]);
103  } else {
104    st->print("Parm%d: ",_con-TypeFunc::Parms);
105    // Verbose and WizardMode dump bottom_type for all nodes
106    if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
107  }
108}
109#endif
110
111uint ParmNode::ideal_reg() const {
112  switch( _con ) {
113  case TypeFunc::Control  : // fall through
114  case TypeFunc::I_O      : // fall through
115  case TypeFunc::Memory   : return 0;
116  case TypeFunc::FramePtr : // fall through
117  case TypeFunc::ReturnAdr: return Op_RegP;
118  default                 : assert( _con > TypeFunc::Parms, "" );
119    // fall through
120  case TypeFunc::Parms    : {
121    // Type of argument being passed
122    const Type *t = in(0)->as_Start()->_domain->field_at(_con);
123    return Matcher::base2reg[t->base()];
124  }
125  }
126  ShouldNotReachHere();
127  return 0;
128}
129
130//=============================================================================
131ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
132  init_req(TypeFunc::Control,cntrl);
133  init_req(TypeFunc::I_O,i_o);
134  init_req(TypeFunc::Memory,memory);
135  init_req(TypeFunc::FramePtr,frameptr);
136  init_req(TypeFunc::ReturnAdr,retadr);
137}
138
139Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
140  return remove_dead_region(phase, can_reshape) ? this : NULL;
141}
142
143const Type *ReturnNode::Value( PhaseTransform *phase ) const {
144  return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
145    ? Type::TOP
146    : Type::BOTTOM;
147}
148
149// Do we Match on this edge index or not?  No edges on return nodes
150uint ReturnNode::match_edge(uint idx) const {
151  return 0;
152}
153
154
155#ifndef PRODUCT
156void ReturnNode::dump_req() const {
157  // Dump the required inputs, enclosed in '(' and ')'
158  uint i;                       // Exit value of loop
159  for( i=0; i<req(); i++ ) {    // For all required inputs
160    if( i == TypeFunc::Parms ) tty->print("returns");
161    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
162    else tty->print("_ ");
163  }
164}
165#endif
166
167//=============================================================================
168RethrowNode::RethrowNode(
169  Node* cntrl,
170  Node* i_o,
171  Node* memory,
172  Node* frameptr,
173  Node* ret_adr,
174  Node* exception
175) : Node(TypeFunc::Parms + 1) {
176  init_req(TypeFunc::Control  , cntrl    );
177  init_req(TypeFunc::I_O      , i_o      );
178  init_req(TypeFunc::Memory   , memory   );
179  init_req(TypeFunc::FramePtr , frameptr );
180  init_req(TypeFunc::ReturnAdr, ret_adr);
181  init_req(TypeFunc::Parms    , exception);
182}
183
184Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
185  return remove_dead_region(phase, can_reshape) ? this : NULL;
186}
187
188const Type *RethrowNode::Value( PhaseTransform *phase ) const {
189  return (phase->type(in(TypeFunc::Control)) == Type::TOP)
190    ? Type::TOP
191    : Type::BOTTOM;
192}
193
194uint RethrowNode::match_edge(uint idx) const {
195  return 0;
196}
197
198#ifndef PRODUCT
199void RethrowNode::dump_req() const {
200  // Dump the required inputs, enclosed in '(' and ')'
201  uint i;                       // Exit value of loop
202  for( i=0; i<req(); i++ ) {    // For all required inputs
203    if( i == TypeFunc::Parms ) tty->print("exception");
204    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
205    else tty->print("_ ");
206  }
207}
208#endif
209
210//=============================================================================
211// Do we Match on this edge index or not?  Match only target address & method
212uint TailCallNode::match_edge(uint idx) const {
213  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
214}
215
216//=============================================================================
217// Do we Match on this edge index or not?  Match only target address & oop
218uint TailJumpNode::match_edge(uint idx) const {
219  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
220}
221
222//=============================================================================
223JVMState::JVMState(ciMethod* method, JVMState* caller) {
224  assert(method != NULL, "must be valid call site");
225  _method = method;
226  debug_only(_bci = -99);  // random garbage value
227  debug_only(_map = (SafePointNode*)-1);
228  _caller = caller;
229  _depth  = 1 + (caller == NULL ? 0 : caller->depth());
230  _locoff = TypeFunc::Parms;
231  _stkoff = _locoff + _method->max_locals();
232  _monoff = _stkoff + _method->max_stack();
233  _endoff = _monoff;
234  _sp = 0;
235}
236JVMState::JVMState(int stack_size) {
237  _method = NULL;
238  _bci = InvocationEntryBci;
239  debug_only(_map = (SafePointNode*)-1);
240  _caller = NULL;
241  _depth  = 1;
242  _locoff = TypeFunc::Parms;
243  _stkoff = _locoff;
244  _monoff = _stkoff + stack_size;
245  _endoff = _monoff;
246  _sp = 0;
247}
248
249//--------------------------------of_depth-------------------------------------
250JVMState* JVMState::of_depth(int d) const {
251  const JVMState* jvmp = this;
252  assert(0 < d && (uint)d <= depth(), "oob");
253  for (int skip = depth() - d; skip > 0; skip--) {
254    jvmp = jvmp->caller();
255  }
256  assert(jvmp->depth() == (uint)d, "found the right one");
257  return (JVMState*)jvmp;
258}
259
260//-----------------------------same_calls_as-----------------------------------
261bool JVMState::same_calls_as(const JVMState* that) const {
262  if (this == that)                    return true;
263  if (this->depth() != that->depth())  return false;
264  const JVMState* p = this;
265  const JVMState* q = that;
266  for (;;) {
267    if (p->_method != q->_method)    return false;
268    if (p->_method == NULL)          return true;   // bci is irrelevant
269    if (p->_bci    != q->_bci)       return false;
270    p = p->caller();
271    q = q->caller();
272    if (p == q)                      return true;
273    assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
274  }
275}
276
277//------------------------------debug_start------------------------------------
278uint JVMState::debug_start()  const {
279  debug_only(JVMState* jvmroot = of_depth(1));
280  assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
281  return of_depth(1)->locoff();
282}
283
284//-------------------------------debug_end-------------------------------------
285uint JVMState::debug_end() const {
286  debug_only(JVMState* jvmroot = of_depth(1));
287  assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
288  return endoff();
289}
290
291//------------------------------debug_depth------------------------------------
292uint JVMState::debug_depth() const {
293  uint total = 0;
294  for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
295    total += jvmp->debug_size();
296  }
297  return total;
298}
299
300//------------------------------format_helper----------------------------------
301// Given an allocation (a Chaitin object) and a Node decide if the Node carries
302// any defined value or not.  If it does, print out the register or constant.
303#ifndef PRODUCT
304static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i ) {
305  if (n == NULL) { st->print(" NULL"); return; }
306  if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
307    char buf[50];
308    regalloc->dump_register(n,buf);
309    st->print(" %s%d]=%s",msg,i,buf);
310  } else {                      // No register, but might be constant
311    const Type *t = n->bottom_type();
312    switch (t->base()) {
313    case Type::Int:
314      st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
315      break;
316    case Type::AnyPtr:
317      assert( t == TypePtr::NULL_PTR, "" );
318      st->print(" %s%d]=#NULL",msg,i);
319      break;
320    case Type::AryPtr:
321    case Type::KlassPtr:
322    case Type::InstPtr:
323      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
324      break;
325    case Type::RawPtr:
326      st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
327      break;
328    case Type::DoubleCon:
329      st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
330      break;
331    case Type::FloatCon:
332      st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
333      break;
334    case Type::Long:
335      st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
336      break;
337    case Type::Half:
338    case Type::Top:
339      st->print(" %s%d]=_",msg,i);
340      break;
341    default: ShouldNotReachHere();
342    }
343  }
344}
345#endif
346
347//------------------------------format-----------------------------------------
348#ifndef PRODUCT
349void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
350  st->print("        #");
351  if( _method ) {
352    _method->print_short_name(st);
353    st->print(" @ bci:%d ",_bci);
354  } else {
355    st->print_cr(" runtime stub ");
356    return;
357  }
358  if (n->is_MachSafePoint()) {
359    MachSafePointNode *mcall = n->as_MachSafePoint();
360    uint i;
361    // Print locals
362    for( i = 0; i < (uint)loc_size(); i++ )
363      format_helper( regalloc, st, mcall->local(this, i), "L[", i );
364    // Print stack
365    for (i = 0; i < (uint)stk_size(); i++) {
366      if ((uint)(_stkoff + i) >= mcall->len())
367        st->print(" oob ");
368      else
369       format_helper( regalloc, st, mcall->stack(this, i), "STK[", i );
370    }
371    for (i = 0; (int)i < nof_monitors(); i++) {
372      Node *box = mcall->monitor_box(this, i);
373      Node *obj = mcall->monitor_obj(this, i);
374      if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
375        while( !box->is_BoxLock() )  box = box->in(1);
376        format_helper( regalloc, st, box, "MON-BOX[", i );
377      } else {
378        OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
379        st->print(" MON-BOX%d=%s+%d",
380                   i,
381                   OptoReg::regname(OptoReg::c_frame_pointer),
382                   regalloc->reg2offset(box_reg));
383      }
384      format_helper( regalloc, st, obj, "MON-OBJ[", i );
385    }
386  }
387  st->print_cr("");
388  if (caller() != NULL)  caller()->format(regalloc, n, st);
389}
390#endif
391
392#ifndef PRODUCT
393void JVMState::dump_spec(outputStream *st) const {
394  if (_method != NULL) {
395    bool printed = false;
396    if (!Verbose) {
397      // The JVMS dumps make really, really long lines.
398      // Take out the most boring parts, which are the package prefixes.
399      char buf[500];
400      stringStream namest(buf, sizeof(buf));
401      _method->print_short_name(&namest);
402      if (namest.count() < sizeof(buf)) {
403        const char* name = namest.base();
404        if (name[0] == ' ')  ++name;
405        const char* endcn = strchr(name, ':');  // end of class name
406        if (endcn == NULL)  endcn = strchr(name, '(');
407        if (endcn == NULL)  endcn = name + strlen(name);
408        while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
409          --endcn;
410        st->print(" %s", endcn);
411        printed = true;
412      }
413    }
414    if (!printed)
415      _method->print_short_name(st);
416    st->print(" @ bci:%d",_bci);
417  } else {
418    st->print(" runtime stub");
419  }
420  if (caller() != NULL)  caller()->dump_spec(st);
421}
422#endif
423
424#ifndef PRODUCT
425void JVMState::dump_on(outputStream* st) const {
426  if (_map && !((uintptr_t)_map & 1)) {
427    if (_map->len() > _map->req()) {  // _map->has_exceptions()
428      Node* ex = _map->in(_map->req());  // _map->next_exception()
429      // skip the first one; it's already being printed
430      while (ex != NULL && ex->len() > ex->req()) {
431        ex = ex->in(ex->req());  // ex->next_exception()
432        ex->dump(1);
433      }
434    }
435    _map->dump(2);
436  }
437  st->print("JVMS depth=%d loc=%d stk=%d mon=%d end=%d mondepth=%d sp=%d bci=%d method=",
438             depth(), locoff(), stkoff(), monoff(), endoff(), monitor_depth(), sp(), bci());
439  if (_method == NULL) {
440    st->print_cr("(none)");
441  } else {
442    _method->print_name(st);
443    st->cr();
444    if (bci() >= 0 && bci() < _method->code_size()) {
445      st->print("    bc: ");
446      _method->print_codes_on(bci(), bci()+1, st);
447    }
448  }
449  if (caller() != NULL) {
450    caller()->dump_on(st);
451  }
452}
453
454// Extra way to dump a jvms from the debugger,
455// to avoid a bug with C++ member function calls.
456void dump_jvms(JVMState* jvms) {
457  jvms->dump();
458}
459#endif
460
461//--------------------------clone_shallow--------------------------------------
462JVMState* JVMState::clone_shallow(Compile* C) const {
463  JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
464  n->set_bci(_bci);
465  n->set_locoff(_locoff);
466  n->set_stkoff(_stkoff);
467  n->set_monoff(_monoff);
468  n->set_endoff(_endoff);
469  n->set_sp(_sp);
470  n->set_map(_map);
471  return n;
472}
473
474//---------------------------clone_deep----------------------------------------
475JVMState* JVMState::clone_deep(Compile* C) const {
476  JVMState* n = clone_shallow(C);
477  for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
478    p->_caller = p->_caller->clone_shallow(C);
479  }
480  assert(n->depth() == depth(), "sanity");
481  assert(n->debug_depth() == debug_depth(), "sanity");
482  return n;
483}
484
485//=============================================================================
486uint CallNode::cmp( const Node &n ) const
487{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
488#ifndef PRODUCT
489void CallNode::dump_req() const {
490  // Dump the required inputs, enclosed in '(' and ')'
491  uint i;                       // Exit value of loop
492  for( i=0; i<req(); i++ ) {    // For all required inputs
493    if( i == TypeFunc::Parms ) tty->print("(");
494    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
495    else tty->print("_ ");
496  }
497  tty->print(")");
498}
499
500void CallNode::dump_spec(outputStream *st) const {
501  st->print(" ");
502  tf()->dump_on(st);
503  if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
504  if (jvms() != NULL)  jvms()->dump_spec(st);
505}
506#endif
507
508const Type *CallNode::bottom_type() const { return tf()->range(); }
509const Type *CallNode::Value(PhaseTransform *phase) const {
510  if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
511  return tf()->range();
512}
513
514//------------------------------calling_convention-----------------------------
515void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
516  // Use the standard compiler calling convention
517  Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
518}
519
520
521//------------------------------match------------------------------------------
522// Construct projections for control, I/O, memory-fields, ..., and
523// return result(s) along with their RegMask info
524Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
525  switch (proj->_con) {
526  case TypeFunc::Control:
527  case TypeFunc::I_O:
528  case TypeFunc::Memory:
529    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
530
531  case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
532    assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
533    // 2nd half of doubles and longs
534    return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
535
536  case TypeFunc::Parms: {       // Normal returns
537    uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
538    OptoRegPair regs = is_CallRuntime()
539      ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
540      : match->  return_value(ideal_reg,true); // Calls into compiled Java code
541    RegMask rm = RegMask(regs.first());
542    if( OptoReg::is_valid(regs.second()) )
543      rm.Insert( regs.second() );
544    return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
545  }
546
547  case TypeFunc::ReturnAdr:
548  case TypeFunc::FramePtr:
549  default:
550    ShouldNotReachHere();
551  }
552  return NULL;
553}
554
555// Do we Match on this edge index or not?  Match no edges
556uint CallNode::match_edge(uint idx) const {
557  return 0;
558}
559
560//=============================================================================
561uint CallJavaNode::size_of() const { return sizeof(*this); }
562uint CallJavaNode::cmp( const Node &n ) const {
563  CallJavaNode &call = (CallJavaNode&)n;
564  return CallNode::cmp(call) && _method == call._method;
565}
566#ifndef PRODUCT
567void CallJavaNode::dump_spec(outputStream *st) const {
568  if( _method ) _method->print_short_name(st);
569  CallNode::dump_spec(st);
570}
571#endif
572
573//=============================================================================
574uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
575uint CallStaticJavaNode::cmp( const Node &n ) const {
576  CallStaticJavaNode &call = (CallStaticJavaNode&)n;
577  return CallJavaNode::cmp(call);
578}
579
580//----------------------------uncommon_trap_request----------------------------
581// If this is an uncommon trap, return the request code, else zero.
582int CallStaticJavaNode::uncommon_trap_request() const {
583  if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
584    return extract_uncommon_trap_request(this);
585  }
586  return 0;
587}
588int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
589#ifndef PRODUCT
590  if (!(call->req() > TypeFunc::Parms &&
591        call->in(TypeFunc::Parms) != NULL &&
592        call->in(TypeFunc::Parms)->is_Con())) {
593    assert(_in_dump_cnt != 0, "OK if dumping");
594    tty->print("[bad uncommon trap]");
595    return 0;
596  }
597#endif
598  return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
599}
600
601#ifndef PRODUCT
602void CallStaticJavaNode::dump_spec(outputStream *st) const {
603  st->print("# Static ");
604  if (_name != NULL) {
605    st->print("%s", _name);
606    int trap_req = uncommon_trap_request();
607    if (trap_req != 0) {
608      char buf[100];
609      st->print("(%s)",
610                 Deoptimization::format_trap_request(buf, sizeof(buf),
611                                                     trap_req));
612    }
613    st->print(" ");
614  }
615  CallJavaNode::dump_spec(st);
616}
617#endif
618
619//=============================================================================
620uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
621uint CallDynamicJavaNode::cmp( const Node &n ) const {
622  CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
623  return CallJavaNode::cmp(call);
624}
625#ifndef PRODUCT
626void CallDynamicJavaNode::dump_spec(outputStream *st) const {
627  st->print("# Dynamic ");
628  CallJavaNode::dump_spec(st);
629}
630#endif
631
632//=============================================================================
633uint CallRuntimeNode::size_of() const { return sizeof(*this); }
634uint CallRuntimeNode::cmp( const Node &n ) const {
635  CallRuntimeNode &call = (CallRuntimeNode&)n;
636  return CallNode::cmp(call) && !strcmp(_name,call._name);
637}
638#ifndef PRODUCT
639void CallRuntimeNode::dump_spec(outputStream *st) const {
640  st->print("# ");
641  st->print(_name);
642  CallNode::dump_spec(st);
643}
644#endif
645
646//------------------------------calling_convention-----------------------------
647void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
648  Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
649}
650
651//=============================================================================
652//------------------------------calling_convention-----------------------------
653
654
655//=============================================================================
656#ifndef PRODUCT
657void CallLeafNode::dump_spec(outputStream *st) const {
658  st->print("# ");
659  st->print(_name);
660  CallNode::dump_spec(st);
661}
662#endif
663
664//=============================================================================
665
666void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
667  assert(verify_jvms(jvms), "jvms must match");
668  int loc = jvms->locoff() + idx;
669  if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
670    // If current local idx is top then local idx - 1 could
671    // be a long/double that needs to be killed since top could
672    // represent the 2nd half ofthe long/double.
673    uint ideal = in(loc -1)->ideal_reg();
674    if (ideal == Op_RegD || ideal == Op_RegL) {
675      // set other (low index) half to top
676      set_req(loc - 1, in(loc));
677    }
678  }
679  set_req(loc, c);
680}
681
682uint SafePointNode::size_of() const { return sizeof(*this); }
683uint SafePointNode::cmp( const Node &n ) const {
684  return (&n == this);          // Always fail except on self
685}
686
687//-------------------------set_next_exception----------------------------------
688void SafePointNode::set_next_exception(SafePointNode* n) {
689  assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
690  if (len() == req()) {
691    if (n != NULL)  add_prec(n);
692  } else {
693    set_prec(req(), n);
694  }
695}
696
697
698//----------------------------next_exception-----------------------------------
699SafePointNode* SafePointNode::next_exception() const {
700  if (len() == req()) {
701    return NULL;
702  } else {
703    Node* n = in(req());
704    assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
705    return (SafePointNode*) n;
706  }
707}
708
709
710//------------------------------Ideal------------------------------------------
711// Skip over any collapsed Regions
712Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
713  if (remove_dead_region(phase, can_reshape))  return this;
714
715  return NULL;
716}
717
718//------------------------------Identity---------------------------------------
719// Remove obviously duplicate safepoints
720Node *SafePointNode::Identity( PhaseTransform *phase ) {
721
722  // If you have back to back safepoints, remove one
723  if( in(TypeFunc::Control)->is_SafePoint() )
724    return in(TypeFunc::Control);
725
726  if( in(0)->is_Proj() ) {
727    Node *n0 = in(0)->in(0);
728    // Check if he is a call projection (except Leaf Call)
729    if( n0->is_Catch() ) {
730      n0 = n0->in(0)->in(0);
731      assert( n0->is_Call(), "expect a call here" );
732    }
733    if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
734      // Useless Safepoint, so remove it
735      return in(TypeFunc::Control);
736    }
737  }
738
739  return this;
740}
741
742//------------------------------Value------------------------------------------
743const Type *SafePointNode::Value( PhaseTransform *phase ) const {
744  if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
745  if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
746  return Type::CONTROL;
747}
748
749#ifndef PRODUCT
750void SafePointNode::dump_spec(outputStream *st) const {
751  st->print(" SafePoint ");
752}
753#endif
754
755const RegMask &SafePointNode::in_RegMask(uint idx) const {
756  if( idx < TypeFunc::Parms ) return RegMask::Empty;
757  // Values outside the domain represent debug info
758  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
759}
760const RegMask &SafePointNode::out_RegMask() const {
761  return RegMask::Empty;
762}
763
764
765void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
766  assert((int)grow_by > 0, "sanity");
767  int monoff = jvms->monoff();
768  int endoff = jvms->endoff();
769  assert(endoff == (int)req(), "no other states or debug info after me");
770  Node* top = Compile::current()->top();
771  for (uint i = 0; i < grow_by; i++) {
772    ins_req(monoff, top);
773  }
774  jvms->set_monoff(monoff + grow_by);
775  jvms->set_endoff(endoff + grow_by);
776}
777
778void SafePointNode::push_monitor(const FastLockNode *lock) {
779  // Add a LockNode, which points to both the original BoxLockNode (the
780  // stack space for the monitor) and the Object being locked.
781  const int MonitorEdges = 2;
782  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
783  assert(req() == jvms()->endoff(), "correct sizing");
784  if (GenerateSynchronizationCode) {
785    add_req(lock->box_node());
786    add_req(lock->obj_node());
787  } else {
788    add_req(NULL);
789    add_req(NULL);
790  }
791  jvms()->set_endoff(req());
792}
793
794void SafePointNode::pop_monitor() {
795  // Delete last monitor from debug info
796  debug_only(int num_before_pop = jvms()->nof_monitors());
797  const int MonitorEdges = (1<<JVMState::logMonitorEdges);
798  int endoff = jvms()->endoff();
799  int new_endoff = endoff - MonitorEdges;
800  jvms()->set_endoff(new_endoff);
801  while (endoff > new_endoff)  del_req(--endoff);
802  assert(jvms()->nof_monitors() == num_before_pop-1, "");
803}
804
805Node *SafePointNode::peek_monitor_box() const {
806  int mon = jvms()->nof_monitors() - 1;
807  assert(mon >= 0, "most have a monitor");
808  return monitor_box(jvms(), mon);
809}
810
811Node *SafePointNode::peek_monitor_obj() const {
812  int mon = jvms()->nof_monitors() - 1;
813  assert(mon >= 0, "most have a monitor");
814  return monitor_obj(jvms(), mon);
815}
816
817// Do we Match on this edge index or not?  Match no edges
818uint SafePointNode::match_edge(uint idx) const {
819  if( !needs_polling_address_input() )
820    return 0;
821
822  return (TypeFunc::Parms == idx);
823}
824
825//=============================================================================
826uint AllocateNode::size_of() const { return sizeof(*this); }
827
828AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
829                           Node *ctrl, Node *mem, Node *abio,
830                           Node *size, Node *klass_node, Node *initial_test)
831  : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
832{
833  init_class_id(Class_Allocate);
834  init_flags(Flag_is_macro);
835  Node *topnode = C->top();
836
837  init_req( TypeFunc::Control  , ctrl );
838  init_req( TypeFunc::I_O      , abio );
839  init_req( TypeFunc::Memory   , mem );
840  init_req( TypeFunc::ReturnAdr, topnode );
841  init_req( TypeFunc::FramePtr , topnode );
842  init_req( AllocSize          , size);
843  init_req( KlassNode          , klass_node);
844  init_req( InitialTest        , initial_test);
845  init_req( ALength            , topnode);
846  C->add_macro_node(this);
847}
848
849//=============================================================================
850uint AllocateArrayNode::size_of() const { return sizeof(*this); }
851
852//=============================================================================
853uint LockNode::size_of() const { return sizeof(*this); }
854
855// Redundant lock elimination
856//
857// There are various patterns of locking where we release and
858// immediately reacquire a lock in a piece of code where no operations
859// occur in between that would be observable.  In those cases we can
860// skip releasing and reacquiring the lock without violating any
861// fairness requirements.  Doing this around a loop could cause a lock
862// to be held for a very long time so we concentrate on non-looping
863// control flow.  We also require that the operations are fully
864// redundant meaning that we don't introduce new lock operations on
865// some paths so to be able to eliminate it on others ala PRE.  This
866// would probably require some more extensive graph manipulation to
867// guarantee that the memory edges were all handled correctly.
868//
869// Assuming p is a simple predicate which can't trap in any way and s
870// is a synchronized method consider this code:
871//
872//   s();
873//   if (p)
874//     s();
875//   else
876//     s();
877//   s();
878//
879// 1. The unlocks of the first call to s can be eliminated if the
880// locks inside the then and else branches are eliminated.
881//
882// 2. The unlocks of the then and else branches can be eliminated if
883// the lock of the final call to s is eliminated.
884//
885// Either of these cases subsumes the simple case of sequential control flow
886//
887// Addtionally we can eliminate versions without the else case:
888//
889//   s();
890//   if (p)
891//     s();
892//   s();
893//
894// 3. In this case we eliminate the unlock of the first s, the lock
895// and unlock in the then case and the lock in the final s.
896//
897// Note also that in all these cases the then/else pieces don't have
898// to be trivial as long as they begin and end with synchronization
899// operations.
900//
901//   s();
902//   if (p)
903//     s();
904//     f();
905//     s();
906//   s();
907//
908// The code will work properly for this case, leaving in the unlock
909// before the call to f and the relock after it.
910//
911// A potentially interesting case which isn't handled here is when the
912// locking is partially redundant.
913//
914//   s();
915//   if (p)
916//     s();
917//
918// This could be eliminated putting unlocking on the else case and
919// eliminating the first unlock and the lock in the then side.
920// Alternatively the unlock could be moved out of the then side so it
921// was after the merge and the first unlock and second lock
922// eliminated.  This might require less manipulation of the memory
923// state to get correct.
924//
925// Additionally we might allow work between a unlock and lock before
926// giving up eliminating the locks.  The current code disallows any
927// conditional control flow between these operations.  A formulation
928// similar to partial redundancy elimination computing the
929// availability of unlocking and the anticipatability of locking at a
930// program point would allow detection of fully redundant locking with
931// some amount of work in between.  I'm not sure how often I really
932// think that would occur though.  Most of the cases I've seen
933// indicate it's likely non-trivial work would occur in between.
934// There may be other more complicated constructs where we could
935// eliminate locking but I haven't seen any others appear as hot or
936// interesting.
937//
938// Locking and unlocking have a canonical form in ideal that looks
939// roughly like this:
940//
941//              <obj>
942//                | \\------+
943//                |  \       \
944//                | BoxLock   \
945//                |  |   |     \
946//                |  |    \     \
947//                |  |   FastLock
948//                |  |   /
949//                |  |  /
950//                |  |  |
951//
952//               Lock
953//                |
954//            Proj #0
955//                |
956//            MembarAcquire
957//                |
958//            Proj #0
959//
960//            MembarRelease
961//                |
962//            Proj #0
963//                |
964//              Unlock
965//                |
966//            Proj #0
967//
968//
969// This code proceeds by processing Lock nodes during PhaseIterGVN
970// and searching back through its control for the proper code
971// patterns.  Once it finds a set of lock and unlock operations to
972// eliminate they are marked as eliminatable which causes the
973// expansion of the Lock and Unlock macro nodes to make the operation a NOP
974//
975//=============================================================================
976
977//
978// Utility function to skip over uninteresting control nodes.  Nodes skipped are:
979//   - copy regions.  (These may not have been optimized away yet.)
980//   - eliminated locking nodes
981//
982static Node *next_control(Node *ctrl) {
983  if (ctrl == NULL)
984    return NULL;
985  while (1) {
986    if (ctrl->is_Region()) {
987      RegionNode *r = ctrl->as_Region();
988      Node *n = r->is_copy();
989      if (n == NULL)
990        break;  // hit a region, return it
991      else
992        ctrl = n;
993    } else if (ctrl->is_Proj()) {
994      Node *in0 = ctrl->in(0);
995      if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
996        ctrl = in0->in(0);
997      } else {
998        break;
999      }
1000    } else {
1001      break; // found an interesting control
1002    }
1003  }
1004  return ctrl;
1005}
1006//
1007// Given a control, see if it's the control projection of an Unlock which
1008// operating on the same object as lock.
1009//
1010bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1011                                            GrowableArray<AbstractLockNode*> &lock_ops) {
1012  ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1013  if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1014    Node *n = ctrl_proj->in(0);
1015    if (n != NULL && n->is_Unlock()) {
1016      UnlockNode *unlock = n->as_Unlock();
1017      if ((lock->obj_node() == unlock->obj_node()) &&
1018          (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
1019        lock_ops.append(unlock);
1020        return true;
1021      }
1022    }
1023  }
1024  return false;
1025}
1026
1027//
1028// Find the lock matching an unlock.  Returns null if a safepoint
1029// or complicated control is encountered first.
1030LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1031  LockNode *lock_result = NULL;
1032  // find the matching lock, or an intervening safepoint
1033  Node *ctrl = next_control(unlock->in(0));
1034  while (1) {
1035    assert(ctrl != NULL, "invalid control graph");
1036    assert(!ctrl->is_Start(), "missing lock for unlock");
1037    if (ctrl->is_top()) break;  // dead control path
1038    if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1039    if (ctrl->is_SafePoint()) {
1040        break;  // found a safepoint (may be the lock we are searching for)
1041    } else if (ctrl->is_Region()) {
1042      // Check for a simple diamond pattern.  Punt on anything more complicated
1043      if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1044        Node *in1 = next_control(ctrl->in(1));
1045        Node *in2 = next_control(ctrl->in(2));
1046        if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1047             (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1048          ctrl = next_control(in1->in(0)->in(0));
1049        } else {
1050          break;
1051        }
1052      } else {
1053        break;
1054      }
1055    } else {
1056      ctrl = next_control(ctrl->in(0));  // keep searching
1057    }
1058  }
1059  if (ctrl->is_Lock()) {
1060    LockNode *lock = ctrl->as_Lock();
1061    if ((lock->obj_node() == unlock->obj_node()) &&
1062            (lock->box_node() == unlock->box_node())) {
1063      lock_result = lock;
1064    }
1065  }
1066  return lock_result;
1067}
1068
1069// This code corresponds to case 3 above.
1070
1071bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1072                                                       GrowableArray<AbstractLockNode*> &lock_ops) {
1073  Node* if_node = node->in(0);
1074  bool  if_true = node->is_IfTrue();
1075
1076  if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1077    Node *lock_ctrl = next_control(if_node->in(0));
1078    if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1079      Node* lock1_node = NULL;
1080      ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1081      if (if_true) {
1082        if (proj->is_IfFalse() && proj->outcnt() == 1) {
1083          lock1_node = proj->unique_out();
1084        }
1085      } else {
1086        if (proj->is_IfTrue() && proj->outcnt() == 1) {
1087          lock1_node = proj->unique_out();
1088        }
1089      }
1090      if (lock1_node != NULL && lock1_node->is_Lock()) {
1091        LockNode *lock1 = lock1_node->as_Lock();
1092        if ((lock->obj_node() == lock1->obj_node()) &&
1093            (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
1094          lock_ops.append(lock1);
1095          return true;
1096        }
1097      }
1098    }
1099  }
1100
1101  lock_ops.trunc_to(0);
1102  return false;
1103}
1104
1105bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1106                               GrowableArray<AbstractLockNode*> &lock_ops) {
1107  // check each control merging at this point for a matching unlock.
1108  // in(0) should be self edge so skip it.
1109  for (int i = 1; i < (int)region->req(); i++) {
1110    Node *in_node = next_control(region->in(i));
1111    if (in_node != NULL) {
1112      if (find_matching_unlock(in_node, lock, lock_ops)) {
1113        // found a match so keep on checking.
1114        continue;
1115      } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1116        continue;
1117      }
1118
1119      // If we fall through to here then it was some kind of node we
1120      // don't understand or there wasn't a matching unlock, so give
1121      // up trying to merge locks.
1122      lock_ops.trunc_to(0);
1123      return false;
1124    }
1125  }
1126  return true;
1127
1128}
1129
1130#ifndef PRODUCT
1131//
1132// Create a counter which counts the number of times this lock is acquired
1133//
1134void AbstractLockNode::create_lock_counter(JVMState* state) {
1135  _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1136}
1137#endif
1138
1139void AbstractLockNode::set_eliminated() {
1140  _eliminate = true;
1141#ifndef PRODUCT
1142  if (_counter) {
1143    // Update the counter to indicate that this lock was eliminated.
1144    // The counter update code will stay around even though the
1145    // optimizer will eliminate the lock operation itself.
1146    _counter->set_tag(NamedCounter::EliminatedLockCounter);
1147  }
1148#endif
1149}
1150
1151//=============================================================================
1152Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1153
1154  // perform any generic optimizations first
1155  Node *result = SafePointNode::Ideal(phase, can_reshape);
1156
1157  // Now see if we can optimize away this lock.  We don't actually
1158  // remove the locking here, we simply set the _eliminate flag which
1159  // prevents macro expansion from expanding the lock.  Since we don't
1160  // modify the graph, the value returned from this function is the
1161  // one computed above.
1162  if (EliminateLocks && !is_eliminated()) {
1163    //
1164    // Try lock coarsening
1165    //
1166    PhaseIterGVN* iter = phase->is_IterGVN();
1167    if (iter != NULL) {
1168
1169      GrowableArray<AbstractLockNode*>   lock_ops;
1170
1171      Node *ctrl = next_control(in(0));
1172
1173      // now search back for a matching Unlock
1174      if (find_matching_unlock(ctrl, this, lock_ops)) {
1175        // found an unlock directly preceding this lock.  This is the
1176        // case of single unlock directly control dependent on a
1177        // single lock which is the trivial version of case 1 or 2.
1178      } else if (ctrl->is_Region() ) {
1179        if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1180        // found lock preceded by multiple unlocks along all paths
1181        // joining at this point which is case 3 in description above.
1182        }
1183      } else {
1184        // see if this lock comes from either half of an if and the
1185        // predecessors merges unlocks and the other half of the if
1186        // performs a lock.
1187        if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1188          // found unlock splitting to an if with locks on both branches.
1189        }
1190      }
1191
1192      if (lock_ops.length() > 0) {
1193        // add ourselves to the list of locks to be eliminated.
1194        lock_ops.append(this);
1195
1196  #ifndef PRODUCT
1197        if (PrintEliminateLocks) {
1198          int locks = 0;
1199          int unlocks = 0;
1200          for (int i = 0; i < lock_ops.length(); i++) {
1201            AbstractLockNode* lock = lock_ops.at(i);
1202            if (lock->Opcode() == Op_Lock) locks++;
1203            else                               unlocks++;
1204            if (Verbose) {
1205              lock->dump(1);
1206            }
1207          }
1208          tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1209        }
1210  #endif
1211
1212        // for each of the identified locks, mark them
1213        // as eliminatable
1214        for (int i = 0; i < lock_ops.length(); i++) {
1215          AbstractLockNode* lock = lock_ops.at(i);
1216
1217          // Mark it eliminated to update any counters
1218          lock->set_eliminated();
1219        }
1220      } else if (result != NULL && ctrl->is_Region() &&
1221                 iter->_worklist.member(ctrl)) {
1222        // We weren't able to find any opportunities but the region this
1223        // lock is control dependent on hasn't been processed yet so put
1224        // this lock back on the worklist so we can check again once any
1225        // region simplification has occurred.
1226        iter->_worklist.push(this);
1227      }
1228    }
1229  }
1230
1231  return result;
1232}
1233
1234//=============================================================================
1235uint UnlockNode::size_of() const { return sizeof(*this); }
1236
1237//=============================================================================
1238Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1239
1240  // perform any generic optimizations first
1241  Node * result = SafePointNode::Ideal(phase, can_reshape);
1242
1243  // Now see if we can optimize away this unlock.  We don't actually
1244  // remove the unlocking here, we simply set the _eliminate flag which
1245  // prevents macro expansion from expanding the unlock.  Since we don't
1246  // modify the graph, the value returned from this function is the
1247  // one computed above.
1248  if (EliminateLocks && !is_eliminated()) {
1249    //
1250    // If we are unlocking an unescaped object, the lock/unlock is unnecessary
1251    // We can eliminate them if there are no safepoints in the locked region.
1252    //
1253    ConnectionGraph *cgr = Compile::current()->congraph();
1254    if (cgr != NULL && cgr->escape_state(obj_node(), phase) == PointsToNode::NoEscape) {
1255      GrowableArray<AbstractLockNode*>   lock_ops;
1256      LockNode *lock = find_matching_lock(this);
1257      if (lock != NULL) {
1258        lock_ops.append(this);
1259        lock_ops.append(lock);
1260        // find other unlocks which pair with the lock we found and add them
1261        // to the list
1262        Node * box = box_node();
1263
1264        for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
1265          Node *use = box->fast_out(i);
1266          if (use->is_Unlock() && use != this) {
1267            UnlockNode *unlock1 = use->as_Unlock();
1268            if (!unlock1->is_eliminated()) {
1269              LockNode *lock1 = find_matching_lock(unlock1);
1270              if (lock == lock1)
1271                lock_ops.append(unlock1);
1272              else if (lock1 == NULL) {
1273               // we can't find a matching lock, we must assume the worst
1274                lock_ops.trunc_to(0);
1275                break;
1276              }
1277            }
1278          }
1279        }
1280        if (lock_ops.length() > 0) {
1281
1282  #ifndef PRODUCT
1283          if (PrintEliminateLocks) {
1284            int locks = 0;
1285            int unlocks = 0;
1286            for (int i = 0; i < lock_ops.length(); i++) {
1287              AbstractLockNode* lock = lock_ops.at(i);
1288              if (lock->Opcode() == Op_Lock) locks++;
1289              else                               unlocks++;
1290              if (Verbose) {
1291                lock->dump(1);
1292              }
1293            }
1294            tty->print_cr("***Eliminated %d unescaped unlocks and %d unescaped locks", unlocks, locks);
1295          }
1296  #endif
1297
1298          // for each of the identified locks, mark them
1299          // as eliminatable
1300          for (int i = 0; i < lock_ops.length(); i++) {
1301            AbstractLockNode* lock = lock_ops.at(i);
1302
1303            // Mark it eliminated to update any counters
1304            lock->set_eliminated();
1305          }
1306        }
1307      }
1308    }
1309  }
1310  return result;
1311}
1312