buildOopMap.cpp revision 844:bd02caa94611
1/*
2 * Copyright 2002-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_buildOopMap.cpp.incl"
27
28// The functions in this file builds OopMaps after all scheduling is done.
29//
30// OopMaps contain a list of all registers and stack-slots containing oops (so
31// they can be updated by GC).  OopMaps also contain a list of derived-pointer
32// base-pointer pairs.  When the base is moved, the derived pointer moves to
33// follow it.  Finally, any registers holding callee-save values are also
34// recorded.  These might contain oops, but only the caller knows.
35//
36// BuildOopMaps implements a simple forward reaching-defs solution.  At each
37// GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
38// typed as pointers (no offset), then they are oops.  Pointers+offsets are
39// derived pointers, and bases can be found from them.  Finally, we'll also
40// track reaching callee-save values.  Note that a copy of a callee-save value
41// "kills" it's source, so that only 1 copy of a callee-save value is alive at
42// a time.
43//
44// We run a simple bitvector liveness pass to help trim out dead oops.  Due to
45// irreducible loops, we can have a reaching def of an oop that only reaches
46// along one path and no way to know if it's valid or not on the other path.
47// The bitvectors are quite dense and the liveness pass is fast.
48//
49// At GC points, we consult this information to build OopMaps.  All reaching
50// defs typed as oops are added to the OopMap.  Only 1 instance of a
51// callee-save register can be recorded.  For derived pointers, we'll have to
52// find and record the register holding the base.
53//
54// The reaching def's is a simple 1-pass worklist approach.  I tried a clever
55// breadth-first approach but it was worse (showed O(n^2) in the
56// pick-next-block code).
57//
58// The relevant data is kept in a struct of arrays (it could just as well be
59// an array of structs, but the struct-of-arrays is generally a little more
60// efficient).  The arrays are indexed by register number (including
61// stack-slots as registers) and so is bounded by 200 to 300 elements in
62// practice.  One array will map to a reaching def Node (or NULL for
63// conflict/dead).  The other array will map to a callee-saved register or
64// OptoReg::Bad for not-callee-saved.
65
66
67//------------------------------OopFlow----------------------------------------
68// Structure to pass around
69struct OopFlow : public ResourceObj {
70  short *_callees;              // Array mapping register to callee-saved
71  Node **_defs;                 // array mapping register to reaching def
72                                // or NULL if dead/conflict
73  // OopFlow structs, when not being actively modified, describe the _end_ of
74  // this block.
75  Block *_b;                    // Block for this struct
76  OopFlow *_next;               // Next free OopFlow
77                                // or NULL if dead/conflict
78  Compile* C;
79
80  OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
81    _b(NULL), _next(NULL), C(c) { }
82
83  // Given reaching-defs for this block start, compute it for this block end
84  void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
85
86  // Merge these two OopFlows into the 'this' pointer.
87  void merge( OopFlow *flow, int max_reg );
88
89  // Copy a 'flow' over an existing flow
90  void clone( OopFlow *flow, int max_size);
91
92  // Make a new OopFlow from scratch
93  static OopFlow *make( Arena *A, int max_size, Compile* C );
94
95  // Build an oopmap from the current flow info
96  OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
97};
98
99//------------------------------compute_reach----------------------------------
100// Given reaching-defs for this block start, compute it for this block end
101void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
102
103  for( uint i=0; i<_b->_nodes.size(); i++ ) {
104    Node *n = _b->_nodes[i];
105
106    if( n->jvms() ) {           // Build an OopMap here?
107      JVMState *jvms = n->jvms();
108      // no map needed for leaf calls
109      if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
110        int *live = (int*) (*safehash)[n];
111        assert( live, "must find live" );
112        n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
113      }
114    }
115
116    // Assign new reaching def's.
117    // Note that I padded the _defs and _callees arrays so it's legal
118    // to index at _defs[OptoReg::Bad].
119    OptoReg::Name first = regalloc->get_reg_first(n);
120    OptoReg::Name second = regalloc->get_reg_second(n);
121    _defs[first] = n;
122    _defs[second] = n;
123
124    // Pass callee-save info around copies
125    int idx = n->is_Copy();
126    if( idx ) {                 // Copies move callee-save info
127      OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
128      OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
129      int tmp_first = _callees[old_first];
130      int tmp_second = _callees[old_second];
131      _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
132      _callees[old_second] = OptoReg::Bad;
133      _callees[first] = tmp_first;
134      _callees[second] = tmp_second;
135    } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
136      assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
137      assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
138      assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
139      assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
140    } else {
141      _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
142      _callees[second] = OptoReg::Bad;
143
144      // Find base case for callee saves
145      if( n->is_Proj() && n->in(0)->is_Start() ) {
146        if( OptoReg::is_reg(first) &&
147            regalloc->_matcher.is_save_on_entry(first) )
148          _callees[first] = first;
149        if( OptoReg::is_reg(second) &&
150            regalloc->_matcher.is_save_on_entry(second) )
151          _callees[second] = second;
152      }
153    }
154  }
155}
156
157//------------------------------merge------------------------------------------
158// Merge the given flow into the 'this' flow
159void OopFlow::merge( OopFlow *flow, int max_reg ) {
160  assert( _b == NULL, "merging into a happy flow" );
161  assert( flow->_b, "this flow is still alive" );
162  assert( flow != this, "no self flow" );
163
164  // Do the merge.  If there are any differences, drop to 'bottom' which
165  // is OptoReg::Bad or NULL depending.
166  for( int i=0; i<max_reg; i++ ) {
167    // Merge the callee-save's
168    if( _callees[i] != flow->_callees[i] )
169      _callees[i] = OptoReg::Bad;
170    // Merge the reaching defs
171    if( _defs[i] != flow->_defs[i] )
172      _defs[i] = NULL;
173  }
174
175}
176
177//------------------------------clone------------------------------------------
178void OopFlow::clone( OopFlow *flow, int max_size ) {
179  _b = flow->_b;
180  memcpy( _callees, flow->_callees, sizeof(short)*max_size);
181  memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
182}
183
184//------------------------------make-------------------------------------------
185OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
186  short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
187  Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
188  debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
189  OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
190  assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
191  assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
192  return flow;
193}
194
195//------------------------------bit twiddlers----------------------------------
196static int get_live_bit( int *live, int reg ) {
197  return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
198static void set_live_bit( int *live, int reg ) {
199         live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
200static void clr_live_bit( int *live, int reg ) {
201         live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
202
203//------------------------------build_oop_map----------------------------------
204// Build an oopmap from the current flow info
205OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
206  int framesize = regalloc->_framesize;
207  int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
208  debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
209              memset(dup_check,0,OptoReg::stack0()) );
210
211  OopMap *omap = new OopMap( framesize,  max_inarg_slot );
212  MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
213  JVMState* jvms = n->jvms();
214
215  // For all registers do...
216  for( int reg=0; reg<max_reg; reg++ ) {
217    if( get_live_bit(live,reg) == 0 )
218      continue;                 // Ignore if not live
219
220    // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
221    // register in that case we'll get an non-concrete register for the second
222    // half. We only need to tell the map the register once!
223    //
224    // However for the moment we disable this change and leave things as they
225    // were.
226
227    VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
228
229    if (false && r->is_reg() && !r->is_concrete()) {
230      continue;
231    }
232
233    // See if dead (no reaching def).
234    Node *def = _defs[reg];     // Get reaching def
235    assert( def, "since live better have reaching def" );
236
237    // Classify the reaching def as oop, derived, callee-save, dead, or other
238    const Type *t = def->bottom_type();
239    if( t->isa_oop_ptr() ) {    // Oop or derived?
240      assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
241#ifdef _LP64
242      // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
243      // Make sure both are record from the same reaching def, but do not
244      // put both into the oopmap.
245      if( (reg&1) == 1 ) {      // High half of oop-pair?
246        assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
247        continue;               // Do not record high parts in oopmap
248      }
249#endif
250
251      // Check for a legal reg name in the oopMap and bailout if it is not.
252      if (!omap->legal_vm_reg_name(r)) {
253        regalloc->C->record_method_not_compilable("illegal oopMap register name");
254        continue;
255      }
256      if( t->is_ptr()->_offset == 0 ) { // Not derived?
257        if( mcall ) {
258          // Outgoing argument GC mask responsibility belongs to the callee,
259          // not the caller.  Inspect the inputs to the call, to see if
260          // this live-range is one of them.
261          uint cnt = mcall->tf()->domain()->cnt();
262          uint j;
263          for( j = TypeFunc::Parms; j < cnt; j++)
264            if( mcall->in(j) == def )
265              break;            // reaching def is an argument oop
266          if( j < cnt )         // arg oops dont go in GC map
267            continue;           // Continue on to the next register
268        }
269        omap->set_oop(r);
270      } else {                  // Else it's derived.
271        // Find the base of the derived value.
272        uint i;
273        // Fast, common case, scan
274        for( i = jvms->oopoff(); i < n->req(); i+=2 )
275          if( n->in(i) == def ) break; // Common case
276        if( i == n->req() ) {   // Missed, try a more generous scan
277          // Scan again, but this time peek through copies
278          for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
279            Node *m = n->in(i); // Get initial derived value
280            while( 1 ) {
281              Node *d = def;    // Get initial reaching def
282              while( 1 ) {      // Follow copies of reaching def to end
283                if( m == d ) goto found; // breaks 3 loops
284                int idx = d->is_Copy();
285                if( !idx ) break;
286                d = d->in(idx);     // Link through copy
287              }
288              int idx = m->is_Copy();
289              if( !idx ) break;
290              m = m->in(idx);
291            }
292          }
293          guarantee( 0, "must find derived/base pair" );
294        }
295      found: ;
296        Node *base = n->in(i+1); // Base is other half of pair
297        int breg = regalloc->get_reg_first(base);
298        VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
299
300        // I record liveness at safepoints BEFORE I make the inputs
301        // live.  This is because argument oops are NOT live at a
302        // safepoint (or at least they cannot appear in the oopmap).
303        // Thus bases of base/derived pairs might not be in the
304        // liveness data but they need to appear in the oopmap.
305        if( get_live_bit(live,breg) == 0 ) {// Not live?
306          // Flag it, so next derived pointer won't re-insert into oopmap
307          set_live_bit(live,breg);
308          // Already missed our turn?
309          if( breg < reg ) {
310            if (b->is_stack() || b->is_concrete() || true ) {
311              omap->set_oop( b);
312            }
313          }
314        }
315        if (b->is_stack() || b->is_concrete() || true ) {
316          omap->set_derived_oop( r, b);
317        }
318      }
319
320    } else if( t->isa_narrowoop() ) {
321      assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
322      // Check for a legal reg name in the oopMap and bailout if it is not.
323      if (!omap->legal_vm_reg_name(r)) {
324        regalloc->C->record_method_not_compilable("illegal oopMap register name");
325        continue;
326      }
327      if( mcall ) {
328          // Outgoing argument GC mask responsibility belongs to the callee,
329          // not the caller.  Inspect the inputs to the call, to see if
330          // this live-range is one of them.
331        uint cnt = mcall->tf()->domain()->cnt();
332        uint j;
333        for( j = TypeFunc::Parms; j < cnt; j++)
334          if( mcall->in(j) == def )
335            break;            // reaching def is an argument oop
336        if( j < cnt )         // arg oops dont go in GC map
337          continue;           // Continue on to the next register
338      }
339      omap->set_narrowoop(r);
340    } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
341      // It's a callee-save value
342      assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
343      debug_only( dup_check[_callees[reg]]=1; )
344      VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
345      if ( callee->is_concrete() || true ) {
346        omap->set_callee_saved( r, callee);
347      }
348
349    } else {
350      // Other - some reaching non-oop value
351      omap->set_value( r);
352#ifdef ASSERT
353      if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
354        def->dump();
355        n->dump();
356        assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
357      }
358#endif
359    }
360
361  }
362
363#ifdef ASSERT
364  /* Nice, Intel-only assert
365  int cnt_callee_saves=0;
366  int reg2 = 0;
367  while (OptoReg::is_reg(reg2)) {
368    if( dup_check[reg2] != 0) cnt_callee_saves++;
369    assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
370    reg2++;
371  }
372  */
373#endif
374
375#ifdef ASSERT
376  for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
377    OopMapValue omv1 = oms1.current();
378    bool found = false;
379    for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
380      if( omv1.content_reg() == oms2.current().reg() ) {
381        found = true;
382        break;
383      }
384    }
385    assert( found, "derived with no base in oopmap" );
386  }
387#endif
388
389  return omap;
390}
391
392//------------------------------do_liveness------------------------------------
393// Compute backwards liveness on registers
394static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *worklist, int max_reg_ints, Arena *A, Dict *safehash ) {
395  int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints);
396  int *tmp_live = &live[cfg->_num_blocks * max_reg_ints];
397  Node *root = cfg->C->root();
398  // On CISC platforms, get the node representing the stack pointer  that regalloc
399  // used for spills
400  Node *fp = NodeSentinel;
401  if (UseCISCSpill && root->req() > 1) {
402    fp = root->in(1)->in(TypeFunc::FramePtr);
403  }
404  memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
405  // Push preds onto worklist
406  for( uint i=1; i<root->req(); i++ )
407    worklist->push(cfg->_bbs[root->in(i)->_idx]);
408
409  // ZKM.jar includes tiny infinite loops which are unreached from below.
410  // If we missed any blocks, we'll retry here after pushing all missed
411  // blocks on the worklist.  Normally this outer loop never trips more
412  // than once.
413  while( 1 ) {
414
415    while( worklist->size() ) { // Standard worklist algorithm
416      Block *b = worklist->rpop();
417
418      // Copy first successor into my tmp_live space
419      int s0num = b->_succs[0]->_pre_order;
420      int *t = &live[s0num*max_reg_ints];
421      for( int i=0; i<max_reg_ints; i++ )
422        tmp_live[i] = t[i];
423
424      // OR in the remaining live registers
425      for( uint j=1; j<b->_num_succs; j++ ) {
426        uint sjnum = b->_succs[j]->_pre_order;
427        int *t = &live[sjnum*max_reg_ints];
428        for( int i=0; i<max_reg_ints; i++ )
429          tmp_live[i] |= t[i];
430      }
431
432      // Now walk tmp_live up the block backwards, computing live
433      for( int k=b->_nodes.size()-1; k>=0; k-- ) {
434        Node *n = b->_nodes[k];
435        // KILL def'd bits
436        int first = regalloc->get_reg_first(n);
437        int second = regalloc->get_reg_second(n);
438        if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
439        if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
440
441        MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
442
443        // Check if m is potentially a CISC alternate instruction (i.e, possibly
444        // synthesized by RegAlloc from a conventional instruction and a
445        // spilled input)
446        bool is_cisc_alternate = false;
447        if (UseCISCSpill && m) {
448          is_cisc_alternate = m->is_cisc_alternate();
449        }
450
451        // GEN use'd bits
452        for( uint l=1; l<n->req(); l++ ) {
453          Node *def = n->in(l);
454          assert(def != 0, "input edge required");
455          int first = regalloc->get_reg_first(def);
456          int second = regalloc->get_reg_second(def);
457          if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
458          if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
459          // If we use the stack pointer in a cisc-alternative instruction,
460          // check for use as a memory operand.  Then reconstruct the RegName
461          // for this stack location, and set the appropriate bit in the
462          // live vector 4987749.
463          if (is_cisc_alternate && def == fp) {
464            const TypePtr *adr_type = NULL;
465            intptr_t offset;
466            const Node* base = m->get_base_and_disp(offset, adr_type);
467            if (base == NodeSentinel) {
468              // Machnode has multiple memory inputs. We are unable to reason
469              // with these, but are presuming (with trepidation) that not any of
470              // them are oops. This can be fixed by making get_base_and_disp()
471              // look at a specific input instead of all inputs.
472              assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
473            } else if (base != fp || offset == Type::OffsetBot) {
474              // Do nothing: the fp operand is either not from a memory use
475              // (base == NULL) OR the fp is used in a non-memory context
476              // (base is some other register) OR the offset is not constant,
477              // so it is not a stack slot.
478            } else {
479              assert(offset >= 0, "unexpected negative offset");
480              offset -= (offset % jintSize);  // count the whole word
481              int stack_reg = regalloc->offset2reg(offset);
482              if (OptoReg::is_stack(stack_reg)) {
483                set_live_bit(tmp_live, stack_reg);
484              } else {
485                assert(false, "stack_reg not on stack?");
486              }
487            }
488          }
489        }
490
491        if( n->jvms() ) {       // Record liveness at safepoint
492
493          // This placement of this stanza means inputs to calls are
494          // considered live at the callsite's OopMap.  Argument oops are
495          // hence live, but NOT included in the oopmap.  See cutout in
496          // build_oop_map.  Debug oops are live (and in OopMap).
497          int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
498          for( int l=0; l<max_reg_ints; l++ )
499            n_live[l] = tmp_live[l];
500          safehash->Insert(n,n_live);
501        }
502
503      }
504
505      // Now at block top, see if we have any changes.  If so, propagate
506      // to prior blocks.
507      int *old_live = &live[b->_pre_order*max_reg_ints];
508      int l;
509      for( l=0; l<max_reg_ints; l++ )
510        if( tmp_live[l] != old_live[l] )
511          break;
512      if( l<max_reg_ints ) {     // Change!
513        // Copy in new value
514        for( l=0; l<max_reg_ints; l++ )
515          old_live[l] = tmp_live[l];
516        // Push preds onto worklist
517        for( l=1; l<(int)b->num_preds(); l++ )
518          worklist->push(cfg->_bbs[b->pred(l)->_idx]);
519      }
520    }
521
522    // Scan for any missing safepoints.  Happens to infinite loops
523    // ala ZKM.jar
524    uint i;
525    for( i=1; i<cfg->_num_blocks; i++ ) {
526      Block *b = cfg->_blocks[i];
527      uint j;
528      for( j=1; j<b->_nodes.size(); j++ )
529        if( b->_nodes[j]->jvms() &&
530            (*safehash)[b->_nodes[j]] == NULL )
531           break;
532      if( j<b->_nodes.size() ) break;
533    }
534    if( i == cfg->_num_blocks )
535      break;                    // Got 'em all
536#ifndef PRODUCT
537    if( PrintOpto && Verbose )
538      tty->print_cr("retripping live calc");
539#endif
540    // Force the issue (expensively): recheck everybody
541    for( i=1; i<cfg->_num_blocks; i++ )
542      worklist->push(cfg->_blocks[i]);
543  }
544
545}
546
547//------------------------------BuildOopMaps-----------------------------------
548// Collect GC mask info - where are all the OOPs?
549void Compile::BuildOopMaps() {
550  NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
551  // Can't resource-mark because I need to leave all those OopMaps around,
552  // or else I need to resource-mark some arena other than the default.
553  // ResourceMark rm;              // Reclaim all OopFlows when done
554  int max_reg = _regalloc->_max_reg; // Current array extent
555
556  Arena *A = Thread::current()->resource_area();
557  Block_List worklist;          // Worklist of pending blocks
558
559  int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
560  Dict *safehash = NULL;        // Used for assert only
561  // Compute a backwards liveness per register.  Needs a bitarray of
562  // #blocks x (#registers, rounded up to ints)
563  safehash = new Dict(cmpkey,hashkey,A);
564  do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
565  OopFlow *free_list = NULL;    // Free, unused
566
567  // Array mapping blocks to completed oopflows
568  OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks);
569  memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) );
570
571
572  // Do the first block 'by hand' to prime the worklist
573  Block *entry = _cfg->_blocks[1];
574  OopFlow *rootflow = OopFlow::make(A,max_reg,this);
575  // Initialize to 'bottom' (not 'top')
576  memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
577  memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
578  flows[entry->_pre_order] = rootflow;
579
580  // Do the first block 'by hand' to prime the worklist
581  rootflow->_b = entry;
582  rootflow->compute_reach( _regalloc, max_reg, safehash );
583  for( uint i=0; i<entry->_num_succs; i++ )
584    worklist.push(entry->_succs[i]);
585
586  // Now worklist contains blocks which have some, but perhaps not all,
587  // predecessors visited.
588  while( worklist.size() ) {
589    // Scan for a block with all predecessors visited, or any randoms slob
590    // otherwise.  All-preds-visited order allows me to recycle OopFlow
591    // structures rapidly and cut down on the memory footprint.
592    // Note: not all predecessors might be visited yet (must happen for
593    // irreducible loops).  This is OK, since every live value must have the
594    // SAME reaching def for the block, so any reaching def is OK.
595    uint i;
596
597    Block *b = worklist.pop();
598    // Ignore root block
599    if( b == _cfg->_broot ) continue;
600    // Block is already done?  Happens if block has several predecessors,
601    // he can get on the worklist more than once.
602    if( flows[b->_pre_order] ) continue;
603
604    // If this block has a visited predecessor AND that predecessor has this
605    // last block as his only undone child, we can move the OopFlow from the
606    // pred to this block.  Otherwise we have to grab a new OopFlow.
607    OopFlow *flow = NULL;       // Flag for finding optimized flow
608    Block *pred = (Block*)0xdeadbeef;
609    uint j;
610    // Scan this block's preds to find a done predecessor
611    for( j=1; j<b->num_preds(); j++ ) {
612      Block *p = _cfg->_bbs[b->pred(j)->_idx];
613      OopFlow *p_flow = flows[p->_pre_order];
614      if( p_flow ) {            // Predecessor is done
615        assert( p_flow->_b == p, "cross check" );
616        pred = p;               // Record some predecessor
617        // If all successors of p are done except for 'b', then we can carry
618        // p_flow forward to 'b' without copying, otherwise we have to draw
619        // from the free_list and clone data.
620        uint k;
621        for( k=0; k<p->_num_succs; k++ )
622          if( !flows[p->_succs[k]->_pre_order] &&
623              p->_succs[k] != b )
624            break;
625
626        // Either carry-forward the now-unused OopFlow for b's use
627        // or draw a new one from the free list
628        if( k==p->_num_succs ) {
629          flow = p_flow;
630          break;                // Found an ideal pred, use him
631        }
632      }
633    }
634
635    if( flow ) {
636      // We have an OopFlow that's the last-use of a predecessor.
637      // Carry it forward.
638    } else {                    // Draw a new OopFlow from the freelist
639      if( !free_list )
640        free_list = OopFlow::make(A,max_reg,C);
641      flow = free_list;
642      assert( flow->_b == NULL, "oopFlow is not free" );
643      free_list = flow->_next;
644      flow->_next = NULL;
645
646      // Copy/clone over the data
647      flow->clone(flows[pred->_pre_order], max_reg);
648    }
649
650    // Mark flow for block.  Blocks can only be flowed over once,
651    // because after the first time they are guarded from entering
652    // this code again.
653    assert( flow->_b == pred, "have some prior flow" );
654    flow->_b = NULL;
655
656    // Now push flow forward
657    flows[b->_pre_order] = flow;// Mark flow for this block
658    flow->_b = b;
659    flow->compute_reach( _regalloc, max_reg, safehash );
660
661    // Now push children onto worklist
662    for( i=0; i<b->_num_succs; i++ )
663      worklist.push(b->_succs[i]);
664
665  }
666}
667