block.hpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_BLOCK_HPP
26#define SHARE_VM_OPTO_BLOCK_HPP
27
28#include "opto/multnode.hpp"
29#include "opto/node.hpp"
30#include "opto/phase.hpp"
31
32// Optimization - Graph Style
33
34class Block;
35class CFGLoop;
36class MachCallNode;
37class Matcher;
38class RootNode;
39class VectorSet;
40struct Tarjan;
41
42//------------------------------Block_Array------------------------------------
43// Map dense integer indices to Blocks.  Uses classic doubling-array trick.
44// Abstractly provides an infinite array of Block*'s, initialized to NULL.
45// Note that the constructor just zeros things, and since I use Arena
46// allocation I do not need a destructor to reclaim storage.
47class Block_Array : public ResourceObj {
48  uint _size;                   // allocated size, as opposed to formal limit
49  debug_only(uint _limit;)      // limit to formal domain
50protected:
51  Block **_blocks;
52  void grow( uint i );          // Grow array node to fit
53
54public:
55  Arena *_arena;                // Arena to allocate in
56
57  Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
58    debug_only(_limit=0);
59    _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
60    for( int i = 0; i < OptoBlockListSize; i++ ) {
61      _blocks[i] = NULL;
62    }
63  }
64  Block *lookup( uint i ) const // Lookup, or NULL for not mapped
65  { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
66  Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
67  { assert( i < Max(), "oob" ); return _blocks[i]; }
68  // Extend the mapping: index i maps to Block *n.
69  void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
70  uint Max() const { debug_only(return _limit); return _size; }
71};
72
73
74class Block_List : public Block_Array {
75public:
76  uint _cnt;
77  Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
78  void push( Block *b ) { map(_cnt++,b); }
79  Block *pop() { return _blocks[--_cnt]; }
80  Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
81  void remove( uint i );
82  void insert( uint i, Block *n );
83  uint size() const { return _cnt; }
84  void reset() { _cnt = 0; }
85  void print();
86};
87
88
89class CFGElement : public ResourceObj {
90 public:
91  float _freq; // Execution frequency (estimate)
92
93  CFGElement() : _freq(0.0f) {}
94  virtual bool is_block() { return false; }
95  virtual bool is_loop()  { return false; }
96  Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
97  CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
98};
99
100//------------------------------Block------------------------------------------
101// This class defines a Basic Block.
102// Basic blocks are used during the output routines, and are not used during
103// any optimization pass.  They are created late in the game.
104class Block : public CFGElement {
105 public:
106  // Nodes in this block, in order
107  Node_List _nodes;
108
109  // Basic blocks have a Node which defines Control for all Nodes pinned in
110  // this block.  This Node is a RegionNode.  Exception-causing Nodes
111  // (division, subroutines) and Phi functions are always pinned.  Later,
112  // every Node will get pinned to some block.
113  Node *head() const { return _nodes[0]; }
114
115  // CAUTION: num_preds() is ONE based, so that predecessor numbers match
116  // input edges to Regions and Phis.
117  uint num_preds() const { return head()->req(); }
118  Node *pred(uint i) const { return head()->in(i); }
119
120  // Array of successor blocks, same size as projs array
121  Block_Array _succs;
122
123  // Basic blocks have some number of Nodes which split control to all
124  // following blocks.  These Nodes are always Projections.  The field in
125  // the Projection and the block-ending Node determine which Block follows.
126  uint _num_succs;
127
128  // Basic blocks also carry all sorts of good old fashioned DFS information
129  // used to find loops, loop nesting depth, dominators, etc.
130  uint _pre_order;              // Pre-order DFS number
131
132  // Dominator tree
133  uint _dom_depth;              // Depth in dominator tree for fast LCA
134  Block* _idom;                 // Immediate dominator block
135
136  CFGLoop *_loop;               // Loop to which this block belongs
137  uint _rpo;                    // Number in reverse post order walk
138
139  virtual bool is_block() { return true; }
140  float succ_prob(uint i);      // return probability of i'th successor
141  int num_fall_throughs();      // How many fall-through candidate this block has
142  void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
143  bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
144  Block* lone_fall_through();   // Return lone fall-through Block or null
145
146  Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
147#ifdef ASSERT
148  bool dominates(Block* that) {
149    int dom_diff = this->_dom_depth - that->_dom_depth;
150    if (dom_diff > 0)  return false;
151    for (; dom_diff < 0; dom_diff++)  that = that->_idom;
152    return this == that;
153  }
154#endif
155
156  // Report the alignment required by this block.  Must be a power of 2.
157  // The previous block will insert nops to get this alignment.
158  uint code_alignment();
159  uint compute_loop_alignment();
160
161  // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
162  // It is currently also used to scale such frequencies relative to
163  // FreqCountInvocations relative to the old value of 1500.
164#define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
165
166  // Register Pressure (estimate) for Splitting heuristic
167  uint _reg_pressure;
168  uint _ihrp_index;
169  uint _freg_pressure;
170  uint _fhrp_index;
171
172  // Mark and visited bits for an LCA calculation in insert_anti_dependences.
173  // Since they hold unique node indexes, they do not need reinitialization.
174  node_idx_t _raise_LCA_mark;
175  void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
176  node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
177  node_idx_t _raise_LCA_visited;
178  void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
179  node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
180
181  // Estimated size in bytes of first instructions in a loop.
182  uint _first_inst_size;
183  uint first_inst_size() const     { return _first_inst_size; }
184  void set_first_inst_size(uint s) { _first_inst_size = s; }
185
186  // Compute the size of first instructions in this block.
187  uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
188
189  // Compute alignment padding if the block needs it.
190  // Align a loop if loop's padding is less or equal to padding limit
191  // or the size of first instructions in the loop > padding.
192  uint alignment_padding(int current_offset) {
193    int block_alignment = code_alignment();
194    int max_pad = block_alignment-relocInfo::addr_unit();
195    if( max_pad > 0 ) {
196      assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
197      int current_alignment = current_offset & max_pad;
198      if( current_alignment != 0 ) {
199        uint padding = (block_alignment-current_alignment) & max_pad;
200        if( has_loop_alignment() &&
201            padding > (uint)MaxLoopPad &&
202            first_inst_size() <= padding ) {
203          return 0;
204        }
205        return padding;
206      }
207    }
208    return 0;
209  }
210
211  // Connector blocks. Connector blocks are basic blocks devoid of
212  // instructions, but may have relevant non-instruction Nodes, such as
213  // Phis or MergeMems. Such blocks are discovered and marked during the
214  // RemoveEmpty phase, and elided during Output.
215  bool _connector;
216  void set_connector() { _connector = true; }
217  bool is_connector() const { return _connector; };
218
219  // Loop_alignment will be set for blocks which are at the top of loops.
220  // The block layout pass may rotate loops such that the loop head may not
221  // be the sequentially first block of the loop encountered in the linear
222  // list of blocks.  If the layout pass is not run, loop alignment is set
223  // for each block which is the head of a loop.
224  uint _loop_alignment;
225  void set_loop_alignment(Block *loop_top) {
226    uint new_alignment = loop_top->compute_loop_alignment();
227    if (new_alignment > _loop_alignment) {
228      _loop_alignment = new_alignment;
229    }
230  }
231  uint loop_alignment() const { return _loop_alignment; }
232  bool has_loop_alignment() const { return loop_alignment() > 0; }
233
234  // Create a new Block with given head Node.
235  // Creates the (empty) predecessor arrays.
236  Block( Arena *a, Node *headnode )
237    : CFGElement(),
238      _nodes(a),
239      _succs(a),
240      _num_succs(0),
241      _pre_order(0),
242      _idom(0),
243      _loop(NULL),
244      _reg_pressure(0),
245      _ihrp_index(1),
246      _freg_pressure(0),
247      _fhrp_index(1),
248      _raise_LCA_mark(0),
249      _raise_LCA_visited(0),
250      _first_inst_size(999999),
251      _connector(false),
252      _loop_alignment(0) {
253    _nodes.push(headnode);
254  }
255
256  // Index of 'end' Node
257  uint end_idx() const {
258    // %%%%% add a proj after every goto
259    // so (last->is_block_proj() != last) always, then simplify this code
260    // This will not give correct end_idx for block 0 when it only contains root.
261    int last_idx = _nodes.size() - 1;
262    Node *last  = _nodes[last_idx];
263    assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
264    return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
265  }
266
267  // Basic blocks have a Node which ends them.  This Node determines which
268  // basic block follows this one in the program flow.  This Node is either an
269  // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
270  Node *end() const { return _nodes[end_idx()]; }
271
272  // Add an instruction to an existing block.  It must go after the head
273  // instruction and before the end instruction.
274  void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
275  // Find node in block
276  uint find_node( const Node *n ) const;
277  // Find and remove n from block list
278  void find_remove( const Node *n );
279
280  // Schedule a call next in the block
281  uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call);
282
283  // Perform basic-block local scheduling
284  Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot);
285  void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
286  void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
287  bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call);
288  // Cleanup if any code lands between a Call and his Catch
289  void call_catch_cleanup(Block_Array &bbs);
290  // Detect implicit-null-check opportunities.  Basically, find NULL checks
291  // with suitable memory ops nearby.  Use the memory op to do the NULL check.
292  // I can generate a memory op if there is not one nearby.
293  void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
294
295  // Return the empty status of a block
296  enum { not_empty, empty_with_goto, completely_empty };
297  int is_Empty() const;
298
299  // Forward through connectors
300  Block* non_connector() {
301    Block* s = this;
302    while (s->is_connector()) {
303      s = s->_succs[0];
304    }
305    return s;
306  }
307
308  // Return true if b is a successor of this block
309  bool has_successor(Block* b) const {
310    for (uint i = 0; i < _num_succs; i++ ) {
311      if (non_connector_successor(i) == b) {
312        return true;
313      }
314    }
315    return false;
316  }
317
318  // Successor block, after forwarding through connectors
319  Block* non_connector_successor(int i) const {
320    return _succs[i]->non_connector();
321  }
322
323  // Examine block's code shape to predict if it is not commonly executed.
324  bool has_uncommon_code() const;
325
326  // Use frequency calculations and code shape to predict if the block
327  // is uncommon.
328  bool is_uncommon( Block_Array &bbs ) const;
329
330#ifndef PRODUCT
331  // Debugging print of basic block
332  void dump_bidx(const Block* orig) const;
333  void dump_pred(const Block_Array *bbs, Block* orig) const;
334  void dump_head( const Block_Array *bbs ) const;
335  void dump( ) const;
336  void dump( const Block_Array *bbs ) const;
337#endif
338};
339
340
341//------------------------------PhaseCFG---------------------------------------
342// Build an array of Basic Block pointers, one per Node.
343class PhaseCFG : public Phase {
344 private:
345  // Build a proper looking cfg.  Return count of basic blocks
346  uint build_cfg();
347
348  // Perform DFS search.
349  // Setup 'vertex' as DFS to vertex mapping.
350  // Setup 'semi' as vertex to DFS mapping.
351  // Set 'parent' to DFS parent.
352  uint DFS( Tarjan *tarjan );
353
354  // Helper function to insert a node into a block
355  void schedule_node_into_block( Node *n, Block *b );
356
357  void replace_block_proj_ctrl( Node *n );
358
359  // Set the basic block for pinned Nodes
360  void schedule_pinned_nodes( VectorSet &visited );
361
362  // I'll need a few machine-specific GotoNodes.  Clone from this one.
363  MachNode *_goto;
364
365  Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
366  void verify_anti_dependences(Block* LCA, Node* load) {
367    assert(LCA == _bbs[load->_idx], "should already be scheduled");
368    insert_anti_dependences(LCA, load, true);
369  }
370
371 public:
372  PhaseCFG( Arena *a, RootNode *r, Matcher &m );
373
374  uint _num_blocks;             // Count of basic blocks
375  Block_List _blocks;           // List of basic blocks
376  RootNode *_root;              // Root of whole program
377  Block_Array _bbs;             // Map Nodes to owning Basic Block
378  Block *_broot;                // Basic block of root
379  uint _rpo_ctr;
380  CFGLoop* _root_loop;
381  float _outer_loop_freq;       // Outmost loop frequency
382
383  // Per node latency estimation, valid only during GCM
384  GrowableArray<uint> *_node_latency;
385
386#ifndef PRODUCT
387  bool _trace_opto_pipelining;  // tracing flag
388#endif
389
390#ifdef ASSERT
391  Unique_Node_List _raw_oops;
392#endif
393
394  // Build dominators
395  void Dominators();
396
397  // Estimate block frequencies based on IfNode probabilities
398  void Estimate_Block_Frequency();
399
400  // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
401  // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
402  void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
403
404  // Compute the (backwards) latency of a node from the uses
405  void latency_from_uses(Node *n);
406
407  // Compute the (backwards) latency of a node from a single use
408  int latency_from_use(Node *n, const Node *def, Node *use);
409
410  // Compute the (backwards) latency of a node from the uses of this instruction
411  void partial_latency_of_defs(Node *n);
412
413  // Schedule Nodes early in their basic blocks.
414  bool schedule_early(VectorSet &visited, Node_List &roots);
415
416  // For each node, find the latest block it can be scheduled into
417  // and then select the cheapest block between the latest and earliest
418  // block to place the node.
419  void schedule_late(VectorSet &visited, Node_List &stack);
420
421  // Pick a block between early and late that is a cheaper alternative
422  // to late. Helper for schedule_late.
423  Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
424
425  // Compute the instruction global latency with a backwards walk
426  void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
427
428  // Set loop alignment
429  void set_loop_alignment();
430
431  // Remove empty basic blocks
432  void remove_empty();
433  void fixup_flow();
434  bool move_to_next(Block* bx, uint b_index);
435  void move_to_end(Block* bx, uint b_index);
436  void insert_goto_at(uint block_no, uint succ_no);
437
438  // Check for NeverBranch at block end.  This needs to become a GOTO to the
439  // true target.  NeverBranch are treated as a conditional branch that always
440  // goes the same direction for most of the optimizer and are used to give a
441  // fake exit path to infinite loops.  At this late stage they need to turn
442  // into Goto's so that when you enter the infinite loop you indeed hang.
443  void convert_NeverBranch_to_Goto(Block *b);
444
445  CFGLoop* create_loop_tree();
446
447  // Insert a node into a block, and update the _bbs
448  void insert( Block *b, uint idx, Node *n ) {
449    b->_nodes.insert( idx, n );
450    _bbs.map( n->_idx, b );
451  }
452
453#ifndef PRODUCT
454  bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
455
456  // Debugging print of CFG
457  void dump( ) const;           // CFG only
458  void _dump_cfg( const Node *end, VectorSet &visited  ) const;
459  void verify() const;
460  void dump_headers();
461#else
462  bool trace_opto_pipelining() const { return false; }
463#endif
464};
465
466
467//------------------------------UnionFind--------------------------------------
468// Map Block indices to a block-index for a cfg-cover.
469// Array lookup in the optimized case.
470class UnionFind : public ResourceObj {
471  uint _cnt, _max;
472  uint* _indices;
473  ReallocMark _nesting;  // assertion check for reallocations
474public:
475  UnionFind( uint max );
476  void reset( uint max );  // Reset to identity map for [0..max]
477
478  uint lookup( uint nidx ) const {
479    return _indices[nidx];
480  }
481  uint operator[] (uint nidx) const { return lookup(nidx); }
482
483  void map( uint from_idx, uint to_idx ) {
484    assert( from_idx < _cnt, "oob" );
485    _indices[from_idx] = to_idx;
486  }
487  void extend( uint from_idx, uint to_idx );
488
489  uint Size() const { return _cnt; }
490
491  uint Find( uint idx ) {
492    assert( idx < 65536, "Must fit into uint");
493    uint uf_idx = lookup(idx);
494    return (uf_idx == idx) ? uf_idx : Find_compress(idx);
495  }
496  uint Find_compress( uint idx );
497  uint Find_const( uint idx ) const;
498  void Union( uint idx1, uint idx2 );
499
500};
501
502//----------------------------BlockProbPair---------------------------
503// Ordered pair of Node*.
504class BlockProbPair VALUE_OBJ_CLASS_SPEC {
505protected:
506  Block* _target;      // block target
507  float  _prob;        // probability of edge to block
508public:
509  BlockProbPair() : _target(NULL), _prob(0.0) {}
510  BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
511
512  Block* get_target() const { return _target; }
513  float get_prob() const { return _prob; }
514};
515
516//------------------------------CFGLoop-------------------------------------------
517class CFGLoop : public CFGElement {
518  int _id;
519  int _depth;
520  CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
521  CFGLoop *_sibling;     // null terminated list
522  CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
523  GrowableArray<CFGElement*> _members; // list of members of loop
524  GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
525  float _exit_prob;       // probability any loop exit is taken on a single loop iteration
526  void update_succ_freq(Block* b, float freq);
527
528 public:
529  CFGLoop(int id) :
530    CFGElement(),
531    _id(id),
532    _depth(0),
533    _parent(NULL),
534    _sibling(NULL),
535    _child(NULL),
536    _exit_prob(1.0f) {}
537  CFGLoop* parent() { return _parent; }
538  void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
539  void add_member(CFGElement *s) { _members.push(s); }
540  void add_nested_loop(CFGLoop* cl);
541  Block* head() {
542    assert(_members.at(0)->is_block(), "head must be a block");
543    Block* hd = _members.at(0)->as_Block();
544    assert(hd->_loop == this, "just checking");
545    assert(hd->head()->is_Loop(), "must begin with loop head node");
546    return hd;
547  }
548  Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
549  void compute_loop_depth(int depth);
550  void compute_freq(); // compute frequency with loop assuming head freq 1.0f
551  void scale_freq();   // scale frequency by loop trip count (including outer loops)
552  float outer_loop_freq() const; // frequency of outer loop
553  bool in_loop_nest(Block* b);
554  float trip_count() const { return 1.0f / _exit_prob; }
555  virtual bool is_loop()  { return true; }
556  int id() { return _id; }
557
558#ifndef PRODUCT
559  void dump( ) const;
560  void dump_tree() const;
561#endif
562};
563
564
565//----------------------------------CFGEdge------------------------------------
566// A edge between two basic blocks that will be embodied by a branch or a
567// fall-through.
568class CFGEdge : public ResourceObj {
569 private:
570  Block * _from;        // Source basic block
571  Block * _to;          // Destination basic block
572  float _freq;          // Execution frequency (estimate)
573  int   _state;
574  bool  _infrequent;
575  int   _from_pct;
576  int   _to_pct;
577
578  // Private accessors
579  int  from_pct() const { return _from_pct; }
580  int  to_pct()   const { return _to_pct;   }
581  int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
582  int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
583
584 public:
585  enum {
586    open,               // initial edge state; unprocessed
587    connected,          // edge used to connect two traces together
588    interior            // edge is interior to trace (could be backedge)
589  };
590
591  CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
592    _from(from), _to(to), _freq(freq),
593    _from_pct(from_pct), _to_pct(to_pct), _state(open) {
594    _infrequent = from_infrequent() || to_infrequent();
595  }
596
597  float  freq() const { return _freq; }
598  Block* from() const { return _from; }
599  Block* to  () const { return _to;   }
600  int  infrequent() const { return _infrequent; }
601  int state() const { return _state; }
602
603  void set_state(int state) { _state = state; }
604
605#ifndef PRODUCT
606  void dump( ) const;
607#endif
608};
609
610
611//-----------------------------------Trace-------------------------------------
612// An ordered list of basic blocks.
613class Trace : public ResourceObj {
614 private:
615  uint _id;             // Unique Trace id (derived from initial block)
616  Block ** _next_list;  // Array mapping index to next block
617  Block ** _prev_list;  // Array mapping index to previous block
618  Block * _first;       // First block in the trace
619  Block * _last;        // Last block in the trace
620
621  // Return the block that follows "b" in the trace.
622  Block * next(Block *b) const { return _next_list[b->_pre_order]; }
623  void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
624
625  // Return the block that precedes "b" in the trace.
626  Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
627  void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
628
629  // We've discovered a loop in this trace. Reset last to be "b", and first as
630  // the block following "b
631  void break_loop_after(Block *b) {
632    _last = b;
633    _first = next(b);
634    set_prev(_first, NULL);
635    set_next(_last, NULL);
636  }
637
638 public:
639
640  Trace(Block *b, Block **next_list, Block **prev_list) :
641    _first(b),
642    _last(b),
643    _next_list(next_list),
644    _prev_list(prev_list),
645    _id(b->_pre_order) {
646    set_next(b, NULL);
647    set_prev(b, NULL);
648  };
649
650  // Return the id number
651  uint id() const { return _id; }
652  void set_id(uint id) { _id = id; }
653
654  // Return the first block in the trace
655  Block * first_block() const { return _first; }
656
657  // Return the last block in the trace
658  Block * last_block() const { return _last; }
659
660  // Insert a trace in the middle of this one after b
661  void insert_after(Block *b, Trace *tr) {
662    set_next(tr->last_block(), next(b));
663    if (next(b) != NULL) {
664      set_prev(next(b), tr->last_block());
665    }
666
667    set_next(b, tr->first_block());
668    set_prev(tr->first_block(), b);
669
670    if (b == _last) {
671      _last = tr->last_block();
672    }
673  }
674
675  void insert_before(Block *b, Trace *tr) {
676    Block *p = prev(b);
677    assert(p != NULL, "use append instead");
678    insert_after(p, tr);
679  }
680
681  // Append another trace to this one.
682  void append(Trace *tr) {
683    insert_after(_last, tr);
684  }
685
686  // Append a block at the end of this trace
687  void append(Block *b) {
688    set_next(_last, b);
689    set_prev(b, _last);
690    _last = b;
691  }
692
693  // Adjust the the blocks in this trace
694  void fixup_blocks(PhaseCFG &cfg);
695  bool backedge(CFGEdge *e);
696
697#ifndef PRODUCT
698  void dump( ) const;
699#endif
700};
701
702//------------------------------PhaseBlockLayout-------------------------------
703// Rearrange blocks into some canonical order, based on edges and their frequencies
704class PhaseBlockLayout : public Phase {
705  PhaseCFG &_cfg;               // Control flow graph
706
707  GrowableArray<CFGEdge *> *edges;
708  Trace **traces;
709  Block **next;
710  Block **prev;
711  UnionFind *uf;
712
713  // Given a block, find its encompassing Trace
714  Trace * trace(Block *b) {
715    return traces[uf->Find_compress(b->_pre_order)];
716  }
717 public:
718  PhaseBlockLayout(PhaseCFG &cfg);
719
720  void find_edges();
721  void grow_traces();
722  void merge_traces(bool loose_connections);
723  void reorder_traces(int count);
724  void union_traces(Trace* from, Trace* to);
725};
726
727#endif // SHARE_VM_OPTO_BLOCK_HPP
728